1
|
Kim H, Jang JW, Sim SE, Lee J, Jeong JH, Park S, Lee YK, Ham HJ, Yu NK, Lim CS, Gao FB, Lee JA, Kaang BK. Crucial role of Snf7-3 in synaptic function and cognitive behavior revealed by conventional and conditional knockout mouse models. Neuroscience 2024; 560:347-356. [PMID: 39369944 DOI: 10.1016/j.neuroscience.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Snf7-3 is a crucial component of the endosomal sorting complexes required for transport (ESCRT) pathway, playing a vital role in endolysosomal functions. To elucidate the role of Snf7-3 in vivo, we developed conventional-like and conditional Snf7-3 knockout (KO) mouse models using a "Knockout-first" strategy. Conventional-like Snf7-3 KO mice showed significantly reduced Snf7-3 mRNA expression, and older mice (25-40 weeks) exhibited impaired social recognition and increased miniature excitatory postsynaptic currents (mEPSCs). Similarly, conditional KO mice aged 8-24 weeks, with Snf7-3 specifically deleted in forebrain excitatory neurons, displayed impaired object location memory and elevated mEPSC frequency. Consistently, Snf7-3 knockdown in cultured mouse hippocampal neurons led to increased densities of pre- and postsynaptic puncta, supporting the observed increase in mEPSC frequency. In addition, enhanced dendritic complexity was observed in the medial prefrontal cortex of these mice, indicating early synaptic disturbances. Our findings underscore the critical role of Snf7-3 in maintaining normal cognitive functions and social behaviors. The observed synaptic and behavioral deficits in both conventional-like and conditional KO mice highlight the importance of Snf7-3 in specific neuronal populations, suggesting that early synaptic changes could precede more pronounced cognitive impairments.
Collapse
Affiliation(s)
- Hyopil Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jae-Woo Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Su-Eon Sim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - June-Hyun Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Semin Park
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Hyun-Ji Ham
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Jeonbuk 54538, South Korea
| | - Fen-Biao Gao
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34141, South Korea.
| |
Collapse
|
2
|
Gamaleldin M, Yu NK, Diedrich JK, Ma Y, Wienand A, McClatchy DB, Nykjaer A, Nabavi S, Yates JR. DiDBiT-TMT: A Novel Method to Quantify Changes in the Proteomic Landscape Induced by Neural Plasticity. J Proteome Res 2024; 23:4878-4895. [PMID: 39374426 DOI: 10.1021/acs.jproteome.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct detection of biotinylated proteins (DiDBiT) is a proteomic method that can enrich and detect newly synthesized proteins (NSPs) labeled with bio-orthogonal amino acids with 20-fold improved detectability compared to conventional methods. However, DiDBiT has currently been used to compare only two conditions per experiment. Here, we present DiDBiT-TMT, a method that can be used to quantify NSPs across many conditions and replicates in the same experiment by combining isobaric tandem mass tagging (TMT) with DiDBiT. We applied DiDBiT-TMT to brain slices to determine changes in the de novo proteome that occur after inducing chemical long-term potentiation (cLTP) or treatment with the neuromodulator norepinephrine. We successfully demonstrated DiDBiT-TMT's capacity to quantitatively compare up to 9 samples in parallel. We showed that there is a minimal overlap among NSPs that are differentially expressed in cLTP-treated organotypic brain slices, norepinephrine-treated organotypic brain slices, and organotypic slices undergoing combinatorial treatment with norepinephrine and cLTP. Our results point to the possible divergence of the molecular mechanisms underlying these treatments and showcase the applicability of DiDBiT-TMT for studying neurobiology.
Collapse
Affiliation(s)
- Mariam Gamaleldin
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus C 8000, Denmark
- School of Biotechnology, Nile University, Giza 12588, Egypt
| | - Nam-Kyung Yu
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, La Jolla 92037, California, United States
| | - Jolene K Diedrich
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, La Jolla 92037, California, United States
| | - Yuanhui Ma
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, La Jolla 92037, California, United States
| | - Anne Wienand
- The Danish National Research Foundation Center of Excellence PROMEMO, Aarhus University, Aarhus C 8000, Denmark
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus C 8000, Denmark
| | - Daniel B McClatchy
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, La Jolla 92037, California, United States
| | - Anders Nykjaer
- The Danish National Research Foundation Center of Excellence PROMEMO, Aarhus University, Aarhus C 8000, Denmark
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C 8000, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
| | - Sadegh Nabavi
- The Danish National Research Foundation Center of Excellence PROMEMO, Aarhus University, Aarhus C 8000, Denmark
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus C 8000, Denmark
| | - John R Yates
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, La Jolla 92037, California, United States
| |
Collapse
|
3
|
Ichinose T, Kondo S, Kanno M, Shichino Y, Mito M, Iwasaki S, Tanimoto H. Translational regulation enhances distinction of cell types in the nervous system. eLife 2024; 12:RP90713. [PMID: 39010741 PMCID: PMC11251722 DOI: 10.7554/elife.90713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.
Collapse
Grants
- 21K06369 Ministry of Education, Culture, Sports, Science and Technology
- 21H05713 Ministry of Education, Culture, Sports, Science and Technology
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology
- JP21K15023 Ministry of Education, Culture, Sports, Science and Technology
- 22H05481 Ministry of Education, Culture, Sports, Science and Technology
- 22KK0106 Ministry of Education, Culture, Sports, Science and Technology
- 20H00519 Ministry of Education, Culture, Sports, Science and Technology
- JP20gm1410001 Japan Agency for Medical Research and Development
- Biology of Intracellular Environments RIKEN
- Special Postdoctoral Researchers RIKEN
- Incentive Research Projects RIKEN
- Takeda Science Foundation
- Tohoku University Research Program "Frontier Research in Duo"
- The Uehara Memorial Foundation
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendaiJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of SciencesTokyoJapan
| | - Mai Kanno
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendaiJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
4
|
Brito DVC, Kupke J, Sokolov R, Cambridge S, Both M, Bengtson CP, Rozov A, Oliveira AMM. Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice. Mol Psychiatry 2024; 29:1929-1940. [PMID: 38347124 PMCID: PMC11408256 DOI: 10.1038/s41380-024-02454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - Rostilav Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny, Novgorod, Russia
| | - Sidney Cambridge
- Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
5
|
Lemes Dos Santos Sanna P, Bernardes Carvalho L, Cristina Dos Santos Afonso C, de Carvalho K, Aires R, Souza J, Rodrigues Ferreira M, Birbrair A, Martha Bernardi M, Latini A, Foganholi da Silva RA. Adora2A downregulation promotes caffeine neuroprotective effect against LPS-induced neuroinflammation in the hippocampus. Brain Res 2024; 1833:148866. [PMID: 38494098 DOI: 10.1016/j.brainres.2024.148866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1β. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.
Collapse
Affiliation(s)
| | | | | | - Kassia de Carvalho
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Rogério Aires
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Jennyffer Souza
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unity, Botucatu Medical School, São Paulo State University, Brazil.
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maria Martha Bernardi
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo A Foganholi da Silva
- Dentistry, University of Taubaté, Taubaté, São Paulo, São Paulo, Brazil; Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Aviner R, Lee TT, Masto VB, Li KH, Andino R, Frydman J. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington's disease. Nat Cell Biol 2024; 26:892-902. [PMID: 38741019 DOI: 10.1038/s41556-024-01414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 05/16/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat in the Huntingtin (HTT) gene, encoding a homopolymeric polyglutamine (polyQ) tract. Although mutant HTT (mHTT) protein is known to aggregate, the links between aggregation and neurotoxicity remain unclear. Here we show that both translation and aggregation of wild-type HTT and mHTT are regulated by a stress-responsive upstream open reading frame and that polyQ expansions cause abortive translation termination and release of truncated, aggregation-prone mHTT fragments. Notably, we find that mHTT depletes translation elongation factor eIF5A in brains of symptomatic HD mice and cultured HD cells, leading to pervasive ribosome pausing and collisions. Loss of eIF5A disrupts homeostatic controls and impairs recovery from acute stress. Importantly, drugs that inhibit translation initiation reduce premature termination and mitigate this escalating cascade of ribotoxic stress and dysfunction in HD.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Biology and Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Ting-Ting Lee
- Department of Biology and Department of Genetics, Stanford University, Stanford, CA, USA
| | - Vincent B Masto
- Department of Biology and Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology and Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Moon S, Lee HH, Archer-Hartmann S, Nagai N, Mubasher Z, Parappurath M, Ahmed L, Ramos RL, Kimata K, Azadi P, Cai W, Zhao JY. Knockout of the intellectual disability-linked gene Hs6st2 in mice decreases heparan sulfate 6-O-sulfation, impairs dendritic spines of hippocampal neurons, and affects memory. Glycobiology 2024; 34:cwad095. [PMID: 38015989 PMCID: PMC10969535 DOI: 10.1093/glycob/cwad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Zainab Mubasher
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Mahima Parappurath
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Laiba Ahmed
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| |
Collapse
|
8
|
Beletskiy A, Zolotar A, Fortygina P, Chesnokova E, Uroshlev L, Balaban P, Kolosov P. Downregulation of Ribosomal Protein Genes Is Revealed in a Model of Rat Hippocampal Neuronal Culture Activation with GABA(A)R/GlyRa2 Antagonist Picrotoxin. Cells 2024; 13:383. [PMID: 38474347 DOI: 10.3390/cells13050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity.
Collapse
Affiliation(s)
- Alexander Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anastasia Zolotar
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Ekaterina Chesnokova
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Leonid Uroshlev
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Liang Y, Shi G, Cai R, Yuan Y, Xie Z, Yu L, Huang Y, Shi Q, Wang L, Li J, Tang Z. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics. Nat Commun 2024; 15:600. [PMID: 38238417 PMCID: PMC10796707 DOI: 10.1038/s41467-024-44835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Computational methods have been proposed to leverage spatially resolved transcriptomic data, pinpointing genes with spatial expression patterns and delineating tissue domains. However, existing approaches fall short in uniformly quantifying spatially variable genes (SVGs). Moreover, from a methodological viewpoint, while SVGs are naturally associated with depicting spatial domains, they are technically dissociated in most methods. Here, we present a framework (PROST) for the quantitative recognition of spatial transcriptomic patterns, consisting of (i) quantitatively characterizing spatial variations in gene expression patterns through the PROST Index; and (ii) unsupervised clustering of spatial domains via a self-attention mechanism. We demonstrate that PROST performs superior SVG identification and domain segmentation with various spatial resolutions, from multicellular to cellular levels. Importantly, PROST Index can be applied to prioritize spatial expression variations, facilitating the exploration of biological insights. Together, our study provides a flexible and robust framework for analyzing diverse spatial transcriptomic data.
Collapse
Affiliation(s)
- Yuchen Liang
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guowei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Runlin Cai
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuchen Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziying Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Yu
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingjian Huang
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Shi
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan, 430078, China
| | - Jun Li
- School of Computer Science, China University of Geosciences, Wuhan, 430078, China.
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Kim J, Youn D, Choi S, Lee YW, Sumberzul D, Yoon J, Lee H, Bae JW, Noh H, On D, Hong SM, An SH, Jang HJ, Kim SY, Kim YB, Hwang JY, Lee HJ, Bin Kim H, Park JW, Yun JW, Shin JS, Seo JY, Nam KT, Choi KS, Lee HY, Chang H, Seong JK, Cho J. SARS-CoV-2 infection engenders heterogeneous ribonucleoprotein interactions to impede translation elongation in the lungs. Exp Mol Med 2023; 55:2541-2552. [PMID: 37907741 PMCID: PMC10767024 DOI: 10.1038/s12276-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 11/02/2023] Open
Abstract
Translational regulation in tissue environments during in vivo viral pathogenesis has rarely been studied due to the lack of translatomes from virus-infected tissues, although a series of translatome studies using in vitro cultured cells with viral infection have been reported. In this study, we exploited tissue-optimized ribosome profiling (Ribo-seq) and severe-COVID-19 model mice to establish the first temporal translation profiles of virus and host genes in the lungs during SARS-CoV-2 pathogenesis. Our datasets revealed not only previously unknown targets of translation regulation in infected tissues but also hitherto unreported molecular signatures that contribute to tissue pathology after SARS-CoV-2 infection. Specifically, we observed gradual increases in pseudoribosomal ribonucleoprotein (RNP) interactions that partially overlapped the trails of ribosomes, being likely involved in impeding translation elongation. Contemporaneously developed ribosome heterogeneity with predominantly dysregulated 5 S rRNP association supported the malfunction of elongating ribosomes. Analyses of canonical Ribo-seq reads (ribosome footprints) highlighted two obstructive characteristics to host gene expression: ribosome stalling on codons within transmembrane domain-coding regions and compromised translation of immunity- and metabolism-related genes with upregulated transcription. Our findings collectively demonstrate that the abrogation of translation integrity may be one of the most critical factors contributing to pathogenesis after SARS-CoV-2 infection of tissues.
Collapse
Affiliation(s)
- Junsoo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Daehwa Youn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seunghoon Choi
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dulguun Sumberzul
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jeongeun Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hanju Lee
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Jong Woo Bae
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Dain On
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea.
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea.
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program and BIO MAX Institute, Seoul National University, Seoul, Republic of Korea.
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
11
|
Bhatia S, Bodenstein D, Cheng AP, Wells PG. Altered Epigenetic Marks and Gene Expression in Fetal Brain, and Postnatal Behavioural Disorders, Following Prenatal Exposure of Ogg1 Knockout Mice to Saline or Ethanol. Cells 2023; 12:2308. [PMID: 37759530 PMCID: PMC10527575 DOI: 10.3390/cells12182308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Oxoguanine glycosylase 1 (OGG1) is widely known to repair the reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG), and more recently was shown to act as an epigenetic modifier. We have previously shown that saline-exposed Ogg1 -/- knockout progeny exhibited learning and memory deficits, which were enhanced by in utero exposure to a single low dose of ethanol (EtOH) in both Ogg1 +/+ and -/- progeny, but more so in Ogg1 -/- progeny. Herein, OGG1-deficient progeny exposed in utero to a single low dose of EtOH or its saline vehicle exhibited OGG1- and/or EtOH-dependent alterations in global histone methylation and acetylation, DNA methylation and gene expression (Tet1 (Tet Methylcytosine Dioxygenase 1), Nlgn3 (Neuroligin 3), Hdac2 (Histone Deacetylase 2), Reln (Reelin) and Esr1 (Estrogen Receptor 1)) in fetal brains, and behavioural changes in open field activity, social interaction and ultrasonic vocalization, but not prepulse inhibition. OGG1- and EtOH-dependent changes in Esr1 and Esr2 mRNA and protein levels were sex-dependent, as was the association of Esr1 gene expression with gene activation mark histone H3 lysine 4 trimethylation (H3K4me3) and gene repression mark histone H3 lysine 27 trimethylation (H3K27me3) measured via ChIP-qPCR. The OGG1-dependent changes in global epigenetic marks and gene/protein expression in fetal brains, and postnatal behavioural changes, observed in both saline- and EtOH-exposed progeny, suggest the involvement of epigenetic mechanisms in developmental disorders mediated by 8-oxoG and/or OGG1. Epigenetic effects of OGG1 may be involved in ESR1-mediated gene regulation, which may be altered by physiological and EtOH-enhanced levels of ROS formation, possibly contributing to sex-dependent developmental disorders observed in Ogg1 knockout mice. The OGG1- and EtOH-dependent associations provide a basis for more comprehensive mechanistic studies to determine the causal involvement of oxidative DNA damage and epigenetic changes in ROS-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - David Bodenstein
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Ashley P. Cheng
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Peter G. Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
12
|
Yanaizu M, Adachi H, Araki M, Kontani K, Kino Y. Translational regulation and protein-coding capacity of the 5' untranslated region of human TREM2. Commun Biol 2023; 6:616. [PMID: 37291187 PMCID: PMC10250343 DOI: 10.1038/s42003-023-04998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
TREM2 is a transmembrane receptor expressed in microglia and macrophages. Elevated TREM2 levels in these cells are associated with age-related pathological conditions, including Alzheimer's disease. However, the regulatory mechanism underlying the protein expression of TREM2 remains unclear. In this study, we uncover the role of the 5' untranslated region (5'-UTR) of human TREM2 in translation. An upstream start codon (uAUG) in the 5'-UTR of TREM2 is specific to some primates, including humans. The expression of the conventional TREM2 protein, starting from the downstream AUG (dTREM2), is repressed by the 5'-UTR in a uAUG-mediated manner. We also detect a TREM2 protein isoform starting from uAUG (uTREM2) that is largely degraded by proteasomes. Finally, the 5'-UTR is essential for the downregulation of dTREM2 expression in response to amino acid starvation. Collectively, our study identifies a species-specific regulatory role of the 5'-UTR in TREM2 translation.
Collapse
Affiliation(s)
- Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Haruka Adachi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
13
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
14
|
Shvadchenko AM, Volobueva MN, Ivanova VO, Beletskiy AP, Smirnova GR, Bal NV, Balaban PM. New Context Significantly Changes Expression of Irs2 Gene in Hippocampal Areas. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1243-1251. [PMID: 36509718 DOI: 10.1134/s0006297922110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Memory formation is a complex process involving changes in the synaptic activity and gene expression encoding the insulin-like growth factors. We analyzed changes in the expression of genes encoding the insulin/insulin-like growth factors' proteins at the early period of learning in the CA1 region and dentate gyrus of the dorsal and ventral hippocampus in mice 1 hour after presentation of a new context (contextual fear conditioning) with and without negative reinforcement. It was found that in addition to changes in the expression of immediate early genes c-Fos (in all studied hippocampal fields) and Arc (in dorsal and ventral CA1, as well as in dorsal dentate gyrus), exposure to a new context significantly altered expression of the insulin receptor substrate 2 gene (Irs2) in dorsal CA1 and ventral dentate gyrus irrespectively of the negative reinforcement, which suggests participation of the insulin/IGF system in the early stages of neural activation during learning.
Collapse
Affiliation(s)
- Anastasia M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maria N Volobueva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Violetta O Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Alexandr P Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Gulnur R Smirnova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| |
Collapse
|
15
|
Activity-dependent translation dynamically alters the proteome of the perisynaptic astrocyte process. Cell Rep 2022; 41:111474. [PMID: 36261025 PMCID: PMC9624251 DOI: 10.1016/j.celrep.2022.111474] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/16/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
Within eukaryotic cells, translation is regulated independent of transcription, enabling nuanced, localized, and rapid responses to stimuli. Neurons respond transcriptionally and translationally to synaptic activity. Although transcriptional responses are documented in astrocytes, here we test whether astrocytes have programmed translational responses. We show that seizure activity rapidly changes the transcripts on astrocyte ribosomes, some predicted to be downstream of BDNF signaling. In acute slices, we quantify the extent to which cues of neuronal activity activate translation in astrocytes and show that this translational response requires the presence of neurons, indicating that the response is non-cell autonomous. We also show that this induction of new translation extends into the periphery of astrocytes. Finally, synaptic proteomics show that new translation is required for changes that occur in perisynaptic astrocyte protein composition after fear conditioning. Regulation of translation in astrocytes by neuronal activity suggests an additional mechanism by which astrocytes may dynamically modulate nervous system functioning.
Collapse
|
16
|
Eisen TJ, Li JJ, Bartel DP. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. RNA (NEW YORK, N.Y.) 2022; 28:808-831. [PMID: 35273099 PMCID: PMC9074895 DOI: 10.1261/rna.079046.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Neurons provide a rich setting for studying post-transcriptional control. Here, we investigate the landscape of translational control in neurons and search for mRNA features that explain differences in translational efficiency (TE), considering the interplay between TE, mRNA poly(A)-tail lengths, microRNAs, and neuronal activation. In neurons and brain tissues, TE correlates with tail length, and a few dozen mRNAs appear to undergo cytoplasmic polyadenylation upon light or chemical stimulation. However, the correlation between TE and tail length is modest, explaining <5% of TE variance, and even this modest relationship diminishes when accounting for other mRNA features. Thus, tail length appears to affect TE only minimally. Accordingly, miRNAs, which accelerate deadenylation of their mRNA targets, primarily influence target mRNA levels, with no detectable effect on either steady-state tail lengths or TE. Larger correlates with TE include codon composition and predicted mRNA folding energy. When combined in a model, the identified correlates explain 38%-45% of TE variance. These results provide a framework for considering the relative impact of factors that contribute to translational control in neurons. They indicate that when examined in bulk, translational control in neurons largely resembles that of other types of post-embryonic cells. Thus, detection of more specialized control might require analyses that can distinguish translation occurring in neuronal processes from that occurring in cell bodies.
Collapse
Affiliation(s)
- Timothy J Eisen
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jingyi Jessica Li
- Department of Statistics, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
17
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
18
|
Gómez-Arnaiz S, Tate RJ, Grant MH. Cobalt Neurotoxicity: Transcriptional Effect of Elevated Cobalt Blood Levels in the Rodent Brain. TOXICS 2022; 10:toxics10020059. [PMID: 35202246 PMCID: PMC8878729 DOI: 10.3390/toxics10020059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Metal-on-metal (MoM) hip implants made of cobalt chromium (CoCr) alloy have shown early failure compared with other bearing materials. A consequence of the abnormal wear produced by these prostheses is elevated levels of cobalt in the blood of patients, which can lead to systemic conditions involving cardiac and neurological symptoms. In order to better understand the implications for patients with these implants, we carried out metal content and RNA-Seq analysis of excised tissue from rats treated intraperitonially for 28 days with low concentrations of cobalt. Cobalt blood levels in dosed rats were found to be similar to those seen in some patients with MoM implants (range: 4–38 μg/L Co in blood). Significant accumulation of cobalt was measured in a range of tissues including kidney, liver, and heart, but also in brain tissue. RNA-Seq analysis of neural tissue revealed that exposure to cobalt induces a transcriptional response in the prefrontal cortex (pref. cortex), cerebellum, and hippocampus. Many of the most up- and downregulated genes appear to correspond to choroid plexus transcripts. These results indicate that the choroid plexus could be the brain tissue most affected by cobalt. More specifically, the differentially expressed genes show a disruption of steroidogenesis and lipid metabolism. Several other transcripts also demonstrate that cobalt induces an immune response. In summary, cobalt exposure induces alterations in the brain transcriptome, more specifically, the choroid plexus, which is in direct contact with neurotoxicants at the blood–cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Sara Gómez-Arnaiz
- Wolfson Centre, Biomedical Engineering Department, University of Strathclyde, Glasgow G4 0NW, UK;
| | - Rothwelle J. Tate
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Mary Helen Grant
- Wolfson Centre, Biomedical Engineering Department, University of Strathclyde, Glasgow G4 0NW, UK;
- Correspondence:
| |
Collapse
|
19
|
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Contreras-Rodríguez O, Burokas A, Ortega-Sanchez JA, Blasco G, Coll C, Biarnés C, Castells-Nobau A, Puig J, Garre-Olmo J, Ramos R, Pedraza S, Brugada R, Vilanova JC, Serena J, Barretina J, Gich J, Pérez-Brocal V, Moya A, Fernández-Real X, Ramio-Torrentà L, Pamplona R, Sol J, Jové M, Ricart W, Portero-Otin M, Maldonado R, Fernández-Real JM. Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways. Gut 2021; 70:2283-2296. [PMID: 33514598 PMCID: PMC8588299 DOI: 10.1136/gutjnl-2020-323371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.
Collapse
Affiliation(s)
- María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Oren Contreras-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERSAM, Barcelona, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Deparment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Present address: Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Juan-Antonio Ortega-Sanchez
- Laboratory of Neuropharmacology, Deparment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Blasco
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Claudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Deparment of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Josep Puig
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Josep Garre-Olmo
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Research Group on Aging, Health and Disability, Girona Biomedical Research Institute, Health Assistance Institute, Girona, Spain
| | - Rafel Ramos
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Catalonia, Spain
| | - Salvador Pedraza
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Deparment of Radiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Ramon Brugada
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, CIBER-CV, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Deparment of Cardiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Joan C Vilanova
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Deparment of Radiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Joaquín Serena
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Department of Neurology, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Barretina
- Girona Biomedical Research Institute (IdibGi), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jordi Gich
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Vicente Pérez-Brocal
- Joint Investigation Unit of FISABIO and I2Sysbio, University of València and CSIC, Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Joint Investigation Unit of FISABIO and I2Sysbio, University of València and CSIC, Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Fernández-Real
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lluis Ramio-Torrentà
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Deparment of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Department of Neurology, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Reinald Pamplona
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
- Institut Català de la Salut, Atenció Primària, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Mariona Jové
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Manuel Portero-Otin
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Deparment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Jose Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
20
|
Hippocampal neurons' cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc Natl Acad Sci U S A 2021; 118:2108534118. [PMID: 34819370 PMCID: PMC8640746 DOI: 10.1073/pnas.2108534118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To understand the cellular basis for this effect, we quantified RNAs associated with translating ribosomes in cytosol and on cellular membranes of different hippocampal neuron populations. Our analysis suggests that while sleep loss (but not learning) alters numerous ribosomal transcripts in cytosol, learning has dramatic effects on transcript profiles for less–well-characterized membrane-bound ribosomes. We demonstrate that postlearning sleep deprivation occludes already minimal learning-driven changes on cytosolic ribosomes. It simultaneously alters transcripts associated with metabolic and biosynthetic processes in membrane-bound ribosomes in excitatory hippocampal neurons and highly active, putative “engram” neurons, respectively. Together, these findings provide insights into the cellular mechanisms altered by learning and their disruption by subsequent sleep loss. The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative “engram”) neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
Collapse
|
21
|
de Sousa MML, Ye J, Luna L, Hildrestrand G, Bjørås K, Scheffler K, Bjørås M. Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction. Int J Mol Sci 2021; 22:12924. [PMID: 34884729 PMCID: PMC8657561 DOI: 10.3390/ijms222312924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain requires a high rate of oxygen consumption to perform intense metabolic activities, accounting for 20% of total body oxygen consumption. This high oxygen uptake results in the generation of free radicals, including reactive oxygen species (ROS), which, at physiological levels, are beneficial to the proper functioning of fundamental cellular processes. At supraphysiological levels, however, ROS and associated lesions cause detrimental effects in brain cells, commonly observed in several neurodegenerative disorders. In this review, we focus on the impact of oxidative DNA base lesions and the role of DNA glycosylase enzymes repairing these lesions on brain function and disease. Furthermore, we discuss the role of DNA base oxidation as an epigenetic mechanism involved in brain diseases, as well as potential roles of DNA glycosylases in different epigenetic contexts. We provide a detailed overview of the impact of DNA glycosylases on brain metabolism, cognition, inflammation, tissue loss and regeneration, and age-related neurodegenerative diseases based on evidence collected from animal and human models lacking these enzymes, as well as post-mortem studies on patients with neurological disorders.
Collapse
Affiliation(s)
- Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Jing Ye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Gunn Hildrestrand
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Karine Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Katja Scheffler
- Department of Neurology, St. Olavs Hospital, 7006 Trondheim, Norway;
- Department of Laboratory Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| |
Collapse
|
22
|
Conde-Dusman MJ, Dey PN, Elía-Zudaire Ó, Rabaneda LG, García-Lira C, Grand T, Briz V, Velasco ER, Andero R, Niñerola S, Barco A, Paoletti P, Wesseling JF, Gardoni F, Tavalin SJ, Perez-Otaño I. Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly. eLife 2021; 10:e71575. [PMID: 34787081 PMCID: PMC8598234 DOI: 10.7554/elife.71575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.
Collapse
Affiliation(s)
- María J Conde-Dusman
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | - Partha N Dey
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- National Eye Institute, National Institutes of HealthBethesdaUnited States
| | | | - Luis G Rabaneda
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Teddy Grand
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | - Victor Briz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)MadridSpain
| | - Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterraSpain
| | - Raül Andero
- Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
- ICREABarcelonaSpain
| | | | - Angel Barco
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of MilanMilanItaly
| | - Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science CenterMemphisUnited States
| | - Isabel Perez-Otaño
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
| |
Collapse
|
23
|
Lozoya OA, Xu F, Grenet D, Wang T, Stevanovic KD, Cushman JD, Hagler TB, Gruzdev A, Jensen P, Hernandez B, Riadi G, Moy SS, Santos JH, Woychik RP. A brain-specific pgc1α fusion transcript affects gene expression and behavioural outcomes in mice. Life Sci Alliance 2021; 4:4/12/e202101122. [PMID: 34649938 PMCID: PMC8548212 DOI: 10.26508/lsa.202101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
This study shows that loss of a brain-specific fusion isoform of PGC1a leads to up-regulation of genes and motor impairments in mice, suggesting functional differences between PGC1 isoforms in the brain. PGC1α is a transcriptional coactivator in peripheral tissues, but its function in the brain remains poorly understood. Various brain-specific Pgc1α isoforms have been reported in mice and humans, including two fusion transcripts (FTs) with non-coding repetitive sequences, but their function is unknown. The FTs initiate at a simple sequence repeat locus ∼570 Kb upstream from the reference promoter; one also includes a portion of a short interspersed nuclear element (SINE). Using publicly available genomics data, here we show that the SINE FT is the predominant form of Pgc1α in neurons. Furthermore, mutation of the SINE in mice leads to altered behavioural phenotypes and significant up-regulation of genes in the female, but not male, cerebellum. Surprisingly, these genes are largely involved in neurotransmission, having poor association with the classical mitochondrial or antioxidant programs. These data expand our knowledge on the role of Pgc1α in neuronal physiology and suggest that different isoforms may have distinct functions. They also highlight the need for further studies before modulating levels of Pgc1α in the brain for therapeutic purposes.
Collapse
Affiliation(s)
- Oswaldo A Lozoya
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Fuhua Xu
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Dagoberto Grenet
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Branch, National Institutes of Health, Durham, NC, USA
| | - Korey D Stevanovic
- Neurobehavioral Core Laboratory, National Institutes of Health, Durham, NC, USA
| | - Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institutes of Health, Durham, NC, USA
| | - Thomas B Hagler
- Knockout Mouse Core Facility, National Institutes of Health, Durham, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Facility, National Institutes of Health, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Bairon Hernandez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Gonzalo Riadi
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Sheryl S Moy
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janine H Santos
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| | - Richard P Woychik
- Genomic Integrity and Structural Biology Laboratory, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
24
|
Zheng J, Suo L, Zhou Y, Jia L, Li J, Kuang Y, Cui D, Zhang X, Wu Q. Pyk2 suppresses contextual fear memory in an autophosphorylation-independent manner. J Mol Cell Biol 2021; 13:808-821. [PMID: 34529077 PMCID: PMC8782590 DOI: 10.1093/jmcb/mjab057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are a large family of cadherin-like cell adhesion proteins that are central for neurite self-avoidance and neuronal connectivity in the brain. Their downstream non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2, also known as Ptk2b, Cakb, Raftk, Fak2, and Cadtk) is predominantly expressed in the hippocampus. We constructed Pyk2 null mouse lines and found that these mutant mice showed enhancement in contextual fear memory, without any change in auditory-cued and spatial-referenced learning and memory. In addition, by preparing Y402F mutant mice, we observed that Pyk2 suppressed contextual fear memory in an autophosphorylation-independent manner. Moreover, using high-throughput RNA sequencing, we found that immediate early genes, such as Npas4, cFos, Zif268/Egr1, Arc, and Nr4a1, were enhanced in Pyk2 null mice. We further showed that Pyk2 disruption affected pyramidal neuronal complexity and spine dynamics. Thus, we demonstrated that Pyk2 is a novel fear memory suppressor molecule and Pyk2 null mice provide a model for understanding fear-related disorders. These findings have interesting implications regarding dysregulation of the Pcdh‒Pyk2 axis in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jin Zheng
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Lun Suo
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Liling Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Jingwei Li
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuehong Zhang
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| |
Collapse
|
25
|
Novikov DA, Beletsky AP, Kolosov PM. The Putative Role of m6A-RNA Methylation in Memory Consolidation. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Jovasevic V, Zhang H, Sananbenesi F, Guedea AL, Soman KV, Wiktorowicz JE, Fischer A, Radulovic J. Primary cilia are required for the persistence of memory and stabilization of perineuronal nets. iScience 2021; 24:102617. [PMID: 34142063 PMCID: PMC8185192 DOI: 10.1016/j.isci.2021.102617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
It is well established that the formation of episodic memories requires multiple hippocampal mechanisms operating on different time scales. Early mechanisms of memory formation (synaptic consolidation) have been extensively characterized. However, delayed mechanisms, which maintain hippocampal activity as memories stabilize in cortical circuits, are not well understood. Here we demonstrate that contrary to the transient expression of early- and delayed-response genes, the expression of cytoskeleton- and extracellular matrix-associated genes remains dynamic even at remote time points. The most profound expression changes clustered around primary cilium-associated and collagen genes. These genes most likely contribute to memory by stabilizing perineuronal nets in the dorsohippocampal CA1 subfield, as revealed by targeted disruptions of the primary cilium or perineuronal nets. The findings show that nonsynaptic, primary cilium-mediated mechanisms are required for the persistence of context memory.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Room 13-100, Montgomery Ward Memorial Building, Chicago, IL 60611, USA
| | - Hui Zhang
- Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 115, Bronx, NY 10461, USA
| | | | - Anita L. Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Kizhake V. Soman
- Division of Infectious Disease, Department of Internal Medicine, UTMB – Galveston, Galveston, TX 77555, USA
| | | | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Jelena Radulovic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Room 13-100, Montgomery Ward Memorial Building, Chicago, IL 60611, USA
- Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 115, Bronx, NY 10461, USA
| |
Collapse
|
27
|
Floriou-Servou A, von Ziegler L, Waag R, Schläppi C, Germain PL, Bohacek J. The Acute Stress Response in the Multiomic Era. Biol Psychiatry 2021; 89:1116-1126. [PMID: 33722387 DOI: 10.1016/j.biopsych.2020.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/13/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Studying the stress response is a major pillar of neuroscience research not only because stress is a daily reality but also because the exquisitely fine-tuned bodily changes triggered by stress are a neuroendocrinological marvel. While the genome-wide changes induced by chronic stress have been extensively studied, we know surprisingly little about the complex molecular cascades triggered by acute stressors, the building blocks of chronic stress. The acute stress (or fight-or-flight) response mobilizes organismal energy resources to meet situational demands. However, successful stress coping also requires the efficient termination of the stress response. Maladaptive coping-particularly in response to severe or repeated stressors-can lead to allostatic (over)load, causing wear and tear on tissues, exhaustion, and disease. We propose that deep molecular profiling of the changes triggered by acute stressors could provide molecular correlates for allostatic load and predict healthy or maladaptive stress responses. We present a theoretical framework to interpret multiomic data in light of energy homeostasis and activity-dependent gene regulation, and we review the signaling cascades and molecular changes rapidly induced by acute stress in different cell types in the brain. In addition, we review and reanalyze recent data from multiomic screens conducted mainly in the rodent hippocampus and amygdala after acute psychophysical stressors. We identify challenges surrounding experimental design and data analysis, and we highlight promising new research directions to better understand the stress response on a multiomic level.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Christa Schläppi
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland; Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland.
| |
Collapse
|
28
|
Ho KH, Patrizi A. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep 2021; 11:3278. [PMID: 33558629 PMCID: PMC7870894 DOI: 10.1038/s41598-021-82800-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Choroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
29
|
Early β adrenoceptor dependent time window for fear memory persistence in APPswe/PS1dE9 mice. Sci Rep 2021; 11:870. [PMID: 33441593 PMCID: PMC7807071 DOI: 10.1038/s41598-020-79487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
In this study we demonstrate that 2 month old APPswe/PS1dE9 mice, a transgenic model of Alzheimer's disease, exhibited intact short-term memory in Pavlovian hippocampal-dependent contextual fear learning task. However, their long-term memory was impaired. Intra-CA1 infusion of isoproterenol hydrochloride, the β-adrenoceptor agonist, to the ventral hippocampus of APPswe/PS1dE9 mice immediately before fear conditioning restored long-term contextual fear memory. Infusion of the β-adrenoceptor agonist + 2.5 h after fear conditioning only partially rescued the fear memory, whereas infusion at + 12 h post conditioning did not interfere with long-term memory persistence in this mouse model. Furthermore, Intra-CA1 infusion of propranolol, the β-adrenoceptor antagonist, administered immediately before conditioning to their wildtype counterpart impaired long-term fear memory, while it was ineffective when administered + 4 h and + 12 h post conditioning. Our results indicate that, long-term fear memory persistence is determined by a unique β-adrenoceptor sensitive time window between 0 and + 2.5 h upon learning acquisition, in the ventral hippocampal CA1 of APPswe/PS1dE9 mice. On the contrary, β-adrenoceptor agonist delivery to ventral hippocampal CA1 per se did not enhance innate anxiety behaviour in open field test. Thus we conclude that, activation of learning dependent early β-adrenoceptor modulation underlies and is necessary to promote long-term fear memory persistence in APPswe/PS1dE9.
Collapse
|
30
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
A gene expression atlas for different kinds of stress in the mouse brain. Sci Data 2020; 7:437. [PMID: 33328476 PMCID: PMC7744580 DOI: 10.1038/s41597-020-00772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.
Collapse
|
32
|
Iwata S, Morikawa M, Takei Y, Hirokawa N. An activity-dependent local transport regulation via degradation and synthesis of KIF17 underlying cognitive flexibility. SCIENCE ADVANCES 2020; 6:6/51/eabc8355. [PMID: 33328231 PMCID: PMC7744090 DOI: 10.1126/sciadv.abc8355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Synaptic weight changes among postsynaptic densities within a single dendrite are regulated by the balance between localized protein degradation and synthesis. However, the molecular mechanism via these opposing regulatory processes is still elusive. Here, we showed that the molecular motor KIF17 was locally degraded and synthesized in an N-methyl-d-aspartate receptor (NMDAR)-mediated activity-dependent manner. Accompanied by the degradation of KIF17, its transport was temporarily dampened in dendrites. We also observed that activity-dependent local KIF17 synthesis driven by its 3' untranslated region (3'UTR) occurred at dendritic shafts, and the newly synthesized KIF17 moved along the dendrites. Furthermore, hippocampus-specific deletion of Kif17 3'UTR disrupted KIF17 synthesis induced by fear memory retrieval, leading to impairment in extinction of fear memory. These results indicate that the regulation of the KIF17 transport is driven by the single dendrite-restricted cycle of degradation and synthesis that underlies cognitive flexibility.
Collapse
Affiliation(s)
- Suguru Iwata
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
33
|
Hien A, Molinaro G, Liu B, Huber KM, Richter JD. Ribosome profiling in mouse hippocampus: plasticity-induced regulation and bidirectional control by TSC2 and FMRP. Mol Autism 2020; 11:78. [PMID: 33054857 PMCID: PMC7556950 DOI: 10.1186/s13229-020-00384-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mutations in TSC2 are the most common cause of tuberous sclerosis (TSC), a disorder with a high incidence of autism and intellectual disability. TSC2 regulates mRNA translation required for group 1 metabotropic glutamate receptor-dependent synaptic long-term depression (mGluR-LTD) and behavior, but the identity of mRNAs responsive to mGluR-LTD signaling is largely unknown. METHODS We utilized Tsc2+/- mice as a mouse model of TSC and prepared hippocampal slices from these animals. We induced mGluR-LTD synaptic plasticity in slices and processed the samples for RNA-seq and ribosome profiling to identify differentially expressed genes in Tsc2+/- and following mGluR-LTD synaptic plasticity. RESULTS Ribosome profiling reveals that in Tsc2+/- mouse hippocampal slices, the expression of several mRNAs was dysregulated: terminal oligopyrimidine (TOP)-containing mRNAs decreased, while FMRP-binding targets increased. Remarkably, we observed the opposite changes of FMRP binding targets in Fmr1-/y hippocampi. In wild-type hippocampus, induction of mGluR-LTD caused rapid changes in the steady-state levels of hundreds of mRNAs, many of which are FMRP targets. Moreover, mGluR-LTD failed to promote phosphorylation of eukaryotic elongation factor 2 (eEF2) in TSC mice, and chemically mimicking phospho-eEF2 with low cycloheximide enhances mGluR-LTD in TSC mice. CONCLUSION These results suggest a molecular basis for bidirectional regulation of synaptic plasticity and behavior by TSC2 and FMRP. Our study also suggests that altered mGluR-regulated translation elongation contributes to impaired synaptic plasticity in Tsc2+/- mice.
Collapse
Affiliation(s)
- Annie Hien
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
34
|
Mansur F, Alarcon JM, Stackpole EE, Wang R, Richter JD. Noncanonical cytoplasmic poly(A) polymerases regulate RNA levels, alternative RNA processing, and synaptic plasticity but not hippocampal-dependent behaviours. RNA Biol 2020; 18:962-971. [PMID: 32954964 DOI: 10.1080/15476286.2020.1824061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Noncanonical poly(A) polymerases are frequently tethered to mRNA 3' untranslated regions and regulate poly(A) tail length and resulting translation. In the brain, one such poly(A) polymerase is Gld2, which is anchored to mRNA by the RNA-binding protein CPEB1 to control local translation at postsynaptic regions. Depletion of CPEB1 or Gld2 from the mouse hippocampus results in a deficit in long-term potentiation (LTP), but only depletion of CPEB1 alters animal behaviour. To test whether a related enzyme, Gld4, compensates for the lack of Gld2, we separately or simultaneously depleted both proteins from hippocampal area CA1 and again found little change in animal behaviour, but observed a deficit in LTP as well as an increase in long-term depression (LTD), two forms of protein synthesis-dependent synaptic plasticity. RNA-seq data from Gld2, Gld4, and Gld2/Gld4-depleted hippocampus show widespread changes in steady state RNA levels, alternative splicing, and alternative poly(A) site selection. Many of the RNAs subject to these alterations encode proteins that mediate synaptic function, suggesting a molecular foundation for impaired synaptic plasticity.
Collapse
Affiliation(s)
- Fernanda Mansur
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Juan Marcos Alarcon
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Emily E Stackpole
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Abstract
The universal Turing Machine (TM) is a model for Von Neumann computers — general-purpose computers. A human brain, linked with its biological body, can inside-skull-autonomously learn a universal TM so that he acts as a general-purpose computer and writes a computer program for any practical purposes. It is unknown whether a robot can accomplish the same. This theoretical work shows how the Developmental Network (DN), linked with its robot body, can accomplish this. Unlike a traditional TM, the TM learned by DN is a super TM — Grounded, Emergent, Natural, Incremental, Skulled, Attentive, Motivated, and Abstractive (GENISAMA). A DN is free of any central controller (e.g., Master Map, convolution, or error back-propagation). Its learning from a teacher TM is one transition observation at a time, immediate, and error-free until all its neurons have been initialized by early observed teacher transitions. From that point on, the DN is no longer error-free but is always optimal at every time instance in the sense of maximal likelihood, conditioned on its limited computational resources and the learning experience. This paper extends the Church–Turing thesis to a stronger version — a GENISAMA TM is capable of Autonomous Programming for General Purposes (APFGP) — and proves both the Church–Turing thesis and its stronger version.
Collapse
Affiliation(s)
- Juyang Weng
- Department of Computer Science and Engineering, Cognitive Science Program, and Neuroscience Program, Michigan State University, 428 S. Shaw Ln, Rm 3115, East Lansing, MI 48824, USA
- GENISAMA LLC, 4460 Alderwood Drive, Okemos, MI 48864, USA
| |
Collapse
|
36
|
Simbriger K, Amorim IS, Lach G, Chalkiadaki K, Kouloulia S, Jafarnejad SM, Khoutorsky A, Gkogkas CG. Uncovering memory-related gene expression in contextual fear conditioning using ribosome profiling. Prog Neurobiol 2020; 197:101903. [PMID: 32860876 PMCID: PMC7859833 DOI: 10.1016/j.pneurobio.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/30/2020] [Accepted: 08/23/2020] [Indexed: 11/14/2022]
Abstract
Contextual fear conditioning (CFC) in rodents is the most widely used behavioural paradigm in neuroscience research to elucidate the neurobiological mechanisms underlying learning and memory. It is based on the pairing of an aversive unconditioned stimulus (US; e.g. mild footshock) with a neutral conditioned stimulus (CS; e.g. context of the test chamber) in order to acquire associative long-term memory (LTM), which persists for days and even months. Using genome-wide analysis, several studies have generated lists of genes modulated in response to CFC in an attempt to identify the “memory genes”, which orchestrate memory formation. Yet, most studies use naïve animals as a baseline for assessing gene-expression changes, while only few studies have examined the effect of the US alone, without pairing to context, using genome-wide analysis of gene-expression. Herein, using the ribosome profiling methodology, we show that in male mice an immediate shock, which does not lead to LTM formation, elicits pervasive translational and transcriptional changes in the expression of Immediate Early Genes (IEGs) in dorsal hippocampus (such as Fos and Arc), a fact which has been disregarded by the majority of CFC studies. By removing the effect of the immediate shock, we identify and validate a new set of genes, which are translationally and transcriptionally responsive to the association of context-to-footshock in CFC, and thus constitute salient “memory genes”.
Collapse
Affiliation(s)
- Konstanze Simbriger
- Centre for Discovery Brain Sciences, University of Edinburgh and Patrick Wild Centre and Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Inês S Amorim
- Centre for Discovery Brain Sciences, University of Edinburgh and Patrick Wild Centre and Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Gilliard Lach
- Centre for Discovery Brain Sciences, University of Edinburgh and Patrick Wild Centre and Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Kleanthi Chalkiadaki
- Centre for Discovery Brain Sciences, University of Edinburgh and Patrick Wild Centre and Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Stella Kouloulia
- Centre for Discovery Brain Sciences, University of Edinburgh and Patrick Wild Centre and Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, BT9 7AE Belfast, Northern Ireland, UK.
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry and Alan Edwards Centre for Research on Pain, McGill University, H3A 0G1, Montréal, QC, Canada.
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, University of Edinburgh and Patrick Wild Centre and Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
| |
Collapse
|
37
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Panda A, Yadav A, Yeerna H, Singh A, Biehl M, Lux M, Schulz A, Klecha T, Doniach S, Khiabanian H, Ganesan S, Tamayo P, Bhanot G. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res 2020; 48:7079-7098. [PMID: 32525984 PMCID: PMC7367157 DOI: 10.1093/nar/gkaa485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
We give results from a detailed analysis of human Ribosomal Protein (RP) levels in normal and cancer samples and cell lines from large mRNA, copy number variation and ribosome profiling datasets. After normalizing total RP mRNA levels per sample, we find highly consistent tissue specific RP mRNA signatures in normal and tumor samples. Multiple RP mRNA-subtypes exist in several cancers, with significant survival and genomic differences. Some RP mRNA variations among subtypes correlate with copy number loss of RP genes. In kidney cancer, RP subtypes map to molecular subtypes related to cell-of-origin. Pan-cancer analysis of TCGA data showed widespread single/double copy loss of RP genes, without significantly affecting survival. In several cancer cell lines, CRISPR-Cas9 knockout of RP genes did not affect cell viability. Matched RP ribosome profiling and mRNA data in humans and rodents stratified by tissue and development stage and were strongly correlated, showing that RP translation rates were proportional to mRNA levels. In a small dataset of human adult and fetal tissues, RP protein levels showed development stage and tissue specific heterogeneity of RP levels. Our results suggest that heterogeneous RP levels play a significant functional role in cellular physiology, in both normal and disease states.
Collapse
Affiliation(s)
- Anshuman Panda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huwate Yeerna
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Michael Biehl
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, NL-9747 AG Groningen, The Netherlands
| | - Markus Lux
- Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, D-33619 Bielefeld, Germany
| | - Alexander Schulz
- Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, D-33619 Bielefeld, Germany
| | - Tyler Klecha
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ,08854, USA
| | - Sebastian Doniach
- Department of Applied Physics, Stanford University, Palo Alto, CA 94305, USA
| | | | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gyan Bhanot
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ,08854, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
39
|
Lee J, Yoon K, Park P, Lee C, Kim MJ, Han DH, Kim J, Kim S, Lee H, Lee Y, Jang E, Ko H, Kong Y, Kaang B. Neur1
and
Neur2
are required for hippocampus‐dependent spatial memory and synaptic plasticity. Hippocampus 2020; 30:1158-1166. [DOI: 10.1002/hipo.23247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Jaehyun Lee
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Ki‐Jun Yoon
- Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - Pojeong Park
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Chaery Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Min Jung Kim
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Dae Hee Han
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Ji‐il Kim
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Somi Kim
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Hye‐Ryeon Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Yeseul Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Eun‐Hae Jang
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Hyoung‐Gon Ko
- Department of Anatomy and Neurobiology School of Dentistry, Kyungpook National University Daegu South Korea
| | - Young‐Yun Kong
- School of Biological Sciences, College of Natural Sciences Seoul National University Seoul South Korea
| | - Bong‐Kiun Kaang
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| |
Collapse
|
40
|
Kaiser K, Bryja V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. Int J Mol Sci 2020; 21:E4760. [PMID: 32635478 PMCID: PMC7369786 DOI: 10.3390/ijms21134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
41
|
Kim JK, Cho J, Kim SH, Kang HC, Kim DS, Kim VN, Lee JH. Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. J Clin Invest 2020; 129:4207-4223. [PMID: 31483294 DOI: 10.1172/jci127032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Brain somatic mutations confer genomic diversity in the human brain and cause neurodevelopmental disorders. Recently, brain somatic activating mutations in MTOR have been identified as a major etiology of intractable epilepsy in patients with cortical malformations. However, the molecular genetic mechanism of how brain somatic mutations in MTOR cause intractable epilepsy has remained elusive. In this study, translational profiling of intractable epilepsy mouse models with brain somatic mutations and genome-edited cells revealed a novel translational dysregulation mechanism and mTOR activation-sensitive targets mediated by human MTOR mutations that lead to intractable epilepsy with cortical malformation. These mTOR targets were found to be regulated by novel mTOR-responsive 5'-UTR motifs, distinct from known mTOR inhibition-sensitive targets regulated by 5' terminal oligopyrimidine motifs. Novel mTOR target genes were validated in patient brain tissues, and the mTOR downstream effector eIF4E was identified as a new therapeutic target in intractable epilepsy via pharmacological or genetic inhibition. We show that metformin, an FDA-approved eIF4E inhibitor, suppresses intractable epilepsy. Altogether, the present study describes translational dysregulation resulting from brain somatic mutations in MTOR, as well as the pathogenesis and potential therapeutic targets of intractable epilepsy.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Das Sharma S, Metz JB, Li H, Hobson BD, Hornstein N, Sulzer D, Tang G, Sims PA. Widespread Alterations in Translation Elongation in the Brain of Juvenile Fmr1 Knockout Mice. Cell Rep 2020; 26:3313-3322.e5. [PMID: 30893603 DOI: 10.1016/j.celrep.2019.02.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
FMRP (fragile X mental retardation protein) is a polysome-associated RNA-binding protein encoded by Fmr1 that is lost in fragile X syndrome. Increasing evidence suggests that FMRP regulates both translation initiation and elongation, but the gene specificity of these effects is unclear. To elucidate the impact of Fmr1 loss on translation, we utilize ribosome profiling for genome-wide measurements of ribosomal occupancy and positioning in the cortex of 24-day-old Fmr1 knockout mice. We find a remarkably coherent reduction in ribosome footprint abundance per mRNA for previously identified, high-affinity mRNA binding partners of FMRP and an increase for terminal oligopyrimidine (TOP) motif-containing genes canonically controlled by mammalian target of rapamycin-eIF4E-binding protein-eIF4E binding protein-eukaryotic initiation factor 4E (mTOR-4E-BP-eIF4E) signaling. Amino acid motif- and gene-level analyses both show a widespread reduction of translational pausing in Fmr1 knockout mice. Our findings are consistent with a model of FMRP-mediated regulation of both translation initiation through eIF4E and elongation that is disrupted in fragile X syndrome.
Collapse
Affiliation(s)
- Sohani Das Sharma
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jordan B Metz
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin D Hobson
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicholas Hornstein
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Medical Center, New York, NY 10032, USA
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
43
|
Reixachs-Solé M, Ruiz-Orera J, Albà MM, Eyras E. Ribosome profiling at isoform level reveals evolutionary conserved impacts of differential splicing on the proteome. Nat Commun 2020; 11:1768. [PMID: 32286305 PMCID: PMC7156646 DOI: 10.1038/s41467-020-15634-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
The differential production of transcript isoforms from gene loci is a key cellular mechanism. Yet, its impact in protein production remains an open question. Here, we describe ORQAS (ORF quantification pipeline for alternative splicing), a pipeline for the translation quantification of individual transcript isoforms using ribosome-protected mRNA fragments (ribosome profiling). We find evidence of translation for 40-50% of the expressed isoforms in human and mouse, with 53% of the expressed genes having more than one translated isoform in human, and 33% in mouse. Differential splicing analysis revealed that about 40% of the splicing changes at RNA level are concordant with changes in translation. Furthermore, orthologous cassette exons between human and mouse preserve the directionality of the change, and are enriched in microexons in a comparison between glia and glioma. ORQAS leverages ribosome profiling to uncover a widespread and evolutionarily conserved impact of differential splicing on translation, particularly of microexon-containing isoforms.
Collapse
Affiliation(s)
- Marina Reixachs-Solé
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - M Mar Albà
- IMIM - Hospital del Mar Medical Research Institute, E08003, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia.
- IMIM - Hospital del Mar Medical Research Institute, E08003, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain.
| |
Collapse
|
44
|
Ponce-Lina R, Serafín N, Carranza M, Arámburo C, Prado-Alcalá RA, Luna M, Quirarte GL. Differential Phosphorylation of the Glucocorticoid Receptor in Hippocampal Subregions Induced by Contextual Fear Conditioning Training. Front Behav Neurosci 2020; 14:12. [PMID: 32116592 PMCID: PMC7031480 DOI: 10.3389/fnbeh.2020.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.
Collapse
Affiliation(s)
- Renata Ponce-Lina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
45
|
Choe HK, Cho J. Comprehensive Genome-Wide Approaches to Activity-Dependent Translational Control in Neurons. Int J Mol Sci 2020; 21:ijms21051592. [PMID: 32111062 PMCID: PMC7084349 DOI: 10.3390/ijms21051592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.
Collapse
Affiliation(s)
- Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (H.K.C.); (J.C.)
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Correspondence: (H.K.C.); (J.C.)
| |
Collapse
|
46
|
Simbriger K, Amorim IS, Chalkiadaki K, Lach G, Jafarnejad SM, Khoutorsky A, Gkogkas CG. Monitoring translation in synaptic fractions using a ribosome profiling strategy. J Neurosci Methods 2019; 329:108456. [PMID: 31610213 PMCID: PMC6899497 DOI: 10.1016/j.jneumeth.2019.108456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 11/26/2022]
Abstract
Ribosome profiling in synaptosomes. Transcriptome and translatome profiling from synaptic fractions. Powerful tool to study local translation at the synapse.
Background The aim of this study was to develop a method to study genome-wide local translation in biochemically isolated synaptic fractions (synaptoneurosomes). This methodology is of particular interest for neurons, due to the cardinal role of local translational control in neuronal sub-compartments, such as dendrites, for plasticity, learning, memory, and for disorders of the nervous system. New method We combined established methods for purifying synaptoneurosomes with translational profiling (ribosome profiling), a method that employs unbiased next generation sequencing to simultaneously assess transcription and translation in a single sample. Results The two existing methods are compatible to use in combination and yield high quality sequencing data, which are specific to synaptic compartments. This new protocol provides an easy to implement workflow, which combines biochemical isolation of synaptoneurosomes of varying levels of purity (crude or Percoll gradient purified) with the use of a commercial kit to generate sequencing libraries. Comparison with existing methods Compared to previous studies of the synaptic translatome, our method shows less contamination with non-neuronal cell types or non-synaptic compartments, increasing the specificity of the data obtained. Conclusions Combining the isolation of functional synaptic units with ribosome profiling offers a powerful tool to study local translation in synaptic compartments both in health and disease.
Collapse
Affiliation(s)
- Konstanze Simbriger
- Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK; Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK
| | - Inês S Amorim
- Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK; Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK
| | - Kleanthi Chalkiadaki
- Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK; Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK
| | - Gilliard Lach
- Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK; Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK
| | - Seyed Mehdi Jafarnejad
- Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, BT9 7AE, Belfast, Northern Ireland, UK
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry and Alan Edwards Centre for Research on Pain, McGill University, H3A 0G1, Montréal, QC, Canada
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK; Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK; Simons Initiative for the Developing Brain, EH8 9XD, Edinburgh, Scotland, UK.
| |
Collapse
|
47
|
Fernandez-Albert J, Lipinski M, Lopez-Cascales MT, Rowley MJ, Martin-Gonzalez AM, Del Blanco B, Corces VG, Barco A. Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. Nat Neurosci 2019; 22:1718-1730. [PMID: 31501571 PMCID: PMC6875776 DOI: 10.1038/s41593-019-0476-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022]
Abstract
Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.
Collapse
Affiliation(s)
- Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - María T Lopez-Cascales
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - M Jordan Rowley
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ana M Martin-Gonzalez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | | | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
48
|
Kim MJ, Lee RU, Oh J, Choi JE, Kim H, Lee K, Hwang SK, Lee JH, Lee JA, Kaang BK, Lim CS, Lee YS. Spatial Learning and Motor Deficits in Vacuolar Protein Sorting-associated Protein 13b ( Vps13b) Mutant Mouse. Exp Neurobiol 2019; 28:485-494. [PMID: 31495077 PMCID: PMC6751864 DOI: 10.5607/en.2019.28.4.485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/04/2023] Open
Abstract
Vacuolar protein sorting-associated protein 13B (VPS13B), also known as COH1, is one of the VPS13 family members which is involved in transmembrane transport, Golgi integrity, and neuritogenesis. Mutations in the VPS13B gene are associated with Cohen syndrome and other cognitive disorders such as intellectual disabilities and autism spectrum disorder (ASD). However, the patho-physiology of VPS13B-associated cognitive deficits is unclear, in part, due to the lack of animal models. Here, we generated a Vps13b exon 2 deletion mutant mouse and analyzed the behavioral phenotypes. We found that Vps13b mutant mice showed reduced activity in open field test and significantly shorter latency to fall in the rotarod test, suggesting that the mutants have motor deficits. In addition, we found that Vps13b mutant mice showed deficits in spatial learning in the hidden platform version of the Morris water maze. The Vps13b mutant mice were normal in other behaviors such as anxiety-like behaviors, working memory and social behaviors. Our results suggest that Vps13b mutant mice may recapitulate key clinical symptoms in Cohen syndrome such as intellectual disability and hypotonia. Vps13b mutant mice may serve as a useful model to investigate the pathophysiology of VPS13B-associated disorders.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Ro Un Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihae Oh
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Ja Eun Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, Daegu 41944, Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Jae-Hyung Lee
- Department of Life and Nanopharmaceutical Sciences, Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon 34430, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Yong-Seok Lee
- Department of Physiology, Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
49
|
Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, Skrabar N, Ullrich KK, Tautz D. A de novo evolved gene in the house mouse regulates female pregnancy cycles. eLife 2019; 8:44392. [PMID: 31436535 PMCID: PMC6760900 DOI: 10.7554/elife.44392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation. Different species have specific genes that set them apart from other species. Yet exactly how these species-specific genes originate is not fully known. The traditional view is that existing old genes are duplicated to make a ‘spare’ copy, which can change through mutations into a new gene with a new role gradually over time. Despite there being lots of evidence supporting this theory, not all new genes found in recent years can be traced back to older genes. This led to an alternative view – that recently evolved genes can also appear ‘de novo’, and come from regions of random DNA sequences that did not previously code for a protein. So far, the possibility of genes forming de novo during evolution has largely been supported by comparing and analyzing the genomes of related species. However, very little is known about the biological role these de novo genes play. Now, Xie et al. have generated a list of recently evolved de novo mouse genes, and carried out a detailed analysis of one de novo gene expressed in females at the time when embryos implant into the uterus wall. To study the role of this gene, Xie et al. created a strain of knock-out mice that have a defunct version of the protein coded by the gene. Loss of this protein caused female mice to have their second litter after a shorter period of time and increased the likelihood that female mice would terminate their newborn pups. This suggests that this newly discovered de novo gene is involved in regulating the female reproductive cycles of mice. Further analysis showed that this de novo gene counteracts the action of an older gene that promotes the implantation of embryos. This gene has therefore likely evolved due to the benefit it offers mothers, as it protects them from experiencing the increased physiological stress caused by a premature second pregnancy. These findings support the idea that genes which have evolved de novo can have an essential biological purpose despite coming from random DNA sequences. This establishes that de novo evolution of genes is the second major mechanism of how new genes with significant biological roles can form in the genome.
Collapse
Affiliation(s)
- Chen Xie
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cemalettin Bekpen
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rebecca Krebs-Wheaton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Neva Skrabar
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kristian Karsten Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
50
|
Park H, Kaang BK. Balanced actions of protein synthesis and degradation in memory formation. ACTA ACUST UNITED AC 2019; 26:299-306. [PMID: 31416903 PMCID: PMC6699412 DOI: 10.1101/lm.048785.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022]
Abstract
Storage of long-term memory requires not only protein synthesis but also protein degradation. In this article, we overview recent publications related to this issue, stressing that the balanced actions of protein synthesis and degradation are critical for long-term memory formation. We particularly focused on the brain-derived neurotrophic factor signaling that leads to protein synthesis; proteasome- and autophagy-dependent protein degradation that removes molecular constraints; the role of Fragile X mental retardation protein in translational suppression; and epigenetic modifications that control gene expression at the genomic level. Numerous studies suggest that an imbalance between protein synthesis and degradation leads to intellectual impairment and cognitive disorders.
Collapse
Affiliation(s)
- Hyungju Park
- Department of Structure and Function of Neural Network, Korea Brain Research Institute (KBRI), Daegu 41062, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|