1
|
Li D, Yong Y, Qiao C, Jiang H, Lin J, Wei J, Zhou Y, Li F. Low-Intensity Pulsed Ultrasound Dynamically Modulates the Migration of BV2 Microglia. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:494-507. [PMID: 39632209 DOI: 10.1016/j.ultrasmedbio.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Low-intensity pulsed ultrasound (LIPUS) is a promising modality for neuromodulation. Microglia are the resident immune cells in the brain and their mobility is critical for maintaining brain homeostasis and alleviating neuroimmune pathologies. However, it is unclear whether and how LIPUS modulates microglial migration in physiological conditions. METHODS Here we examined the in vitro effects of LIPUS on the mobility of BV2 microglia by live cell imaging. Single-cell tracing of BV2 microglia migration was analyzed using ImageJ and Chemotaxis and Migration Tool software. Pharmacological manipulation was performed to determine the key molecular players involved in regulating ultrasound-dependent microglia migration. RESULTS We found that the distance of microglial migration was enhanced by LIPUS with increasing acoustic pressure. Removing the extracellular Ca2+ influx or depletion of intracellular Ca2+ stores suppressed ultrasound-enhanced BV2 migration. Furthermore, we found that blocking the reorganization of actin, or suppressing purinergic signaling by application of apyrase or hemi-channel inhibitors, both diminished ultrasound-induced BV2 migration. LIPUS stimulation also enhanced microglial migration in a lipopolysaccharide (LPS)-induced inflammatory environment. CONCLUSION LIPUS promoted microglia migration in both physiological and inflammatory environments. Calcium, cytoskeleton, and purinergic signaling were involved in regulating ultrasound-dependent microglial mobility. Our study reveals the biomechanical impact of ultrasound on microglial migration and highlights the potential of using ultrasound-based tools for modulation of microglial function.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Yong
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chaofeng Qiao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China; School of Basic Medical Sciences, Beihua University, Jilin City, China
| | - Hao Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jiawei Lin
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianpeng Wei
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yufeng Zhou
- Chongqing Medical University, State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing City, China
| | - Fenfang Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
2
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
3
|
Strohm AO, Oldfield S, Hernady E, Johnston CJ, Marples B, O'Banion MK, Majewska AK. Biological sex, microglial signaling pathways, and radiation exposure shape cortical proteomic profiles and behavior in mice. Brain Behav Immun Health 2025; 43:100911. [PMID: 39677060 PMCID: PMC11634995 DOI: 10.1016/j.bbih.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Patients receiving cranial radiation therapy experience tissue damage and cognitive deficits that severely decrease their quality of life. Experiments in rodent models show that these adverse neurological effects are in part due to functional changes in microglia, the resident immune cells of the central nervous system. Increasing evidence suggests that experimental manipulation of microglial signaling can regulate radiation-induced changes in the brain and behavior. Furthermore, many studies show sex-dependent neurological effects of radiation exposure. Despite this, few studies have used both males and females to explore how sex and microglial function interact to influence radiation effects on the brain. Here, we used a system levels approach to examine how deficiencies in purinergic and fractalkine signaling, two important microglial signaling pathways, impact brain proteomic and behavioral profiles in irradiated and control male and female mice. We performed a comprehensive analysis of the cortical proteomes from irradiated and control C57BL/6J, P2Y12-/-, and CX3CR1-/- mice of both sexes using multiple bioinformatics methods. We identified distinct proteins and biological processes, as well as behavioral profiles, regulated by sex, genotype, radiation exposure, and their interactions. Disrupting microglial signaling, had the greatest impact on proteomic expression, with CX3CR1-/- mice showing the most distinct proteomic profile characterized by upregulation of CX3CL1. Surprisingly, radiation exposure caused relatively smaller proteomic changes in glial and synaptic proteins, including Rgs10, Crybb1, C1qa, and Hexb. While we observed some radiation effects on locomotor behavior, biological sex as well as loss of P2Y12 and CX3CR1 signaling had a stronger influence on locomotor outcomes in our model. Lastly, loss of P2Y12 and CX3CR1 strongly regulated exploratory behaviors. Overall, our findings provide novel insights into the molecular pathways and proteins that are linked to P2Y12 and CX3CR1 signaling, biological sex, radiation exposure, and their interactions.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Sadie Oldfield
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Carl J. Johnston
- Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian Marples
- Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M. Kerry O'Banion
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ania K. Majewska
- Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
4
|
Rodriguez-Iglesias N, Paris I, Valero J, Cañas-Zabala L, Carretero A, Hatje K, Zhang JD, Patsch C, Britschgi M, Gutbier S, Sierra A. A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors. Glia 2025; 73:330-351. [PMID: 39495090 DOI: 10.1002/glia.24637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.
Collapse
Affiliation(s)
- Noelia Rodriguez-Iglesias
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Iñaki Paris
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jorge Valero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Lorena Cañas-Zabala
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Alejandro Carretero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jitao David Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Leioa, Spain
| |
Collapse
|
5
|
He XF, Yang XF, Li G, Zhao Y, Luo J, Xu JH, Zheng HQ, Zhang LY, Hu XQ. Physical Exercise Improves the Neuronal Function in Ischemic Stroke Via Microglial CB 2R/P2Y12 Signaling. Mol Neurobiol 2025; 62:2039-2057. [PMID: 39066973 DOI: 10.1007/s12035-024-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Physical exercise (PE) may be the single most important and accessible lifestyle habit throughout life, it inhibits the neuroinflammatory response and protects the brain against damage. As the innate cells in brain, microglia undergo morphological and functional changes to communicate with neurons protecting the neurons from injury. Herein, aiming at exploring the effects of PE on the communication between microglia-neuron during acute ischemic cerebral infarction, we carried out running wheel training before the conduction of transient middle cerebral artery occlusion (tMCAO) in C57BL/6 J and Cx3cr1-GFP mice. We found that microglial P2Y12 expression in the peri-infarct area was decreased, microglial dynamics and microglia-neuron communications were impaired, using in vivo two-photon imaging. PE up-regulated the microglial P2Y12 expression, increased the microglial dynamics, and promoted the contacts of microglia with neurons. As a result, PE inhibited neuronal Ca2+ overloads and protected against damage of the neuronal mitochondria in acute tMCAO. Mechanistically, PE increased the cannabinoid receptor 2 (CB2R) in microglia, promoted the phosphorylation of Nrf2 (NF-E2-related factor 2) at ser-344, increased the transcription factor level of Mafk, and up-regulated the level of P2Y12, whereby PE increased the levels of CB2R to promote microglia-neuron contacts to monitor and protect neuronal function.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing-Hui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
6
|
Zhao H, Lv Y, Xu J, Song X, Wang Q, Zhai X, Ma X, Qiu J, Cui L, Sun Y. The activation of microglia by the complement system in neurodegenerative diseases. Ageing Res Rev 2025; 104:102636. [PMID: 39647582 DOI: 10.1016/j.arr.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a group of neurological disorders characterized by the progressive loss of neuronal structure and function, leading to cognitive and behavioral impairments. Despite significant research advancements, there is currently no definitive cure for NDDs. With global aging on the rise, the burden of these diseases is becoming increasingly severe, highlighting the urgency of understanding their pathogenesis and developing effective therapeutic strategies. Microglia, specialized macrophages in the central nervous system, play a dual role in maintaining neural homeostasis. They are involved in clearing cellular debris and apoptotic cells, but in their activated state, they release inflammatory factors that contribute significantly to neuroinflammation. The complement system (CS), a critical component of the innate immune system, assists in clearing damaged cells and proteins. However, excessive or uncontrolled activation of the CS can lead to chronic neuroinflammation, exacerbating neuronal damage. This review aims to explore the roles of microglia and the CS in the progression of NDDs, with a specific focus on the mechanisms through which the CS activates microglia by modulating mitochondrial function. Understanding these interactions may provide insights into potential therapeutic targets for mitigating neuroinflammation and slowing neurodegeneration.
Collapse
Affiliation(s)
- He Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Yayun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jiasen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Qi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaohui Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| |
Collapse
|
7
|
Belliveau C, Rahimian R, Fakhfouri G, Hosdey C, Simard S, Davoli MA, Mirault D, Giros B, Turecki G, Mechawar N. Evidence of microglial involvement in the childhood abuse-associated increase in perineuronal nets in the ventromedial prefrontal cortex. Brain Behav Immun 2025; 124:321-334. [PMID: 39672240 DOI: 10.1016/j.bbi.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Microglia, known for their diverse roles in the central nervous system, have recently been recognized for their involvement in degrading the extracellular matrix. Perineuronal nets (PNNs), a specialized form of this matrix, are crucial for stabilizing neuronal connections and constraining plasticity. Our group recently reported increased PNN densities in the ventromedial prefrontal cortex (vmPFC) of depressed individuals that died by suicide in adulthood after experiencing childhood abuse (DS-CA) compared to matched controls. To explore potential underlying mechanisms, we employed a comprehensive approach in similar postmortem vmPFC samples, combining a human matrix metalloproteinase and chemokine array, isolation of CD11b-positive microglia and enzyme-linked immunosorbent assays (ELISA). Our findings indicate a significant downregulation of matrix metalloproteinase (MMP)-9 and tissue inhibitors of metalloproteinases (TIMP)-2 in both whole vmPFC grey matter and isolated microglial cells from DS-CA samples. Furthermore, our experiments reveal that a history of child abuse is associated with diminished levels of microglial CX3CR1 and IL33R in both vmPFC whole lysate and CD11b+ isolated cells. However, levels of the CX3CR1 ligand, CX3CL1 (Fractalkine), did not differ between groups. While these data suggest potential long-lasting alterations in microglial markers in the vmPFC of individuals exposed to severe childhood adversity, direct functional assessments were not conducted. Nonetheless, these findings offer insight into how childhood abuse may contribute to PNN alterations via microglial-related mechanisms.
Collapse
Affiliation(s)
- Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Clémentine Hosdey
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Dominique Mirault
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Bruno Giros
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada; Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada; Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada; Department of Psychiatry, McGill University, Montreal, Qc, Canada.
| |
Collapse
|
8
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
9
|
Fu Z, Ganesana M, Hwang P, Tan X, Kinkaid MM, Sun YY, Bian E, Weybright A, Chen HR, Sol-Church K, Eyo UB, Pridans C, Quintana FJ, Robson SC, Kumar P, Venton BJ, Schaefer A, Kuan CY. Microglia modulate the cerebrovascular reactivity through ectonucleotidase CD39. Nat Commun 2025; 16:956. [PMID: 39843911 PMCID: PMC11754601 DOI: 10.1038/s41467-025-56093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Microglia and the border-associated macrophages contribute to the modulation of cerebral blood flow, but the mechanisms have remained uncertain. Here, we show that microglia regulate the cerebral blood flow baseline and the responses to whisker stimulation or intra-cisternal magna injection of adenosine triphosphate, but not intra-cisternal magna injection of adenosine in mice model. Notably, microglia repopulation corrects these cerebral blood flow anomalies. The microglial-dependent regulation of cerebral blood flow requires the adenosine triphosphate-sensing P2RY12 receptor and ectonucleotidase CD39 that initiates the dephosphorylation of extracellular adenosine triphosphate into adenosine in both male and female mice. Pharmacological inhibition or CX3CR1-CreER-mediated deletion of CD39 mimics the cerebral blood flow anomalies in microglia-deficient mice and reduces the upsurges of extracellular adenosine following whisker stimulation. Together, these results suggest that the microglial CD39-initiated breakdown of extracellular adenosine triphosphate co-transmitter is an important step in neurovascular coupling and the regulation of cerebrovascular reactivity.
Collapse
Affiliation(s)
- Zhongxiao Fu
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | | - Philip Hwang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao Tan
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Melissa Marie Kinkaid
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Emily Bian
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aden Weybright
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hong-Ru Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Katia Sol-Church
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- MPI Biology of Ageing, Cologne, Germany
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Lehtonen H, Jokela H, Hofmann J, Tola L, Mehmood A, Ginhoux F, Becher B, Greter M, Yegutkin GG, Salmi M, Gerke H, Rantakari P. Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance. Cell Rep 2025; 44:115227. [PMID: 39841599 DOI: 10.1016/j.celrep.2024.115227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization. Microglia-like macrophages (ml-MACs) are enriched in the posterior pituitary, while other pitMØs in the anterior pituitary exhibit close interactions with hormone-secreting cells. Importantly, all pitMØs originate from early yolk sac progenitors and maintain themselves through self-renewal, independent of bone marrow-derived monocytes. Macrophage depletion experiments unveil the role of macrophages in regulating intrapituitary hormonal balance through extracellular ATP-mediated intercellular signaling. Altogether, these findings provide information on pituitary gland macrophages and advance our understanding of immune-endocrine system crosstalk.
Collapse
Affiliation(s)
- Henna Lehtonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Heli Jokela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Julian Hofmann
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Lauriina Tola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Arfa Mehmood
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Translational Immunology Institute, SingHealth Duke-NUS, Singapore 169856, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Gennady G Yegutkin
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Heidi Gerke
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Pia Rantakari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
11
|
Feichtenbiner AB, Sytsma K, O'Boyle RP, Mittenzwei R, Maioli H, Scherpelz KP, Child DD, Li N, Ariza Torres J, Keene L, Kirkland A, Howard K, Latimer C, Keene CD, Ransom C, Nolan AL. Satellite microglia: marker of traumatic brain injury and regulator of neuronal excitability. J Neuroinflammation 2025; 22:9. [PMID: 39819341 PMCID: PMC11740464 DOI: 10.1186/s12974-024-03328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
Traumatic brain injury is a leading cause of chronic neurologic disability and a risk factor for development of neurodegenerative disease. However, little is known regarding the pathophysiology of human traumatic brain injury, especially in the window after acute injury and the later life development of progressive neurodegenerative disease. Given the proposed mechanisms of toxic protein production and neuroinflammation as possible initiators or contributors to progressive pathology, we examined phosphorylated tau accumulation, microgliosis and astrogliosis using immunostaining in the orbitofrontal cortex, a region often vulnerable across traumatic brain injury exposures, in an age and sex-matched cohort of community traumatic brain injury including both mild and severe cases in midlife. We found that microglial response is most prominent after chronic traumatic brain injury, and interactions with neurons in the form of satellite microglia are increased, even after mild traumatic brain injury. Taking our investigation into a mouse model, we identified that these satellite microglia suppress neuronal excitability in control conditions but lose this ability with chronic traumatic brain injury. At the same time, network hyperexcitability is present in both mouse and human orbitofrontal cortex. Our findings support a role for loss of homeostatic control by satellite microglia in the maladaptive circuit changes that occur after traumatic brain injury.
Collapse
Affiliation(s)
- Alicia B Feichtenbiner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Karinn Sytsma
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Ryan P O'Boyle
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Rhonda Mittenzwei
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
- King County Office of the Medical Examiner, Seattle, WA, 98104, USA
| | - Heather Maioli
- Office of Chief Medical Examiner of the City of New York, New York, NY, 10016, USA
| | - Kathryn P Scherpelz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Ning Li
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Puget Sound Veterans Affairs Seattle Medical Center, Seattle, WA, 98108, USA
| | | | - Lisa Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Kimberly Howard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Christopher Ransom
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Puget Sound Veterans Affairs Seattle Medical Center, Seattle, WA, 98108, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
- Puget Sound Veterans Affairs Seattle Medical Center, Seattle, WA, 98108, USA.
| |
Collapse
|
12
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
13
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Amoriello R, Ballerini C. Immunofluorescence Staining of Murine Spinal Cord Sections to Evaluate Microglial Activation and Astrogliosis. Methods Mol Biol 2025; 2857:159-167. [PMID: 39348064 DOI: 10.1007/978-1-0716-4128-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microglia and astrocytes are the main components of the central nervous system (CNS). Upon activation, microglia is able to phagocyte cell debris, pathogens, and toxins; astrocytes support neuronal functions, blood-brain barrier (BBB) homeostasis, and neurotransmitter uptake and metabolism. Furthermore, both cell types can produce cytokines and chemokines. Aging impacts microglia and astrocytes by promoting the production of pro-inflammatory cytokines, impairing microglial phagocytosis and motility and astrocyte glutamate uptake. During neurodegenerative and neuroinflammatory diseases, the aging process may be accelerated contributing to the alteration of CNS glial cells functions. Multiple sclerosis (MS) is an autoimmune, demyelinating disease in which immunosenescence can promote the conversion from relapsing-remitting form to progressive disease. The murine model of experimental autoimmune encephalomyelitis (EAE) allows to investigate MS pathogenesis. Furthermore, EAE can be developed as acute or progressive, mimicking different forms of human MS. Microglia and astrocytes report morphological and functional changes during neuroinflammation that can be investigated in different ways. We here present a protocol for the study of glial cell activation in the spinal cord tissue of EAE mice.
Collapse
Affiliation(s)
- Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Tabassum S, Wu S, Lee CH, Yang BSK, Gusdon AM, Choi HA, Ren XS. Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside. Neurotherapeutics 2025; 22:e00515. [PMID: 39721917 DOI: 10.1016/j.neurot.2024.e00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with limited effective therapeutic options currently available. Recent research has highlighted the pivotal role of mitochondrial dysfunction in the pathophysiology of TBI, making mitochondria an attractive target for therapeutic intervention. This review comprehensively examines advancements in mitochondrial-targeted therapies for TBI, bridging the gap from basic research to clinical applications. We discuss the underlying mechanisms of mitochondrial damage in TBI, including oxidative stress, impaired bioenergetics, mitochondrial dynamics, and apoptotic pathways. Furthermore, we highlight the complex interplay between mitochondrial dysfunction, inflammation, and blood-brain barrier (BBB) integrity, elucidating how these interactions exacerbate injury and impede recovery. We also evaluate various preclinical studies exploring pharmacological agents, gene therapy, and novel drug delivery systems designed to protect and restore mitochondrial function. Clinical trials and their outcomes are assessed to evaluate the translational potential of mitochondrial-targeted therapies in TBI. By integrating findings from bench to bedside, this review emphasizes promising therapeutic avenues and addresses remaining challenges. It also provides guidance for future research to pave the way for innovative treatments that improve patient outcomes in TBI.
Collapse
Affiliation(s)
- Sidra Tabassum
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Silin Wu
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bosco Seong Kyu Yang
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M Gusdon
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huimahn A Choi
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang S Ren
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
16
|
Uranova NA, Vikhreva OV, Rakhmanova VI. Ultrastructural disturbances in microglia-neuron interactions in the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01956-z. [PMID: 39733190 DOI: 10.1007/s00406-024-01956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
Previously we found altered microglia-neuron interactions in the prefrontal cortex in schizophrenia. We hypothesized that microglia-neuron interactions may be dysregulated in the caudate nucleus in schizophrenia. A postmortem ultrastructural morphometric study was performed to investigate satellite microglia (SatMg) and adjacent neurons in the head of the caudate nucleus in 21 cases of schizophrenia and 20 healthy controls. We found increased microglial density in young schizophrenia patients compared to elderly controls. Volume density (Vv) and the number (N) of mitochondria were lower and total area of vacuoles of endoplasmic reticulum was higher in SatMg in the schizophrenia group compared to controls. The mitochondrial decline has progressed with age and illness duration. Areas of neuronal somata, nucleus, mitochondria and vacuoles of endoplasmic reticulum were significantly higher in schizophrenia compared to controls. These neuronal parameters were positively correlated with area and Vv of vacuoles of endoplasmic reticulum in SatMg in the schizophrenia group but not in the control group. Besides, area of mitochondria in neurons was negatively correlated with N of mitochondria in SatMg. Vv of lipofuscin granules in neurons was higher in elderly patients compared to young patients and was positively correlated with age, illness duration and Vv of lipofuscin granules in SatMg in the schizophrenia group. The disturbances of SatMg-neuronal interactions may be related to the endoplasmic reticulum stress, alterations and deficit of mitochondria in SatMg due to chronic stress, activation and priming of SatMg followed by neurotoxicity. SatMg may participate in neuronal aging in schizophrenia.
Collapse
Affiliation(s)
- Natalya A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe Shosse 34, 115522, Moscow, Russia.
| | - Olga V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe Shosse 34, 115522, Moscow, Russia
| | - Valentina I Rakhmanova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe Shosse 34, 115522, Moscow, Russia
| |
Collapse
|
17
|
Yang L, Zhao W, Kan Y, Ren C, Ji X. From Mechanisms to Medicine: Neurovascular Coupling in the Diagnosis and Treatment of Cerebrovascular Disorders: A Narrative Review. Cells 2024; 14:16. [PMID: 39791717 PMCID: PMC11719775 DOI: 10.3390/cells14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear. However, the complexity of the underlying mechanism remains unclear. This review discusses basic and clinical experimental evidence on how neural activity sensitively communicates with the vasculature to cause spatial changes in blood flow in cerebrovascular diseases. A deeper understanding of how neurovascular unit-related cells participate in NVC regulation is necessary to better understand blood flow and nerve activity recovery in cerebrovascular diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
| | - Yuan Kan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
18
|
Zhang L, Huang L, Zhou Y, Meng J, Zhang L, Zhou Y, Zheng N, Guo T, Zhao S, Wang Z, Huo Y, Zhao Y, Chen XF, Zheng H, Holtzman DM, Zhang YW. Microglial CD2AP deficiency exerts protection in an Alzheimer's disease model of amyloidosis. Mol Neurodegener 2024; 19:95. [PMID: 39695808 DOI: 10.1186/s13024-024-00789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The CD2-associated protein (CD2AP) was initially identified in peripheral immune cells and regulates cytoskeleton and protein trafficking. Single nucleotide polymorphisms (SNPs) in the CD2AP gene have been associated with Alzheimer's disease (AD). However, the functional role of CD2AP, especially its role in microglia during AD onset, remains elusive. METHODS CD2AP protein levels in cultured primary cells and in 5xFAD mice was studied. Microglial CD2AP-deficient mice were crossed with 5xFAD mice and the offspring were subjected to neuropathological assessment, behavioral tests, electrophysiology, RNA-seq, Golgi staining, and biochemistry analysis. Primary microglia were also isolated for assessing their uptake and morphology changes. RESULTS We find that CD2AP is abundantly expressed in microglia and its levels are elevated in the brain of AD patients and the 5xFAD model mice at pathological stages. We demonstrate that CD2AP haploinsufficiency in microglia significantly attenuates cognitive and synaptic deficits, weakens the response of microglia to Aβ and the formation of disease-associated microglia (DAM), and alleviates synapse loss in 5xFAD mice. We show that CD2AP-deficient microglia exhibit compromised uptake ability. In addition, we find that CD2AP expression is positively correlated with the expression of the complement C1q that is important for synapse phagocytosis and the formation of DAM in response to Aβ deposition. Moreover, we reveal that CD2AP interacts with colony stimulating factor 1 receptor (CSF1R) and regulates CSF1R cell surface levels, which may further affect C1q expression. CONCLUSIONS Our results demonstrate that CD2AP regulates microgliosis and identify a protective function of microglial CD2AP deficiency against Aβ deposition, suggesting the importance of detailed investigation of AD-associated genes in different brain cells for thoroughly understanding their exact contribution to AD.
Collapse
Affiliation(s)
- Lingliang Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lingling Huang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhang Zhou
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jian Meng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liang Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yunqiang Zhou
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Naizhen Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tiantian Guo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shanshan Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zijie Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuanhui Huo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao-Fen Chen
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
19
|
Dávid C, Giber K, Kerti-Szigeti K, Köllő M, Nusser Z, Acsady L. A novel image segmentation method based on spatial autocorrelation identifies A-type potassium channel clusters in the thalamus. eLife 2024; 12:RP89361. [PMID: 39655901 PMCID: PMC11630814 DOI: 10.7554/elife.89361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Unsupervised segmentation in biological and non-biological images is only partially resolved. Segmentation either requires arbitrary thresholds or large teaching datasets. Here, we propose a spatial autocorrelation method based on Local Moran's I coefficient to differentiate signal, background, and noise in any type of image. The method, originally described for geoinformatics, does not require a predefined intensity threshold or teaching algorithm for image segmentation and allows quantitative comparison of samples obtained in different conditions. It utilizes relative intensity as well as spatial information of neighboring elements to select spatially contiguous groups of pixels. We demonstrate that Moran's method outperforms threshold-based method in both artificially generated as well as in natural images especially when background noise is substantial. This superior performance can be attributed to the exclusion of false positive pixels resulting from isolated, high intensity pixels in high noise conditions. To test the method's power in real situation, we used high power confocal images of the somatosensory thalamus immunostained for Kv4.2 and Kv4.3 (A-type) voltage-gated potassium channels in mice. Moran's method identified high-intensity Kv4.2 and Kv4.3 ion channel clusters in the thalamic neuropil. Spatial distribution of these clusters displayed strong correlation with large sensory axon terminals of subcortical origin. The unique association of the special presynaptic terminals and a postsynaptic voltage-gated ion channel cluster was confirmed with electron microscopy. These data demonstrate that Moran's method is a rapid, simple image segmentation method optimal for variable and high noise conditions.
Collapse
Affiliation(s)
- Csaba Dávid
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental MedicineBudapestHungary
- Department of Anatomy, Histology and Embryology, Semmelweis UniversityBudapestHungary
| | - Kristóf Giber
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental MedicineBudapestHungary
| | - Katalin Kerti-Szigeti
- Laboratory of Cellular Neurophysiology, HUN-REN Institute of Experimental MedicineBudapestHungary
- Novarino Group, Institute of Science and TechnologyKlosterneuburgAustria
| | - Mihály Köllő
- Laboratory of Cellular Neurophysiology, HUN-REN Institute of Experimental MedicineBudapestHungary
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick InstituteLondonUnited Kingdom
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, HUN-REN Institute of Experimental MedicineBudapestHungary
| | - Laszlo Acsady
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental MedicineBudapestHungary
| |
Collapse
|
20
|
Fan Z, Su D, Li ZC, Sun S, Ge Z. Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine. J Neuroinflammation 2024; 21:318. [PMID: 39627853 PMCID: PMC11613737 DOI: 10.1186/s12974-024-03313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms. METHODS A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids. RESULTS Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406. CONCLUSIONS Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Dandan Su
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zi Chao Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Songtang Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Zimmermann S, Mathew A, Bondareva O, Elwakiel A, Waldmann K, Jiang S, Rana R, Singh K, Kohli S, Shahzad K, Biemann R, Roskoden T, Storsberg SD, Mawrin C, Krügel U, Bechmann I, Goldschmidt J, Sheikh BN, Isermann B. Chronic kidney disease leads to microglial potassium efflux and inflammasome activation in the brain. Kidney Int 2024; 106:1101-1116. [PMID: 39089576 DOI: 10.1016/j.kint.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
Cognitive impairment is common in extracerebral diseases such as chronic kidney disease (CKD). Kidney transplantation reverses cognitive impairment, indicating that cognitive impairment driven by CKD is therapeutically amendable. However, we lack mechanistic insights allowing development of targeted therapies. Using a combination of mouse models (including mice with neuron-specific IL-1R1 deficiency), single cell analyses (single-nuclei RNA-sequencing and single-cell thallium autometallography), human samples and in vitro experiments we demonstrate that microglia activation impairs neuronal potassium homeostasis and cognition in CKD. CKD disrupts the barrier of brain endothelial cells in vitro and the blood-brain barrier in vivo, establishing that the uremic state modifies vascular permeability in the brain. Exposure to uremic conditions impairs calcium homeostasis in microglia, enhances microglial potassium efflux via the calcium-dependent channel KCa3.1, and induces p38-MAPK associated IL-1β maturation in microglia. Restoring potassium homeostasis in microglia using a KCa3.1-specific inhibitor (TRAM34) improves CKD-triggered cognitive impairment. Likewise, inhibition of the IL-1β receptor 1 (IL-1R1) using anakinra or genetically abolishing neuronal IL-1R1 expression in neurons prevent CKD-mediated reduced neuronal potassium turnover and CKD-induced impaired cognition. Accordingly, in CKD mice, impaired cognition can be ameliorated by either preventing microglia activation or inhibiting IL-1R-signaling in neurons. Thus, our data suggest that potassium efflux from microglia triggers their activation, which promotes microglia IL-1β release and IL-1R1-mediated neuronal dysfunction in CKD. Hence, our study provides new mechanistic insight into cognitive impairment in association with CKD and identifies possible new therapeutic approaches.
Collapse
Affiliation(s)
- Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany.
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (Hl-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Klarina Waldmann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Thomas Roskoden
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Christian Mawrin
- Department of Neuropathology and Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (Hl-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany.
| |
Collapse
|
23
|
Hendler BJ, McClain JL, Zilli A, Seguella L, Gulbransen BD. Purinergic P2Y 1 and P2Y 12 receptors control enteric nervous system activity through neuro-glia-macrophage crosstalk. Purinergic Signal 2024:10.1007/s11302-024-10060-9. [PMID: 39612055 DOI: 10.1007/s11302-024-10060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y1 receptors and neurons to adenosine triphosphate (ATP) through P2X3 receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y1 expression in the ENS, gene sequencing suggests that P2Y1 expression is more enriched in neurons than glia. The reason for the mismatch between genomic and functional data is unclear but could involve co-expression of inhibitory P2Y12 receptors in neurons. We addressed this issue by studying the expression and function of P2Y1 and P2Y12 receptors in the mouse ENS using live immunolabeling and calcium imaging techniques. The data show that ADP drives activity among enteric glia and neurons in the myenteric plexus. Interestingly, inhibiting P2Y12 activity increased neuron responses to ADP and overall spontaneous activity among enteric neurons and glia while decreasing the magnitude of glial responses to ADP. Investigating the location of the receptors involved revealed P2Y1 receptor expression by both neurons and glia, while P2Y12 receptor expression was minimal in the ENS. Instead, P2Y12 expression was enriched in the surrounding muscularis macrophages. Macrophages positive for P2Y12 overlapped with CD163 positive subsets that have known inhibitory influences over myenteric neurocircuits. Together, these data suggest that macrophage P2Y12 pathways act to constrain activity in the ENS, which could have implications in mechanisms that contribute to enteric hyperexcitability following disease.
Collapse
Affiliation(s)
- Blake J Hendler
- Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Jonathon L McClain
- Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
24
|
Ren Q, Lu F, Hao R, Chen Y, Liang C. Subretinal microglia support donor photoreceptor survival in rd1 mice. Stem Cell Res Ther 2024; 15:436. [PMID: 39563450 PMCID: PMC11575076 DOI: 10.1186/s13287-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
PURPOSE To investigate the potential relationship between subretinal microglia and transplanted donor photoreceptors. METHODS Photoreceptor precursors were transplanted into wild-type mice and rd1 mice by trans-scleral injection. Immunohistochemistry was employed to detect microglia and macrophages. PlX5622 feed was used to achieve microglia depletion and microglia repopulation. RNA-seq and qPCR were utilized to evaluate gene expression. Confocal microscopy was used to observe the interaction between microglia and donor photoreceptors. RESULTS Donor photoreceptors survived in rd1 mice but not in wild-type mice after trans-scleral injection. The microglial cells closely interacted with donor cells. While donor cells failed to survive in rd1 mice after microglia depletion, they could survive following microglia repopulation. The RNA-seq analysis showed a pro-neurodevelopmental effect of sub-retinal microglia/RPE tissue in rd1 mice. CONCLUSIONS Subretinal microglia supported donor photoreceptor survival in rd1 mice.
Collapse
Affiliation(s)
- Qinjia Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Ruwa Hao
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Chen Liang
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China.
| |
Collapse
|
25
|
Althammer F, Roy RK, Kirchner MK, Podpecan Y, Helen J, McGrath S, Lira EC, Stern JE. Angiotensin-II drives changes in microglia-vascular interactions in rats with heart failure. Commun Biol 2024; 7:1537. [PMID: 39562706 PMCID: PMC11577102 DOI: 10.1038/s42003-024-07229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknown. Using a well-established ischemic HF rat model, we demonstrate the increased abundance of vessel-associated microglia (VAM) in HF rat hippocampi, along with an increased expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to brain capillaries, along with increased expression of TNFα. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to blood vessels, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Yuval Podpecan
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jemima Helen
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Shaina McGrath
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Elba Campos Lira
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
26
|
McGlothen KI, Hines RM, Hines DJ. Outward depolarization of the microglia mitochondrial membrane potential following lipopolysaccharide exposure: a novel screening tool for microglia metabolomics. Front Cell Neurosci 2024; 18:1430448. [PMID: 39569069 PMCID: PMC11576292 DOI: 10.3389/fncel.2024.1430448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
Microglia are non-electrogenic immune cells that respond rapidly to protect the central nervous system (CNS) from infections, injuries, or other forms of damage. Microglia mitochondria are essential for providing the requisite energy resources for immune regulation. While fluctuations in energy metabolism are regulated by mitochondria and are reflected in the mitochondrial membrane potential (ΔΨm), there remains a lack of innovation in microglia-centric tools that capitalize on this. In this study, live imaging of microglia in acute slices from EGFP reporter mice expressing EGFP under the control of the fractalkine receptor (CX3CR1) promoter is combined with loading a fluorescent reporter of ΔΨm. Depolarizations in the ΔΨm were recorded after administering the well-characterized immune stimulant lipopolysaccharide (LPS). Microglia ΔΨm increased in distinctive phases with a relatively steep slope following LPS exposure. Conversely, the ΔΨm of neurons showed minimal regulation, highlighting a distinct microglia ΔΨm response to immune stimuli. Analysis of the depolarization of the microglia ΔΨm in the soma, branches, and endfeet revealed progressive changes in each subcellular domain originating in the soma and progressing outward. The inverse agonist emapunil attenuated the depolarization of the ΔΨm across states in a domain-specific manner. These findings emphasize the contribution of mitochondrial membrane dynamics in regulating microglial responses to immune stimuli. Further, this work advances a novel drug screening strategy for the therapeutic regulation of metabolic activity in inflammatory conditions of the brain.
Collapse
Affiliation(s)
- Kendra I McGlothen
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, College of Liberal Arts, University of Nevada, Las Vegas, NV, United States
| | - Rochelle M Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, College of Liberal Arts, University of Nevada, Las Vegas, NV, United States
| | - Dustin J Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, College of Liberal Arts, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
27
|
Johnson B, Iuliano M, Lam TT, Biederer T, De Camilli PV. A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell-cell contacts. J Cell Biol 2024; 223:e202311137. [PMID: 39158698 PMCID: PMC11334333 DOI: 10.1083/jcb.202311137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Junctions between the ER and plasma membrane (PM) are implicated in calcium homeostasis, non-vesicular lipid transfer, and other cellular functions. Two ER proteins that function both as tethers to the PM via a polybasic C-terminus motif and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. We report that both proteins also form a complex with band 4.1 family members, which in turn bind PM proteins including cell adhesion molecules such as SynCAM 1. This complex enriches TMEM24 and C2CD2 containing ER/PM junctions at sites of cell contacts. Dynamic properties of TMEM24-dependent ER/PM junctions are impacted when band 4.1 is part of the junction, as TMEM24 at cell-adjacent ER/PM junctions is not shed from the PM by calcium rise, unlike TMEM24 at non-cell adjacent junctions. Lipid transport between the ER and the PM by TMEM24 and C2CD2 at sites where cells, including neurons, contact other cells may participate in adaptive responses to cell contact-dependent signaling.
Collapse
Affiliation(s)
- Ben Johnson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Iuliano
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Department of Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Pietro V De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
29
|
Gern OL, Pavlou A, Mulenge F, Busker LM, Ghita L, Aringo A, Costa B, Spanier J, Waltl I, Stangel M, Kalinke U. MAVS signaling shapes microglia responses to neurotropic virus infection. J Neuroinflammation 2024; 21:264. [PMID: 39425188 PMCID: PMC11490141 DOI: 10.1186/s12974-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Viral encephalitis is characterized by a series of immunological reactions that can control virus infection in the brain, but dysregulated responses may cause excessive inflammation and brain damage. Microglia are brain-resident myeloid cells that are specialized in surveilling the local CNS environment and in case of viral brain infection they contribute to the control of the infection and to restriction of viral dissemination. Here, we report that after exposure to neurotropic vesicular stomatitis virus (VSV), murine in vitro microglia cultures showed rapid upregulation of a broad range of pro-inflammatory and antiviral genes, which were stably expressed over the entire 8 h infection period. Additionally, a set of immunomodulatory genes was upregulated between 6 and 8 h post infection. In microglia cultures, the induction of several immune response pathways including cytokine responses was dependent on mitochondrial antiviral-signaling protein (MAVS). Consequently, in Mavs-deficient microglia the control of virus propagation failed as indicated by augmented virus titers and the accumulation of viral transcripts. Thus, in the analyzed in vitro system, MAVS signaling is critically required to achieve full microglia activation and to mediate profound antiviral effects. In Mavs-deficient mice, intranasal VSV instillation caused higher disease severity than in WT mice and virus dissemination was noticed beyond the olfactory bulb. Virus spread to inner regions of the olfactory bulb, i.e., the granular cell layer, correlated with the recruitment of highly inflammatory non-microglia myeloid cells into the olfactory bulb in Mavs-/- mice. Furthermore, increased cytokine levels were detected in the nasal cavity, the olfactory bulb and in other brain regions. Thus, microglial MAVS signaling is critically needed for virus sensing, full microglia activation, and for orchestration of protective immunity in the virus-infected CNS.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Genentech, South San Francisco, CA, USA
| | - Angela Aringo
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
- Translational Medicine Neuroscience, Biomedical Research, Novartis Pharma AG, Basel, 4056, Switzerland
- Center of Systems Neuroscience, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04531-8. [PMID: 39400857 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
31
|
Wu W, He Y, Chen Y, Fu Y, He S, Liu K, Qu JY. In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons. Nat Commun 2024; 15:8837. [PMID: 39397028 PMCID: PMC11471772 DOI: 10.1038/s41467-024-53218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Microglia, the primary immune cells in the central nervous system, play a critical role in regulating neuronal function and fate through their interaction with neurons. Despite extensive research, the specific functions and mechanisms of microglia-neuron interactions remain incompletely understood. In this study, we demonstrate that microglia establish direct contact with myelinated axons at Nodes of Ranvier in the spinal cord of mice. The contact associated with neuronal activity occurs in a random scanning pattern. In response to axonal injury, microglia rapidly transform their contact into a robust wrapping form, preventing acute axonal degeneration from extending beyond the nodes. This wrapping behavior is dependent on the function of microglial P2Y12 receptors, which may be activated by ATP released through axonal volume-activated anion channels at the nodes. Additionally, voltage-gated sodium channels (NaV) and two-pore-domain potassium (K2P) channels contribute to the interaction between nodes and glial cells following injury, and inhibition of NaV delays axonal degeneration. Through in vivo imaging, our findings reveal a neuroprotective role of microglia during the acute phase of single spinal cord axon injury, achieved through neuron-glia interaction.
Collapse
Grants
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- 32101211, 32192400 National Natural Science Foundation of China (National Science Foundation of China)
- 82171384 National Natural Science Foundation of China (National Science Foundation of China)
- the Hong Kong Research Grants Council through grants (16102122, 16102123, 16102421, 16102518, 16102920, T13-607/12R, T13-605/18W, T13-602/21N, C6002-17GF, C6001-19E);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16, AOE/M-09/12) and the Hong Kong University of Science & Technology (HKUST) through grant 30 for 30 Research Initiative Scheme.
- Guangdong Basic and Applied Basic Research Foundation 2024A1515012414 Shenzhen Medical Research Fund (B2301004)
- Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology (20200730009), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS0001);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16); Hong Kong Research Grants Council through grants (T13-602/21N, C6034-21G)
Collapse
Affiliation(s)
- Wanjie Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yujun Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Sicong He
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- StateKey Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen, Guangdong, China.
- HKUST Shenzhen Research Institute, Guangdong, China.
- Shenzhen-Hong Kong Institute of Brain Science, Guangdong, China.
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
| |
Collapse
|
32
|
Calma AD, Pavey N, Menon P, Vucic S. Neuroinflammation in amyotrophic lateral sclerosis: pathogenic insights and therapeutic implications. Curr Opin Neurol 2024; 37:585-592. [PMID: 38775138 DOI: 10.1097/wco.0000000000001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW Neuroinflammation appears to be an important pathogenic process in amyotrophic lateral sclerosis (ALS). Dysfunction of central immune pathways, including activation of microglia and astrocytes, and peripherally derived immune cells, initiate noncell autonomous inflammatory mechanisms leading to degeneration. Cell autonomous pathways linked to ALS genetic mutations have been recently identified as contributing mechanism for neurodegeneration. The current review provides insights into the pathogenic importance of central and peripheral inflammatory processes in ALS pathogenesis and appraises their potential as therapeutic targets. RECENT FINDINGS ALS is a multistep process mediated by a complex interaction of genetic, epigenetic, and environmental factors. Noncell autonomous inflammatory pathways contribute to neurodegeneration in ALS. Activation of microglia and astrocytes, along with central nervous system infiltration of peripherally derived pro-inflammatory innate (NK-cells/monocytes) and adaptive (cell-mediated/humoral) immune cells, are characteristic of ALS. Dysfunction of regulatory T-cells, elevation of pro-inflammatory cytokines and dysbiosis of gut microbiome towards a pro-inflammatory phenotype, have been reported as pathogenic mechanisms in ALS. SUMMARY Dysregulation of adaptive and innate immunity is pathogenic in ALS, being associated with greater disease burden, more rapid disease course and reduced survival. Strategies aimed at modulating the pro-inflammatory immune components could be of therapeutic utility.
Collapse
Affiliation(s)
- Aicee D Calma
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
33
|
Wang K, Xie Y, Chen X, Ouyang X, Zhao L, Chen H, Xu J. The Activation of Muscarinic Acetylcholine Receptors Protects against Neuroinflammation in a Mouse Model through Attenuating Microglial Inflammation. Int J Mol Sci 2024; 25:10432. [PMID: 39408758 PMCID: PMC11476571 DOI: 10.3390/ijms251910432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Neuroinflammation is a critical factor that contributes to neurological impairment and is closely associated with the onset and progression of neurodegenerative diseases. In the central nervous system (CNS), microglia play a pivotal role in the regulation of inflammation through various signaling pathways. Therefore, mitigating microglial inflammation is considered a promising strategy for restraining neuroinflammation. Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and exhibit clear neuroprotective effects in various disease models. However, whether the activation of mAChRs can harness benefits in neuroinflammation remains largely unexplored. In this study, the anti-inflammatory effects of mAChRs were found in a neuroinflammation mouse model. The expression of various cytokines and chemokines was regulated in the brains and spinal cords after the administration of mAChR agonists. Microglia were the primary target cells through which mAChRs exerted their anti-inflammatory effects. The results showed that the activation of mAChRs decreased the pro-inflammatory phenotypes of microglia, including the expression of inflammatory cytokines, morphological characteristics, and distribution density. Such anti-inflammatory modulation further exerted neuroprotection, which was found to be even more significant by the direct activation of neuronal mAChRs. This study elucidates the dual mechanisms through which mAChRs exert neuroprotective effects in central inflammatory responses, providing evidence for their application in inflammation-related neurological disorders.
Collapse
Affiliation(s)
- Kaichun Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Xie
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
| | - Xixiang Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Ouyang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Hongzhuan Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianrong Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
34
|
Stoessel MB, Stowell RD, Lowery RL, Le L, Vu AN, Whitelaw BS, Majewska AK. The effects of P2Y12 loss on microglial gene expression, dynamics, and injury response in the cerebellum and cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614526. [PMID: 39386439 PMCID: PMC11463386 DOI: 10.1101/2024.09.25.614526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite the emerging consensus that microglia are critical to physiological and pathological brain function, it is unclear how microglial roles and their underlying mechanisms differ between brain regions. Microglia throughout the brain express common markers, such as the purinergic receptor P2Y12, that delineate them from peripheral macrophages. P2Y12 is a critical sensor of injury but also contributes to the sensing of neuronal activity and remodeling of synapses, with microglial loss of P2Y12 resulting in behavioral deficits. P2Y12 has largely been studied in cortical microglia, despite the fact that a growing body of evidence suggests that microglia exhibit a high degree of regional specialization. Cerebellar microglia, in particular, exhibit transcriptional, epigenetic, and functional profiles that set them apart from their better studied cortical and hippocampal counterparts. Here, we demonstrate that P2Y12 deficiency does not alter the morphology, distribution, or dynamics of microglia in the cerebellum. In fact, loss of P2Y12 does little to disturb the distinct transcriptomic profiles of cortical and cerebellar microglia. However, unlike in cortex, P2Y12 is not required for a full microglial response to focal injury, suggesting that cerebellar and cortical microglia use different cues to respond to injury. Finally, we show that P2Y12 deficiency impairs cerebellar learning in a delay eyeblink conditioning task, a common test of cerebellar plasticity and circuit function. Our findings suggest not only region-specific roles of microglial P2Y12 signaling in the focal injury response, but also indicate a conserved role for P2Y12 in microglial modulation of plasticity across regions.
Collapse
|
35
|
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, Schmidt SV, Lambertz J, Bellande T, Pósfai B, Geck C, Spitzer J, Odainic A, Castro-Gomez S, Schwartz S, Boussaad I, Krüger R, Glaab E, Di Monte DA, Bano D, Dénes Á, Latz E, Melki R, Pape HC, Heneka MT. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024; 112:3106-3125.e8. [PMID: 39059388 DOI: 10.1016/j.neuron.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Frederik Eikens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Opitz
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Csaba Cserép
- Institute of Experimental Medicine, Budapest, Hungary
| | - Susanne V Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Tracy Bellande
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Balázs Pósfai
- Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Geck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ádám Dénes
- Institute of Experimental Medicine, Budapest, Hungary
| | - Eike Latz
- German Center for Neurodegenerative Diseases, Bonn, Germany; Institute of innate immunity, University Hospital Bonn, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Institute of innate immunity, University Hospital Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
36
|
Liu J, Jiang J, He C, Zhou L, Zhang Y, Zhao S, Yang Z. Platycodin D and voluntary running synergistically ameliorate memory deficits in 5 × FAD mice via mediating neuromodulation and neuroinflammation. Front Aging Neurosci 2024; 16:1451766. [PMID: 39385832 PMCID: PMC11461226 DOI: 10.3389/fnagi.2024.1451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the leading cause of dementia, and currently, no effective treatments are available to reverse or halt its progression in clinical practice. Although a plethora of studies have highlighted the benefits of physical exercise in combating AD, elder individuals often have limited exercise capacity. Therefore, mild physical exercise and nutritional interventions represent potential strategies for preventing and mitigating neurodegenerative diseases. Our research, along with other studies, have demonstrated that platycodin D (PD) or its metabolite, platycodigenin, derived from the medicinal plant Platycodon grandiflorus, exerts neuroprotective effects against amyloid β (Aβ)-induced neuroinflammation. However, the combined effects of PD and physical exercise on alleviating AD have yet to be explored. The current study aimed to investigate whether combined therapy could synergistically ameliorate memory deficits and AD pathology in 5 × FAD mice. Methods Five-month-old 5 × FAD mice were randomly assigned to four groups, and received either PD (5 mg/kg/day, p.o.), voluntary running, or a combination of both for 47 days. Nest building test, locomotion test, and Morris water maze test were used to evaluate the cognitive function. Immunohistochemical and ELISA analysis was performed to determine Aβ build-up, microglia and astrocytes hyperactivation, and survival neurons in the hippocampus and perirhinal cortex. Real-time quantitative PCR analysis was used to assess the polarization of microglia and astrocytes. HPLC analysis was performed to measure monoamine neurotransmitters in the hippocampus. Results and discussion The combination of PD and voluntary running synergistically restored nest-building behavior, alleviated recognition and spatial memory deficits, and showed superior effects compared to monotherapy. In addition, the PD and voluntary running combination reduced Aβ build-up, decreased hyperactivation of microglia and astrocytes in the hippocampus and perirhinal cortex, promoted the polarization of inflammatory M1 microglia and reactive astrocytes toward beneficial phenotypes, and lowered systemic circulating pro-inflammatory cytokines while increasing anti-inflammatory cytokines in 5 × FAD mice. Furthermore, combined therapy effectively protected neurons and increased levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of 5 × FAD mice. In conclusion, the combination of PD and voluntary running holds great potential as a treatment for AD, offering promise for delaying onset or progression of AD.
Collapse
Affiliation(s)
- Junxin Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiahui Jiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shuai Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
37
|
Wei B, Cheng G, Bi Q, Lu C, Sun Q, Li L, Chen N, Hu M, Lu H, Xu X, Mao G, Wan S, Hu Z, Gu Y, Zheng J, Zhao L, Shen XZ, Liu X, Shi P. Microglia in the hypothalamic paraventricular nucleus sense hemodynamic disturbance and promote sympathetic excitation in hypertension. Immunity 2024; 57:2030-2042.e8. [PMID: 39116878 DOI: 10.1016/j.immuni.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Hypertension is usually accompanied by elevated sympathetic tonicity, but how sympathetic hyperactivity is triggered is not clear. Recent advances revealed that microglia-centered neuroinflammation contributes to sympathetic excitation in hypertension. In this study, we performed a temporospatial analysis of microglia at both morphological and transcriptomic levels and found that microglia in the hypothalamic paraventricular nucleus (PVN), a sympathetic center, were early responders to hypertensive challenges. Vasculature analyses revealed that the PVN was characterized by high capillary density, thin vessel diameter, and complex vascular topology relative to other brain regions. As such, the PVN was susceptible to the penetration of ATP released from the vasculature in response to hemodynamic disturbance after blood pressure increase. Mechanistically, ATP ligation to microglial P2Y12 receptor was responsible for microglial inflammatory activation and the eventual sympathetic overflow. Together, these findings identified a distinct vasculature pattern rendering vulnerability of PVN pre-sympathetic neurons to hypertension-associated microglia-mediated inflammatory insults.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qihang Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Miner Hu
- Department of Cardiology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Haoran Lu
- Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xuancheng Xu
- Zhejiang Chinese Medical University, Hangzhou 310013, China; Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Zhechun Hu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China; Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Gu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China; Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Zheng
- Key Laboratory for Biomedical Engineering of Ministrey of Education, Collage of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministrey of Education, Collage of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310013, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310013, China.
| |
Collapse
|
38
|
Liu R, Zhao H, Lu Z, Zeng L, Shi H, Wu L, Wang J, Zhong F, Liu C, Zhang Y, Qiu Z. Toxicity profiles of immune checkpoint inhibitors in nervous system cancer: a comprehensive disproportionality analysis using FDA adverse event reporting system. Clin Exp Med 2024; 24:216. [PMID: 39249163 PMCID: PMC11383843 DOI: 10.1007/s10238-024-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Immune-related adverse events (irAEs) always occur during treatment with immune checkpoint inhibitors (ICIs). Patients with nervous system cancer (NSC) may gain clinical benefit from ICIs, but irAEs in NSC patients are rarely examined. Therefore, our study systematically summarized reports of irAEs in NSC. METHODS We obtained information from the FDA adverse event reporting system from the first quarter (Q1) of 2013 to the fourth quarter (Q4) of 2022. We examined use of a combination of ICIs and chemotherapy (ICI_Chemo) or chemotherapy only (ICI_Chemo) for patients with NSC. Multiple disproportionality analyses were applied to assess irAEs. Multiomics data from the gene expression omnibus (GEO) database were analyzed to explore potential molecular mechanisms associated with irAEs in NSC patients. RESULTS Fourteen irAEs were identified in 8,357 NSC patients after removing duplicates; the top five events were seizure, confused state, encephalopathy, muscular weakness and gait disturbance. Older patients were more likely to develop irAEs than were younger patients. From the start of ICIs_Chemo to irAE occurrence, there was a significant difference in the time to onset of irAEs between age groups. irAEs may occur via mechanisms involving the inflammatory response, secretion of inflammatory mediators, and aberrant activation of pathologic pathways. CONCLUSIONS This study helps to characterize irAEs in NSC patients treated with ICIs. We combined GEO database analysis to explore the potential molecular mechanisms of irAEs. The results of this study provide a basis for improving the toxic effects of ICIs in NSC patients.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Zhao
- Department of Sleep Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lingshuai Zeng
- Major of Rehabilitation, Faculty of Medicine, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huaqiu Shi
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longqiu Wu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangjun Zhong
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chuanjian Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
39
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Kim MJ, Lee D, Ryu JH, Lee SY, Choi BT, Yun YJ, Shin HK. Weisheng-tang protects against ischemic brain injury by modulating microglia activation through the P2Y12 receptor. Front Pharmacol 2024; 15:1347622. [PMID: 39295932 PMCID: PMC11408171 DOI: 10.3389/fphar.2024.1347622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Background: Stroke, a leading cause of death and disability, lacks effective treatments. Post-stroke secondary damage worsens the brain microenvironment, further exacerbating brain injury. Microglia's role in responding to stroke-induced damage in peri-infarct regions is crucial. In this study, we explored Weisheng-tang's potential to enhance ischemic outcomes by targeting microglia. Methods: We induced middle cerebral artery occlusion and reperfusion in mice, followed by behavioral assessments and infarct volume analyses after 48 h, and examined the changes in microglial morphology through skeleton analysis. Results: Weisheng-tang (300 mg/kg) significantly reduced infarction volume and alleviated neurological and motor deficits. The number of activated microglia was markedly increased within the peri-infarct territory, which was significantly reversed by Weisheng-tang. Microglial morphology analysis revealed that microglial processes were retracted owing to ischemic damage but were restored in Weisheng-tang-treated mice. This restoration was accompanied by the expression of the purinergic P2Y12 receptor (P2Y12R), a key regulator of microglial process extension. Weisheng-tang increased neuronal Kv2.1 clusters while suppressing juxtaneuronal microglial activation. The P2Y12R inhibitor-ticagrelor-eliminated the tissue and functional recovery that had been observed with Weisheng-tang after ischemic damage. Discussion: Weisheng-tang improved experimental stroke outcomes by modulating microglial morphology through P2Y12R, shedding light on its neuroprotective potential in ischemic stroke.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Dohee Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Ji Hye Ryu
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Young Ju Yun
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| |
Collapse
|
41
|
Wang W, Li Z, Yuan S, Du Z, Li J, Peng H, Ru S. A Potential Neurotoxic Mechanism: Bisphenol S-Induced Inhibition of Glucose Transporter 1 Leads to ATP Excitotoxicity in the Zebrafish Brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15463-15474. [PMID: 39167196 DOI: 10.1021/acs.est.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Many environmental pollutants have neurotoxic effects, but the initial molecular events involved in these effects are unclear. Here, zebrafish were exposed to the neurotoxicant bisphenol S (BPS, 1, 10, or 100 μg/L) from the embryonic stage to the larval stage to explore the ability of BPS to interfere with energy metabolism in the brain. BPS, which is similar to a glucose transporter 1 (GLUT1) inhibitor, inhibited GLUT1 function but increased mitochondrial activity in the brains of larval zebrafish. Interestingly, GLUT1 inhibitor treatment and BPS exposure did not reduce energy production in the brain; instead, they increased ATP production by inducing the preferential use of ketone bodies. Moreover, BPS promoted the protein expression of the purinergic 2X receptor but inhibited the purinergic 2Y-mediated phosphatidylinositol signaling pathway, indicating that excess ATP acts as a neurotransmitter to activate the purinergic 2X receptor under the BPS-induced restriction of GLUT1 function. BPS-induced inhibition of GLUT1 increased the number of neurons but promoted apoptosis by activating ATP-purinergic 2X receptors in the brain, causing ATP excitatory neurotoxicity. Our data reveal a potential neurotoxic mechanism induced by BPS that may represent a new adverse outcome pathway.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shipeng Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
42
|
Matteoli M. The role of microglial TREM2 in development: A path toward neurodegeneration? Glia 2024; 72:1544-1554. [PMID: 38837837 DOI: 10.1002/glia.24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
The nervous and the immune systems undergo a continuous cross talk, starting from early development and continuing throughout adulthood and aging. Defects in this cross talk contribute to neurodevelopmental and neurodegenerative diseases. Microglia are the resident immune cells in the brain that are primarily involved in this bidirectional communication. Among the microglial genes, trem2 is a key player, controlling the functional state of microglia and being at the forefront of many processes that require interaction between microglia and other brain components, such as neurons and oligodendrocytes. The present review focuses on the early developmental window, describing the early brain processes in which TREM2 is primarily involved, including the modulation of synapse formation and elimination, the control of neuronal bioenergetic states as well as the contribution to myelination processes and neuronal circuit formation. By causing imbalances during these early maturation phases, dysfunctional TREM2 may have a striking impact on the adult brain, making it a more sensitive target for insults occurring during adulthood and aging.
Collapse
Affiliation(s)
- Michela Matteoli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
43
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
44
|
Akinlaja YO, Nishiyama A. Glial modulation of synapse development and plasticity: oligodendrocyte precursor cells as a new player in the synaptic quintet. Front Cell Dev Biol 2024; 12:1418100. [PMID: 39258226 PMCID: PMC11385347 DOI: 10.3389/fcell.2024.1418100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Synaptic communication is an important process in the central nervous system that allows for the rapid and spatially specified transfer of signals. Neurons receive various synaptic inputs and generate action potentials required for information transfer, and these inputs can be excitatory or inhibitory, which collectively determines the output. Non-neuronal cells (glial cells) have been identified as crucial participants in influencing neuronal activity and synaptic transmission, with astrocytes forming tripartite synapses and microglia pruning synapses. While it has been known that oligodendrocyte precursor cells (OPCs) receive neuronal inputs, whether they also influence neuronal activity and synaptic transmission has remained unknown for two decades. Recent findings indicate that OPCs, too, modulate neuronal synapses. In this review, we discuss the roles of different glial cell types at synapses, including the recently discovered involvement of OPCs in synaptic transmission and synapse refinement, and discuss overlapping roles played by multiple glial cell types.
Collapse
Affiliation(s)
- Yetunde O Akinlaja
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
45
|
Joy MT, Carmichael ST. Activity-dependent transcriptional programs in memory regulate motor recovery after stroke. Commun Biol 2024; 7:1048. [PMID: 39183218 PMCID: PMC11345429 DOI: 10.1038/s42003-024-06723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Stroke causes death of brain tissue leading to long-term deficits. Behavioral evidence from neurorehabilitative therapies suggest learning-induced neuroplasticity can lead to beneficial outcomes. However, molecular and cellular mechanisms that link learning and stroke recovery are unknown. We show that in a mouse model of stroke, which exhibits enhanced recovery of function due to genetic perturbations of learning and memory genes, animals display activity-dependent transcriptional programs that are normally active during formation or storage of new memories. The expression of neuronal activity-dependent genes are predictive of recovery and occupy a molecular latent space unique to motor recovery. With motor recovery, networks of activity-dependent genes are co-expressed with their transcription factor targets forming gene regulatory networks that support activity-dependent transcription, that are normally diminished after stroke. Neuronal activity-dependent changes at the circuit level are influenced by interactions with microglia. At the molecular level, we show that enrichment of activity-dependent programs in neurons lead to transcriptional changes in microglia where they differentially interact to support intercellular signaling pathways for axon guidance, growth and synaptogenesis. Together, these studies identify activity-dependent transcriptional programs as a fundamental mechanism for neural repair post-stroke.
Collapse
Affiliation(s)
- Mary T Joy
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
46
|
Bitar L, Puig B, Oertner TG, Dénes Á, Magnus T. Changes in Neuroimmunological Synapses During Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01286-1. [PMID: 39103660 DOI: 10.1007/s12975-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.
Collapse
Affiliation(s)
- Lynn Bitar
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany.
| |
Collapse
|
47
|
Ana B. Aged-Related Changes in Microglia and Neurodegenerative Diseases: Exploring the Connection. Biomedicines 2024; 12:1737. [PMID: 39200202 PMCID: PMC11351943 DOI: 10.3390/biomedicines12081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Microglial cells exhibit properties akin to macrophages, thereby enabling them to support and protect the central nervous system environment. Aging induces alterations in microglial polarization, resulting in a shift toward a neurotoxic phenotype characterized by increased expression of pro-inflammatory markers. Dysregulation of microglial cells' regulatory pathways and interactions with neurons contribute to chronic activation and neurodegeneration. A better understanding of the involvement of microglia in neurodegenerative diseases such as Alzheimer's and Parkinson's is a critical topic for studying the role of inflammatory responses in disease progression. Furthermore, the metabolic changes in aged microglia, including the downregulation of oxidative phosphorylation, are discussed in this review. Understanding these mechanisms is crucial for developing better preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Borrajo Ana
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
48
|
Carrier M, Robert MÈ, St-Pierre MK, Ibáñez FG, Gonçalves de Andrade E, Laroche A, Picard K, Vecchiarelli HA, Savage JC, Boilard É, Desjardins M, Tremblay MÈ. Bone marrow-derived myeloid cells transiently colonize the brain during postnatal development and interact with glutamatergic synapses. iScience 2024; 27:110037. [PMID: 39021809 PMCID: PMC11253522 DOI: 10.1016/j.isci.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Although the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3+IBA1+). FLT3+IBA1+ cells were confirmed to be transiently present in the healthy brain during early postnatal development. FLT3+IBA1+ cells have a distinct morphology index at postnatal day(P)0, P7, and P14 compared with neighboring microglia. FLT3+IBA1+ cells also express the microglial markers P2RY12 and TMEM119 and interact with VGLUT1 synapses at P14. Scanning electron microscopy indeed showed that FLT3+ cells contact and engulf pre-synaptic elements. Our findings suggest FLT3+IBA1+ cells might assist microglia in their physiological functions in the developing brain including synaptic pruning which is performed using their purinergic sensors. Our findings stimulate further investigation on the involvement of peripheral macrophages during homeostatic and pathological development.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Marie-Ève Robert
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Audrée Laroche
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | | | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Éric Boilard
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC G1V 0A6, Canada
- Oncology Division, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
49
|
Alateeq R, Akhtar A, De Luca SN, Chan SMH, Vlahos R. Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice. Antioxidants (Basel) 2024; 13:855. [PMID: 39061923 PMCID: PMC11274253 DOI: 10.3390/antiox13070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may "spill-over" into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | - Ross Vlahos
- Respiratory Research Group, Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (R.A.); (A.A.); (S.N.D.L.)
| |
Collapse
|
50
|
Benkő S, Dénes Á. Microglial Inflammatory Mechanisms in Stroke: The Jury Is Still Out. Neuroscience 2024; 550:43-52. [PMID: 38364965 DOI: 10.1016/j.neuroscience.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Microglia represent the main immune cell population in the CNS with unique homeostatic roles and contribution to broad neurological conditions. Stroke is associated with marked changes in microglial phenotypes and induction of inflammatory responses, which emerge as key modulators of brain injury, neurological outcome and regeneration. However, due to the limited availability of functional studies with selective targeting of microglia and microglia-related inflammatory pathways in stroke, the vast majority of observations remain correlative and controversial. Because extensive review articles discussing the role of inflammatory mechanisms in different forms of acute brain injury are available, here we focus on some specific pathways that appear to be important for stroke pathophysiology with assumed contribution by microglia. While the growing toolkit for microglia manipulation increasingly allows targeting inflammatory pathways in a cell-specific manner, reconsideration of some effects devoted to microglia may also be required. This may particularly concern the interpretation of inflammatory mechanisms that emerge in response to stroke as a form of sterile injury and change markedly in chronic inflammation and common stroke comorbidities.
Collapse
Affiliation(s)
- Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1083, Hungary.
| |
Collapse
|