1
|
Cortell-Nicolau A, Rivas J, Crema ER, Shennan S, García-Puchol O, Kolář J, Staniuk R, Timpson A. Demographic interactions between the last hunter-gatherers and the first farmers. Proc Natl Acad Sci U S A 2025; 122:e2416221122. [PMID: 40163734 PMCID: PMC12002272 DOI: 10.1073/pnas.2416221122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Demographic interaction processes play a pivotal role during episodes of cultural diffusion between different populations, particularly when these episodes can lead to competition for the same resources and geographic space. The diffusion of farming is one prototypical case within this broader scenario, where groups of incumbent hunter-gatherers occupied a space which would later be claimed by expanding farmers. In this work, we tackle such processes through a two-population mathematical model, where farmers and foragers compete and interact in the same geographic space. We present this work as a conceptual approach where, first, we assess the implications of our theoretical model and its general applicability and, second, we empirically test it on three case studies: Denmark, Eastern Iberia, and the island of Kyushu (Japan). While these regional case studies do not encompass the full range of processes observed in the interaction between migrant farmers and incumbent hunter-gatherers they provide reasonable variation to illustrate how our model can be fitted to a diverse range of empirical data and provide insights into these demographic processes. In particular, our theoretical model and case studies illustrate how endogenous interaction processes alone can explain the demographic fluctuations observed in the archaeological record during this transition, highlighting how these should be accounted for before invoking external forces as primary drivers.
Collapse
Affiliation(s)
- Alfredo Cortell-Nicolau
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, United Kingdom
| | - Javier Rivas
- Department of Economics, University of Bath, BathBA2 7AX, United Kingdom
| | - Enrico R. Crema
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, United Kingdom
| | - Stephen Shennan
- Institute of Archaeology, University College London, LondonWC1H 0PY, United Kingdom
| | - Oreto García-Puchol
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València46010, Spain
| | - Jan Kolář
- Institute of Archaeology, University College London, LondonWC1H 0PY, United Kingdom
- Institute of Archaeology of the Czech Academy of Sciences, Prague3CR5+2P, Czech Republic
| | - Robert Staniuk
- Institute of Archaeology, University College London, LondonWC1H 0PY, United Kingdom
| | - Adrian Timpson
- Institute of Archaeology, University College London, LondonWC1H 0PY, United Kingdom
| |
Collapse
|
2
|
Petiti E, Moser D, Jantzen D, Klimscha F, Fuchs K. Embracing complexity. Porous cranial lesions and their paleopathological significance in two population samples from Neolithic Northern Germany. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2025; 49:104-118. [PMID: 40203801 DOI: 10.1016/j.ijpp.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE To assess phenotypic variation of porous cranial lesions and their co-occurrence with infections of the upper respiratory apparatus and endocranial lesions, to infer disease burden in two different Neolithic socio-economic groups. MATERIALS Human skulls of at least 111 individuals from a collective grave at Sorsum (farmers) and 30 individual biurials at Ostorf (aquatic foragers) from northern Germany (c. 3300-2900 BCE). METHODS A new data recording protocol for scoring porous cranial lesion phenotypic variation and the assessment of inter- and intra-site frequencies and anatomical distribution. Statistical analysis of lesion frequencies and co-occurrences. RESULTS High odds of porous cranial lesions and upper respiratory apparatus lesions co-occurrence, and of subperiosteal new bone formation of the vault (a porous cranial lesion phenotype) and endocranial lesions, are noted for both sites. Site-specific phenotypic profiles and distribution patterns differ. For Sorsum, juvenile individuals show greater porous cranial lesion frequencies and active lesions. CONCLUSIONS Considering disease interplay is key for understanding porous cranial lesion phenotypic variation. Disease profiles can be associated with subsistence strategies. The results rule out dichotomic models (e.g. "civilization stress") and support more nuanced reconstructions of the Neolithic social-economic transformations. SIGNIFICANCE This study emphasizes the need to adopt data recording protocols that include a wider range of porous cranial lesions to understand overlapping pathophysiological pathways. LIMITATIONS Considerable preservation bias of the population samples. Inter-observer error is to be tested. Radiographic analyses are needed to corroborate the results. SUGGESTIONS FOR FURTHER RESEARCH Further studies on larger assemblages from different geographical and chronological contexts are needed.
Collapse
Affiliation(s)
- Emmanuele Petiti
- Institute of Pre, and Protohistoric Archaeology, Kiel University, Germany.
| | - Daria Moser
- Institute of Clinical Molecular Biology, Kiel University, Germany
| | - Detlef Jantzen
- State Agency for Heritage Service of Mecklenburg-Vorpommern, Germany
| | - Florian Klimscha
- Lower Saxony State Museum, Department for Research and Collections, Germany
| | - Katharina Fuchs
- Institute of Pre, and Protohistoric Archaeology, Kiel University, Germany
| |
Collapse
|
3
|
Matsumura H, Friess M, Kouchi M, Tanijiri T, Stringer C, Garcia G, Hanihara T, Moiseyev V, Suzuki D. Bioclimatic and masticatory influences on human cranial diversity verified by analysis of 3D morphometric homologous models. Sci Rep 2024; 14:26663. [PMID: 39496664 PMCID: PMC11535542 DOI: 10.1038/s41598-024-76715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
This study analyzes the effects of bioclimate and masticatory factors on the regional variability of human cranial forms across 150 ethnic groups worldwide. Morphometric variables were generated using principal component analysis applied to 3D homologous models. Relationships between cranial form and bioclimate (temperature and precipitation) and masticatory factors (infratemporal space) were tested considering sampling bias due to past population movements during the late Pleistocene and/or early- to mid-Holocene. Cranial size correlated with thermal conditions, consistent with Bergmann's rule. The length/breadth proportion of the neurocranium aligned with Allen's rule for thermal adaptation, while no relationship with masticatory stress was found. Facial form responded to either climate or masticatory conditions, although the primary factor was unclear due to the high correlation between stresses. However, masticatory stress was identified as an equally significant factor behind facial flatness in cold regions, else than the effect of Allen's rule. High narrowness of nasal and orbital openings correlated significantly with cold temperatures and cranial size, suggesting not only functional but also allometric effect. This study demonstrated the complexity of environmental influences on cranial form diversity, nonetheless suggested reduction of selective pressure on cranial form caused by natural environmental stress due to the development of civilization.
Collapse
Affiliation(s)
- Hirofumi Matsumura
- School of Health Sciences, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Martin Friess
- Département Homme et Environnement, Musée de l'Homme, Paris, 75116, France
| | - Makiko Kouchi
- National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064, Japan
| | | | - Chris Stringer
- Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Gisselle Garcia
- Department of Anthropology, American Museum of Natural History, New York, NY, 10024, USA
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography, Russian Federation, St Petersburg, 199034, Russia
| | - Daisuke Suzuki
- Department of Health Sciences, Hokkaido Chitose College of Rehabilitation, Chitose, 066-0055, Japan
| |
Collapse
|
4
|
Fort J, Pérez-Losada J. Interbreeding between farmers and hunter-gatherers along the inland and Mediterranean routes of Neolithic spread in Europe. Nat Commun 2024; 15:7032. [PMID: 39147743 PMCID: PMC11327347 DOI: 10.1038/s41467-024-51335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The Neolithic (i.e., farming and stockbreeding) spread from the Near East across Europe since about 9000 years before the common era (BCE) until about 4000 yr BCE. It followed two main routes, namely a sea route along the northern Mediterranean coast and an inland one across the Balkans and central Europe. It is known that the dispersive behavior of farmers depended on geography, with longer movements along the Mediterranean coast than along the inland route. In sharp contrast, here we show that for both routes the percentage of farmers who interbred with hunter-gatherers and/or acculturated one of them was strikingly the same (about 3.6%). Therefore, whereas the dispersive behavior depended on the proximity to the Mediterranean sea, the interaction behavior (incorporation of hunter-gatherers) did not depend on geographical constraints but only on the transition in the subsistence economy (from hunting and gathering to farming) and its associated way of life. These conclusions are reached by analyzing the clines of haplogroup K, which was virtually absent in hunter-gatherers and the most frequent mitochondrial haplogroup in early farmers. Similarly, the most frequent Y-chromosome Neolithic haplogroup (G2a) displays an inland cline that agrees with the percentage of interbreeding reported above.
Collapse
Affiliation(s)
- Joaquim Fort
- Complex Systems Laboratory, Universitat de Girona, C/ Maria Aurèlia Capmany 61, 17003, Girona, Catalonia, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 3, 08010, Barcelona, Catalonia, Spain.
| | - Joaquim Pérez-Losada
- Complex Systems Laboratory, Universitat de Girona, C/ Maria Aurèlia Capmany 61, 17003, Girona, Catalonia, Spain
| |
Collapse
|
5
|
Arzelier A, De Belvalet H, Pemonge MH, Garberi P, Binder D, Duday H, Deguilloux MF, Pruvost M. Ancient DNA sheds light on the funerary practices of late Neolithic collective burial in southern France. Proc Biol Sci 2024; 291:rspb20241215. [PMID: 39191285 PMCID: PMC11349438 DOI: 10.1098/rspb.2024.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The Aven de la Boucle (Corconne, Gard, southern France) is a karst shaft used as a collective burial between 3600 and 2800 cal BCE. The site encompasses the skeletal remains of approximately 75 individuals comprising a large majority of adult individuals, represented by scattered and commingled remains. To date, few studies have explored the potential of ancient DNA to tackle the documentation of Neolithic collective burials, and the funerary selection rules within such structures remain largely debated. In this study, we combine genomic analysis of 37 individuals with archaeo-anthropological data and Bayesian modelling of radiocarbon dates. Through this multidisciplinary approach, we aim to characterize the identity of the deceased and their relationships, as well as untangle the genetic diversity and funerary dynamics of this community. Genomic results identify 76% of male Neolithic individuals, suggesting a marked sex-biased selection. Available data emphasize the importance of biological relatedness and a male-mediated transmission of social status, as the affiliation to a specific male-lineage appears as a preponderant selection factor. The genomic results argue in favour of 'continuous' deposits between 3600 and 2800 BCE, carried out by the same community, despite cultural changes reflected by the ceramic material.
Collapse
Affiliation(s)
- Ana Arzelier
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Harmony De Belvalet
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-Hélène Pemonge
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Pauline Garberi
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Didier Binder
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Henri Duday
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-France Deguilloux
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Mélanie Pruvost
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| |
Collapse
|
6
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
7
|
Fischer A, Sjögren KG, Jensen TZT, Jørkov ML, Lysdahl P, Vimala T, Refoyo-Martínez A, Scorrano G, Price TD, Gröcke DR, Gotfredsen AB, Sørensen L, Alexandersen V, Wåhlin S, Stenderup J, Bennike O, Ingason A, Iversen R, Sikora M, Racimo F, Willerslev E, Allentoft ME, Kristiansen K. Vittrup Man-The life-history of a genetic foreigner in Neolithic Denmark. PLoS One 2024; 19:e0297032. [PMID: 38354111 PMCID: PMC10866469 DOI: 10.1371/journal.pone.0297032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers found in Denmark, and associates with hunter-gatherers, who inhabited Scandinavia during the previous millennia. His skeletal remains were selected for transdisciplinary analysis to reveal his life-history in terms of a population historical perspective. We report the combined results of an integrated set of genetic, isotopic, physical anthropological and archaeological analytical approaches. Strontium signature suggests a foreign birthplace that could be in Norway or Sweden. In addition, enamel oxygen isotope values indicate that as a child he lived in a colder climate, i.e., to the north of the regions inhabited by farmers. Genomic data in fact demonstrates that he is closely related to Mesolithic humans known from Norway and Sweden. Moreover, dietary stable isotope analyses on enamel and bone collagen demonstrate a fisher-hunter way of life in his childhood and a diet typical of farmers later on. Such a variable life-history is also reflected by proteomic analysis of hardened organic deposits on his teeth, indicating the consumption of forager food (seal, whale and marine fish) as well as farmer food (sheep/goat). From a dietary isotopic transect of one of his teeth it is shown that his transfer between societies of foragers and farmers took place near to the end of his teenage years.
Collapse
Affiliation(s)
- Anders Fischer
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Sealand Archaeology, Kalundborg, Denmark
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | | | - Marie Louise Jørkov
- Laboratory of Biological Anthropology, University of Copenhagen, Copenhagen, Denmark
| | - Per Lysdahl
- Vendsyssel Historical Museum, Hjørring, Denmark
| | - Tharsika Vimala
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | | | | | - T. Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Archaeological Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Darren R. Gröcke
- Department of Earth Sciences, Durham University, Durham, England, United Kingdom
| | | | | | - Verner Alexandersen
- Laboratory of Biological Anthropology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Stenderup
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Ole Bennike
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Andrés Ingason
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rune Iversen
- The Saxo Institute—Section of Archaeology, University of Copenhagen, Copenhagen S, Denmark
| | - Martin Sikora
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Fernando Racimo
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Eske Willerslev
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Morten E. Allentoft
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Kristian Kristiansen
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| |
Collapse
|
8
|
Zedda N, Meheux K, Blöcher J, Diekmann Y, Gorelik AV, Kalle M, Klein K, Titze AL, Winkelbach L, Naish E, Brou L, Valotteau F, Le Brun-Ricalens F, Burger J, Brami M. Biological and substitute parents in Beaker period adult-child graves. Sci Rep 2023; 13:18765. [PMID: 37907573 PMCID: PMC10618162 DOI: 10.1038/s41598-023-45612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
Joint inhumations of adults and children are an intriguing aspect of the shift from collective to single burial rites in third millennium BC Western Eurasia. Here, we revisit two exceptional Beaker period adult-child graves using ancient DNA: Altwies in Luxembourg and Dunstable Downs in Britain. Ancestry modelling and patterns of shared IBD segments between the individuals examined, and contemporary genomes from Central and Northwest Europe, highlight the continental connections of British Beakers. Although simultaneous burials may involve individuals with no social or biological ties, we present evidence that close blood relations played a role in shaping third millennium BC social systems and burial practices, for example a biological mother and her son buried together at Altwies. Extended family, such as a paternal aunt at Dunstable Downs, could also act as 'substitute parents' in the grave. Hypotheses are explored to explain such simultaneous inhumations. Whilst intercommunity violence, infectious disease and epidemics may be considered as explanations, they fail to account for both the specific, codified nature of this particular form of inhumation, and its pervasiveness, as evidenced by a representative sample of 131 adult-child graves from 88 sites across Eurasia, all dating to the third and second millennia BC.
Collapse
Affiliation(s)
- Nicoletta Zedda
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Katie Meheux
- Institute of Archaeology Library, LCCOS, University College London, London, UK
| | - Jens Blöcher
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yoan Diekmann
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander V Gorelik
- Vor- Und Frühgeschichtliche Archäologie, Institut Für Altertumswissenschaften, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Kalle
- Vor- Und Frühgeschichtliche Archäologie, Institut Für Altertumswissenschaften, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kevin Klein
- Vor- Und Frühgeschichtliche Archäologie, Institut Für Altertumswissenschaften, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna-Lena Titze
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Winkelbach
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Laurent Brou
- Institut National de Recherches Archéologiques (INRA), Bertrange, Luxembourg
| | - François Valotteau
- Institut National de Recherches Archéologiques (INRA), Bertrange, Luxembourg
| | | | - Joachim Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maxime Brami
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Wegmann D, Eckel R. Human evolution: When admixture met selection. Curr Biol 2023; 33:R259-R261. [PMID: 37040705 DOI: 10.1016/j.cub.2023.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Admixture has been a major force during human evolution. Two new studies using ancient DNA now show how two key admixture events in the evolutionary history of Europeans altered their adaptive trajectories and facilitated rapid evolution.
Collapse
Affiliation(s)
- Daniel Wegmann
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland.
| | - Raphael Eckel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Kristjansson D, Schurr TG, Bohlin J, Jugessur A. Phylogeographic history of mitochondrial haplogroup J in Scandinavia. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:298-315. [PMID: 36790764 PMCID: PMC10100211 DOI: 10.1002/ajpa.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/10/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mitochondrial DNA haplogroup J is the third most frequent haplogroup in modern-day Scandinavia, although it did not originate there. To infer the genetic history of haplogroup J in Scandinavia, we examined worldwide mitogenome sequences using a maximum-likelihood phylogenetic approach. METHODS Haplogroup J mitogenome sequences were gathered from GenBank (n = 2245) and aligned against the ancestral Reconstructed Sapiens Reference Sequence. We also analyzed haplogroup J Viking Age sequences from the European Nucleotide Archive (n = 54). Genetic distances were estimated from these data and projected onto a maximum likelihood rooted phylogenetic tree to analyze clustering and branching dates. RESULTS Haplogroup J originated approximately 42.6 kya (95% CI: 30.0-64.7), with several of its earliest branches being found within the Arabian Peninsula and Northern Africa. J1b was found most frequently in the Near East and Arabian Peninsula, while J1c occurred most frequently in Europe. Based on phylogenetic dating, subhaplogroup J1c has its early roots in the Mediterranean and Western Balkans. Otherwise, the majority of the branches found in Scandinavia are younger than those seen elsewhere, indicating that haplogroup J dispersed relatively recently into Northern Europe, most plausibly with Neolithic farmers. CONCLUSIONS Haplogroup J appeared when Scandinavia was transitioning to agriculture over 6 kya, with J1c being the most common lineage there today. Changes in the distribution of haplogroup J mtDNAs were likely driven by the expansion of farming from West Asia into Southern Europe, followed by a later expansion into Scandinavia, with other J subhaplogroups appearing among Scandinavian groups as early as the Viking Age.
Collapse
Affiliation(s)
- Dana Kristjansson
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway.,Center of Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jon Bohlin
- Center of Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway.,Center of Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
11
|
Arzelier A, Rivollat M, De Belvalet H, Pemonge MH, Binder D, Convertini F, Duday H, Gandelin M, Guilaine J, Haak W, Deguilloux MF, Pruvost M. Neolithic genomic data from southern France showcase intensified interactions with hunter-gatherer communities. iScience 2022; 25:105387. [PMID: 36405775 PMCID: PMC9667241 DOI: 10.1016/j.isci.2022.105387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/06/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
Archaeological research shows that the dispersal of the Neolithic took a more complex turn when reaching western Europe, painting a contrasted picture of interactions between autochthonous hunter-gatherers (HGs) and incoming farmers. In order to clarify the mode, the intensity, and the regional variability of biological exchanges implied in these processes, we report new palaeogenomic data from Occitanie, a key region in Southern France. Genomic data from 28 individuals originating from six sites spanning from c. 5,500 to c. 2,500 BCE allow us to characterize regional patterns of ancestries throughout the Neolithic period. Results highlight major differences between the Mediterranean and Continental Neolithic expansion routes regarding both migration and interaction processes. High proportions of HG ancestry in both Early and Late Neolithic groups in Southern France support multiple pulses of inter-group gene flow throughout time and space and confirm the need for regional studies to address the complexity of the processes involved. Genome-wide data from 28 individuals from Southern France (∼5,500–∼2,500 BCE) Small groups associated with the Neolithic expansion along the Mediterranean Early admixture between hunter-gatherers and Neolithic farmers in Southern France Multiple pulses of HG legacy introgression in Western Europe throughout Neolithic
Collapse
|
12
|
Silva NM, Kreutzer S, Souleles A, Triantaphyllou S, Kotsakis K, Urem-Kotsou D, Halstead P, Efstratiou N, Kotsos S, Karamitrou-Mentessidi G, Adaktylou F, Chondroyianni-Metoki A, Pappa M, Ziota C, Sampson A, Papathanasiou A, Vitelli K, Cullen T, Kyparissi-Apostolika N, Lanz AZ, Peters J, Rio J, Wegmann D, Burger J, Currat M, Papageorgopoulou C. Ancient mitochondrial diversity reveals population homogeneity in Neolithic Greece and identifies population dynamics along the Danubian expansion axis. Sci Rep 2022; 12:13474. [PMID: 35931723 PMCID: PMC9356035 DOI: 10.1038/s41598-022-16745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the study is to investigate mitochondrial diversity in Neolithic Greece and its relation to hunter-gatherers and farmers who populated the Danubian Neolithic expansion axis. We sequenced 42 mitochondrial palaeogenomes from Greece and analysed them together with European set of 328 mtDNA sequences dating from the Early to the Final Neolithic and 319 modern sequences. To test for population continuity through time in Greece, we use an original structured population continuity test that simulates DNA from different periods by explicitly considering the spatial and temporal dynamics of populations. We explore specific scenarios of the mode and tempo of the European Neolithic expansion along the Danubian axis applying spatially explicit simulations coupled with Approximate Bayesian Computation. We observe a striking genetic homogeneity for the maternal line throughout the Neolithic in Greece whereas population continuity is rejected between the Neolithic and present-day Greeks. Along the Danubian expansion axis, our best-fitting scenario supports a substantial decrease in mobility and an increasing local hunter-gatherer contribution to the gene-pool of farmers following the initial rapid Neolithic expansion. Οur original simulation approach models key demographic parameters rather than inferring them from fragmentary data leading to a better understanding of this important process in European prehistory.
Collapse
Affiliation(s)
- Nuno M Silva
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Susanne Kreutzer
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, 55099, Mainz, Germany.,Functional Genomics Center Zurich/GEML, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Angelos Souleles
- Laboratory of Physical Anthropology, Department of History & Ethnology, Democritus University of Thrace, 69100, Komotini, Greece
| | - Sevasti Triantaphyllou
- Faculty of Philosophy, School of History and Archaeology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Kostas Kotsakis
- Faculty of Philosophy, School of History and Archaeology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dushka Urem-Kotsou
- Department of History & Ethnology, Democritus University of Thrace, 69100, Komotini, Greece
| | - Paul Halstead
- Emeritus, Department of Archaeology, University of Sheffield, Sheffield, S1 3NJ, UK
| | - Nikos Efstratiou
- Faculty of Philosophy, School of History and Archaeology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stavros Kotsos
- Ephorate of Antiquities of Thessaloniki City, Hellenic Ministry of Culture and Sports, 54003, Thessaloniki, Greece
| | | | - Fotini Adaktylou
- Ephorate of Antiquities of Chalcidice and Mount Athos, Hellenic Ministry of Culture and Sports, 63100, Poligiros Chalcidice, Greece
| | | | - Maria Pappa
- Ephorate of Antiquities of Thessaloniki Region, Hellenic Ministry of Culture and Sports, 54646, Thessaloniki, Greece
| | - Christina Ziota
- Ephorate of Antiquities of Florina, Hellenic Ministry of Culture and Sports, 53100, Florina, Greece
| | - Adamantios Sampson
- Department of Mediterranean Studies, University of Aegean, 85132, Rhodes, Greece
| | - Anastasia Papathanasiou
- Ephorate of Paleoanthropology and Speleology, Hellenic Ministry of Culture and Sports, 11636, Athens, Greece
| | - Karen Vitelli
- Prof. Emerita, Department of Anthropology, Franchthi Cave Project, Indiana University Bloomington, Bloomington, USA
| | - Tracey Cullen
- American School of Classical Studies at Athens, Princeton, NJ, USA
| | - Nina Kyparissi-Apostolika
- Ephor Emerita of the Ephorate of Paleoanthropology and Speleology, Hellenic Ministry of Culture and Sports, 11636, Athens, Greece
| | - Andrea Zeeb Lanz
- General Direction for Cultural Heritage of Rhineland-Palatinate, Speyer, Germany
| | - Joris Peters
- Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany.,SNSB, State Collection of Palaeoanatomy Munich, Munich, Germany
| | - Jérémy Rio
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland
| | - Joachim Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, 55099, Mainz, Germany.,Functional Genomics Center Zurich/GEML, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Mathias Currat
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland.
| | - Christina Papageorgopoulou
- Laboratory of Physical Anthropology, Department of History & Ethnology, Democritus University of Thrace, 69100, Komotini, Greece.
| |
Collapse
|
13
|
Översti S, Palo JU. Variation in the substitution rates among the human mitochondrial haplogroup U sublineages. Genome Biol Evol 2022; 14:6613373. [PMID: 35731946 PMCID: PMC9250076 DOI: 10.1093/gbe/evac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Resolving the absolute timescale of phylogenetic trees stipulates reliable estimates for the rate of DNA sequence evolution. For this end, various calibration methods have been developed and studied intensively. Intraspecific rate variation among distinct genetic lineages, however, has gained less attention. Here, we have assessed lineage-specific molecular rates of human mitochondrial DNA (mtDNA) by performing tip-calibrated Bayesian phylogenetic analyses. Tip-calibration, as opposed to traditional nodal time stamps from dated fossil evidence or geological events, is based on sample ages and becoming ever more feasible as ancient DNA data from radiocarbon-dated samples accumulate. We focus on subhaplogroups U2, U4, U5a, and U5b, the data including ancient mtDNA genomes from 14C-dated samples (n = 234), contemporary genomes (n = 301), and two outgroup sequences from haplogroup R. The obtained molecular rates depended on the data sets (with or without contemporary sequences), suggesting time-dependency. More notable was the rate variation between haplogroups: U4 and U5a stand out having a substantially higher rate than U5b. This is also reflected in the divergence times obtained (U5a: 17,700 years and U5b: 29,700 years), a disparity not reported previously. After ruling out various alternative causes (e.g., selection, sampling, and sequence quality), we propose that the substitution rates have been influenced by demographic histories, widely different among populations where U4/U5a or U5b are frequent. As with the Y-chromosomal subhaplogroup R1b, the mitochondrial U4 and U5a have been associated with remarkable range extensions of the Yamnaya culture in the Bronze Age.
Collapse
Affiliation(s)
- Sanni Översti
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute for the Science of Human History, Jena, Germany Kahlaische Straße 10, 07745, Jena, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological Sciences, University of Helsinki, Helsinki, Finland P.O. Box 56, FI-00014, Helsinki, Finland
| | - Jukka U Palo
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland P.O. Box 40, FI-00014, Helsinki, Finland.,Forensic Chemistry Unit, Forensic Genetics Team, Finnish Institute for Health and Welfare, Helsinki, Finland P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
14
|
Chintalapati M, Patterson N, Moorjani P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 2022; 11:77625. [PMID: 35635751 PMCID: PMC9293011 DOI: 10.7554/elife.77625] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that admixture has been pervasive throughout human history. While several methods exist for dating admixture in contemporary populations, they are not suitable for sparse, low coverage ancient genomic data. Thus, we developed DATES (Distribution of Ancestry Tracts of Evolutionary Signals) that leverages ancestry covariance patterns across the genome of a single individual to infer the timing of admixture. DATES provides reliable estimates under various demographic scenarios and outperforms available methods for ancient DNA applications. Using DATES on~1100 ancient genomes from sixteen regions in Europe and west Asia, we reconstruct the chronology of the formation of the ancestral populations and the fine-scale details of the spread of Neolithic farming and Steppe pastoralist-related ancestry across Europe. By studying the genetic formation of Anatolian farmers, we infer that gene flow related to Iranian Neolithic farmers occurred before 9600 BCE, predating the advent of agriculture in Anatolia. Contrary to the archaeological evidence, we estimate that early Steppe pastoralist groups (Yamnaya and Afanasievo) were genetically formed more than a millennium before the start of Steppe pastoralism. Our analyses provide new insights on the origins and spread of farming and Indo-European languages, highlighting the power of genomic dating methods to elucidate the legacy of human migrations.
Collapse
Affiliation(s)
- Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nick Patterson
- Program in Medical and Population Genetics, Broad Institute, Cambridge, United States
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
15
|
The genomic origins of the world's first farmers. Cell 2022; 185:1842-1859.e18. [PMID: 35561686 PMCID: PMC9166250 DOI: 10.1016/j.cell.2022.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.
Collapse
|
16
|
Kristjansson D, Bohlin J, Nguyen TT, Jugessur A, Schurr TG. Evolution and dispersal of mitochondrial DNA haplogroup U5 in Northern Europe: insights from an unsupervised learning approach to phylogeography. BMC Genomics 2022; 23:354. [PMID: 35525961 PMCID: PMC9080151 DOI: 10.1186/s12864-022-08572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5, which appears at high frequencies in northern Europe. Methods Haplogroup U5 mitogenome sequences were gathered from GenBank. The hierarchal Bayesian Analysis of Population Structure (hierBAPS) method was used to generate groups of sequences that were then projected onto a rooted maximum likelihood (ML) phylogenetic tree to visualize the pattern of clustering. The haplogroup statuses of the individual sequences were assessed using Haplogrep2. Results A total of 23 hierBAPS groups were identified, all of which corresponded to subclades defined in Phylotree, v.17. The hierBAPS groups projected onto the ML phylogeny accurately clustered all haplotypes belonging to a specific haplogroup in accordance with Haplogrep2. By incorporating the geographic source of each sequence and subclade age estimates into this framework, inferences about the diversification of U5 mtDNAs were made. Haplogroup U5 has been present in northern Europe since the Mesolithic, and spread in both eastern and western directions, undergoing significant diversification within Scandinavia. A review of historical and archeological evidence attests to some of the population interactions contributing to this pattern. Conclusions The hierBAPS algorithm accurately grouped mitogenome sequences into subclades in a phylogenetically robust manner. This analysis provided new insights into the phylogeographic structure of haplogroup U5 diversity in northern Europe, revealing a detailed perspective on the diversity of subclades in this region and their distribution in Scandinavian populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08572-y.
Collapse
Affiliation(s)
- Dana Kristjansson
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Jon Bohlin
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Truc Trung Nguyen
- IT Systems Bergen, Norwegian Institute of Public Health, Bergen, Norway
| | - Astanand Jugessur
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proc Natl Acad Sci U S A 2022; 119:e2120786119. [PMID: 35446690 PMCID: PMC9170172 DOI: 10.1073/pnas.2120786119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
By integrating genomic and archaeological data, we provide new insights into the Neolithic French monumental site of Fleury-sur-Orne in Normandy, where a group of selected individuals was buried in impressively long monuments. The earliest individuals buried at Fleury-sur-Orne match the expected western European Neolithic genetic diversity, while three individuals, designated as genetic outliers, were buried after 4,000 calibrated BCE. We hypothesize that different, unrelated families or clans used the site over several centuries. Thirteen of 14 of the analyzed individuals were male, indicating an overarching patrilineal system. However, one exception, a female buried with a symbolically male artifact, suggests that the embodiment of the male gender in death was required to access burial at the monumental structures. The Middle Neolithic in western Europe is characterized by monumental funerary structures, known as megaliths, along the Atlantic façade. The first manifestations of this phenomenon occurred in modern-day France with the long mounds of the Cerny culture. Here, we present genome-wide data from the fifth-millennium BCE site of Fleury-sur-Orne in Normandy (France), famous for its impressively long monuments built for selected individuals. The site encompasses 32 monuments of variable sizes, containing the burials of 19 individuals from the Neolithic period. To address who was buried at the site, we generated genome-wide data for 14 individuals, of whom 13 are males, completing previously published data [M. Rivollat et al., Sci. Adv. 6, eaaz5344 (2020)]. Population genetic and Y chromosome analyses show that the Fleury-sur-Orne group fits within western European Neolithic genetic diversity and that the arrival of a new group is detected after 4,000 calibrated BCE. The results of analyzing uniparentally inherited markers and an overall low number of long runs of homozygosity suggest a patrilineal group practicing female exogamy. We find two pairs of individuals to be father and son, buried together in the same monument/grave. No other biological relationship can link monuments together, suggesting that each monument was dedicated to a genetically independent lineage. The combined data and documented father–son line of descent suggest a male-mediated transmission of sociopolitical authority. However, a single female buried with an arrowhead, otherwise considered a symbol of power of the male elite of the Cerny culture, questions a strictly biological sex bias in the burial rites of this otherwise “masculine” monumental cemetery.
Collapse
|
18
|
Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience 2022; 25:104244. [PMID: 35494246 PMCID: PMC9051636 DOI: 10.1016/j.isci.2022.104244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700–4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas Late Mesolithic HGs carry ∼20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only ∼7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to ∼8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell’Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition. Genetic transition between Early Mesolithic and Late Mesolithic hunter-gatherers A near-complete genetic turnover during the Mesolithic-Neolithic transition Exchange of subsistence practices between hunter-gatherers and early farmers
Collapse
|
19
|
Gopalan S, Berl REW, Myrick JW, Garfield ZH, Reynolds AW, Bafens BK, Belbin G, Mastoras M, Williams C, Daya M, Negash AN, Feldman MW, Hewlett BS, Henn BM. Hunter-gatherer genomes reveal diverse demographic trajectories during the rise of farming in Eastern Africa. Curr Biol 2022; 32:1852-1860.e5. [PMID: 35271793 PMCID: PMC9050894 DOI: 10.1016/j.cub.2022.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/12/2021] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
The fate of hunting and gathering populations following the rise of agriculture and pastoralism remains a topic of debate in the study of human prehistory. Studies of ancient and modern genomes have found that autochthonous groups were largely replaced by expanding farmer populations with varying levels of gene flow, a characterization that is influenced by the almost universal focus on the European Neolithic.1-5 We sought to understand the demographic impact of an ongoing cultural transition to farming in Southwest Ethiopia, one of the last regions in Africa to experience such shifts.6 Importantly, Southwest Ethiopia is home to several of the world's remaining hunter-gatherer groups, including the Chabu people, who are currently transitioning away from their traditional mode of subsistence.7 We generated genome-wide data from the Chabu and four neighboring populations, the Majang, Shekkacho, Bench, and Sheko, to characterize their genetic ancestry and estimate their effective population sizes over the last 60 generations. We show that the Chabu are a distinct population closely related to ancient people who occupied Southwest Ethiopia >4,500 years ago. Furthermore, the Chabu are undergoing a severe population bottleneck, which began approximately 1,400 years ago. By analyzing eleven Eastern African populations, we find evidence for divergent demographic trajectories among hunter-gatherer-descendant groups. Our results illustrate that although foragers respond to encroaching agriculture and pastoralism with multiple strategies, including cultural adoption of agropastoralism, gene flow, and economic specialization, they often face population decline.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA; Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Richard E W Berl
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Department of Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO 80523, USA
| | - Justin W Myrick
- Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Zachary H Garfield
- Department of Anthropology, Washington State University, Vancouver, WA 98686, USA; Institute for Advanced Study in Toulouse, Université Toulouse, Toulouse 31080, France
| | - Austin W Reynolds
- Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; Department of Anthropology, Baylor University, Waco, TX 76798, USA
| | - Barnabas K Bafens
- Diaspora and Protocol Affairs Office, Bench Sheko Zone Administration, Mizan, Ethiopia
| | - Gillian Belbin
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mira Mastoras
- UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Cole Williams
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akmel N Negash
- Department of Anthropology, Hawassa University, Hawassa, SNNPR, Ethiopia
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Barry S Hewlett
- Department of Anthropology, Washington State University, Vancouver, WA 98686, USA.
| | - Brenna M Henn
- Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Heraclides A, Fernández-Domínguez E. Mitochondrial DNA Consensus Calling and Quality Filtering for Constructing Ancient Human Mitogenomes: Comparison of Two Widely Applied Methods. Int J Mol Sci 2022; 23:4651. [PMID: 35563041 PMCID: PMC9104972 DOI: 10.3390/ijms23094651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Retrieving high-quality endogenous ancient DNA (aDNA) poses several challenges, including low molecular copy number, high rates of fragmentation, damage at read termini, and potential presence of exogenous contaminant DNA. All these factors complicate a reliable reconstruction of consensus aDNA sequences in reads from high-throughput sequencing platforms. Here, we report findings from a thorough evaluation of two alternative tools (ANGSD and schmutzi) aimed at overcoming these issues and constructing high-quality ancient mitogenomes. Raw genomic data (BAM/FASTQ) from a total of 17 previously published whole ancient human genomes ranging from the 14th to the 7th millennium BCE were retrieved and mitochondrial consensus sequences were reconstructed using different quality filters, with their accuracy measured and compared. Moreover, the influence of different sequence parameters (number of reads, sequenced bases, mean coverage, and rate of deamination and contamination) as predictors of derived sequence quality was evaluated. Complete mitogenomes were successfully reconstructed for all ancient samples, and for the majority of them, filtering substantially improved mtDNA consensus calling and haplogroup prediction. Overall, the schmutzi pipeline, which estimates and takes into consideration exogenous contamination, appeared to have the edge over the much faster and user-friendly alternative method (ANGSD) in moderate to high coverage samples (>1,000,000 reads). ANGSD, however, through its read termini trimming filter, showed better capabilities in calling the consensus sequence from low-quality samples. Among all the predictors of overall sample quality examined, the strongest correlation was found for the available number of sequence reads and bases. In the process, we report a previously unassigned haplogroup (U3b) for an Early Chalcolithic individual from Southern Anatolia/Northern Levant.
Collapse
Affiliation(s)
- Alexandros Heraclides
- Department of Health Sciences, European University Cyprus, Diogenis Str. 6, Nicosia 2404, Cyprus
| | | |
Collapse
|
21
|
Broccard N, Silva NM, Currat M. Simulated patterns of mitochondrial diversity are consistent with partial population turnover in Bronze Age Central Europe. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:134-146. [PMID: 36787792 PMCID: PMC9298224 DOI: 10.1002/ajpa.24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach. MATERIALS AND METHODS We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers. RESULTS Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity. DISCUSSION Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.
Collapse
Affiliation(s)
- Nicolas Broccard
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Nuno Miguel Silva
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
22
|
Wurst C, Maixner F, Castella V, Cipollini G, Hotz G, Zink A. The Lady from Basel's Barfüsserkirche - Molecular confirmation of the Mummy's identity through mitochondrial DNA of living relatives spanning 22 generations. Forensic Sci Int Genet 2021; 56:102604. [PMID: 34656830 DOI: 10.1016/j.fsigen.2021.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
The identity of the mummified Lady from the Barfüsser Church in Basel, Switzerland has been unsolved for decades, despite the prominent location of the burial place in front of the choir screen. A recent multidisciplinary research approach came up with a possible candidate, Anna Catharina Bischoff who died in Basel in 1787 with an age of 69 years (1719-1787). To verify the identity of the mummy, genealogists of the Citizen Science Basel discovered three living individuals of the maternal lineage of two different family branches, separated from Anna Catharina Bischoff by up to 22 generations. In this study we compare the ancient mitochondrial DNA of the mummy recovered from a premolar to the mitochondrial DNA of these three candidates. Initially the mitochondrial hypervariable regions I and II of the living individuals were screened using the Sanger sequencing method. This was followed by a mitochondrial capture approach and next generation sequencing to enrich for the whole mitochondrial genome of the mummy and one living person. A full mitochondrial genome has been recovered of both individuals sharing an identical haplotype. The sequence was assigned to the mitochondrial haplogroup U5a1+!16192 including two private mutations 10006G and 16293C. Only by using an interdisciplinary approach combining ancient DNA analysis and genealogy a maternal lineage of a non-noble family spanning 22 generations could be confirmed.
Collapse
Affiliation(s)
- Christina Wurst
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy; Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, Saarstraße 21, 55122 Mainz, Germany.
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy
| | - Vincent Castella
- Forensic Genetics Unit, University Center of Legal Medicine, Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Ch. de la Vulliette 4, 1000 Lausanne 25, Switzerland
| | - Giovanna Cipollini
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy
| | - Gerhard Hotz
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy
| |
Collapse
|
23
|
Wells JCK, Pomeroy E, Stock JT. Evolution of Lactase Persistence: Turbo-Charging Adaptation in Growth Under the Selective Pressure of Maternal Mortality? Front Physiol 2021; 12:696516. [PMID: 34497534 PMCID: PMC8419441 DOI: 10.3389/fphys.2021.696516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of the capacity to digest milk in some populations represents a landmark in human evolution, linking genetic change with a component of niche construction, namely dairying. Alleles promoting continued activity of the enzyme lactase through the life-course (lactase persistence) evolved in several global regions within the last 7,000 years. In some European regions, these alleles underwent rapid selection and must have profoundly affected fertility or mortality. Elsewhere, alleles spread more locally. However, the functional benefits underlying the rapid spread of lactase persistence remain unclear. Here, we set out the hypothesis that lactase persistence promoted skeletal growth, thereby offering a generic rapid solution to childbirth complications arising from exposure to ecological change, or to new environments through migration. Since reduced maternal growth and greater neonatal size both increase the risk of obstructed labour, any ecological exposure impacting these traits may increase maternal mortality risk. Over many generations, maternal skeletal dimensions could adapt to new ecological conditions through genetic change. However, this adaptive strategy would fail if ecological change was rapid, including through migration into new niches. We propose that the combination of consuming milk and lactase persistence could have reduced maternal mortality by promoting growth of the pelvis after weaning, while high calcium intake would reduce risk of pelvic deformities. Our conceptual framework provides locally relevant hypotheses to explain selection for lactase persistence in different global regions. For any given diet and individual genotype, the combination of lactase persistence and milk consumption would divert more energy to skeletal growth, either increasing pelvic dimensions or buffering them from worsening ecological conditions. The emergence of lactase persistence among dairying populations could have helped early European farmers adapt rapidly to northern latitudes, East African pastoralists adapt to sudden climate shifts to drier environments, and Near Eastern populations counteract secular declines in height associated with early agriculture. In each case, we assume that lactase persistence accelerated the timescale over which maternal skeletal dimensions could change, thus promoting both maternal and offspring survival. Where lactase persistence did not emerge, birth weight was constrained at lower levels, and this contributes to contemporary variability in diabetes risk.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, Population Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, ON, Canada.,Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
24
|
Feldman M, Gnecchi-Ruscone GA, Lamnidis TC, Posth C. Where Asia meets Europe - recent insights from ancient human genomics. Ann Hum Biol 2021; 48:191-202. [PMID: 34459345 DOI: 10.1080/03014460.2021.1949039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT The peopling of Europe by modern humans is a widely debated topic in the field of modern and ancient genomics. While several recent syntheses have focussed on this topic, little has been discussed about the genetic history of populations in the continent's surrounding regions. OBJECTIVE We explore genetic transformations in three key areas that played an essential role in the formation of the European genetic landscape through time, focussing on the periods spanning from the Epipalaeolithic/Mesolithic and up until the Iron Age. METHODS We review published ancient genomic studies and integrate the associated data to provide a quantification and visualisation of major trends in the population histories of the Near East, the western Eurasian Steppe and North East Europe. RESULTS We describe cross-regional as well as localised prehistoric demographic shifts and discuss potential research directions while highlighting geo-temporal gaps in the data. CONCLUSION In recent years, archaeogenetic studies have contributed to the understanding of human genetic diversity through time in regions located at the doorstep of Europe. Further studies focussing on these areas will allow for a better characterisation of genetic shifts and regionally-specific patterns of admixture across western Eurasia.
Collapse
Affiliation(s)
- Michal Feldman
- Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Guido A Gnecchi-Ruscone
- Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Thiseas C Lamnidis
- Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Cosimo Posth
- Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
25
|
Papac L, Ernée M, Dobeš M, Langová M, Rohrlach AB, Aron F, Neumann GU, Spyrou MA, Rohland N, Velemínský P, Kuna M, Brzobohatá H, Culleton B, Daněček D, Danielisová A, Dobisíková M, Hložek J, Kennett DJ, Klementová J, Kostka M, Krištuf P, Kuchařík M, Hlavová JK, Limburský P, Malyková D, Mattiello L, Pecinovská M, Petriščáková K, Průchová E, Stránská P, Smejtek L, Špaček J, Šumberová R, Švejcar O, Trefný M, Vávra M, Kolář J, Heyd V, Krause J, Pinhasi R, Reich D, Schiffels S, Haak W. Dynamic changes in genomic and social structures in third millennium BCE central Europe. SCIENCE ADVANCES 2021; 7:7/35/eabi6941. [PMID: 34433570 PMCID: PMC8386934 DOI: 10.1126/sciadv.abi6941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 05/25/2023]
Abstract
Europe's prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of "steppe" ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted. Corded Ware appeared by 2900 BCE, were initially genetically diverse, did not derive all steppe ancestry from known Yamnaya, and assimilated females of diverse backgrounds. Both Corded Ware and Bell Beaker groups underwent dynamic changes, involving sharp reductions and complete replacements of Y-chromosomal diversity at ~2600 and ~2400 BCE, respectively, the latter accompanied by increased Neolithic-like ancestry. The Bronze Age saw new social organization emerge amid a ≥40% population turnover.
Collapse
Affiliation(s)
- Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
| | - Michal Ernée
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Michaela Langová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Petr Velemínský
- Department of Anthropology, The National Museum, Prague, Cirkusová 1740, Prague 9, Horní Počernice, CZ 193 00, Czech Republic
| | - Martin Kuna
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Hana Brzobohatá
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Brendan Culleton
- Institutes of Energy and the Environments, Pennsylvania State University, University Park, PA 16802, USA
| | - David Daněček
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
- Central Bohemian Museum in Roztoky u Prahy, Zámek 1, Roztoky, CZ 252 63, Czech Republic
| | - Alžběta Danielisová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Miluše Dobisíková
- Department of Anthropology, The National Museum, Prague, Cirkusová 1740, Prague 9, Horní Počernice, CZ 193 00, Czech Republic
| | - Josef Hložek
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
- Department of Archaeology, Faculty of Philosophy and Arts, University of West Bohemia in Pilsen, Sedláčkova 38, Pilsen, CZ 301 00, Czech Republic
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jana Klementová
- Central Bohemian Museum in Roztoky u Prahy, Zámek 1, Roztoky, CZ 252 63, Czech Republic
| | - Michal Kostka
- The City of Prague Museum, Kožná 1/475, Prague 1, CZ 110 00, Czech Republic
| | - Petr Krištuf
- Department of Archaeology, Faculty of Philosophy and Arts, University of West Bohemia in Pilsen, Sedláčkova 38, Pilsen, CZ 301 00, Czech Republic
| | - Milan Kuchařík
- Labrys o.p.s., Hloubětínská 16/11, Prague 9, CZ 198 00, Czech Republic
| | - Jana Kuljavceva Hlavová
- Institute of Preservation of Archaeological Heritage of Northwest Bohemia, Jana Žižky 835, Most, CZ 434 01, Czech Republic
| | - Petr Limburský
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Drahomíra Malyková
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Lucia Mattiello
- Central Bohemian Archaeological Heritage Institute, Nad Olšinami 3/448, Prague 10, CZ 100 00, Czech Republic
| | - Monika Pecinovská
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | | | - Erika Průchová
- Institute of Archaeology, Faculty of Arts, University of South Bohemia in České Budějovice, Branišovská 31a, CZ 370 05, České Budějovice, Czech Republic
| | - Petra Stránská
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Lubor Smejtek
- Central Bohemian Archaeological Heritage Institute, Nad Olšinami 3/448, Prague 10, CZ 100 00, Czech Republic
| | - Jaroslav Špaček
- The Municipal Museum in Čelákovice (formerly), Komenského 1646, Čelákovice, CZ 250 88, Czech Republic (private)
| | - Radka Šumberová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Ondřej Švejcar
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, Prague 1, CZ 118 01, Czech Republic
| | - Martin Trefný
- Friedrich Alexander University Erlangen/Nürnberg, Kochstrasse 4/18, DE 91054 Erlangen, Germany
| | - Miloš Vávra
- Central Bohemian Archaeological Heritage Institute, Nad Olšinami 3/448, Prague 10, CZ 100 00, Czech Republic
| | - Jan Kolář
- Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
- Institute of Archaeology and Museology, Masaryk University, Arne Nováka 1, Brno 60200, Czech Republic
| | - Volker Heyd
- Department of Cultures/Archaeology, P.O. Box 59, Unioninkatu 38, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
26
|
Rohrlach AB, Papac L, Childebayeva A, Rivollat M, Villalba-Mouco V, Neumann GU, Penske S, Skourtanioti E, van de Loosdrecht M, Akar M, Boyadzhiev K, Boyadzhiev Y, Deguilloux MF, Dobeš M, Erdal YS, Ernée M, Frangipane M, Furmanek M, Friederich S, Ghesquière E, Hałuszko A, Hansen S, Küßner M, Mannino M, Özbal R, Reinhold S, Rottier S, Salazar-García DC, Diaz JS, Stockhammer PW, de Togores Muñoz CR, Yener KA, Posth C, Krause J, Herbig A, Haak W. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci Rep 2021; 11:15005. [PMID: 34294811 PMCID: PMC8298398 DOI: 10.1038/s41598-021-94491-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.
Collapse
Affiliation(s)
- Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany. .,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615, Pessac, France
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Marieke van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, 31060, Alahan-Antakya, Hatay, Turkey
| | - Kamen Boyadzhiev
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 1000, Sofia, Bulgaria
| | - Yavor Boyadzhiev
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 1000, Sofia, Bulgaria
| | | | - Miroslav Dobeš
- Department of Prehistory, Institute of Archaeology CAS, Prague, Czech Republic
| | - Yilmaz S Erdal
- Department of Anthropology, Hacettepe University, 06800, Ankara, Turkey
| | - Michal Ernée
- Department of Prehistory, Institute of Archaeology CAS, Prague, Czech Republic
| | | | | | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
| | - Emmanuel Ghesquière
- Inrap Grand Ouest, Bourguébus, France.,Université de Rennes 1, CNRS, CReAAH-UMR, 6566, Rennes, France
| | - Agata Hałuszko
- Institute of Archaeology, University of Wrocław, Wrocław, Poland.,Archeolodzy.org Foundation, Wrocław, Poland
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archeology, Weimar, Germany
| | - Marcello Mannino
- Department of Archaeology, School of Culture and Society, Aarhus University, 8270, Højbjerg, Denmark
| | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, 34450, Istanbul, Turkey
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Stéphane Rottier
- Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615, Pessac, France
| | - Domingo Carlos Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, Valencia, Spain.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Ludwig Maximilian University Munich, 80799, Munich, Germany
| | | | - K Aslihan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY, 10028, USA
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences Eberhard Karls University Tübingen, 72070, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany. .,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
27
|
Mizuno F, Gojobori J, Kumagai M, Baba H, Taniguchi Y, Kondo O, Matsushita M, Matsushita T, Matsuda F, Higasa K, Hayashi M, Wang L, Kurosaki K, Ueda S. Population dynamics in the Japanese Archipelago since the Pleistocene revealed by the complete mitochondrial genome sequences. Sci Rep 2021; 11:12018. [PMID: 34121089 PMCID: PMC8200360 DOI: 10.1038/s41598-021-91357-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
The Japanese Archipelago is widely covered with acidic soil made of volcanic ash, an environment which is detrimental to the preservation of ancient biomolecules. More than 10,000 Palaeolithic and Neolithic sites have been discovered nationwide, but few skeletal remains exist and preservation of DNA is poor. Despite these challenging circumstances, we succeeded in obtaining a complete mitogenome (mitochondrial genome) sequence from Palaeolithic human remains. We also obtained those of Neolithic (the hunting-gathering Jomon and the farming Yayoi cultures) remains, and over 2,000 present-day Japanese. The Palaeolithic mitogenome sequence was not found to be a direct ancestor of any of Jomon, Yayoi, and present-day Japanese people. However, it was an ancestral type of haplogroup M, a basal group of the haplogroup M. Therefore, our results indicate continuity in the maternal gene pool from the Palaeolithic to present-day Japanese. We also found that a vast increase of population size happened and has continued since the Yayoi period, characterized with paddy rice farming. It means that the cultural transition, i.e. rice agriculture, had significant impact on the demographic history of Japanese population.
Collapse
Affiliation(s)
- Fuzuki Mizuno
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan.
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.
| | - Masahiko Kumagai
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hisao Baba
- Department of Anthropology, National Museum of Nature and Science, Tokyo, Japan
| | - Yasuhiro Taniguchi
- Department of Archaeology, Faculty of Letters, Kokugakuin University, Tokyo, Japan
| | - Osamu Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Michiko Hayashi
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Li Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, China.
| | - Kunihiko Kurosaki
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Shintaroh Ueda
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Žegarac A, Winkelbach L, Blöcher J, Diekmann Y, Krečković Gavrilović M, Porčić M, Stojković B, Milašinović L, Schreiber M, Wegmann D, Veeramah KR, Stefanović S, Burger J. Ancient genomes provide insights into family structure and the heredity of social status in the early Bronze Age of southeastern Europe. Sci Rep 2021; 11:10072. [PMID: 33980902 PMCID: PMC8115322 DOI: 10.1038/s41598-021-89090-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Twenty-four palaeogenomes from Mokrin, a major Early Bronze Age necropolis in southeastern Europe, were sequenced to analyse kinship between individuals and to better understand prehistoric social organization. 15 investigated individuals were involved in genetic relationships of varying degrees. The Mokrin sample resembles a genetically unstructured population, suggesting that the community’s social hierarchies were not accompanied by strict marriage barriers. We find evidence for female exogamy but no indications for strict patrilocality. Individual status differences at Mokrin, as indicated by grave goods, support the inference that females could inherit status, but could not transmit status to all their sons. We further show that sons had the possibility to acquire status during their lifetimes, but not necessarily to inherit it. Taken together, these findings suggest that Southeastern Europe in the Early Bronze Age had a significantly different family and social structure than Late Neolithic and Early Bronze Age societies of Central Europe.
Collapse
Affiliation(s)
- A Žegarac
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia.,Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - L Winkelbach
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - J Blöcher
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Y Diekmann
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - M Krečković Gavrilović
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia
| | - M Porčić
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia
| | - B Stojković
- Department of Genetics and Evolution, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - L Milašinović
- National Museum of Kikinda, Trg Srpskih Dobrovoljaca 21, 23300, Kikinda, Serbia
| | - M Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - D Wegmann
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland
| | - K R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, USA
| | - S Stefanović
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia.,Biosense Institute, University of Novi Sad, 21000, Novi Sad, Serbia
| | - J Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
29
|
Loog L. Sometimes hidden but always there: the assumptions underlying genetic inference of demographic histories. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190719. [PMID: 33250022 DOI: 10.1098/rstb.2019.0719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Demographic processes directly affect patterns of genetic variation within contemporary populations as well as future generations, allowing for demographic inference from patterns of both present-day and past genetic variation. Advances in laboratory procedures, sequencing and genotyping technologies in the past decades have resulted in massive increases in high-quality genome-wide genetic data from present-day populations and allowed retrieval of genetic data from archaeological material, also known as ancient DNA. This has resulted in an explosion of work exploring past changes in population size, structure, continuity and movement. However, as genetic processes are highly stochastic, patterns of genetic variation only indirectly reflect demographic histories. As a result, past demographic processes need to be reconstructed using an inferential approach. This usually involves comparing observed patterns of variation with model expectations from theoretical population genetics. A large number of approaches have been developed based on different population genetic models that each come with assumptions about the data and underlying demography. In this article I review some of the key models and assumptions underlying the most commonly used approaches for past demographic inference and their consequences for our ability to link the inferred demographic processes to the archaeological and climate records. This article is part of the theme issue 'Cross-disciplinary approaches to prehistoric demography'.
Collapse
Affiliation(s)
- Liisa Loog
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
30
|
Low Prevalence of Lactase Persistence in Bronze Age Europe Indicates Ongoing Strong Selection over the Last 3,000 Years. Curr Biol 2020; 30:4307-4315.e13. [DOI: 10.1016/j.cub.2020.08.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 11/20/2022]
|
31
|
Sheard C, Bowern C, Dockum R, Jordan FM. Pama-Nyungan grandparent systems change with grandchildren, but not cross-cousin terms or social norms. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e30. [PMID: 35663513 PMCID: PMC7612801 DOI: 10.1017/ehs.2020.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kinship is a fundamental and universal aspect of the structure of human society. The kinship category of 'grandparents' is socially salient, due to grandparents' investment in the care of the grandchildren as well as to older generations' control of wealth and cultural knowledge, but the evolutionary dynamics of grandparent terms has yet to be studied in a phylogenetically explicit context. Here, we present the first phylogenetic comparative study of grandparent terms by investigating 134 languages in Pama-Nyungan, an Australian family of hunter-gatherer languages. We infer that proto-Pama-Nyungan had, with high certainty, four separate terms for grandparents. This state then shifted into either a two-term system that distinguishes the genders of the grandparents or a three-term system that merges the 'parallel' grandparents, which could then transition into a different three-term system that merges the 'cross' grandparents. We find no support for the co-evolution of these systems with either community marriage organisation or post-marital residence. We find some evidence for the correlation of grandparent and grandchild terms, but no support for the correlation of grandparent and cross-cousin terms, suggesting that grandparents and grandchildren potentially form a single lexical category but that the entire kinship system does not necessarily change synchronously.
Collapse
Affiliation(s)
- Catherine Sheard
- School of Earth Sciences, University of Bristol, BristolBS8 1TQ, UK
- Department of Anthropology and Archaeology, University of Bristol, BristolBS8 1UU, UK
| | - Claire Bowern
- Department of Linguistics, Yale University, New Haven. CT06520, USA
| | - Rikker Dockum
- Department of Linguistics, Yale University, New Haven. CT06520, USA
| | - Fiona M. Jordan
- Department of Anthropology and Archaeology, University of Bristol, BristolBS8 1UU, UK
| |
Collapse
|
32
|
Rivollat M, Jeong C, Schiffels S, Küçükkalıpçı İ, Pemonge MH, Rohrlach AB, Alt KW, Binder D, Friederich S, Ghesquière E, Gronenborn D, Laporte L, Lefranc P, Meller H, Réveillas H, Rosenstock E, Rottier S, Scarre C, Soler L, Wahl J, Krause J, Deguilloux MF, Haak W. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. SCIENCE ADVANCES 2020; 6:eaaz5344. [PMID: 32523989 PMCID: PMC7259947 DOI: 10.1126/sciadv.aaz5344] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Starting from 12,000 years ago in the Middle East, the Neolithic lifestyle spread across Europe via separate continental and Mediterranean routes. Genomes from early European farmers have shown a clear Near Eastern/Anatolian genetic affinity with limited contribution from hunter-gatherers. However, no genomic data are available from modern-day France, where both routes converged, as evidenced by a mosaic cultural pattern. Here, we present genome-wide data from 101 individuals from 12 sites covering today's France and Germany from the Mesolithic (N = 3) to the Neolithic (N = 98) (7000-3000 BCE). Using the genetic substructure observed in European hunter-gatherers, we characterize diverse patterns of admixture in different regions, consistent with both routes of expansion. Early western European farmers show a higher proportion of distinctly western hunter-gatherer ancestry compared to central/southeastern farmers. Our data highlight the complexity of the biological interactions during the Neolithic expansion by revealing major regional variations.
Collapse
Affiliation(s)
- Maïté Rivollat
- Université de Bordeaux, CNRS, PACEA-UMR, 5199 Pessac, France
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | - Choongwon Jeong
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
- Seoul National University, School of Biological Sciences, Seoul, Republic of Korea
| | - Stephan Schiffels
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | - İşil Küçükkalıpçı
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | | | - Adam Benjamin Rohrlach
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, South Australia, Australia
| | - Kurt W. Alt
- Danube Private University, Krems, Austria
- Integrative Prähistorische und Naturwissenschaftliche Archäologie, Basel, Switzerland
| | - Didier Binder
- Université Côte d’Azur, CNRS, CEPAM-UMR, 7264 Nice, France
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt—State Museum of Prehistory, Halle (Saale), Germany
| | - Emmanuel Ghesquière
- Inrap Grand Ouest, Bourguébus, France
- Université de Rennes 1, CNRS, CReAAH-UMR, 6566 Rennes, France
| | - Detlef Gronenborn
- Römisch-Germanisches Zentralmuseum, Leibniz-Forschungsinstitut für Archäologie, Ernst-Ludwig-Platz 2, 55116 Mainz, Germany
| | - Luc Laporte
- Université de Rennes 1, CNRS, CReAAH-UMR, 6566 Rennes, France
| | - Philippe Lefranc
- Inrap Grand Est Sud, Strasbourg, France
- Université de Strasbourg, CNRS, Archimède-UMR, 7044 Strasbourg, France
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt—State Museum of Prehistory, Halle (Saale), Germany
| | - Hélène Réveillas
- Université de Bordeaux, CNRS, PACEA-UMR, 5199 Pessac, France
- Centre Archéologie préventive de Bordeaux Métropole, Bordeaux, France
| | - Eva Rosenstock
- Freie Universität Berlin, Institut für Prähistorische Archäologie, Berlin, Germany
- Freie Universität Berlin, Einstein Center Chronoi, Berlin, Germany
| | | | - Chris Scarre
- Department of Archaeology, Durham University, Durham, UK
| | - Ludovic Soler
- Université de Bordeaux, CNRS, PACEA-UMR, 5199 Pessac, France
- Service départemental d’archéologie de Charente-Maritime, Saintes, France
| | - Joachim Wahl
- State Office for Cultural Heritage Management Baden-Württemberg, Osteology, Konstanz, Germany
- Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät, Tübingen, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | | | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| |
Collapse
|
33
|
Juras A, Makarowicz P, Chyleński M, Ehler E, Malmström H, Krzewińska M, Pospieszny Ł, Górski J, Taras H, Szczepanek A, Polańska M, Włodarczak P, Szyca A, Lasota-Kuś A, Wójcik I, Jakobsson M, Dabert M. Mitochondrial genomes from Bronze Age Poland reveal genetic continuity from the Late Neolithic and additional genetic affinities with the steppe populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:176-188. [PMID: 32297323 DOI: 10.1002/ajpa.24057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE In this work we aim to investigate the origins and genetic affinities of Bronze Age populations (2,400-1,100 BC) from the region of southern Poland and to trace maternal kinship patterns present in the burials of those populations by the use of complete mitochondrial genomes. MATERIALS AND METHODS We performed ancient DNA analyses for Bronze Age individuals from present-day Poland associated with the Strzyżow culture, the Mierzanowice culture, and the Trzciniec Cultural circle. To obtain complete mitochondrial genomes, we sequenced genomic libraries using Illumina platform. Additionally, hybridization capture was used to enrich some of the samples for mitochondrial DNA. AMS 14 C-dating was conducted for 51 individuals to verify chronological and cultural attribution of the analyzed samples. RESULTS Complete ancient mitochondrial genomes were generated for 80 of the Bronze Age individuals from present-day Poland. The results of the population genetic analyses indicate close maternal genetic affinity between Mierzanowice, Trzciniec, and Corded Ware culture-associated populations. This is in contrast to the genetically more distant Strzyżów people that displayed closer maternal genetic relation to steppe populations associated with the preceding Yamnaya culture and Catacomb culture, and with later Scythians. Potential maternal kinship relations were identified in burials of Mierzanowice and Trzciniec populations analyzed in this study. DISCUSSION Results revealed genetic continuity from the Late Neolithic Corded Ware groups to Bronze Age Mierzanowice and Trzciniec-associated populations, and possible additional genetic contribution from the steppe to the formation of the Strzyżów-associated group at the end of 3rd millennium BC. Mitochondrial patterns indicated several pairs of potentially maternally related individuals mostly in Trzciniec-associated group.
Collapse
Affiliation(s)
- Anna Juras
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | | | - Maciej Chyleński
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Edvard Ehler
- Department of Biology and Environmental Studies, Charles University, Faculty of Education, Praha 1, Czech Republic
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, UPpSala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Łukasz Pospieszny
- Institute of Archaeology and Ethnology, Polish Academy of Sciences, Poznań, Poland
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Jacek Górski
- Department of History and Cultural Heritage, University of Pope Jan Paweł II, Kraków, Poland
- Archaeological Museum in Cracow, Kraków, Poland
| | - Halina Taras
- Institute of Archaeology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anita Szczepanek
- Institute of Archaeology and Ethnology, Polish Academy of Science, Kraków, Poland
| | - Marta Polańska
- Department of Material and Spiritual Culture, Lublin Museum, Lublin, Poland
| | - Piotr Włodarczak
- Institute of Archaeology and Ethnology, Polish Academy of Science, Kraków, Poland
| | - Agnieszka Szyca
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Anna Lasota-Kuś
- Institute of Archaeology and Ethnology, Polish Academy of Science, Kraków, Poland
| | | | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, UPpSala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
34
|
Dehasque M, Ávila‐Arcos MC, Díez‐del‐Molino D, Fumagalli M, Guschanski K, Lorenzen ED, Malaspinas A, Marques‐Bonet T, Martin MD, Murray GGR, Papadopulos AST, Therkildsen NO, Wegmann D, Dalén L, Foote AD. Inference of natural selection from ancient DNA. Evol Lett 2020; 4:94-108. [PMID: 32313686 PMCID: PMC7156104 DOI: 10.1002/evl3.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023] Open
Abstract
Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics10691StockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural History10405StockholmSweden
- Department of ZoologyStockholm University10691StockholmSweden
| | - María C. Ávila‐Arcos
- International Laboratory for Human Genome Research (LIIGH)UNAM JuriquillaQueretaro76230Mexico
| | - David Díez‐del‐Molino
- Centre for Palaeogenetics10691StockholmSweden
- Department of ZoologyStockholm University10691StockholmSweden
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park CampusImperial College LondonAscotSL5 7PYUnited Kingdom
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University75236UppsalaSweden
| | | | - Anna‐Sapfo Malaspinas
- Department of Computational BiologyUniversity of Lausanne1015LausanneSwitzerland
- SIB Swiss Institute of Bioinformatics1015LausanneSwitzerland
| | - Tomas Marques‐Bonet
- Institut de Biologia Evolutiva(CSIC‐Universitat Pompeu Fabra), Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
- National Centre for Genomic Analysis—Centre for Genomic RegulationBarcelona Institute of Science and Technology08028BarcelonaSpain
- Institucio Catalana de Recerca i Estudis Avançats08010BarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Michael D. Martin
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Gemma G. R. Murray
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB2 1TNUnited Kingdom
| | - Alexander S. T. Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityBangorLL57 2UWUnited Kingdom
| | | | - Daniel Wegmann
- Department of BiologyUniversité de Fribourg1700FribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Love Dalén
- Centre for Palaeogenetics10691StockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural History10405StockholmSweden
| | - Andrew D. Foote
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityBangorLL57 2UWUnited Kingdom
| |
Collapse
|
35
|
Verdugo MP, Mullin VE, Scheu A, Mattiangeli V, Daly KG, Maisano Delser P, Hare AJ, Burger J, Collins MJ, Kehati R, Hesse P, Fulton D, Sauer EW, Mohaseb FA, Davoudi H, Khazaeli R, Lhuillier J, Rapin C, Ebrahimi S, Khasanov M, Vahidi SMF, MacHugh DE, Ertuğrul O, Koukouli-Chrysanthaki C, Sampson A, Kazantzis G, Kontopoulos I, Bulatovic J, Stojanović I, Mikdad A, Benecke N, Linstädter J, Sablin M, Bendrey R, Gourichon L, Arbuckle BS, Mashkour M, Orton D, Horwitz LK, Teasdale MD, Bradley DG. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. SCIENCE (NEW YORK, N.Y.) 2020; 365:173-176. [PMID: 31296769 DOI: 10.1126/science.aav1002] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/14/2019] [Indexed: 11/02/2022]
Abstract
Genome-wide analysis of 67 ancient Near Eastern cattle, Bos taurus, remains reveals regional variation that has since been obscured by admixture in modern populations. Comparisons of genomes of early domestic cattle to their aurochs progenitors identify diverse origins with separate introgressions of wild stock. A later region-wide Bronze Age shift indicates rapid and widespread introgression of zebu, Bos indicus, from the Indus Valley. This process was likely stimulated at the onset of the current geological age, ~4.2 thousand years ago, by a widespread multicentury drought. In contrast to genome-wide admixture, mitochondrial DNA stasis supports that this introgression was male-driven, suggesting that selection of arid-adapted zebu bulls enhanced herd survival. This human-mediated migration of zebu-derived genetics has continued through millennia, altering tropical herding on each continent.
Collapse
Affiliation(s)
| | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Amelie Scheu
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Pierpaolo Maisano Delser
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Andrew J Hare
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Joachim Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Matthew J Collins
- BioArCh, University of York, York YO10 5DD, UK.,Museum of Natural History, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kehati
- 448 Shvil Hachalav Street, Nir Banim 7952500, Israel
| | - Paula Hesse
- Jewish Studies Program, Department of Classics and Ancient Mediterranean Studies, The Pennsylvania State University, University Park, PA 16802, USA
| | - Deirdre Fulton
- Department of Religion, Baylor University, Waco, TX 76798, USA
| | - Eberhard W Sauer
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Fatemeh A Mohaseb
- Archéozoologie et Archéobotanique (UMR 7209), CNRS, MNHN, UPMC, Sorbonne Universités, Paris, France.,Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran.,Osteology Department, National Museum of Iran, 1136918111 Tehran, Iran.,Department of Archaeology, Faculty of Humanities, Tarbiat Modares University, 111-14115 Tehran, Iran
| | - Roya Khazaeli
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Johanna Lhuillier
- Archéorient Université Lyon 2, CNRS UMR 5133, Maison de l'Orient et de la Méditerranée, 69365 Lyon, France
| | - Claude Rapin
- Archéologie d'Orient et d'Occident (AOROC, UMR 8546, CNRS ENS), Centre d'archéologie, 75005 Paris, France
| | - Saeed Ebrahimi
- Faculty of Literature and Humanities, Islamic Azad University, 1711734353 Tehran, Iran
| | - Mutalib Khasanov
- Uzbekistan Institute of Archaeology of the Academy of Sciences of the Republic of Uzbekistan, 703051 Samarkand, Uzbekistan
| | - S M Farhad Vahidi
- Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Agricultural Research, Education and Extension Organization, 4188958883 Rasht, Iran
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Okan Ertuğrul
- Veterinary Faculty, Ankara University, 06110 Ankara, Turkey
| | - Chaido Koukouli-Chrysanthaki
- Hellenic Ministry of Culture and Sports, Department of Prehistoric and Classical Antiquities, and Museums, Serres 62 122, Greece
| | - Adamantios Sampson
- Department of Mediterranean Studies, University of the Aegean, 85132 Rhodes, Greece
| | - George Kazantzis
- Archaeological Museum of Aeani, 500 04, Kozani, Western Macedonia, Greece
| | | | - Jelena Bulatovic
- Laboratory for Bioarchaeology, Department of Archaeology, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Abdesalam Mikdad
- Institut National des Sciences de l'Archéologie et du Patrimoine de Maroc (INSAP) Hay Riad, Madinat al Ifrane, Rabat Instituts, 10000 Rabat, Morocco
| | - Norbert Benecke
- Department of Natural Sciences, German Archaeological Institute, 14195 Berlin, Germany
| | - Jörg Linstädter
- Deutsches Archäologisches Institut, Kommission für Archäologie Außereuropäischer Kulturen (KAAK), 53173 Bonn, Germany
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, 199034 St Petersburg, Russia
| | - Robin Bendrey
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK.,Department of Archaeology, University of Reading, Reading RG6 6AB, UK
| | - Lionel Gourichon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), 06357 Nice, France
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marjan Mashkour
- Archéozoologie et Archéobotanique (UMR 7209), CNRS, MNHN, UPMC, Sorbonne Universités, Paris, France.,Bioarchaeology Laboratory, Central Laboratory, University of Tehran, 1417634934 Tehran, Iran.,Osteology Department, National Museum of Iran, 1136918111 Tehran, Iran
| | - David Orton
- BioArCh, University of York, York YO10 5DD, UK
| | - Liora Kolska Horwitz
- National Natural History Collections, Faculty of Life Sciences, The Hebrew University, 9190401 Jerusalem, Israel
| | - Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.,BioArCh, University of York, York YO10 5DD, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland.
| |
Collapse
|
36
|
Tiesmeyer A, Ramos L, Manuel Lucas J, Steyer K, Alves PC, Astaras C, Brix M, Cragnolini M, Domokos C, Hegyeli Z, Janssen R, Kitchener AC, Lambinet C, Mestdagh X, Migli D, Monterroso P, Mulder JL, Schockert V, Youlatos D, Pfenninger M, Nowak C. Range-wide patterns of human-mediated hybridisation in European wildcats. CONSERV GENET 2020. [DOI: 10.1007/s10592-019-01247-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractHybridisation between wild taxa and their domestic congeners is a significant conservation issue. Domestic species frequently outnumber their wild relatives in population size and distribution and may therefore genetically swamp the native species. The European wildcat (Felis silvestris) has been shown to hybridise with domestic cats (Felis catus). Previously suggested spatially divergent introgression levels have not been confirmed on a European scale due to significant differences in the applied methods to assess hybridisation of the European wildcat. We analysed 926 Felis spp. samples from 13 European countries, using a set of 86 selected ancestry-informative SNPs, 14 microsatellites, and ten mitochondrial and Y-chromosome markers to study regional hybridisation and introgression patterns and population differentiation. We detected 51 hybrids (four F1 and 47 F2 or backcrosses) and 521 pure wildcats throughout Europe. The abundance of hybrids varied considerably among studied populations. All samples from Scotland were identified as F2 hybrids or backcrosses, supporting previous findings that the genetic integrity of that wildcat population has been seriously compromised. In other European populations, low to moderate levels of hybridisation were found, with the lowest levels being in Central and Southeast Europe. The occurrence of distinct maternal and paternal markers between wildcat and domestic cat suggests that there were no severe hybridisation episodes in the past. The overall low (< 1%) prevalence of F1 hybrids suggests a low risk of hybridisation for the long-term genetic integrity of the wildcat in most of Europe. However, regionally elevated introgression rates confirm that hybridisation poses a potential threat. We propose regional in-depth monitoring of hybridisation rates to identify factors driving hybridisation so as to develop effective strategies for conservation.
Collapse
|
37
|
Interactions between earliest Linearbandkeramik farmers and central European hunter gatherers at the dawn of European Neolithization. Sci Rep 2019; 9:19544. [PMID: 31863024 PMCID: PMC6925266 DOI: 10.1038/s41598-019-56029-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/01/2019] [Indexed: 01/19/2023] Open
Abstract
Archaeogenetic research over the last decade has demonstrated that European Neolithic farmers (ENFs) were descended primarily from Anatolian Neolithic farmers (ANFs). ENFs, including early Neolithic central European Linearbandkeramik (LBK) farming communities, also harbored ancestry from European Mesolithic hunter gatherers (WHGs) to varying extents, reflecting admixture between ENFs and WHGs. However, the timing and other details of this process are still imperfectly understood. In this report, we provide a bioarchaeological analysis of three individuals interred at the Brunn 2 site of the Brunn am Gebirge-Wolfholz archeological complex, one of the oldest LBK sites in central Europe. Two of the individuals had a mixture of WHG-related and ANF-related ancestry, one of them with approximately 50% of each, while the third individual had approximately all ANF-related ancestry. Stable carbon and nitrogen isotope ratios for all three individuals were within the range of variation reflecting diets of other Neolithic agrarian populations. Strontium isotope analysis revealed that the ~50% WHG-ANF individual was non-local to the Brunn 2 area. Overall, our data indicate interbreeding between incoming farmers, whose ancestors ultimately came from western Anatolia, and local HGs, starting within the first few generations of the arrival of the former in central Europe, as well as highlighting the integrative nature and composition of the early LBK communities.
Collapse
|
38
|
Jensen TZT, Niemann J, Iversen KH, Fotakis AK, Gopalakrishnan S, Vågene ÅJ, Pedersen MW, Sinding MHS, Ellegaard MR, Allentoft ME, Lanigan LT, Taurozzi AJ, Nielsen SH, Dee MW, Mortensen MN, Christensen MC, Sørensen SA, Collins MJ, Gilbert MTP, Sikora M, Rasmussen S, Schroeder H. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nat Commun 2019; 10:5520. [PMID: 31848342 PMCID: PMC6917805 DOI: 10.1038/s41467-019-13549-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The rise of ancient genomics has revolutionised our understanding of human prehistory but this work depends on the availability of suitable samples. Here we present a complete ancient human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find that the individual who chewed the pitch was female and that she was genetically more closely related to western hunter-gatherers from mainland Europe than hunter-gatherers from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA.
Collapse
Affiliation(s)
- Theis Z T Jensen
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
- BioArch, Department of Archaeology, University of York, York, YO10 5DD, UK
| | - Jonas Niemann
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
- BioArch, Department of Archaeology, University of York, York, YO10 5DD, UK
| | - Katrine Højholt Iversen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens, Lyngby, 2800, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anna K Fotakis
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Shyam Gopalakrishnan
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Åshild J Vågene
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Mikkel Winther Pedersen
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Mikkel-Holger S Sinding
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Martin R Ellegaard
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Morten E Allentoft
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Liam T Lanigan
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Alberto J Taurozzi
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Sofie Holtsmark Nielsen
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Michael W Dee
- Centre for Isotope Research, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Martin N Mortensen
- The National Museum of Denmark, I.C. Modewegs Vej, Brede, Kongens Lyngby, 2800, Denmark
| | - Mads C Christensen
- The National Museum of Denmark, I.C. Modewegs Vej, Brede, Kongens Lyngby, 2800, Denmark
| | - Søren A Sørensen
- Museum Lolland-Falster, Frisegade 40, Nykøbing Falster, 4800, Denmark
| | - Matthew J Collins
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK
| | - M Thomas P Gilbert
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
- University Museum, NTNU, 7012, Trondheim, Norway
| | - Martin Sikora
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Hannes Schroeder
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark.
| |
Collapse
|
39
|
Human mitochondrial DNA lineages in Iron-Age Fennoscandia suggest incipient admixture and eastern introduction of farming-related maternal ancestry. Sci Rep 2019; 9:16883. [PMID: 31729399 PMCID: PMC6858343 DOI: 10.1038/s41598-019-51045-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
Human ancient DNA studies have revealed high mobility in Europe’s past, and have helped to decode the human history on the Eurasian continent. Northeastern Europe, especially north of the Baltic Sea, however, remains less well understood largely due to the lack of preserved human remains. Finland, with a divergent population history from most of Europe, offers a unique perspective to hunter-gatherer way of life, but thus far genetic information on prehistoric human groups in Finland is nearly absent. Here we report 103 complete ancient mitochondrial genomes from human remains dated to AD 300–1800, and explore mtDNA diversity associated with hunter-gatherers and Neolithic farmers. The results indicate largely unadmixed mtDNA pools of differing ancestries from Iron-Age on, suggesting a rather late genetic shift from hunter-gatherers towards farmers in North-East Europe. Furthermore, the data suggest eastern introduction of farmer-related haplogroups into Finland, contradicting contemporary genetic patterns in Finns.
Collapse
|
40
|
Mitochondrial DNA analysis of a Viking age mass grave in Sweden. Forensic Sci Int Genet 2019; 42:268-274. [DOI: 10.1016/j.fsigen.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/12/2023]
|
41
|
Järve M, Saag L, Scheib CL, Pathak AK, Montinaro F, Pagani L, Flores R, Guellil M, Saag L, Tambets K, Kushniarevich A, Solnik A, Varul L, Zadnikov S, Petrauskas O, Avramenko M, Magomedov B, Didenko S, Toshev G, Bruyako I, Grechko D, Okatenko V, Gorbenko K, Smyrnov O, Heiko A, Reida R, Sapiehin S, Sirotin S, Tairov A, Beisenov A, Starodubtsev M, Vasilev V, Nechvaloda A, Atabiev B, Litvinov S, Ekomasova N, Dzhaubermezov M, Voroniatov S, Utevska O, Shramko I, Khusnutdinova E, Metspalu M, Savelev N, Kriiska A, Kivisild T, Villems R. Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Curr Biol 2019; 29:2430-2441.e10. [PMID: 31303491 DOI: 10.1016/j.cub.2019.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
The Early Iron Age nomadic Scythians have been described as a confederation of tribes of different origins, based on ancient DNA evidence [1-3]. It is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome sequences of 31 ancient Western and Eastern Steppe individuals, including Scythians as well as samples pre- and postdating them, allowing us to set the Scythians in a temporal context (in the Western, i.e., Ponto-Caspian Steppe). We detect an increase of eastern (Altaian) affinity along with a decrease in eastern hunter-gatherer (EHG) ancestry in the Early Iron Age Ponto-Caspian gene pool at the start of the Scythian dominance. On the other hand, samples of the Chernyakhiv culture postdating the Scythians in Ukraine have a significantly higher proportion of Near Eastern ancestry than other samples of this study. Our results agree with the Gothic source of the Chernyakhiv culture and support the hypothesis that the Scythian dominance did involve a demic component.
Collapse
Affiliation(s)
- Mari Järve
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia.
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Ajai K Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Liivi Varul
- School of Humanities, Tallinn University, 29 Narva Street, Tallinn 10120, Estonia
| | - Stanislav Zadnikov
- Museum of Archaeology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Oleg Petrauskas
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Maryana Avramenko
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Boris Magomedov
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Serghii Didenko
- National Museum of History of Ukraine, 2 Volodymyrs'ka Street, Kyiv 02000, Ukraine
| | - Gennadi Toshev
- Zaporizhzhya National University, 33A Dniprovska Street, Zaporizhzhya 69061, Ukraine
| | - Igor Bruyako
- Odessa Archaeological Museum, 4 Lanzheronivs'ka Street, Odessa 65000, Ukraine
| | - Denys Grechko
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Vitalii Okatenko
- SC SRC "Protective Archeological Service of Ukraine," Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Kyrylo Gorbenko
- Mykolaiv V.O. Sukhomlynskyi National University, 24 Nikolska Street, Mykolaiv 54030, Ukraine
| | - Oleksandr Smyrnov
- Mykolaiv V.O. Sukhomlynskyi National University, 24 Nikolska Street, Mykolaiv 54030, Ukraine
| | - Anatolii Heiko
- National Museum of Ukrainian Pottery in Opishne, 102 Partyzanska Street, Opishne 38164, Ukraine
| | - Roman Reida
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Serheii Sapiehin
- Anton Makarenko Museum, Poltava Regional Makarenko Scientific Lyceum, 1-2 Makarenko Lane, Kovalivka 38701, Ukraine
| | - Sergey Sirotin
- Institute of Archaeology, Russian Academy of Sciences, 19 Dmitri Ulyanov Street, Moscow 117292, Russia
| | - Aleksandr Tairov
- South Ural State University, 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Arman Beisenov
- A. Kh. Margulan Institute of Archaeology, 44 Dostyk Avenue, Almaty 480100, Kazakhstan
| | - Maksim Starodubtsev
- Sterlitamak Museum of Local History, 100 Karl Marx Street, Sterlitamak 453124, Russia
| | - Vitali Vasilev
- LoCom Medien Akademie Europäisches Bildungsinstitut, Bachstraße 4, Bonn 53115, Germany
| | - Alexei Nechvaloda
- Institute of History, Language and Literature, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Biyaslan Atabiev
- Institute for Caucasus Archaeology, 30 Katkhanova Street, Nalchik 361401, Russia
| | - Sergey Litvinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Natalia Ekomasova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Murat Dzhaubermezov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Sergey Voroniatov
- Department of Archaeology of Eastern Europe and Siberia, State Hermitage Museum, 34 Dvortsovaya Embankment, St. Petersburg 190000, Russia
| | - Olga Utevska
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Irina Shramko
- Museum of Archaeology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Nikita Savelev
- Institute of History, Language and Literature, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, O&N IV Herestraat 49, Leuven 3000, Belgium
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| |
Collapse
|
42
|
Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases. Cells 2019; 8:cells8050433. [PMID: 31075917 PMCID: PMC6562384 DOI: 10.3390/cells8050433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
Mitochondria are unique organelles carrying their own genetic material, independent from that in the nucleus. This review will discuss the nature of mitochondrial DNA (mtDNA) and its levels in the cell, which are the key elements to consider when trying to achieve molecular identification in ancient and degraded samples. mtDNA sequence analysis has been appropriately validated and is a consistent molecular target for the examination of biological evidence encountered in forensic cases—and profiling, in certain conditions—especially for burnt bodies and degraded samples of all types. Exceptional cases and samples will be discussed in this review, such as mtDNA from leather in Beethoven’s grand piano, mtDNA in mummies, and solving famous historical criminal cases. In addition, this review will be discussing the use of ancient mtDNA to understand past human diet, to trace historical civilizations and ancient trade routes, and to uncover geographical domestication origins and lineage relationships. In each topic, we will present the power of mtDNA and how, in many cases, no nuclear DNA was left, leaving mitochondrial DNA analysis as a powerful alternative. Exploring this powerful tool further will be extremely useful to modern science and researchers, due to its capabilities in providing us with previously unattainable knowledge.
Collapse
|
43
|
Modi A, Nesheva D, Sarno S, Vai S, Karachanak-Yankova S, Luiselli D, Pilli E, Lari M, Vergata C, Yordanov Y, Dimitrova D, Kalcev P, Staneva R, Antonova O, Hadjidekova S, Galabov A, Toncheva D, Caramelli D. Ancient human mitochondrial genomes from Bronze Age Bulgaria: new insights into the genetic history of Thracians. Sci Rep 2019; 9:5412. [PMID: 30931994 PMCID: PMC6443937 DOI: 10.1038/s41598-019-41945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
One of the best documented Indo-European civilizations that inhabited Bulgaria is the Thracians, who lasted for more than five millennia and whose origin and relationships with other past and present-day populations are debated among researchers. Here we report 25 new complete mitochondrial genomes of ancient individuals coming from three necropolises located in different regions of Bulgaria – Shekerdja mogila, Gabrova mogila and Bereketska mogila – dated to II-III millennium BC. The identified mtDNA haplogroup composition reflects the mitochondrial variability of Western Eurasia. In particular, within the ancient Eurasian genetic landscape, Thracians locate in an intermediate position between Early Neolithic farmers and Late Neolithic-Bronze Age steppe pastoralists, supporting the scenario that the Balkan region has been a link between Eastern Europe and the Mediterranean since the prehistoric time. Spatial Principal Component Analysis (sPCA) performed on Thracian and modern mtDNA sequences, confirms the pattern highlighted on ancient populations, overall indicating that the maternal gene pool of Thracians reflects their central geographical position at the gateway of Europe.
Collapse
Affiliation(s)
- Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Desislava Nesheva
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | | | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Elena Pilli
- Department of Biology, University of Florence, Florence, Italy
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Yordan Yordanov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Petar Kalcev
- The Regional Historical Museum of Stara Zagora, Stara Zagora, Bulgaria
| | - Rada Staneva
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
| | - Olga Antonova
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
| | - Savina Hadjidekova
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
| | - Angel Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria.
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy.
| |
Collapse
|
44
|
Feldman M, Fernández-Domínguez E, Reynolds L, Baird D, Pearson J, Hershkovitz I, May H, Goring-Morris N, Benz M, Gresky J, Bianco RA, Fairbairn A, Mustafaoğlu G, Stockhammer PW, Posth C, Haak W, Jeong C, Krause J. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat Commun 2019; 10:1218. [PMID: 30890703 PMCID: PMC6425003 DOI: 10.1038/s41467-019-09209-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/15/2019] [Indexed: 01/11/2023] Open
Abstract
Anatolia was home to some of the earliest farming communities. It has been long debated whether a migration of farming groups introduced agriculture to central Anatolia. Here, we report the first genome-wide data from a 15,000-year-old Anatolian hunter-gatherer and from seven Anatolian and Levantine early farmers. We find high genetic continuity (~80–90%) between the hunter-gatherers and early farmers of Anatolia and detect two distinct incoming ancestries: an early Iranian/Caucasus related one and a later one linked to the ancient Levant. Finally, we observe a genetic link between southern Europe and the Near East predating 15,000 years ago. Our results suggest a limited role of human migration in the emergence of agriculture in central Anatolia. Central Anatolia harbored some of the earliest farming societies outside the Fertile Crescent of the Near East. Here, the authors report and analyze genome-wide data from a 15,000-year-old Anatolian hunter-gatherer and from seven Anatolian and Levantine early farmers, and suggest high genetic continuity between the hunter-gatherers and early farmers of Anatolia.
Collapse
Affiliation(s)
- Michal Feldman
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany
| | | | - Luke Reynolds
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Douglas Baird
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 8-14 Abercromby Square, Liverpool, L69 7WZ, UK
| | - Jessica Pearson
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 8-14 Abercromby Square, Liverpool, L69 7WZ, UK
| | - Israel Hershkovitz
- Department of Anatomy and Anthropology, The Dan David Center for Human Evolution and Biohistory Research and The Shmunis Family Anthropology Institute, Sackler Faculty of Medicine, Tel Aviv University, Post Office Box 39040, Tel Aviv, 6997801, Israel.,The Steinhardt Museum of Natural History, Tel Aviv University, Post Office Box 39040, Tel Aviv, 6997801, Israel
| | - Hila May
- Department of Anatomy and Anthropology, The Dan David Center for Human Evolution and Biohistory Research and The Shmunis Family Anthropology Institute, Sackler Faculty of Medicine, Tel Aviv University, Post Office Box 39040, Tel Aviv, 6997801, Israel.,The Steinhardt Museum of Natural History, Tel Aviv University, Post Office Box 39040, Tel Aviv, 6997801, Israel
| | - Nigel Goring-Morris
- Department of Prehistory, Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, 919051, Israel
| | - Marion Benz
- Department of Near Eastern Archaeology, Free University Berlin, Fabeckstrasse 23-25, 14195, Berlin, Germany
| | - Julia Gresky
- Department of Natural Sciences, German Archaeological Institute, Im Dol 2-6, 14195, Berlin, Germany
| | - Raffaela A Bianco
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany
| | - Andrew Fairbairn
- School of Social Science, The University of Queensland, Michie Building, St Lucia, Brisbane, QLD, Australia
| | - Gökhan Mustafaoğlu
- Department of Archaeology, Zonguldak Bülent Ecevit University, Incivez, 67100, Zonguldak, Turkey
| | - Philipp W Stockhammer
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany.,Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische, Archäologie Ludwig-Maximilians-Universität München München, Schellingstrasse 12, 80799, München, Germany
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany
| | - Choongwon Jeong
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany.
| | - Johannes Krause
- Max Planck Institute for the Science of Human History (MPI-SHH), Kahlaische Strasse 10, 07745, Jena, Germany.
| |
Collapse
|
45
|
Chyleński M, Ehler E, Somel M, Yaka R, Krzewińska M, Dabert M, Juras A, Marciniak A. Ancient Mitochondrial Genomes Reveal the Absence of Maternal Kinship in the Burials of Çatalhöyük People and Their Genetic Affinities. Genes (Basel) 2019; 10:genes10030207. [PMID: 30862131 PMCID: PMC6471721 DOI: 10.3390/genes10030207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Çatalhöyük is one of the most widely recognized and extensively researched Neolithic settlements. The site has been used to discuss a wide range of aspects associated with the spread of the Neolithic lifestyle and the social organization of Neolithic societies. Here, we address both topics using newly generated mitochondrial genomes, obtained by direct sequencing and capture-based enrichment of genomic libraries, for a group of individuals buried under a cluster of neighboring houses from the classical layer of the site’s occupation. Our data suggests a lack of maternal kinship between individuals interred under the floors of Çatalhöyük buildings. The findings could potentially be explained either by a high variability of maternal lineages within a larger kin group, or alternatively, an intentional selection of individuals for burial based on factors other than biological kinship. Our population analyses shows that Neolithic Central Anatolian groups, including Çatalhöyük, share the closest affinity with the population from the Marmara Region and are, in contrast, set further apart from the Levantine populations. Our findings support the hypothesis about the emergence and the direction of spread of the Neolithic within Anatolian Peninsula and beyond, emphasizing a significant role of Central Anatolia in this process.
Collapse
Affiliation(s)
- Maciej Chyleński
- Institute of Archaeology, Faculty of Historical Studies, Adam Mickiewicz University in Poznań, Umultowska 89D, 61-614 Poznań, Poland.
| | - Edvard Ehler
- Department of Biology and Environmental Studies, Faculty of Education, Charles University, Magdalény Rettigové 4, 116 39 Prague, Czech Republic.
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.
| | - Reyhan Yaka
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, SE-106 91 Stockholm, Sweden.
| | - Mirosława Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznań, Poland.
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Arkadiusz Marciniak
- Institute of Archaeology, Faculty of Historical Studies, Adam Mickiewicz University in Poznań, Umultowska 89D, 61-614 Poznań, Poland.
| |
Collapse
|
46
|
Silva NM, Rio J, Kreutzer S, Papageorgopoulou C, Currat M. Bayesian estimation of partial population continuity using ancient DNA and spatially explicit simulations. Evol Appl 2018; 11:1642-1655. [PMID: 30344633 PMCID: PMC6183456 DOI: 10.1111/eva.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022] Open
Abstract
The retrieval of ancient DNA from osteological material provides direct evidence of human genetic diversity in the past. Ancient DNA samples are often used to investigate whether there was population continuity in the settlement history of an area. Methods based on the serial coalescent algorithm have been developed to test whether the population continuity hypothesis can be statistically rejected by analysing DNA samples from the same region but of different ages. Rejection of this hypothesis is indicative of a large genetic shift, possibly due to immigration occurring between two sampling times. However, this approach is only able to reject a model of full continuity model (a total absence of genetic input from outside), but admixture between local and immigrant populations may lead to partial continuity. We have recently developed a method to test for population continuity that explicitly considers the spatial and temporal dynamics of populations. Here, we extended this approach to estimate the proportion of genetic continuity between two populations, using ancient genetic samples. We applied our original approach to the question of the Neolithic transition in Central Europe. Our results confirmed the rejection of full continuity, but our approach represents an important step forward by estimating the relative contribution of immigrant farmers and of local hunter-gatherers to the final Central European Neolithic genetic pool. Furthermore, we show that a substantial proportion of genes brought by the farmers in this region were assimilated from other hunter-gatherer populations along the way from Anatolia, which was not detectable by previous continuity tests. Our approach is also able to jointly estimate demographic parameters, as we show here by finding both low density and low migration rate for pre-Neolithic hunter-gatherers. It provides a useful tool for the analysis of the numerous ancient DNA data sets that are currently being produced for many different species.
Collapse
Affiliation(s)
- Nuno Miguel Silva
- AGP LabDepartment of Genetics & Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Jeremy Rio
- AGP LabDepartment of Genetics & Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Susanne Kreutzer
- Palaeogenetics GroupInstitute of AnthropologyJohannes Gutenberg UniversityMainzGermany
| | - Christina Papageorgopoulou
- Laboratory of Physical AnthropologyDepartment of History & EthnologyDemocritus University of ThraceKomotiniGreece
| | - Mathias Currat
- AGP LabDepartment of Genetics & Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)GenevaSwitzerland
| |
Collapse
|
47
|
Leonardi M, Sandionigi A, Conzato A, Vai S, Lari M, Tassi F, Ghirotto S, Caramelli D, Barbujani G. The female ancestor's tale: Long-term matrilineal continuity in a nonisolated region of Tuscany. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:497-506. [PMID: 30187463 DOI: 10.1002/ajpa.23679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/14/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES With the advent of ancient DNA analyses, it has been possible to disentangle the contribution of ancient populations to the genetic pool of the modern inhabitants of many regions. Reconstructing the maternal ancestry has often highlighted genetic continuity over several millennia, but almost always in isolated areas. Here we analyze North-western Tuscany, a region that was a corridor of exchanges between Central Italy and the Western Mediterranean coast. MATERIALS AND METHODS We newly obtained mitochondrial HVRI sequences from 28 individuals, and after gathering published data, we collected genetic information for 119 individuals from the region. Those span five periods during the last 5,000 years: Prehistory, Etruscan age, Roman age, Renaissance, and Present-day. We used serial coalescent simulations in an approximate Bayesian computation framework to test for continuity between the mentioned groups. RESULTS Our analyses always favor continuity over discontinuity for all groups considered, with the Etruscans being part of the genealogy. Moreover, the posterior distributions of the parameters support very small female effective population sizes. CONCLUSIONS The observed signals of long-term genetic continuity and isolation are in contrast with the history of the region, conquered several times (Etruscans, Romans, Lombards, and French). While the Etruscans appear as a local population, intermediate between the prehistoric and the other samples, we suggest that the other conquerors-arriving from far-had a consistent social or sex bias, hence only marginally affecting the maternal lineages. At the same time, our results show that long-term genealogical continuity is not necessarily linked to geographical isolation.
Collapse
Affiliation(s)
- Michela Leonardi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Anna Sandionigi
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Annalisa Conzato
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Guido Barbujani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
48
|
Abstract
The first decade of ancient genomics has revolutionized the study of human prehistory and evolution. We review new insights based on prehistoric modern human genomes, including greatly increased resolution of the timing and structure of the out-of-Africa expansion, the diversification of present-day non-African populations, and the earliest expansions of those populations into Eurasia and America. Prehistoric genomes now document population transformations on every inhabited continent—in particular the effect of agricultural expansions in Africa, Europe, and Oceania—and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the genomic histories of Asia (the most populous continent) and Africa (the continent that contains the most genetic diversity). Ancient genomes from these and other regions, integrated with a growing understanding of the genomic basis of human phenotypic diversity, will be in focus during the next decade of research in the field.
Collapse
Affiliation(s)
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA
| |
Collapse
|
49
|
De Angelis F, Scorrano G, Martínez-Labarga C, Scano G, Macciardi F, Rickards O. Mitochondrial variability in the Mediterranean area: a complex stage for human migrations. Ann Hum Biol 2018; 45:5-19. [PMID: 29382277 DOI: 10.1080/03014460.2017.1416172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The Mediterranean area has always played a significant role in human dispersal due to the large number of migratory events contributing to shape the cultural features and the genetic pool of its populations. OBJECTIVE This paper aims to review and diachronically describe the mitogenome variability in the Mediterranean population and the main demic diffusions that occurred in this area over time. METHODS Frequency distributions of the leading mitochondrial haplogroups have been geographically and chronologically evaluated. The variability of U5b and K lineages has been focussed to broaden the knowledge of their genetic histories. RESULTS The mitochondrial genetic makeup of Palaeolithic hunter-gatherers is poorly defined within the extant Mediterranean populations, since only a few traces of their genetic contribution are still detectable. The Neolithic lineages are more represented, suggesting that the Neolithic revolution had a marked effect on the peopling of the Mediterranean area. The largest effect, however, was provided by historical migrations. CONCLUSION Although the mitogenome variability has been widely used to try and clarify the evolution of the Mediterranean genetic makeup throughout almost 50 000 years, it is necessary to collect whole genome data on both extinct and extant populations from this area to fully reconstruct and interpret the impact of multiple migratory waves and their cultural and genetic consequences on the structure of the Mediterranean populations.
Collapse
Affiliation(s)
- Flavio De Angelis
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Gabriele Scorrano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Cristina Martínez-Labarga
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Giuseppina Scano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Fabio Macciardi
- b Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior , University of California , Irvine , CA , USA
| | - Olga Rickards
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
50
|
Veeramah KR. The importance of fine-scale studies for integrating paleogenomics and archaeology. Curr Opin Genet Dev 2018; 53:83-89. [PMID: 30081254 DOI: 10.1016/j.gde.2018.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 12/12/2022]
Abstract
There has been an undercurrent of intellectual tension between geneticists studying human population history and archaeologists for almost 40 years. The rapid development of paleogenomics, with geneticists working on the very material discovered by archaeologists, appears to have recently heightened this tension. The relationship between these two fields thus far has largely been of a multidisciplinary nature, with archaeologists providing the raw materials for sequencing, as well as a scaffold of hypotheses based on interpretation of archaeological cultures from which the geneticists can ground their inferences from the genomic data. Much of this work has taken place in the context of western Eurasia, which is acting as testing ground for the interaction between the disciplines. Perhaps the major finding has not been any particular historical episode, but rather the apparent pervasiveness of migration events, some apparently of substantial scale, over the past ∼5000 years, challenging the prevailing view of archaeology that largely dismissed migration as a driving force of cultural change in the 1960s. However, while the genetic evidence for `migration' is generally statistically sound, the description of these events as structured behaviours is lacking, which, coupled with often over simplistic archaeological definitions, prevents the use of this information by archaeologists for studying the social processes they are interested in. In order to integrate paleogenomics and archaeology in a truly interdisciplinary manner, it will be necessary to focus less on grand narratives over space and time, and instead integrate genomic data with other form of archaeological information at the level of individual communities to understand the internal social dynamics, which can then be connected amongst communities to model migration at a regional level. A smattering of recent studies have begun to follow this approach, resulting in inferences that are not only helping ask questions that are currently relevant to archaeologists, but also potentially opening up new avenues of research.
Collapse
Affiliation(s)
- Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|