1
|
Abdolizadeh A, Torres-Carmona E, Kambari Y, Amaev A, Song J, Ueno F, Koizumi T, Nakajima S, Agarwal SM, De Luca V, Gerretsen P, Graff-Guerrero A. Evaluation of the Glymphatic System in Schizophrenia Spectrum Disorder Using Proton Magnetic Resonance Spectroscopy Measurement of Brain Macromolecule and Diffusion Tensor Image Analysis Along the Perivascular Space Index. Schizophr Bull 2024; 50:1396-1410. [PMID: 38748498 PMCID: PMC11548937 DOI: 10.1093/schbul/sbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
BACKGROUND AND HYPOTHESIS The glymphatic system (GS), a brain waste clearance pathway, is disrupted in various neurodegenerative and vascular diseases. As schizophrenia shares clinical characteristics with these conditions, we hypothesized GS disruptions in patients with schizophrenia spectrum disorder (SCZ-SD), reflected in increased brain macromolecule (MM) and decreased diffusion-tensor-image-analysis along the perivascular space (DTI-ALPS) index. STUDY DESIGN Forty-seven healthy controls (HCs) and 103 patients with SCZ-SD were studied. Data included 135 proton magnetic resonance spectroscopy (1H-MRS) sets, 96 DTI sets, with 79 participants contributing both. MM levels were quantified in the dorsal-anterior cingulate cortex (dACC), dorsolateral prefrontal cortex, and dorsal caudate (point resolved spectroscopy, echo-time = 35ms). Diffusivities in the projection and association fibers near the lateral ventricle were measured to calculate DTI-ALPS indices. General linear models were performed, adjusting for age, sex, and smoking. Correlation analyses examined relationships with age, illness duration, and symptoms severity. STUDY RESULTS MM levels were not different between patients and HCs. However, left, right, and bilateral DTI-ALPS indices were lower in patients compared with HCs (P < .001). In HCs, age was positively correlated with dACC MM and negatively correlated with left, right, and bilateral DTI-ALPS indices (P < .001). In patients, illness duration was positively correlated with dACC MM and negatively correlated with the right DTI-ALPS index (P < .05). In the entire population, dACC MM and DTI-ALPS indices showed an inverse correlation (P < .01). CONCLUSIONS Our results suggest potential disruptions in the GS of patients with SCZ-SD. Improving brain's waste clearance may offer a potential therapeutic approach for patients with SCZ-SD.
Collapse
Affiliation(s)
- Ali Abdolizadeh
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Edgardo Torres-Carmona
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fumihiko Ueno
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Teruki Koizumi
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sri Mahavir Agarwal
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| |
Collapse
|
2
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Wickersham IR, Yoshida T, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits. Curr Biol 2024:S0960-9822(24)01338-1. [PMID: 39447573 DOI: 10.1016/j.cub.2024.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct D1 and indirect D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These striosomal D1 (S-D1) and D2 (S-D2) pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement with net effects opposite to those exerted by the canonical pathways: S-D1 is net inhibitory and S-D2 is net excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jill R Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vasiliki Skara
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johnny H Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jonathan T Ting
- Human Cell Types Department, Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, Balsam PD, Kellendonk C. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2024:10.1038/s41386-024-01997-x. [PMID: 39327472 DOI: 10.1038/s41386-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear. Here, we approximated striatal D2R hyperfunction in mice via designer receptor-mediated activation of inhibitory Gi-protein signaling during a defined postnatal time window. We found that Gi-mediated inhibition of the indirect pathway (IP) during postnatal days 8-15 led to long-lasting decreases in locomotor activity and motivated behavior measured in the adult animal. In vivo photometry further showed that the motivational deficit was associated with an attenuated adaptation of outcome-evoked dopamine levels to changes in effort requirements. These data establish a sensitive time window of D2R-regulated striatal development with long-lasting impacts on neuronal function and behavior.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Meghan E Gallo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ricardo Raudales
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - MaryElena Sumerau
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Sinead Moyles
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College 3009 Broadway, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Liddle PF, Sami MB. The Mechanisms of Persisting Disability in Schizophrenia: Imprecise Predictive Coding via Corticostriatothalamic-Cortical Loop Dysfunction. Biol Psychiatry 2024:S0006-3223(24)01535-X. [PMID: 39181388 DOI: 10.1016/j.biopsych.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Persisting symptoms and disability remain a problem for an appreciable proportion of people with schizophrenia despite treatment with antipsychotic medication. Improving outcomes requires an understanding of the nature and mechanisms of the pathological processes underlying persistence. Classical features of schizophrenia, which include disorganization and impoverishment of mental activity, are well-recognized early clinical features that predict poor long-term outcome. Substantial evidence indicates that these features reflect imprecise predictive coding. Predictive coding provides an overarching framework for understanding efficient functioning of the nervous system. Imprecise predictive coding also has the potential to precipitate acute psychosis characterized by reality distortion (delusions and hallucinations) at times of stress. On the other hand, substantial evidence indicates that persistent reality distortion itself gives rise to poor occupational and social function in the long term. Furthermore, abuse of psychotomimetic drugs, which exacerbate reality distortion, contributes to poor long-term outcome in schizophrenia. Neural circuits involved in modulating volitional acts are well understood to be implicated in addiction. Plastic changes in these circuits may account for the association between psychotomimetic drug abuse and poor outcomes in schizophrenia. We propose a mechanistic model according to which unbalanced inputs to the corpus striatum disturb the precision of subcortical modulation of cortical activity supporting volitional action. This model accounts for the evidence that early classical symptoms predict poor outcome, while in some circumstances, persistent reality distortion also predicts poor outcome. This model has implications for the development of novel treatments that address the risk of persisting symptoms and disabilities in schizophrenia.
Collapse
Affiliation(s)
- Peter F Liddle
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom.
| | - Musa B Sami
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Yoshida T, Wickersham IR, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic Direct-Indirect Basal Ganglia Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596922. [PMID: 38915684 PMCID: PMC11195572 DOI: 10.1101/2024.06.01.596922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These S-D1 and S-D2 striosomal pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement oppositely to the modulation by the canonical pathways: S-D1 is inhibitory and S-D2 is excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ian R. Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Johnny H. Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Jonathan T. Ting
- Human Cell Types Dept, Allen Institute for Brain Science, Seattle WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| |
Collapse
|
7
|
McCutcheon RA, Weber LAE, Nour MM, Cragg SJ, McGuire PM. Psychosis as a disorder of muscarinic signalling: psychopathology and pharmacology. Lancet Psychiatry 2024; 11:554-565. [PMID: 38795721 DOI: 10.1016/s2215-0366(24)00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/28/2024]
Abstract
Dopaminergic receptor antagonism is a crucial component of all licensed treatments for psychosis, and dopamine dysfunction has been central to pathophysiological models of psychotic symptoms. Some clinical trials, however, indicate that drugs that act through muscarinic receptor agonism can also be effective in treating psychosis, potentially implicating muscarinic abnormalities in the pathophysiology of psychosis. Here, we discuss understanding of the central muscarinic system, and we examine preclinical, behavioural, post-mortem, and neuroimaging evidence for its involvement in psychosis. We then consider how altered muscarinic signalling could contribute to the genesis and maintenance of psychotic symptoms, and we review the clinical evidence for muscarinic agents as treatments. Finally, we discuss future research that could clarify the relationship between the muscarinic system and psychotic symptoms.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Lilian A E Weber
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Matthew M Nour
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Cellular and Molecular Neurobiology, University of Oxford, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip M McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
8
|
Yoon JH, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A, Kim K, Chae S, Dennis EA, Suh PG. Paradigm shift required for translational research on the brain. Exp Mol Med 2024; 56:1043-1054. [PMID: 38689090 PMCID: PMC11148129 DOI: 10.1038/s12276-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korean Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| |
Collapse
|
9
|
Ciralli B, Malfatti T, Hilscher MM, Leao RN, Cederroth CR, Leao KE, Kullander K. Unraveling the role of Slc10a4 in auditory processing and sensory motor gating: Implications for neuropsychiatric disorders? Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110930. [PMID: 38160852 DOI: 10.1016/j.pnpbp.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Psychiatric disorders, such as schizophrenia, are complex and challenging to study, partly due to the lack of suitable animal models. However, the absence of the Slc10a4 gene, which codes for a monoaminergic and cholinergic associated vesicular transporter protein, in knockout mice (Slc10a4-/-), leads to the accumulation of extracellular dopamine. A major challenge for studying schizophrenia is the lack of suitable animal models that accurately represent the disorder. We sought to overcome this challenge by using Slc10a4-/- mice as a potential model, considering their altered dopamine levels. This makes them a potential animal model for schizophrenia, a disorder known to be associated with altered dopamine signaling in the brain. METHODS The locomotion, auditory sensory filtering and prepulse inhibition (PPI) of Slc10a4-/- mice were quantified and compared to wildtype (WT) littermates. Intrahippocampal electrodes were used to record auditory event-related potentials (aERPs) for quantifying sensory filtering in response to paired-clicks. The channel above aERPs phase reversal was chosen for reliably comparing results between animals, and aERPs amplitude and latency of click responses were quantified. WT and Slc10a4-/- mice were also administered subanesthetic doses of ketamine to provoke psychomimetic behavior. RESULTS Baseline locomotion during auditory stimulation was similar between Slc10a4-/- mice and WT littermates. In WT animals, normal auditory processing was observed after i.p saline injections, and it was maintained under the influence of 5 mg/kg ketamine, but disrupted by 20 mg/kg ketamine. On the other hand, Slc10a4-/- mice did not show significant differences between N40 S1 and S2 amplitude responses in saline or low dose ketamine treatment. Auditory gating was considered preserved since the second N40 peak was consistently suppressed, but with increased latency. The P80 component showed higher amplitude, with shorter S2 latency under saline and 5 mg/kg ketamine treatment in Slc10a4-/- mice, which was not observed in WT littermates. Prepulse inhibition was also decreased in Slc10a4-/- mice when the longer interstimulus interval of 100 ms was applied, compared to WT littermates. CONCLUSION The Slc10a4-/- mice responses indicate that cholinergic and monoaminergic systems participate in the PPI magnitude, in the temporal coding (response latency) of the auditory sensory gating component N40, and in the amplitude of aERPs P80 component. These results suggest that Slc10a4-/- mice can be considered as potential models for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Barbara Ciralli
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Thawann Malfatti
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden; Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Markus M Hilscher
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Richardson N Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Katarina E Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Lopes RM, Souza ACS, Otręba M, Rzepecka-Stojko A, Tersariol ILS, Rodrigues T. Targeting autophagy by antipsychotic phenothiazines: potential drug repurposing for cancer therapy. Biochem Pharmacol 2024; 222:116075. [PMID: 38395266 DOI: 10.1016/j.bcp.2024.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.
Collapse
Affiliation(s)
- Rayssa M Lopes
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Ana Carolina S Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Michał Otręba
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Ivarne L S Tersariol
- Departament of Molecular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| |
Collapse
|
11
|
Rajagopal L, Huang M, Mahjour S, Ryan C, Elzokaky A, Svensson KA, Meltzer HY. The dopamine D1 receptor positive allosteric modulator, DETQ, improves cognition and social interaction in aged mice and enhances cortical and hippocampal acetylcholine efflux. Behav Brain Res 2024; 459:114766. [PMID: 38048913 DOI: 10.1016/j.bbr.2023.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Dopamine (DA) D1 and D2 receptors (Rs) are critical for cognitive functioning. D1 positive allosteric modulators (D1PAMs) activate D1Rs without desensitization or an inverted U-shaped dose response curve. DETQ, [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one] is highly selective for the human D1Rs as shown in humanized D1R knock-in (hD1Ki) mice. Here, we have ascertained the efficacy of DETQ in aged [13-23-month-old (mo)] hD1Ki mice and their corresponding age-matched wild-type (WT; C57BL/6NTac) controls. We found that in aged mice, DETQ, given acutely, subchronically, and chronically, rescued both novel object recognition memory and social behaviors, using novel object recognition (NOR) and social interaction (SI) tasks, respectively without any adverse effect on body weight or mortality. We have also shown, using in vivo microdialysis, a significant decrease in basal DA and norepinephrine, increase in glutamate (Glu) and gamma-amino butyric acid (GABA) efflux with no significant changes in acetylcholine (ACh) levels in aged vs young mice. In young and aged hD1Ki mice, DETQ, acutely and subchronically increased ACh in the medial prefrontal cortex and hippocampal regions in aged hD1Ki mice without affecting Glu. These results suggest that the D1PAM mechanism is of interest as potential treatment for cognitive and social behavioral deficits in neuropsychiatric disorders including but not restricted to neurodegenerative disorders, such as Parkinson's disease.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kjell A Svensson
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
McCutcheon RA, Harrison PJ, Howes OD, McGuire PK, Taylor DM, Pillinger T. Data-Driven Taxonomy for Antipsychotic Medication: A New Classification System. Biol Psychiatry 2023; 94:561-568. [PMID: 37061079 PMCID: PMC10914668 DOI: 10.1016/j.biopsych.2023.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Globally, there are more than 25 licensed antipsychotic medications. Antipsychotics are commonly described as either typical or atypical, but this dichotomous classification does not reflect the diversity of their pharmacological and clinical profiles. There is a need for a data-driven antipsychotic classification scheme suitable for clinicians and researchers that maps onto both pharmacological and clinical effects. Receptor affinity provides one starting point for such a scheme. METHODS We analyzed affinities of 27 antipsychotics for 42 receptors from 3325 in vitro receptor binding studies. We used a clustering algorithm to group antipsychotics based on receptor affinity. Using a machine learning model, we examined the ability of this grouping to predict antipsychotic-induced clinical effects quantified according to an umbrella review of clinical trial and treatment guideline data. RESULTS Clustering resulted in 4 groups of antipsychotics. The predominant receptor affinity and clinical effect "fingerprints" of these 4 groups were defined as follows: group 1, muscarinic (M2-M5) receptor antagonism (cholinergic and metabolic side effects); group 2, dopamine (D2) partial agonism and adrenergic antagonism (overall low side-effect burden); group 3, serotonergic and dopaminergic antagonism (overall moderate side-effect burden); and group 4, dopaminergic antagonism (extrapyramidal side effects and hyperprolactinemia). Groups 1 and 4 were more efficacious than groups 2 and 3. The classification was shown to predict out-of-sample clinical effects of individual drugs. CONCLUSIONS A receptor affinity-based grouping not only reflects compound pharmacology but also detects meaningful clinical differences. This approach has the potential to benefit both patients and researchers by guiding treatment and informing drug development.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Health, Oxford Health National Health Service Foundation Trust, Oxford, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Health, Oxford Health National Health Service Foundation Trust, Oxford, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom; H. Lundbeck A/S, København, Denmark
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Health, Oxford Health National Health Service Foundation Trust, Oxford, United Kingdom; National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Oxford, United Kingdom
| | - David M Taylor
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
13
|
Niort K, Dancourt J, Boedec E, Al Amir Dache Z, Lavieu G, Tareste D. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. ACS OMEGA 2023; 8:32729-32739. [PMID: 37720777 PMCID: PMC10500581 DOI: 10.1021/acsomega.3c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 entry into host cells is mediated by the Spike (S) protein of the viral envelope. The S protein is composed of two subunits: S1 that induces binding to the host cell via its interaction with the ACE2 receptor of the cell surface and S2 that triggers fusion between viral and cellular membranes. Fusion by S2 depends on its heptad repeat domains that bring membranes close together and its fusion peptide (FP) that interacts with and perturbs the membrane structure to trigger fusion. Recent studies have suggested that cholesterol and ceramide lipids from the cell surface may facilitate SARS-CoV-2 entry into host cells, but their exact mode of action remains unknown. We have used a combination of in vitro liposome-liposome and in situ cell-cell fusion assays to study the lipid determinants of S-mediated membrane fusion. Our findings reveal that both cholesterol and ceramide lipids facilitate fusion, suggesting that targeting these lipids could be effective against SARS-CoV-2. As a proof of concept, we examined the effect of chlorpromazine (CPZ), an antipsychotic drug known to perturb membrane structure. Our results show that CPZ effectively inhibits S-mediated membrane fusion, thereby potentially impeding SARS-CoV-2 entry into the host cell.
Collapse
Affiliation(s)
- Kristina Niort
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Julia Dancourt
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Erwan Boedec
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Zahra Al Amir Dache
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Grégory Lavieu
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - David Tareste
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| |
Collapse
|
14
|
Rahdar M, Farbod Y, Seydinejad S, Zarrin M. The effect of chronic experimental toxoplasmosis on some brain neurotransmitters level and behavior changes. Exp Parasitol 2023:108575. [PMID: 37394088 DOI: 10.1016/j.exppara.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Toxoplasma is capable of causing long-lasting brain cysts in its hosts, which can lead to physiological disturbances in brain neurotransmitters and result in changes in the host's behavior. This study aimed to investigate these changes using an experimental model. Twenty-five female Wistar rats, weighing 220-220 g and six weeks old, were selected for the study. The rats were divided into two control and experimental groups. The experimental group was injected with 5 × 105 tachyzoites of Toxoplasma gondii (virulent RH strain) intra-peritoneally. Four months after the injection, the rats were subjected to behavioral tests, including learning, memory, depression, and locomotor activity tests. The rats were then euthanized, and their brain and serum samples were analyzed for dopamine and serotonin levels. To ensure the presence of cysts in the brain tissue, a PCR test and preparation of pathological slides from the brain tissue were performed. The results showed that the amount of dopamine in the brain of the infected group was significantly higher than that of the control group, while the level of serotonin in brain of the infected group was significantly lower than that of the control group (P < 0.05). However, no significant difference was observed in the amount of these neurotransmitters in the blood of the two groups (P > 0.05). Behavioral changes were evaluated, and it was found that the learning and memory levels of the infected rats were significantly lower than those of the control group (P < 0.05), but no difference was observed in locomotor activity between the two groups (P > 0.05). This experimental infection model indicated that changes in neurotransmitter levels lead to behavior changes. CONCLUSION: The presence of parasite cysts in the brain can affect some of the host's behaviors through changes in neurotransmitter levels. Therefore, there is a possibility that there is a relationship between the presence of Toxoplasma cysts in the brain and neurological disorders. The results of this study suggest that chronic toxoplasmosis may play a role in behavior changes in psychotic diseases.
Collapse
Affiliation(s)
- Mahmoud Rahdar
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoub Farbod
- Department of Medical Physiology Department, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Seydinejad
- Department of Medical Parasitology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Zarrin
- Department of Medical Mycology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
16
|
Orhan F, Goiny M, Becklén M, Mathé L, Piehl F, Schwieler L, Fatouros-Bergman H, Farde L, Cervenka S, Sellgren CM, Engberg G, Erhardt S. CSF dopamine is elevated in first-episode psychosis and associates to symptom severity and cognitive performance. Schizophr Res 2023; 257:34-40. [PMID: 37271040 DOI: 10.1016/j.schres.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/13/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The hypothesis of dopamine dysfunction in psychosis has evolved since the mid-twentieth century. However, clinical support from biochemical analysis of the transmitter in patients is still missing. The present study assessed dopamine and related metabolites in the cerebrospinal fluid (CSF) of first-episode psychosis (FEP) subjects. METHODS Forty first-episode psychosis subjects and twenty healthy age-matched volunteers were recruited via the Karolinska Schizophrenia Project, a multidisciplinary research consortium that investigates the pathophysiology of schizophrenia. Psychopathology, disease severity, and cognitive performance were rated as well as cerebrospinal fluid concentrations of dopamine and related metabolites were measured using a sensitive high-pressure liquid chromatography assay. RESULTS CSF dopamine was reliably detected in 50 % of healthy controls and in 65 % of first-episode psychosis subjects and significantly higher in first-episode psychosis subjects compared to age-matched healthy controls. No difference in CSF dopamine levels was observed between drug-naive subjects and subjects with short exposure to antipsychotics. The dopamine concentrations were positively associated with illness severity and deficits in executive functioning. CONCLUSIONS Dopamine dysfunction has long been considered a cornerstone of the pathophysiology of schizophrenia, although biochemical support for elevated brain dopamine levels has been lacking. The results of the present study, showing that FEP subjects have increased CSF dopamine levels that correlate to disease symptoms, should fill the knowledge gap in this regard.
Collapse
Affiliation(s)
- Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michel Goiny
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meneca Becklén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Levida Mathé
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry 2023; 28:1902-1918. [PMID: 36690793 PMCID: PMC10575791 DOI: 10.1038/s41380-023-01949-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK.
| | - Richard S E Keefe
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
18
|
Perez SM, Boley AM, McCoy AM, Lodge DJ. Aberrant Dopamine System Function in the Ferrous Amyloid Buthionine (FAB) Rat Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:7196. [PMID: 37108357 PMCID: PMC10138591 DOI: 10.3390/ijms24087196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Antipsychotics increase the risk of death in elderly patients with Alzheimer's disease (AD). Thus, there is an immediate need for novel therapies to treat comorbid psychosis in AD. Psychosis has been attributed to a dysregulation of the dopamine system and is associated with aberrant regulation by the hippocampus. Given that the hippocampus is a key site of pathology in AD, we posit that aberrant regulation of the dopamine system may contribute to comorbid psychosis in AD. A ferrous amyloid buthionine (FAB) rodent model was used to model a sporadic form of AD. FAB rats displayed functional hippocampal alterations, which were accompanied by decreases in spontaneous, low-frequency oscillations and increases in the firing rates of putative pyramidal neurons. Additionally, FAB rats exhibited increases in dopamine neuron population activity and augmented responses to the locomotor-inducing effects of MK-801, as is consistent with rodent models of psychosis-like symptomatology. Further, working memory deficits in the Y-maze, consistent with an AD-like phenotype, were observed in FAB rats. These data suggest that the aberrant hippocampal activity observed in AD may contribute to dopamine-dependent psychosis, and that the FAB model may be useful for the investigation of comorbid psychosis related to AD. Understanding the pathophysiology that leads to comorbid psychosis in AD will ultimately lead to the discovery of novel targets for the treatment of this disease.
Collapse
Affiliation(s)
- Stephanie M. Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Angela M. Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Seeman MV. Sex/Gender differences in schizophrenia: Thinking back and thinking forward. Psychiatry Res 2022; 316:114738. [PMID: 35905691 DOI: 10.1016/j.psychres.2022.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
This commentary summarizes my view of my life's work in psychiatry, which has mainly been devoted to my obsessive interest in sex and gender differences in schizophrenia. I summarize the influences that guided my research and I take the opportunity to make some personal recommendations to future researchers.
Collapse
Affiliation(s)
- Mary V Seeman
- Professor Emerita, Department of Psychiatry, University of Toronto, #605 260 Heath Street West, Toronto, Ontario, Canada, M5P 3L6.
| |
Collapse
|
20
|
Dopamine, Psychosis, and Symptom Fluctuation: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10091713. [PMID: 36141325 PMCID: PMC9498563 DOI: 10.3390/healthcare10091713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
It has been hypothesized since the 1960s that the etiology of schizophrenia is linked to dopamine. In the intervening 60 years, sophisticated brain imaging techniques, genetic/epigenetic advances, and new experimental animal models of schizophrenia have transformed schizophrenia research. The disease is now conceptualized as a heterogeneous neurodevelopmental disorder expressed phenotypically in four symptom domains: positive, negative, cognitive, and affective. The aim of this paper is threefold: (a) to review recent research into schizophrenia etiology, (b) to review papers that elicited subjective evidence from patients as to triggers and repressors of symptoms such as auditory hallucinations or paranoid thoughts, and (c) to address the potential role of dopamine in schizophrenia in general and, in particular, in the fluctuations in schizophrenia symptoms. The review also includes new discoveries in schizophrenia research, pointing to the involvement of both striatal neurons and glia, signaling pathway convergence, and the role of stress. It also addresses potential therapeutic implications. We conclude with the hope that this paper opens up novel avenues of research and new possibilities for treatment.
Collapse
|
21
|
Zhou C, Nutt DJ, Davies SJC. Visualizing classification of drugs used in psychotic disorders: A 'subway map' representing mechanisms, established classes and informal categories. J Psychopharmacol 2022; 36:1007-1015. [PMID: 36045588 PMCID: PMC9516596 DOI: 10.1177/02698811221115758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drugs used to treat psychotic disorders ('antipsychotics') have been widely used in psychiatry since the introduction of chlorpromazine in the mid-1950s. The categorization of these drugs evolved in a piecemeal way, relying initially on grouping by chemical structure (e.g. phenothiazines, butyrophenones), then by epoch of introduction (e.g. first generation ('conventional') vs second generation ('atypical')). As psychopharmacological expertise has advanced, it has become possible to quantify affinities for each drug in this class for relevant receptors including dopamine D2, 5HT2A, 5HT2C, histamine H1 and others. However, until the recent emergence of a new generation of agents known collectively as dopamine D2 receptor partial agonists (e.g. aripiprazole, brexpiprazole and cariprazine), there had been little reference in drug classification to specific pharmacological properties. An overview of data on receptor affinities across multiple drugs and receptor types would permit categorization according to binding affinities and putative pharmacological mechanisms. In this paper, we have attempted to construct a 'subway map' of 32 drugs used for treatment of psychotic disorders. This design allows a visualization of both the historical classifications by structure and epoch of introduction, and of the binding affinities for key receptors based on appraisal of scientific literature. The map represents a step towards categorization by mechanism, allowing prescribers and patients to understand which drugs share common biological features and the extent to which drugs may have similarities and differences in their mechanisms. In addition, this approach may encourage more logical groupings of drugs to be used in systematic reviews and meta-analyses.
Collapse
Affiliation(s)
- Crystal Zhou
- Geriatric Psychiatry Division, Centre for
Addiction and Mental Health/University of Toronto, Toronto, ON, Canada,Geriatric Psychiatry Division, Vancouver
Island Health Authority, Victoria, BC, Canada
| | - David J Nutt
- Neuropsychopharmacology Unit, Division of
Brain Sciences, Imperial College London, London, UK
| | - Simon JC Davies
- Geriatric Psychiatry Division, Centre for
Addiction and Mental Health/University of Toronto, Toronto, ON, Canada,Simon JC Davies, Geriatric Psychiatry Division,
Centre for Addiction and Mental Health/University of Toronto, 1001 Queen Street West,
Toronto, ON M6J 1H4, Canada.
| |
Collapse
|
22
|
Funahashi Y, Yoshino Y, Iga JI, Ueno SI. Impact of clozapine on the expression of miR-675-3p in plasma exosomes derived from patients with schizophrenia. World J Biol Psychiatry 2022; 24:303-313. [PMID: 35904423 DOI: 10.1080/15622975.2022.2104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Recently, the expression changes of microRNAs (miRNAs) in the serum exosomes (EXO) of schizophrenia (SCZ) have been reported. The aim of this study was to investigate the global expression changes of miRNA derived from the plasma EXO of patients with treatment-resistant schizophrenia (TRS) and the effects of clozapine on miRNA expression. METHODS Global miRNA expression changes in plasma EXO between TRS and controls were studied using microarray analysis. Then, miRNA expressions among TRS, non-TRS, and controls were confirmed with quantitative qPCR experiments. We also studied changes in EXO miRNA expression with in-vitro SH-SY5Y cells. RESULTS A microarray for miRNA expression analysis (nine controls vs. nine patients with TRS) revealed 13 up- and 18 downregulated miRNAs that were relevant to neuronal and brain development based on gene ontology analysis. Of those, upregulated miR-675-3p expression was successfully validated in the same cohort by qPCR experiments. Conversely, miR-675-3p expression levels were significantly decreased in the non-TRS cohort (50 controls vs. 50 patients without TRS without clozapine treatment). CONCLUSIONS We identified global miRNA changes in plasma EXO derived from patients with SCZ that were relevant to neuronal functions, among which, hsa-miR-675-3p expression was upregulated by clozapine treatment.
Collapse
Affiliation(s)
- Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| |
Collapse
|
23
|
Yoshino Y, Kumon H, Shimokawa T, Yano H, Ochi S, Funahashi Y, Iga JI, Matsuda S, Tanaka J, Ueno SI. Impact of Gestational Haloperidol Exposure on miR-137-3p and Nr3c1 mRNA Expression in Hippocampus of Offspring Mice. Int J Neuropsychopharmacol 2022; 25:853-862. [PMID: 35859315 PMCID: PMC9593222 DOI: 10.1093/ijnp/pyac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Schizophrenia is a mental disorder caused by both environmental and genetic factors. Prenatal exposure to antipsychotics, an environmental factor for the fetal brain, induces apoptotic neurodegeneration and cognitive impairment of offspring similar to schizophrenia. The aim was to investigate molecular biological changes in the fetal hippocampus exposed to haloperidol (HAL) by RNA expression as a model of the disorder. METHODS HAL (1 mg/kg/d) was administered to pregnant mice. Upregulated and downregulated gene expressions in the hippocampus of offspring were studied with RNA-sequencing and validated with the qPCR method, and micro-RNA (miR) regulating mRNA expressional changes was predicted by in silico analysis. An in vitro experiment was used to identify the miRNA using a dual-luciferase assay. RESULTS There were significant gene expressional changes (1370 upregulated and 1260 downregulated genes) in the HAL group compared with the control group on RNA-sequencing analysis (P < .05 and q < 0.05). Of them, the increase of Nr3c1 mRNA expression was successfully validated, and in silico analysis predicted that microRNA-137-3p (miR-137-3p) possibly regulates that gene's expression. The expression of miR-137-3p in the hippocampus of offspring was significantly decreased in the first generation, but it increased in the second generation. In vitro experiments with Neuro2a cells showed that miR-137-3p inversely regulated Nr3c1 mRNA expression, which was upregulated in the HAL group. CONCLUSIONS These findings will be key for understanding the impact of the molecular biological effects of antipsychotics on the fetal brain.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-ichi Iga
- Correspondence: Jun-ichi Iga, MD, PhD, Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan ()
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shu-ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
24
|
Shin S, Jung WH, McCutcheon R, Veronese M, Beck K, Lee JS, Lee YS, Howes OD, Kim E, Kwon JS. The Relationship Between Frontostriatal Connectivity and Striatal Dopamine Function in Schizophrenia: An 18F-DOPA PET and Diffusion Tensor Imaging Study in Treatment Responsive and Resistant Patients. Psychiatry Investig 2022; 19:570-579. [PMID: 35903059 PMCID: PMC9334810 DOI: 10.30773/pi.2022.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Striatal dopamine dysfunction caused by cortical abnormalities is a leading hypothesis of schizophrenia. Although prefrontal cortical pathology is negatively correlated with striatal dopamine synthesis, the relationship between structural frontostriatal connectivity and striatal dopamine synthesis has not been proved in patients with schizophrenia with different treatment response. We therefore investigated the relationship between frontostriatal connectivity and striatal dopamine synthesis in treatment-responsive schizophrenia (non-TRS) and compared them to treatment-resistant schizophrenia (TRS) and healthy controls (HC). METHODS Twenty-four patients with schizophrenia and twelve HC underwent [18F] DOPA PET scans to measure dopamine synthesis capacity (the influx rate constant Kicer) and diffusion 3T MRI to measure structural connectivity (fractional anisotropy, FA). Connectivity was assessed in 2 major frontostriatal tracts. Associations between Kicer and FA in each group were evaluated using Spearman's rho correlation coefficients. RESULTS Non-TRS showed a negative correlation (r=-0.629, p=0.028) between connectivity of dorsolateral prefrontal cortex-associative striatum (DLPFC-AST) and dopamine synthesis capacity of associative striatum but this was not evident in TRS (r=-0.07, p=0.829) and HC (r=-0.277, p=0.384). CONCLUSION Our findings are consistent with the hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology localized to connectivity of DLPFC-AST in non-TRS, and also extend the hypothesis to suggest that different mechanisms underlie the pathophysiology of non-TRS and TRS.
Collapse
Affiliation(s)
- Sangho Shin
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.,Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wi Hoon Jung
- Department of Psychology, Gachon University, Seongnam, Republic of Korea
| | - Robert McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Sheldon AD, Kafadar E, Fisher V, Greenwald MS, Aitken F, Negreira AM, Woods SW, Powers AR. Perceptual pathways to hallucinogenesis. Schizophr Res 2022; 245:77-89. [PMID: 35216865 PMCID: PMC9232894 DOI: 10.1016/j.schres.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Recent advances in computational psychiatry have provided unique insights into the neural and cognitive underpinnings of psychotic symptoms. In particular, a host of new data has demonstrated the utility of computational frameworks for understanding how hallucinations might arise from alterations in typical perceptual processing. Of particular promise are models based in Bayesian inference that link hallucinatory perceptual experiences to latent states that may drive them. In this piece, we move beyond these findings to ask: how and why do these latent states arise, and how might we take advantage of heterogeneity in that process to develop precision approaches to the treatment of hallucinations? We leverage specific models of Bayesian inference to discuss components that might lead to the development of hallucinations. Using the unifying power of our model, we attempt to place disparate findings in the study of psychotic symptoms within a common framework. Finally, we suggest directions for future elaboration of these models in the service of a more refined psychiatric nosology based on predictable, testable, and ultimately treatable information processing derangements.
Collapse
Affiliation(s)
- Andrew D Sheldon
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Eren Kafadar
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Victoria Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Maximillian S Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Fraser Aitken
- School of Biomedical and Imaging Sciences, Kings College, London, UK
| | | | - Scott W Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America.
| |
Collapse
|
26
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
27
|
Bellon A, Feuillet V, Cortez-Resendiz A, Mouaffak F, Kong L, Hong LE, De Godoy L, Jay TM, Hosmalin A, Krebs MO. Dopamine-induced pruning in monocyte-derived-neuronal-like cells (MDNCs) from patients with schizophrenia. Mol Psychiatry 2022; 27:2787-2802. [PMID: 35365810 PMCID: PMC9156413 DOI: 10.1038/s41380-022-01514-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The long lapse between the presumptive origin of schizophrenia (SCZ) during early development and its diagnosis in late adolescence has hindered the study of crucial neurodevelopmental processes directly in living patients. Dopamine, a neurotransmitter consistently associated with the pathophysiology of SCZ, participates in several aspects of brain development including pruning of neuronal extensions. Excessive pruning is considered the cause of the most consistent finding in SCZ, namely decreased brain volume. It is therefore possible that patients with SCZ carry an increased susceptibility to dopamine's pruning effects and that this susceptibility would be more obvious in the early stages of neuronal development when dopamine pruning effects appear to be more prominent. Obtaining developing neurons from living patients is not feasible. Instead, we used Monocyte-Derived-Neuronal-like Cells (MDNCs) as these cells can be generated in only 20 days and deliver reproducible results. In this study, we expanded the number of individuals in whom we tested the reproducibility of MDNCs. We also deepened the characterization of MDNCs by comparing its neurostructure to that of human developing neurons. Moreover, we studied MDNCs from 12 controls and 13 patients with SCZ. Patients' cells differentiate more efficiently, extend longer secondary neurites and grow more primary neurites. In addition, MDNCs from medicated patients expresses less D1R and prune more primary neurites when exposed to dopamine. Haloperidol did not influence our results but the role of other antipsychotics was not examined and thus, needs to be considered as a confounder.
Collapse
Affiliation(s)
- Alfredo Bellon
- Department of Psychiatry and Behavioral Health, Penn State Hershey Medical Center, Hershey, PA, USA.
- Department of Pharmacology, Penn State Hershey Medical Center, Hershey, PA, USA.
| | - Vincent Feuillet
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014, Paris, France
| | - Alonso Cortez-Resendiz
- Department of Psychiatry and Behavioral Health, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Faycal Mouaffak
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Pathophysiology of Psychiatric Disorders, Université de Paris, Paris, France
- Pôle de Psychiatrie d'Adultes 93G04, EPS Ville Evrard, Saint Denis, France
| | - Lan Kong
- Department of Public Health Sciences, Penn State Hershey Medical Center, Hershey, PA, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Therese M Jay
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Pathophysiology of Psychiatric Disorders, Université de Paris, Paris, France
| | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Pathophysiology of Psychiatric Disorders, Université de Paris, Paris, France
- Groupe-Hospitalo-Universitaire de Paris, Psychiatrie et Neuroscience, Pôle PEPIT, University of Paris, Paris, France
| |
Collapse
|
28
|
Zhang Y, Peng Y, Song Y, Zhou Y, Zhang S, Yang G, Yang Y, Li W, Yue W, Lv L, Zhang D. Abnormal functional connectivity of the striatum in first-episode drug-naive early-onset Schizophrenia. Brain Behav 2022; 12:e2535. [PMID: 35384392 PMCID: PMC9120884 DOI: 10.1002/brb3.2535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Abnormal brain network connectivity is strongly implicated in the pathogenesis of schizophrenia. The striatum, consisting of the caudate and putamen, is the major treatment target for antipsychotics, the primary treatments for schizophrenia; however, there are few studies on the functional connectivity (FC) of striatum in drug-naive early-onset schizophrenia (EOS) patients. We examined the FC values of the caudate nucleus and putamen with whole brain by resting-state functional magnetic resonance imaging (RS-fMRI) and the associations with indices of clinical severity. Patients demonstrated abnormal FC between subregions of the putamen and both the visual network (left middle occipital gyrus) and default mode network (bilateral anterior cingulate, left superior frontal, and right middle frontal gyri). Furthermore, FC between dorsorostral putamen and left superior frontal gyrus correlated with both positive symptom subscore and total score on the Positive and Negative Syndrome Scale (PANSS). These findings demonstrate abnormal FC between the striatum and other brain areas even in the early stages of schizophrenia, supporting neurodevelopmental disruption in disease etiology and expression.
Collapse
Affiliation(s)
- Yan Zhang
- Psychiatry Institute of Mental Health/Peking University Sixth Hospital, Peking University, Beijing, China.,Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yue Peng
- Department of Pediatric Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yichen Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Youqi Zhou
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Sen Zhang
- Child and Adolescent Psychiatry Department, Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Ge Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Weihua Yue
- Psychiatry Institute of Mental Health/Peking University Sixth Hospital, Peking University, Beijing, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Dai Zhang
- Psychiatry Institute of Mental Health/Peking University Sixth Hospital, Peking University, Beijing, China
| |
Collapse
|
29
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2022:S0920-9964(22)00156-6. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
30
|
Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry 2022; 12:147. [PMID: 35393394 PMCID: PMC8991275 DOI: 10.1038/s41398-022-01904-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Despite 50+ years of drug discovery, current antipsychotics have limited efficacy against negative and cognitive symptoms of schizophrenia, and are ineffective-with the exception of clozapine-against any symptom domain for patients who are treatment resistant. Novel therapeutics with diverse non-dopamine D2 receptor targets have been explored extensively in clinical trials, yet often fail due to a lack of efficacy despite showing promise in preclinical development. This lack of translation between preclinical and clinical efficacy suggests a systematic failure in current methods that determine efficacy in preclinical rodent models. In this review, we critically evaluate rodent models and behavioural tests used to determine preclinical efficacy, and look to clinical research to provide a roadmap for developing improved translational measures. We highlight the dependence of preclinical models and tests on dopamine-centric theories of dysfunction and how this has contributed towards a self-reinforcing loop away from clinically meaningful predictions of efficacy. We review recent clinical findings of distinct dopamine-mediated dysfunction of corticostriatal circuits in patients with treatment-resistant vs. non-treatment-resistant schizophrenia and suggest criteria for establishing rodent models to reflect such differences, with a focus on objective, translational measures. Finally, we review current schizophrenia drug discovery and propose a framework where preclinical models are validated against objective, clinically informed measures and preclinical tests of efficacy map onto those used clinically.
Collapse
Affiliation(s)
- Daisy L Spark
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
31
|
Csehi R, Dombi ZB, Sebe B, Molnár MJ. Real-Life Clinical Experience With Cariprazine: A Systematic Review of Case Studies. Front Psychiatry 2022; 13:827744. [PMID: 35370825 PMCID: PMC8970284 DOI: 10.3389/fpsyt.2022.827744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background The hierarchy of evidence coming from evidence-based medicine favors meta-analyses and randomized controlled trials over observational studies and clinical cases. Nonetheless, in the field of psychiatry, where conditions are much more complex, additional evidence coming from real-world clinical practice is necessary to complement data from these gold standards. Thus, in this systematic review, the aim is to summarize the evidence coming from clinical case reports regarding cariprazine, a third-generation antipsychotic drug that has been approved for the treatment of schizophrenia and bipolar I disorder with manic, depressive or mixed features in adults. Methods A systematic review was performed using Embase and Pubmed databases searching for English-language cases published in peer-reviewed journals between 2000 January and 2021 September with the following search terms: (cariprazin* OR "rgh-188" OR rgh188 OR vraylar OR reagila) AND ("case report*" OR "case report"/de OR "case stud*" OR "case study"/de OR "case seri*"). Results After the removal of duplicates, 49 articles were retrieved via the search, from which 22 were suitable for this review. These 22 articles encompassed 38 cases from which 71% described patients with schizophrenia, 16% patients with psychotic disorders, 5% patients with mood disorder and 8% described patients with other disorders such as Wernicke-Korsakoff syndrome, borderline personality disorder and obsessive-compulsive disorder with paranoid schizophrenia. The median age of patients was 31, and half of them were female. The majority of patients (76%) started cariprazine with 1.5 mg/day, and the most common maintenance dose was 4.5 mg/day (34%) and 3.0 mg/day (29%). Conclusion Cariprazine was found to be safe and effective in a wide range of psychiatric conditions with different symptom profiles from acute psychotic symptoms through addiction to negative and cognitive symptoms. The results are in-line with the established evidence from clinical trials, however, they also show how cariprazine can be successfully utilized for treating certain symptoms irrespective of the indication.
Collapse
Affiliation(s)
- Réka Csehi
- Global Medical Division, Gedeon Richter Plc, Budapest, Hungary
| | - Zsófia Borbála Dombi
- Global Medical Division, Gedeon Richter Plc, Budapest, Hungary
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Barbara Sebe
- Global Medical Division, Gedeon Richter Plc, Budapest, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Jauhar S, Lawrie SM. What is the evidence for antipsychotic medication and alternative psychosocial interventions for people with acute, non-affective psychosis? Lancet Psychiatry 2022; 9:253-260. [PMID: 35114137 DOI: 10.1016/s2215-0366(21)00293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
In this Personal View, we critically appraise and summarise evidence for antipsychotic drugs and alternatives to drug treatment, with a focus on people in their first episode or acute relapses of schizophrenia and related conditions within the first 5-10 years of illness. There is a large body of generally moderate quality evidence from randomised controlled trials for antipsychotics in both treating acute psychosis and reducing relapse, in thousands of people in their first episode and in established illness. There is a much smaller evidence base, of generally low quality, in a few hundred people, for potential benefits of non-drug interventions, such as cognitive behavioural therapy, Open Dialogue, Soteria, and psychoanalytic psychotherapy.
Collapse
Affiliation(s)
- Sameer Jauhar
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | | |
Collapse
|
33
|
Gamma camera imaging in psychiatric disorders. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Kiss B, Krámos B, Laszlovszky I. Potential Mechanisms for Why Not All Antipsychotics Are Able to Occupy Dopamine D 3 Receptors in the Brain in vivo. Front Psychiatry 2022; 13:785592. [PMID: 35401257 PMCID: PMC8987915 DOI: 10.3389/fpsyt.2022.785592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Dysfunctions of the dopaminergic system are believed to play a major role in the core symptoms of schizophrenia such as positive, negative, and cognitive symptoms. The first line of treatment of schizophrenia are antipsychotics, a class of medications that targets several neurotransmitter receptors in the brain, including dopaminergic, serotonergic, adrenergic and/or muscarinic receptors, depending on the given agent. Although the currently used antipsychotics display in vitro activity at several receptors, majority of them share the common property of having high/moderate in vitro affinity for dopamine D2 receptors (D2Rs) and D3 receptors (D3Rs). In terms of mode of action, these antipsychotics are either antagonist or partial agonist at the above-mentioned receptors. Although D2Rs and D3Rs possess high degree of homology in their molecular structure, have common signaling pathways and similar in vitro pharmacology, they have different in vivo pharmacology and therefore behavioral roles. The aim of this review, with summarizing preclinical and clinical evidence is to demonstrate that while currently used antipsychotics display substantial in vitro affinity for both D3Rs and D2Rs, only very few can significantly occupy D3Rs in vivo. The relative importance of the level of endogenous extracellular dopamine in the brain and the degree of in vitro D3Rs receptor affinity and selectivity as determinant factors for in vivo D3Rs occupancy by antipsychotics, are also discussed.
Collapse
Affiliation(s)
- Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | | |
Collapse
|
35
|
Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits 2021; 15:769969. [PMID: 34955759 PMCID: PMC8693383 DOI: 10.3389/fncir.2021.769969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | - Stanislav S. Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
36
|
Trace Amine-Associated Receptor 1 as a Target for the Development of New Antipsychotics: Current Status of Research and Future Directions. CNS Drugs 2021; 35:1153-1161. [PMID: 34655036 DOI: 10.1007/s40263-021-00864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a mental illness associated with an array of symptoms that often result in disability. The primary treatments for schizophrenia are termed antipsychotics. Although antipsychotics modulate a number of different receptor types and subtypes, all currently regulatory agency-approved antipsychotics share in common direct or functional antagonism at the dopamine type 2 receptor (D2R). The majority of people with schizophrenia do not achieve full resolution of their symptoms with antipsychotics, suggesting the need for alternative or complementary approaches. The primary focus of this review is to assess the evidence for the role of the trace amine-associated receptor 1 (TAAR-1) in schizophrenia and the role of TAAR-1 modulators as novel-mechanism antipsychotics. Topics include an overview of TAAR-1 physiology and pathophysiology in schizophrenia, interaction with other neurotransmitter systems, including the dopaminergic, glutamatergic and serotonergic system, and finally, a review of investigational TAAR-1 compounds that have reached Phase II clinical studies in schizophrenia: SEP-363856 (ulotaront) and RO6889450 (ralmitaront). Thus far, results are publicly available only for ulotaront in a relatively young (18-40 years) and acutely exacerbated cohort. These results showed positive effects for overall schizophrenia symptoms without significant tolerability concerns. An ongoing study of ralmitaront will assess specific efficacy in patients with persistent negative symptoms. If trials of TAAR-1 modulators, and other novel-mechanism targets for schizophrenia that are under active study, continue to show positive results, the definition of an antipsychotic may need to be expanded beyond the D2R target in the near future.
Collapse
|
37
|
Aryutova K, Stoyanov D. Pharmaco-Magnetic Resonance as a Tool for Monitoring the Medication-Related Effects in the Brain May Provide Potential Biomarkers for Psychotic Disorders. Int J Mol Sci 2021; 22:9309. [PMID: 34502214 PMCID: PMC8430741 DOI: 10.3390/ijms22179309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
The neurodegenerative and neurodevelopmental hypotheses represent the basic etiological framework for the origin of schizophrenia. Additionally, the dopamine hypothesis, adopted more than two decades ago, has repeatedly asserted the position of dopamine as a pathobiochemical substrate through the action of psychostimulants and neuroleptics on the mesolimbic and mesocortical systems, giving insight into the origin of positive and negative schizophrenic symptoms. Meanwhile, cognitive impairments in schizophrenia remain incompletely understood but are thought to be present during all stages of the disease, as well as in the prodromal, interictal and residual phases. On the other hand, observations on the effects of NMDA antagonists, such as ketamine and phencyclidine, reveal that hypoglutamatergic neurotransmission causes not only positive and negative but also cognitive schizophrenic symptoms. This review aims to summarize the different hypotheses about the origin of psychoses and to identify the optimal neuroimaging method that can serve to unite them in an integral etiological framework. We systematically searched Google scholar (with no concern to the date published) to identify studies investigating the etiology of schizophrenia, with a focus on impaired central neurotransmission. The complex interaction between the dopamine and glutamate neurotransmitter systems provides the long-needed etiological concept, which combines the neurodegenerative hypothesis with the hypothesis of impaired neurodevelopment in schizophrenia. Pharmaco-magnetic resonance imaging is a neuroimaging method that can provide a translation of scientific knowledge about the neural networks and the disruptions in and between different brain regions, into clinically applicable and effective therapeutic results in the management of severe psychotic disorders.
Collapse
Affiliation(s)
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
38
|
Abstract
Human social interactions depend on the ability to resolve uncertainty about the mental states of others. The context in which social interactions take place is crucial for mental state attribution as sensory inputs may be perceived differently depending on the context. In this paper, we introduce a mental state attribution task where a target-face with either an ambiguous or an unambiguous emotion is embedded in different social contexts. The social context is determined by the emotions conveyed by other faces in the scene. This task involves mental state attribution to a target-face (either happy or sad) depending on the social context. Using active inference models, we provide a proof of concept that an agent's perception of sensory stimuli may be altered by social context. We show with simulations that context congruency and facial expression coherency improve behavioural performance in terms of decision times. Furthermore, we show through simulations that the abnormal viewing strategies employed by patients with schizophrenia may be due to (i) an imbalance between the precisions of local and global features in the scene and (ii) a failure to modulate the sensory precision to contextualise emotions.
Collapse
|
39
|
Seeman MV. History of the dopamine hypothesis of antipsychotic action. World J Psychiatry 2021; 11:355-364. [PMID: 34327128 PMCID: PMC8311512 DOI: 10.5498/wjp.v11.i7.355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The dopamine hypothesis of how antipsychotic drugs exert their beneficial effect in psychotic illness has an interesting history that dates back to 1950. This hypothesis is not to be confused with the dopamine hypothesis of schizophrenia; the aim of the latter is to explain the etiology of schizophrenia. The present review does not deal with schizophrenia but, rather, with the historical development of our current understanding of the dopamine-associated actions of the drugs that reduce the symptoms of psychosis. This historical review begins with the serendipitous discovery of chlorpromazine, a drug synthesized around a chemical core that initially served to produce man-made dyes. This molecular core subsequently contributed to the chemistry of antihistamines. It was with the aim of producing a superior antihistamine that chlorpromazine was synthesized; instead, it revolutionized the treatment of psychosis. The first hypothesis of how this drug worked was that it induced hypothermia, a cooling of the body that led to a tranquilization of the mind. The new, at the time, discoveries of the presence of chemical transmitters in the brain soon steered investigations away from a temperature-related hypothesis toward questioning how this drug, and other drugs with similar properties and effects, modulated endogenous neurotransmission. As a result, over the years, researchers from around the world have begun to progressively learn what antipsychotic drugs do in the brain.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto M5P 3L6, Ontario, Canada
| |
Collapse
|
40
|
Characterization of dopamine D 2 receptor coupling to G proteins in postmortem brain of subjects with schizophrenia. Pharmacol Rep 2021; 73:1136-1146. [PMID: 34196951 PMCID: PMC8413194 DOI: 10.1007/s43440-021-00305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/04/2022]
Abstract
Background Alterations of dopamine D1 (D1R) and D2 receptor (D2R) are proposed in schizophrenia but brain neuroimaging and postmortem studies have shown controversial results in relation to D1R and D2R density. Besides, scarce information on the functionality of brain D1R and D2R is available. The present study characterized G-protein activation by D1R and D2R agonists in postmortem human brain. Furthermore, D2R functional status was compared between schizophrenia and control subjects. Methods G-protein receptor coupling was assessed in control caudate nucleus and frontal cortex by [35S]GTPγS-binding stimulation induced by increasing concentrations (10–10–10–3 M) of dopamine, and the selective dopaminergic agonists SKF38393 (D1R) and NPA (D2R). Concentration–response curves to NPA stimulation of [35S]GTPγS binding were analyzed in antipsychotic-free (n = 10) and antipsychotic-treated (n = 7) schizophrenia subjects and matched controls (n = 17). Results In caudate, [35S]GTPγS-binding responses to agonists were compatible with the existence of functional D2R. In contrast, stimulations in cortex showed responses that did not correspond to D1R or D2R. [35S]GTPγS-binding activation by NPA in caudate displayed biphasic curves with similar profile in schizophrenia (EC50H = 7.94 nM; EC50L = 7.08 μM) and control (EC50H = 7.24 nM; EC50L = 15.14 μM) subjects. The presence or absence of antipsychotic medication did not influence the pharmacological parameters. Conclusions Feasibility of functional evaluation of dopamine receptors in postmortem human brain by conventional [35S]GTPγS-binding assays appears to be restricted to signalling through inhibitory Gi/o proteins. These findings provide functional information about brain D2R status in subjects with schizophrenia and do not support the existence of D2R supersensitive in this mental disorder. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00305-4.
Collapse
|
41
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
42
|
Iwata Y, Nakajima S, Plitman E, Truong P, Bani-Fatemi A, Caravaggio F, Kim J, Shah P, Mar W, Chavez S, Remington G, Gerretsen P, De Luca V, Sailasuta N, Graff-Guerrero A. Glutathione Levels and Glutathione-Glutamate Correlation in Patients With Treatment-Resistant Schizophrenia. ACTA ACUST UNITED AC 2021; 2:sgab006. [PMID: 33969302 PMCID: PMC8086698 DOI: 10.1093/schizbullopen/sgab006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatment-resistant schizophrenia (TRS) has been suggested to involve glutamatergic dysfunction. Glutathione (GSH), a dominant antioxidant, is known to be involved in glutamatergic neurotransmission. To date, no study has examined GSH levels in patients with TRS. The aim of this study was to examine GSH levels in the dorsal anterior cingulate cortex (dACC) of patients with TRS. Patients with schizophrenia were categorized into 3 groups with respect to their antipsychotic response: (1) clozapine (CLZ) nonresponders, (2) CLZ responders, and (3) first-line responders (FLR). GSH and glutamine + glutamate (Glx) levels were measured using 3T proton magnetic resonance spectroscopy. Firstly, dACC GSH levels were compared among the patient groups and healthy controls (HCs). Further, relationships between GSH and Glx levels were compared between the groups and GSH levels were explored stratifying the patient groups based on the glutamate-cysteine ligase catalytic (GCLC) subunit polymorphism. There was no difference in GSH levels between the groups. FLR showed a more negative relationship between GSH and Glx levels in the dACC compared to HCs. There were no effects of GCLC genotype on the GSH levels. However, CLZ responders had a higher ratio of high-risk GCLC genotype compared to CLZ nonresponders. This study demonstrated different relationships between GSH and Glx in the dACC between groups. In addition, the results suggest a potential link between CLZ response and GCLC genotype. However, it still remains unclear how these differences are related to the underlying pathophysiology of schizophrenia subtypes or the mechanisms of action of CLZ.
Collapse
Affiliation(s)
- Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ali Bani-Fatemi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Parita Shah
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Tropical Medicine, University of Hawaii, Honolulu, HI, USA
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
43
|
Aslostovar L, Boyd AL, Benoit YD, Di Lu J, Garcia Rodriguez JL, Nakanishi M, Porras DP, Reid JC, Mitchell RR, Leber B, Xenocostas A, Foley R, Bhatia M. Abnormal dopamine receptor signaling allows selective therapeutic targeting of neoplastic progenitors in AML patients. CELL REPORTS MEDICINE 2021; 2:100202. [PMID: 33665638 PMCID: PMC7897800 DOI: 10.1016/j.xcrm.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The aberrant expression of dopamine receptors (DRDs) in acute myeloid leukemia (AML) cells has encouraged the repurposing of DRD antagonists such as thioridazine (TDZ) as anti-leukemic agents. Here, we access patient cells from a Phase I dose escalation trial to resolve the cellular and molecular bases of response to TDZ, and we extend these findings to an additional independent cohort of AML patient samples tested preclinically. We reveal that in DRD2+ AML patients, DRD signaling in leukemic progenitors provides leukemia-exclusive networks of sensitivity that spare healthy hematopoiesis. AML progenitor cell suppression can be increased by the isolation of the positive enantiomer from the racemic TDZ mixture (TDZ+), and this is accompanied by reduced cardiac liability. Our study indicates that the development of DRD-directed therapies provides a targeting strategy for a subset of AML patients and potentially other cancers that acquire DRD expression upon transformation from healthy tissue. Leukemic progenitors are a critical cellular target of DRD2 antagonist TDZ DRD2 protein expression is a reliable biomarker of TDZ response DRD2 antagonism selectively triggers leukemic maturation programs via cyclic AMP An enantiomer of TDZ displays a superior efficacy:risk ratio relative to racemic TDZ
Collapse
Affiliation(s)
- Lili Aslostovar
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Allison L Boyd
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, Ottawa University, Ottawa, ON, Canada
| | - Justin Di Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Mio Nakanishi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Deanna P Porras
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jennifer C Reid
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ryan R Mitchell
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Cognitive performance in early, treatment-resistant psychosis patients: Could cognitive control play a role in persistent symptoms? Psychiatry Res 2021; 295:113607. [PMID: 33285345 DOI: 10.1016/j.psychres.2020.113607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022]
Abstract
Approximately one third of psychosis patients fail to respond to conventional antipsychotic medication, which exerts its effect via striatal dopamine receptor antagonism. The present study aimed to investigate impaired cognitive control as a potential contributor to persistent positive symptoms in treatment resistant (TR) patients. 52 medicated First Episode Psychosis (FEP) patients (17 TR and 35 non-TR (NTR)) took part in a longitudinal study in which they performed a series of cognitive tasks and a clinical assessment at two timepoints, 12 months apart. Cognitive performance at baseline was compared to that of 39 healthy controls (HC). Across both timepoints, TR patients were significantly more impaired than NTR patients in a task of cognitive control, while performance on tasks of phonological and semantic fluency, working memory and general intelligence did not differ between patient groups. No significant associations were found between cognitive performance and psychotic symptomatology, and no significant performance changes were observed from the first to second timepoint in any of the cognitive tasks within patient groups. The results suggest that compared with NTR patients, TR patients have an exacerbated deficit specific to cognitive control, which is established early in psychotic illness and stabilises in the years following a first episode.
Collapse
|
45
|
Szűcs E, Ducza E, Büki A, Kekesi G, Benyhe S, Horvath G. Characterization of dopamine D2 receptor binding, expression and signaling in different brain regions of control and schizophrenia-model Wisket rats. Brain Res 2020; 1748:147074. [DOI: 10.1016/j.brainres.2020.147074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
|
46
|
Mackintosh AJ, de Bock R, Lim Z, Trulley VN, Schmidt A, Borgwardt S, Andreou C. Psychotic disorders, dopaminergic agents and EEG/MEG resting-state functional connectivity: A systematic review. Neurosci Biobehav Rev 2020; 120:354-371. [PMID: 33171145 DOI: 10.1016/j.neubiorev.2020.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
Both dysconnectivity and dopamine hypotheses are two well researched pathophysiological models of psychosis. However, little is known about the association of dopamine dysregulation with brain functional connectivity in psychotic disorders, specifically through the administration of antipsychotic medication. In this systematic review, we summarize the existing evidence on the association of dopaminergic effects with electro- and magnetoencephalographic (EEG/MEG) resting-state brain functional connectivity assessed by sensor- as well as source-level measures. A wide heterogeneity of results was found amongst the 20 included studies with increased and decreased functional connectivity in medicated psychosis patients vs. healthy controls in widespread brain areas across all frequency bands. No systematic difference in results was seen between studies with medicated and those with unmedicated psychosis patients and very few studies directly investigated the effect of dopamine agents with a pre-post design. The reported evidence clearly calls for longitudinal EEG and MEG studies with large participant samples to directly explore the association of antipsychotic medication effects with neural network changes over time during illness progression and to ultimately support the development of new treatment strategies.
Collapse
Affiliation(s)
- Amatya Johanna Mackintosh
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel, Missionsstrasse 60/62, 4055 Basel, Switzerland
| | - Renate de Bock
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel, Missionsstrasse 60/62, 4055 Basel, Switzerland
| | - Zehwi Lim
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland
| | - Valerie-Noelle Trulley
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - André Schmidt
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland
| | - Stefan Borgwardt
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Andreou
- University Psychiatric Clinics Basel, University of Basel, Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel, Missionsstrasse 60/62, 4055 Basel, Switzerland; Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
47
|
Li P, Jing RX, Zhao RJ, Shi L, Sun HQ, Ding Z, Lin X, Lu L, Fan Y. Association between functional and structural connectivity of the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. J Psychiatry Neurosci 2020; 45:395-405. [PMID: 32436671 PMCID: PMC7595738 DOI: 10.1503/jpn.190015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Dysfunction of the corticostriatal network has been implicated in the pathophysiology of schizophrenia, but findings are inconsistent within and across imaging modalities. We used multimodal neuroimaging to analyze functional and structural connectivity in the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. METHODS We collected resting-state functional magnetic resonance imaging and diffusion tensor imaging scans from people with schizophrenia (n = 47), relatives (n = 30) and controls (n = 49). We compared seed-based functional and structural connectivity across groups within striatal subdivisions defined a priori. RESULTS Compared with controls, people with schizophrenia had altered connectivity between the subdivisions and brain regions in the frontal and temporal cortices and thalamus; relatives showed different connectivity between the subdivisions and the right anterior cingulate cortex (ACC) and the left precuneus. Post-hoc t tests revealed that people with schizophrenia had decreased functional connectivity in the ventral loop (ventral striatum-right ACC) and dorsal loop (executive striatum-right ACC and sensorimotor striatum-right ACC), accompanied by decreased structural connectivity; relatives had reduced functional connectivity in the ventral loop and the dorsal loop (right executive striatum-right ACC) and no significant difference in structural connectivity compared with the other groups. Functional connectivity among people with schizophrenia in the bilateral ventral striatum-right ACC was correlated with positive symptom severity. LIMITATIONS The number of relatives included was moderate. Striatal subdivisions were defined based on a relatively low threshold, and structural connectivity was measured based on fractional anisotropy alone. CONCLUSION Our findings provide insight into the role of hypoconnectivity of the ventral corticostriatal system in people with schizophrenia.
Collapse
Affiliation(s)
- Peng Li
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Ri-Xing Jing
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Rong-Jiang Zhao
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Le Shi
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Hong-Qiang Sun
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Zengbo Ding
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Xiao Lin
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Lin Lu
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Yong Fan
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| |
Collapse
|
48
|
Donegan JJ, Lodge DJ. Stem Cells for Improving the Treatment of Neurodevelopmental Disorders. Stem Cells Dev 2020; 29:1118-1130. [PMID: 32008442 PMCID: PMC7469694 DOI: 10.1089/scd.2019.0265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment options for neurodevelopmental disorders such as schizophrenia and autism are currently limited. Antipsychotics used to treat schizophrenia are not effective for all patients, do not target all symptoms of the disease, and have serious adverse side effects. There are currently no FDA-approved drugs to treat the core symptoms of autism. In an effort to develop new and more effective treatment strategies, stem cell technologies have been used to reprogram adult somatic cells into induced pluripotent stem cells, which can be differentiated into neuronal cells and even three-dimensional brain organoids. This new technology has the potential to elucidate the complex mechanisms that underlie neurodevelopmental disorders, offer more relevant platforms for drug discovery and personalized medicine, and may even be used to treat the disease.
Collapse
Affiliation(s)
- Jennifer J. Donegan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel J. Lodge
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
49
|
Abstract
Schizophrenia is a major mental illness associated with profound disability. Current treatments for schizophrenia (antipsychotics) all have a similar mechanism of action and are primarily dopamine type 2 receptor (D2R) antagonists. Antipsychotics are not fully effective for the majority of schizophrenia patients, suggesting the need for alternative approaches. The primary focus of this review is to assess the evidence for the role of the serotonin type 2A receptor (5-HT2AR) in schizophrenia. Topics include an overview of 5-HT2AR physiology and pathophysiology in schizophrenia, 5-HT2AR interaction with other neurotransmitter systems, including the glutamatergic system, a review of the 5-HT2AR/d-lysergic acid diethylamide (LSD) model of schizophrenia, a contrast of the 5-HT2AR and glutamatergic models of schizophrenia, and finally, a review of Food and Drug Administration (FDA)-approved and investigational 5-HT2AR-modulating compounds. Recent studies with lumeteperone, pimavanserin, and roluperidone are highlighted.
Collapse
|
50
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|