1
|
Sun S, He J, Liu L, Zhu Y, Zhang Q, Qiu Y, Han Y, Xue S, Peng X, Long Y, Lu T, Wu W, Xia A, Zhou Y, Yan Y, Gao Y, Lu L, Sun L, Xie M, Wang Q. Anti-S2 antibodies responsible for the SARS-CoV-2 infection-induced serological cross-reactivity against MERS-CoV and MERS-related coronaviruses. Front Immunol 2025; 16:1541269. [PMID: 40226608 PMCID: PMC11985752 DOI: 10.3389/fimmu.2025.1541269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Sarbecoviruses, such as SARS-CoV-2, utilize angiotensin-converting enzyme 2 (ACE2) as the entry receptor; while merbecoviruses, such as MERS-CoV, use dipeptidyl peptidase 4 (DPP4) for viral entry. Recently, several MERS-related coronaviruses, NeoCoV and PDF-2180, were reported to use ACE2, the same receptor as SARS-CoV-2, to enter cells, raising the possibility of potential recombination between SARS-CoV-2 and MERS-related coronaviruses within the co-infected ACE2-expressing cells. However, facing this potential recombination risk, the serum and antibody cross-reactivity against MERS/MERS-related coronaviruses after SARS-CoV-2 vaccination and/or infection is still elusive. Here, in this study, we showed that the serological cross-reactivity against MERS/MERS-related S proteins could be induced by SARS-CoV-2 infection but not by inactivated SARS-CoV-2 vaccination. Further investigation revealed that this serum cross-reactivity is due to monoclonals recognizing relatively conserved S2 epitopes, such as fusion peptide and stem helix, but not by antibodies against the receptor-binding domain (RBD), N-terminal domain (NTD) or subdomain-1 (SD1). Some of these anti-S2 cross-reactive mAbs showed cross-neutralizing activity, while none of them exhibited antibody-dependent enhancement (ADE) effect of viral entry in vitro. Together, these results dissected the SARS-CoV-2 infection-induced serological cross-reactivity against MERS/MERS-related coronaviruses, and highlighted the significance of conserved S2 region for the design and development of pan-β-coronaviruses vaccines.
Collapse
Affiliation(s)
- Siyuan Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaying He
- Microbiological Testing Department, Baoshan District Center for Disease Control and Prevention, Shanghai, China
| | - Luotian Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuzhen Zhu
- Department of Gastroenterology, Jingan District Central Hospitals, Fudan University, Shanghai, China
| | - Qingsong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yinong Qiu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofang Peng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiming Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianyu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Weiss S, Lin HM, Acosta E, Komarova NL, Chen P, Wodarz D, Baine I, Duerr R, Wajnberg A, Gervais A, Bastard P, Casanova JL, Arinsburg SA, Swartz TH, Aberg JA, Bouvier NM, Liu ST, Alvarez RA, Chen BK. Post-transfusion activation of coagulation pathways during severe COVID-19 correlates with COVID-19 convalescent plasma antibody profiles. J Clin Invest 2025; 135:e181136. [PMID: 40091845 PMCID: PMC11910229 DOI: 10.1172/jci181136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Early antibody therapy can prevent severe SARS-CoV-2 infection (COVID-19). However, the effectiveness of COVID-19 convalescent plasma (CCP) therapy in treating severe COVID-19 remains inconclusive. To test a hypothesis that some CCP units are associated with a coagulopathy hazard in severe disease that offsets its benefits, we tracked 304 CCP units administered to 414 hospitalized COVID-19 patients to assess their association with the onset of unfavorable post-transfusion D-dimer trends. CCP recipients with increasing or persistently elevated D-dimer trajectories after transfusion experienced higher mortality than those whose D-dimer levels were persistently low or decreasing after transfusion. Within the CCP donor-recipient network, recipients with increasing or persistently high D-dimer trajectories were skewed toward association with a minority of CCP units. In in vitro assays, CCP from "higher-risk" units had higher cross-reactivity with the spike protein of human seasonal betacoronavirus OC43. "Higher-risk" CCP units also mediated greater Fcγ receptor IIa signaling against cells expressing SARS-CoV-2 spike compared with "lower-risk" units. This study finds that post-transfusion activation of coagulation pathways during severe COVID-19 is associated with specific CCP antibody profiles and supports a potential mechanism of immune complex-activated coagulopathy.
Collapse
Affiliation(s)
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, UCSD, La Jolla, California, USA
| | - Ian Baine
- Department of Transfusion Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ralf Duerr
- Department of Medicine
- Department of Microbiology, and
- Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Ania Wajnberg
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | - Nicole M. Bouvier
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sean T.H. Liu
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
3
|
Vaikath NN, Al-Nesf MA, Majbour N, Abdesselem HB, Gupta V, Bensmail I, Abdi IY, Elmagarmid KA, Shabani S, Sudhakaran IP, Ghanem SS, Al-Maadheed M, Mohamed-Ali V, Blackburn JM, Decock J, El-Agnaf OMA. In-house assays for detecting anti-SARS-CoV-2 antibodies in serum and urine: Correlation with COVID-19 severity from a cohort study in Qatar. J Infect Public Health 2025; 18:102744. [PMID: 40117875 DOI: 10.1016/j.jiph.2025.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Serological assays targeting antibodies against key viral proteins, including the Spike (S1), Receptor Binding Domain (RBD), and Nucleocapsid, play a critical role in understanding immunity and supporting diagnostic efforts during COVID-19 pandemic, and afterward. This study aimed to develop and validate in-house assays for detecting anti-SARS-CoV-2 antibodies in serum and urine. METHODS ELISA-based assay was developed to detect IgG and IgM antibodies against SARS-CoV-2. The assay was examined in serum and urine samples of two different cohort of patients affected by COVID-19 disease with different severity and compared to age and sex matched control group. Neutralizing antibody activity was evaluated using an RBD-ACE2 binding inhibition assay. Additionally, a Sengenics protein microarray platform was employed to assess epitope-specific antibody responses. RESULTS The in-house ELISA assay reliably detected antibodies in both 163 serum and 64 urine samples compared to 50 serum samples from healthy control, with strong correlations observed between antibody levels in the two biofluids. Neutralizing antibody levels correlated positively with disease severity, highlighting their clinical relevance. The performance of the in-house assays was comparable to commercial kits, and the Sengenics microarray provided detailed insights into antibody profiles, identifying dominant epitopes within the Nucleocapsid core domain and RBD. CONCLUSIONS The developed in-house assay demonstrated robust performance and versatility, offering a cost-effective and scalable alternative to commercial kits. Their ability to detect antibodies in both serum and urine highlighted their potential as non-invasive diagnostic tools. These findings contribute to advancing sero-diagnostic capabilities, improving understanding of immune responses to SARS-CoV-2, and supporting global efforts to monitor and manage COVID-19 effectively.
Collapse
Affiliation(s)
- Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Maryam Ali Al-Nesf
- Allergy and Immunology Division, Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | - Nour Majbour
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Translational Medicine, Neuroscience, Pharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Houari B Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Khalifa Ahmed Elmagarmid
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Shadah Shabani
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa; Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur 50490, Malaysia; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Cancer Research Center (CRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
4
|
Zhang Q, Rosa RSL, Ray A, Durlet K, Dorrazehi GM, Bernardi RC, Alsteens D. Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy. Nat Commun 2025; 16:6. [PMID: 39747000 PMCID: PMC11696146 DOI: 10.1038/s41467-024-55358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP's interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Raissa S L Rosa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Kimberley Durlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Gol Mohammad Dorrazehi
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Rafael C Bernardi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
- Department of Physics, Auburn University, Auburn, AL, USA.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
5
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Lyu C, He Z, Hu X, Wang S, Qin M, Zhu L, Li Y, Yang F, Jiao Z, Zhang X, Lu G, Wang E, Hu Y, Zhai Y, Wang Y, Huang W, Wang D, Cui Y, Pang X, Liu X, Kamiya H, Ma G, Wei W. Lysosomal "TRAP": a neotype modality for clearance of viruses and variants. Nat Commun 2024; 15:10155. [PMID: 39578473 PMCID: PMC11584657 DOI: 10.1038/s41467-024-54505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
The binding of viruses to host-entry factor receptors is an essential step for viral infection. Many studies have shown that macrophages can internalize viruses and degrade them in lysosomes for clearance in vivo. Inspired by these natural behaviors and using SARS-CoV-2 as a testbed, we harvest lysosomes from activated macrophages and anchor the protein-receptor ACE2 as bait, thus constructing a lysosomal "TRAP" (lysoTRAP) that selectively captures, internalizes, and eventually degrades SARS-CoV-2. Through experiments with cells, female mice, female hamsters, and human lung organoids, we demonstrate that lysoTRAP effectively clears SARS-CoV-2. Importantly, unlike therapeutic agents targeting SARS-CoV-2 spike protein, lysoTRAP remains effective against nine pseudotyped variants and the authentic Omicron variant, demonstrating its resistance to SARS-CoV-2 mutations. In addition to the protein-receptor ACE2, we also extend lysoTRAP with the saccharide-receptor sialic acid and verify its excellent antiviral effect against H1N1, highlighting the flexibility of our "TRAP" platform in fighting against various viruses.
Collapse
Affiliation(s)
- Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Zhanlong He
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanyan Li
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhouguang Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Erqiang Wang
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Yaling Hu
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Yu Zhai
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, 100191, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, 100191, China
| | - Xiangzheng Liu
- Department of thoracic surgery, Peking University First Hospital, Beijing, 100034, China
| | - Hidehiro Kamiya
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Maurer DP, Vu M, Ramos ASF, Dugan HL, Khalife P, Geoghegan JC, Walker LM, Bajic G, Schmidt AG. Conserved sites on the influenza H1 and H3 hemagglutinin recognized by human antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619298. [PMID: 39484545 PMCID: PMC11526932 DOI: 10.1101/2024.10.22.619298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Monoclonal antibodies (mAbs) targeting the influenza hemagglutinin (HA) have the potential to be used as prophylactics or templates for next-generation vaccines that provide broad protection. Here, we isolated broad, subtype-neutralizing mAbs from human B cells targeting the H1 or H3 HA head as well as a unique mAb targeting the stem. The H1 mAbs target the previously defined lateral patch epitope on H1 HAs and recognize HAs from 1933 to 2021 in addition to a swine H1N1 virus with pandemic potential. Using directed evolution, we improved the neutralization potency of these H1 mAbs towards a contemporary H1 strain. Using deep mutational scanning of four antigenically distinct H1N1 viruses, we identified potential viral escape pathways. For the H3 mAbs we used cryo-EM to define the targeted epitopes: one mAb recognizes the side of the H3 head, accommodating the N133 glycan and a pocket underneath the receptor binding site. The other H3 mAb recognizes an epitope in the HA stem that overlaps with previously characterized mAbs, but with distinct antibody variable genes and mode of recognition. Collectively, these mAbs identify common sites recognized by broad, subtype-specific mAbs that may be elicited by next-generation vaccines.
Collapse
|
8
|
Zhang L, Cheng HH, Krüger N, Hörnich B, Graichen L, Hahn AS, Schulz SR, Jäck HM, Stankov MV, Behrens GMN, Müller MA, Drosten C, Mörer O, Winkler MS, Qian Z, Pöhlmann S, Hoffmann M. ACE2-independent sarbecovirus cell entry can be supported by TMPRSS2-related enzymes and can reduce sensitivity to antibody-mediated neutralization. PLoS Pathog 2024; 20:e1012653. [PMID: 39536058 PMCID: PMC11559990 DOI: 10.1371/journal.ppat.1012653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, demonstrated that zoonotic transmission of animal sarbecoviruses threatens human health but the determinants of transmission are incompletely understood. Here, we show that most spike (S) proteins of horseshoe bat and Malayan pangolin sarbecoviruses employ ACE2 for entry, with human and raccoon dog ACE2 exhibiting broad receptor activity. The insertion of a multibasic cleavage site into the S proteins increased entry into human lung cells driven by most S proteins tested, suggesting that acquisition of a multibasic cleavage site might increase infectivity of diverse animal sarbecoviruses for the human respiratory tract. In contrast, two bat sarbecovirus S proteins drove cell entry in an ACE2-independent, trypsin-dependent fashion and several ACE2-dependent S proteins could switch to the ACE2-independent entry pathway when exposed to trypsin. Several TMPRSS2-related cellular proteases but not the insertion of a multibasic cleavage site into the S protein allowed for ACE2-independent entry in the absence of trypsin and may support viral spread in the respiratory tract. Finally, the pan-sarbecovirus antibody S2H97 enhanced cell entry driven by two S proteins and this effect was reversed by trypsin while trypsin protected entry driven by a third S protein from neutralization by S2H97. Similarly, plasma from quadruple vaccinated individuals neutralized entry driven by all S proteins studied, and availability of the ACE2-independent, trypsin-dependent pathway reduced neutralization sensitivity. In sum, our study reports a pathway for entry into human cells that is ACE2-independent, can be supported by TMPRSS2-related proteases and may be associated with antibody evasion.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Hsiu-Hsin Cheng
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Göttingen, Germany
| | - Bojan Hörnich
- Junior Research Group Herpesviruses, German Primate Center, Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Alexander S. Hahn
- Junior Research Group Herpesviruses, German Primate Center, Göttingen, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Metodi V. Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Marcel A. Müller
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Berlin, Berlin, Germany
| | - Onnen Mörer
- Department of Anesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Martin Sebastian Winkler
- Department of Anesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - ZhaoHui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Bruun TJ, Do J, Weidenbacher PAB, Utz A, Kim PS. Engineering a SARS-CoV-2 Vaccine Targeting the Receptor-Binding Domain Cryptic-Face via Immunofocusing. ACS CENTRAL SCIENCE 2024; 10:1871-1884. [PMID: 39463836 PMCID: PMC11503491 DOI: 10.1021/acscentsci.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response toward the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response toward the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Jonathan Do
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Payton A.-B. Weidenbacher
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ashley Utz
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Stanford
Biophysics Program, Stanford University
School of Medicine, Stanford, California 94305, United States
- Stanford
Medical Scientist Training Program, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Peter S. Kim
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Hu Y, Wu Q, Chang F, Yang J, Zhang X, Wang Q, Chen J, Teng S, Liu Y, Zheng X, Wang Y, Lu R, Pan D, Liu Z, Liu F, Xie T, Wu C, Tang Y, Tang F, Qian J, Chen H, Liu W, Li YP, Qu X. Broad cross neutralizing antibodies against sarbecoviruses generated by SARS-CoV-2 infection and vaccination in humans. NPJ Vaccines 2024; 9:195. [PMID: 39438493 PMCID: PMC11496711 DOI: 10.1038/s41541-024-00997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that the majority of individuals with natural infection and vaccination elicited broad nAb responses to most tested sarbecoviruses, particularly to clade 1b viruses, but exhibited very low cross-neutralization to SARS-CoV-1 in both natural infection and vaccination, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001-0.091 μg/mL against tested sarbecoviruses; while VSM9-12 exhibited remarkable cross-neutralizing breadth against sarbecoviruses and SARS-CoV-2 Omicron subvariants, highlighting the potential of these two nAbs in combating sarbecoviruses and SARS-CoV-2 Omicron subvariants. Collectively, our findings suggest that vaccination with an ancestral SARS-CoV-2 vaccine, in combination with broad nAbs against sarbecoviruses, may provide a countermeasure for preventing further sarbecovirus outbreaks in humans.
Collapse
Affiliation(s)
- Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang, 422099, China
| | - Jun Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shishan Teng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Rui Lu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Dong Pan
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Zhanpeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fen Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Tianyi Xie
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Chanfeng Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yinggen Tang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
| |
Collapse
|
11
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
12
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Li Z, Obraztsova A, Shang F, Oludada OE, Malapit J, Busch K, van Straaten M, Stebbins E, Murugan R, Wardemann H. Affinity-independent memory B cell origin of the early antibody-secreting cell response in naive individuals upon SARS-CoV-2 vaccination. Immunity 2024; 57:2191-2201.e5. [PMID: 39168129 DOI: 10.1016/j.immuni.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Memory B cells (MBCs) formed over the individual's lifetime constitute nearly half of the circulating B cell repertoire in humans. These pre-existing MBCs dominate recall responses to their cognate antigens, but how they respond to recognition of novel antigens is not well understood. Here, we tracked the origin and followed the differentiation paths of MBCs in the early anti-spike (S) response to mRNA vaccination in SARS-CoV-2-naive individuals on single-cell and monoclonal antibody levels. Pre-existing, highly mutated MBCs showed no signs of germinal center re-entry and rapidly developed into mature antibody-secreting cells (ASCs). By contrast, and despite similar levels of S reactivity, naive B cells showed strong signs of antibody affinity maturation before differentiating into MBCs and ASCs. Thus, pre-existing human MBCs differentiate into ASCs in response to novel antigens, but the quality of the humoral and cellular anti-S response improved through the clonal selection and affinity maturation of naive precursors.
Collapse
Affiliation(s)
- Zhe Li
- B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Anna Obraztsova
- B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany; Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany.
| | - Fuwei Shang
- Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg 69120, Germany
| | - Opeyemi Ernest Oludada
- B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany; Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Joshua Malapit
- B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany; Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Katrin Busch
- Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Monique van Straaten
- Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Erec Stebbins
- Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany.
| |
Collapse
|
14
|
Guenthoer J, Garrett ME, Lilly M, Depierreux DM, Ruiz F, Chi M, Stoddard CI, Chohan V, Yaffe ZA, Sung K, Ralph D, Chu HY, Matsen FA, Overbaugh J. The S2 subunit of spike encodes diverse targets for functional antibody responses to SARS-CoV-2. PLoS Pathog 2024; 20:e1012383. [PMID: 39093891 PMCID: PMC11324185 DOI: 10.1371/journal.ppat.1012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Margaret Chi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
16
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
17
|
Shin OS, Monticelli SR, Hjorth CK, Hornet V, Doyle M, Abelson D, Kuehne AI, Wang A, Bakken RR, Mishra AK, Middlecamp M, Champney E, Stuart L, Maurer DP, Li J, Berrigan J, Barajas J, Balinandi S, Lutwama JJ, Lobel L, Zeitlin L, Walker LM, Dye JM, Chandran K, Herbert AS, Pauli NT, McLellan JS. Crimean-Congo hemorrhagic fever survivors elicit protective non-neutralizing antibodies that target 11 overlapping regions on glycoprotein GP38. Cell Rep 2024; 43:114502. [PMID: 39002130 PMCID: PMC11346345 DOI: 10.1016/j.celrep.2024.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, exclusive to Nairoviridae, is a target of protective antibodies and is a key antigen in preclinical vaccine candidates. Here, we isolate 188 GP38-specific antibodies from human survivors of infection. Competition experiments show that these antibodies bind across 5 distinct antigenic sites, encompassing 11 overlapping regions. Additionally, we show structures of GP38 bound with 9 of these antibodies targeting different antigenic sites. Although these GP38-specific antibodies are non-neutralizing, several display protective efficacy equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and may inform the development of broadly effective CCHFV antibody therapeutics.
Collapse
Affiliation(s)
| | - Stephanie R Monticelli
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; Geneva Foundation, Tacoma, WA 98042, USA
| | - Christy K Hjorth
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Dafna Abelson
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Akaash K Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Lauran Stuart
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | | | - Jacob Berrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | | | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Liu Q, Lu Y, Cai C, Huang Y, Zhou L, Guan Y, Fu S, Lin Y, Yan H, Zhang Z, Li X, Yang X, Yang H, Guo H, Lan K, Chen Y, Hou SC, Xiong Y. A broad neutralizing nanobody against SARS-CoV-2 engineered from an approved drug. Cell Death Dis 2024; 15:458. [PMID: 38937437 PMCID: PMC11211474 DOI: 10.1038/s41419-024-06802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.
Collapse
Affiliation(s)
- Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | | | - Yanyan Huang
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China
| | - Yanbin Guan
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Shiying Fu
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Youyou Lin
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhang
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China
| | - Xiang Li
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China.
| | - Yu Chen
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
| | | | - Yi Xiong
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China.
- Bayray Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
19
|
Hurtado J, Rogers TF, Jaffe DB, Adams BA, Bangaru S, Garcia E, Capozzola T, Messmer T, Sharma P, Song G, Beutler N, He W, Dueker K, Musharrafieh R, Burbach S, Truong A, Stubbington MJT, Burton DR, Andrabi R, Ward AB, McDonnell WJ, Briney B. Deep repertoire mining uncovers ultra-broad coronavirus neutralizing antibodies targeting multiple spike epitopes. Cell Rep 2024; 43:114307. [PMID: 38848216 PMCID: PMC11671098 DOI: 10.1016/j.celrep.2024.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
The development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees to isolate over 9,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific monoclonal antibodies (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. Among the recovered antibodies was TXG-0078, an N-terminal domain (NTD)-specific neutralizing mAb that recognizes diverse alpha- and beta-coronaviruses. TXG-0078 achieves its exceptional binding breadth while utilizing the same VH1-24 variable gene signature and heavy-chain-dominant binding pattern seen in other NTD-supersite-specific neutralizing Abs with much narrower specificity. We also report CC24.2, a pan-sarbecovirus neutralizing antibody that targets a unique receptor-binding domain (RBD) epitope and shows similar neutralization potency against all tested SARS-CoV-2 variants, including BQ.1.1 and XBB.1.5. A cocktail of TXG-0078 and CC24.2 shows protection in vivo, suggesting their potential use in variant-resistant therapeutic Ab cocktails and as templates for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David B Jaffe
- 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Bruce A Adams
- 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pragati Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wanting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Burbach
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alina Truong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, Harvard and MIT, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wyatt J McDonnell
- 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA.
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Multi-Omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Connor RI, Sakharkar M, Rappazzo CG, Kaku CI, Curtis NC, Shin S, Wieland-Alter WF, Wentworth J, Mielcarz DW, Weiner JA, Ackerman ME, Walker LM, Lee J, Wright PF. Characteristics and Functions of Infection-enhancing Antibodies to the N-terminal Domain of SARS-CoV-2. Pathog Immun 2024; 9:1-24. [PMID: 38933606 PMCID: PMC11197847 DOI: 10.20411/pai.v9i2.679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Background Fcγ-receptor (FcγR)-independent enhancement of SARS-CoV-2 infection mediated by N-terminal domain (NTD)-binding monoclonal antibodies (mAbs) has been observed in vitro, but the functional significance of these antibodies in vivo is less clear. Methods We characterized 1,213 SARS-CoV-2 spike (S)-binding mAbs derived from COVID-19 convalescent patients for binding specificity to the SARS-CoV-2 S protein, VH germ-line usage, and affinity maturation. Infection enhancement in a vesicular stomatitis virus (VSV)-SARS-CoV-2 S pseudovirus (PV) assay was characterized in respiratory and intestinal epithelial cell lines, and against SARS-CoV-2 variants of concern (VOC). Proteomic deconvolution of the serum antibody repertoire was used to determine functional attributes of secreted NTD-binding mAbs. Results We identified 72/1213 (5.9%) mAbs that enhanced SARS-CoV-2 infection in a PV assay. The majority (68%) of these mAbs recognized the NTD, were identified in patients with mild and severe disease, and persisted for at least 5 months post-infection. Infection enhancement by NTD-binding mAbs was not observed in intestinal and respiratory epithelial cell lines and was diminished or lost against SARS-CoV-2 VOC. Proteomic deconvolution of the serum antibody repertoire from 2 of the convalescent patients identified, for the first time, NTD-binding, infection-enhancing mAbs among the circulating immunoglobulins directly isolated from serum. Functional analysis of these mAbs demonstrated robust activation of FcγRIIIa associated with antibody binding to recombinant S proteins. Conclusions Functionally active NTD-specific mAbs arise frequently during natural infection and can last as major serum clonotypes during convalescence. These antibodies display functional attributes that include FcγR activation, and may be selected against by mutations in NTD associated with SARS-CoV-2 VOC.
Collapse
Affiliation(s)
- Ruth I. Connor
- Department of Pediatrics, Geisel School of Medicine, Dartmouth Health, Lebanon, New Hampshire
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | | | | | | | - Seungmin Shin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Wendy F. Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Jordan Wentworth
- DartLab, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, New Hampshire
| | - Daniel W. Mielcarz
- DartLab, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, New Hampshire
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine, Dartmouth Health, Lebanon, New Hampshire
| |
Collapse
|
21
|
Bruun TU, Do J, Weidenbacher PAB, Kim PS. Engineering a SARS-CoV-2 vaccine targeting the RBD cryptic-face via immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597541. [PMID: 38895327 PMCID: PMC11185595 DOI: 10.1101/2024.06.05.597541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response towards the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response towards the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora U.J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
22
|
Lobaina Y, Chen R, Suzarte E, Ai P, Musacchio A, Lan Y, Chinea G, Tan C, Silva R, Guillen G, Yang K, Li W, Perera Y, Hermida L. A Nasal Vaccine Candidate, Containing Three Antigenic Regions from SARS-CoV-2, to Induce a Broader Response. Vaccines (Basel) 2024; 12:588. [PMID: 38932317 PMCID: PMC11209543 DOI: 10.3390/vaccines12060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
A chimeric protein, formed by two fragments of the conserved nucleocapsid (N) and S2 proteins from SARS-CoV-2, was obtained as a recombinant construct in Escherichia coli. The N fragment belongs to the C-terminal domain whereas the S2 fragment spans the fibre structure in the post-fusion conformation of the spike protein. The resultant protein, named S2NDH, was able to form spherical particles of 10 nm, which forms aggregates upon mixture with the CpG ODN-39M. Both preparations were recognized by positive COVID-19 human sera. The S2NDH + ODN-39M formulation administered by the intranasal route resulted highly immunogenic in Balb/c mice. It induced cross-reactive anti-N humoral immunity in both sera and bronchoalveolar fluids, under a Th1 pattern. The cell-mediated immunity (CMI) was also broad, with positive response even against the N protein of SARS-CoV-1. However, neither neutralizing antibodies (NAb) nor CMI against the S2 region were obtained. As alternative, the RBD protein was included in the formulation as inducer of NAb. Upon evaluation in mice by the intranasal route, a clear adjuvant effect was detected for the S2NDH + ODN-39M preparation over RBD. High levels of NAb were induced against SARS-CoV-2 and SARS-CoV-1. The bivalent formulation S2NDH + ODN-39M + RBD, administered by the intranasal route, constitutes an attractive proposal as booster vaccine of sarbecovirus scope.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Yaqin Lan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Glay Chinea
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Ricardo Silva
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| | - Gerardo Guillen
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| |
Collapse
|
23
|
Chen CH, Chao DY, Kor CT, Kuo SF, Lin JS, Lai HW, Liu YT, Lin CH, Chen MK. A cross-sectional study of SARS-CoV-2 antibodies among healthcare workers in a tertiary care hospital in Taiwan: implications for protection against the Omicron variants. BMC Infect Dis 2024; 24:529. [PMID: 38802771 PMCID: PMC11129381 DOI: 10.1186/s12879-024-09411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Taiwan, deeply impacted by the 2003 SARS outbreak, promptly implemented rigorous infection control and prevention (ICP) measures in January 2020 to combat the global COVID-19 pandemic. This cross-sectional serologic study was conducted among healthcare workers (HCWs) in a tertiary care hospital in Taiwan from August 1, 2022, to February 28, 2023. The study aimed to assess HCWs' antibody responses to COVID-19 vaccination against Omicron subvariants BA.1, BA.4, and BA.5, considering variations in prior infection. Additionally, it evaluated the effectiveness of ICP and vaccination policies within the hospital setting in Taiwan. METHODS A cross-sectional serology study was conducted in Taiwan to investigate the seroprevalence rates of Omicron subvariants BA.1, BA.4, and BA.5 among HCWs. A total of 777 HCWs participated in this study. A structured questionnaire was collected to obtain the epidemiological characteristics and risk factors for potential exposure. Enzyme-linked immunosorbent assay was used to detect antibody responses. Serum samples were selected for protection against Omicron subvariants BA.1, BA.4, and BA.5 by using a pseudotyped-based neutralization assay. RESULTS More than 99% of the participants had received SARS-CoV-2 vaccination. Overall, 57.7% had been infected with SARS-CoV-2, with some being asymptomatic. The SARS-CoV-2 Anti-Spike S1 protein IgG (Anti-S) distribution was 40,000 AU/mL for 20.2% (157/777) of participants, with a mean ± standard deviation of 23,442 ± 22,086. The decay curve for Anti-S was less than 20,000 AU/ml after 120 days. The probability curve of 50% neutralization showed an Anti-S of 55,000 AU/ml. The optimum Anti-S was 41,328 AU/mL (equal to 5,869 WHO's standard BAU/mL), with 86.1% sensitivity and 63.5% specificity. CONCLUSIONS In this significant study, 20.2% of HCWs achieved seroprotection against Omicron subvariants BA.1, BA.4, and BA.5. Their immunity against Omicron subvariants was further reinforced through recommended vaccinations and the development of natural immunity from SARS-CoV-2 exposure, collectively enhancing their protection against Omicron.
Collapse
Affiliation(s)
- Chang-Hua Chen
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua; No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, No. 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, No. 145 Xingda Rd., South Dist., Taichung City, 40227, Taiwan.
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, No. 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan
| | - Chew-Teng Kor
- Big Data Center, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan
- Institute of Statistics and Information Science, National Changhua University of Education, Changhua County, No.1, Jinde Rd, Changhua City, Changhua County, 50074, Taiwan
| | - Su-Feng Kuo
- Clinical Microbiology Laboratory, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan
| | - Jen-Shiou Lin
- Clinical Microbiology Laboratory, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan
| | - Huei-Wen Lai
- Center for Infection Prevention and Control, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan
| | - Yen-Tze Liu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, No. 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan
| | - Mu-Kuan Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, No. 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan.
- Department Of Otorhinolaryngology - Head & Neck Surgery, Changhua Christian Hospital, No.135, Nanxiao St., Changhua City, Changhua County, 50006, Taiwan.
| |
Collapse
|
24
|
Ketaren NE, Mast FD, Fridy PC, Olivier JP, Sanyal T, Sali A, Chait BT, Rout MP, Aitchison JD. Nanobody repertoire generated against the spike protein of ancestral SARS-CoV-2 remains efficacious against the rapidly evolving virus. eLife 2024; 12:RP89423. [PMID: 38712823 PMCID: PMC11076045 DOI: 10.7554/elife.89423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, University of California, San FranciscoSan FranciscoUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, University of California, San FranciscoSan FranciscoUnited States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| |
Collapse
|
25
|
Inoue T, Yamamoto Y, Sato K, Okemoto-Nakamura Y, Shimizu Y, Ogawa M, Onodera T, Takahashi Y, Wakita T, Kaneko MK, Fukasawa M, Kato Y, Noguchi K. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024; 27:109363. [PMID: 38500835 PMCID: PMC10946335 DOI: 10.1016/j.isci.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
A current challenge is the emergence of SARS-CoV-2 variants, such as BQ.1.1 and XBB.1.5, that can evade immune defenses, thereby limiting antibody drug effectiveness. Emergency-use antibody drugs, including the widely effective bebtelovimab, are losing their benefits. One potential approach to address this issue are bispecific antibodies which combine the targeting abilities of two antibodies with distinct epitopes. We engineered neutralizing bispecific antibodies in the IgG-scFv format from two initially non-neutralizing antibodies, CvMab-6 (which binds to the receptor-binding domain [RBD]) and CvMab-62 (targeting a spike protein S2 subunit epitope adjacent to the known anti-S2 antibody epitope). Furthermore, we created a bispecific antibody by incorporating the scFv of bebtelovimab with our anti-S2 antibody, demonstrating significant restoration of effectiveness against bebtelovimab-resistant BQ.1.1 variants. This study highlights the potential of neutralizing bispecific antibodies, which combine existing less effective anti-RBD antibodies with anti-S2 antibodies, to revive the effectiveness of antibody therapeutics compromised by immune-evading variants.
Collapse
Affiliation(s)
- Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Kaoru Sato
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku 164-8530, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
26
|
Shin OS, Monticelli SR, Hjorth CK, Hornet V, Doyle M, Abelson D, Kuehne AI, Wang A, Bakken RR, Mishra A, Middlecamp M, Champney E, Stuart L, Maurer DP, Li J, Berrigan J, Barajas J, Balinandi S, Lutwama JJ, Lobel L, Zeitlin L, Walker LM, Dye JM, Chandran K, Herbert AS, Pauli NT, McLellan JS. Crimean-Congo Hemorrhagic Fever Survivors Elicit Protective Non-Neutralizing Antibodies that Target 11 Overlapping Regions on Viral Glycoprotein GP38. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583110. [PMID: 38496658 PMCID: PMC10942344 DOI: 10.1101/2024.03.02.583110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to Nairoviridae, is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection. Competition experiments showed that these antibodies bind across five distinct antigenic sites, encompassing eleven overlapping regions. Additionally, we reveal structures of GP38 bound with nine of these antibodies targeting different antigenic sites. Although GP38-specific antibodies were non-neutralizing, several antibodies were found to have protection equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and inform the development of broadly effective CCHFV antibody therapeutics.
Collapse
Affiliation(s)
| | - Stephanie R. Monticelli
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Geneva Foundation, Tacoma, WA 98042, USA
| | - Christy K. Hjorth
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Dafna Abelson
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Ana I. Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Russell R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Akaash Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Lauran Stuart
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | | | - Jacob Berrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Yu P, Ran J, Yang R, Zhu H, Lu S, Wu Y, Zhao T, Xiong T. Rapid isolation of pan-neutralizing antibodies against Omicron variants from convalescent individuals infected with SARS-CoV-2. Front Immunol 2024; 15:1374913. [PMID: 38510237 PMCID: PMC10950932 DOI: 10.3389/fimmu.2024.1374913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction The emergence of SARS-CoV-2 Omicron subvariants has presented a significant challenge to global health, as these variants show resistance to most antibodies developed early in the pandemic. Therapeutic antibodies with potent efficacy to the Omicron variants are urgently demanded. Methods Utilizing the rapid antibody discovery platform, Berkeley Lights Beacon, we isolated two monoclonal neutralizing antibodies, 2173-A6 and 3462-A4. These antibodies were isolated from individuals who recently recovered from Omicron infections. Results Both antibodies, 2173-A6 and 3462-A4, demonstrated high affinity for the RBD and effectively neutralized pseudoviruses from various Omicron lineages, including BA.4/5, XBB.1.16, XBB.1.5, and EG.5.1. This neutralization was achieved through binding to identical or overlapping epitopes. Discussion The use of the Beacon platform enabled the rapid isolation and identification of effective neutralizing antibodies within less than 10 days. This process significantly accelerates the development of novel therapeutic antibodies, potentially reducing the time required to respond to unknown infectious diseases in the future.
Collapse
Affiliation(s)
- Peng Yu
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
| | - Jingping Ran
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ruiqi Yang
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
| | - Hang Zhu
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
| | - Song Lu
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
| | - Yuzhang Wu
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
| | - Tingting Zhao
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tianchen Xiong
- Antibody Research Platform, Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
28
|
Teng S, Hu Y, Wang Y, Tang Y, Wu Q, Zheng X, Lu R, Pan D, Liu F, Xie T, Wu C, Li YP, Liu W, Qu X. SARS-CoV-2 spike-reactive naïve B cells and pre-existing memory B cells contribute to antibody responses in unexposed individuals after vaccination. Front Immunol 2024; 15:1355949. [PMID: 38420128 PMCID: PMC10899457 DOI: 10.3389/fimmu.2024.1355949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Since December 2019, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has presented considerable public health challenges. Multiple vaccines have been used to induce neutralizing antibodies (nAbs) and memory B-cell responses against the viral spike (S) glycoprotein, and many essential epitopes have been defined. Previous reports have identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-reactive naïve B cells and preexisting memory B cells in unexposed individuals. However, the role of these spike-reactive B cells in vaccine-induced immunity remains unknown. Methods To elucidate the characteristics of preexisting SARS-CoV-2 S-reactive B cells as well as their maturation after antigen encounter, we assessed the relationship of spike-reactive B cells before and after vaccination in unexposed human individuals. We further characterized the sequence identity, targeting domain, broad-spectrum binding activity and neutralizing activity of these SARS-CoV-2 S-reactive B cells by isolating monoclonal antibodies (mAbs) from these B cells. Results The frequencies of both spike-reactive naïve B cells and preexisting memory B cells before vaccination correlated with the frequencies of spike-reactive memory B cells after vaccination. Isolated mAbs from spike-reactive naïve B cells before vaccination had fewer somatic hypermutations (SHMs) than mAbs isolated from spike-reactive memory B cells before and after vaccination, but bound SARS-CoV-2 spike in vitro. Intriguingly, these germline-like mAbs possessed broad binding profiles for SARS-CoV-2 and its variants, although with low or no neutralizing capacity. According to tracking of the evolution of IGHV4-4/IGKV3-20 lineage antibodies from a single donor, the lineage underwent SHMs and developed increased binding activity after vaccination. Discussion Our findings suggest that spike-reactive naïve B cells can be expanded and matured by vaccination and cocontribute to vaccine-elicited antibody responses with preexisting memory B cells. Selectively and precisely targeting spike-reactive B cells by rational antigen design may provide a novel strategy for next-generation SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Shishan Teng
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yabin Hu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - You Wang
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yinggen Tang
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Qian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Zheng
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rui Lu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Dong Pan
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Fen Liu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Tianyi Xie
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Chanfeng Wu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wenpei Liu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
| | - Xiaowang Qu
- School of Public Health & School of Basic Medicine Sciences, Hengyang Medical School & Ministry of Education Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, China
| |
Collapse
|
29
|
Hauser B, Sangesland M, Lam EC, St Denis KJ, Sheehan ML, Vu ML, Cheng AH, Sordilla S, Lamson DT, Almawi AW, Balazs AB, Lingwood D, Schmidt AG. Heterologous Sarbecovirus Receptor Binding Domains as Scaffolds for SARS-CoV-2 Receptor Binding Motif Presentation. ACS Infect Dis 2024; 10:553-561. [PMID: 38281136 PMCID: PMC10862550 DOI: 10.1021/acsinfecdis.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center on targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potent neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake
M. Hauser
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maya Sangesland
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Evan C. Lam
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kerri J. St Denis
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maegan L. Sheehan
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Mya L. Vu
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Agnes H. Cheng
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Sophia Sordilla
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Dana Thornlow Lamson
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ahmad W. Almawi
- Center
for Molecular Interactions, Department of Biological Chemistry and
Molecular Pharmacology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Alejandro B. Balazs
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Daniel Lingwood
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Aaron G. Schmidt
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Hu B, Guo H, Si H, Shi Z. Emergence of SARS and COVID-19 and preparedness for the next emerging disease X. Front Med 2024; 18:1-18. [PMID: 38561562 DOI: 10.1007/s11684-024-1066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
Severe acute respiratory syndrome (SARS) and Coronavirus disease 2019 (COVID-19) are two human Coronavirus diseases emerging in this century, posing tremendous threats to public health and causing great loss to lives and economy. In this review, we retrospect the studies tracing the molecular evolution of SARS-CoV, and we sort out current research findings about the potential ancestor of SARS-CoV-2. Updated knowledge about SARS-CoV-2-like viruses found in wildlife, the animal susceptibility to SARS-CoV-2, as well as the interspecies transmission risk of SARS-related coronaviruses (SARSr-CoVs) are gathered here. Finally, we discuss the strategies of how to be prepared against future outbreaks of emerging or re-emerging coronaviruses.
Collapse
Affiliation(s)
- Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
31
|
Nguyen TTN, Choo EM, Nakamura Y, Suzuki R, Shiina T, Shin-I T, Fukuta M, Nguyen CT, Nguyen TTT, Nguyen LKH, Hoang VMP, Morita K, Dang DA, Hasebe F, Le TQM, Moi ML. Pre-existing cross-reactive neutralizing activity against SARS-CoV-2 and seasonal coronaviruses prior to the COVID-19 pandemic (2014-2019) with limited immunity against recent emerging SARS-CoV-2 variants, Vietnam. Int J Infect Dis 2024; 139:109-117. [PMID: 37984763 DOI: 10.1016/j.ijid.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVES SARS-CoV-2 transmission and epidemic potential is related to the population's immunity levels. As such, assessing different regions' preexisting immune responses to SARS-CoV-2 is important to understand the transmission potential of emerging SARS-CoV-2 variants. DESIGN In 975 serum samples from Vietnam (2014 to 2019), anti-SARS-CoV-2 Immunoglobulin G levels were determined by enzyme-linked immunosorbent assay. Plaque reduction neutralization test (PRNT) was performed using Wuhan strain and variants of concern (VOCs). Cross-reactivity was confirmed by analyzing B-cell receptor (BCR) repertoire sequences and identifying BCR repertoire sequences-derived T-cell epitopes. RESULTS Overall, 20.9% (n = 76/364) and 9.2% (n = 7) demonstrated SARS-CoV-2 neutralizing activity (PRNT50) against the Wuhan and Alpha strain, respectively. Neutralizing activity against Beta, Gamma, and Delta strains was absent (PRNT50<5) in all samples. Cross-reactive epitopes against SARS-CoV-2 and other coronavirus spike proteins were detected in the N-terminal domain, S2, and receptor-binding domain regions. CONCLUSIONS Following BCR and major histocompatibility complex analysis, T-cell receptor-recognized epitope motif (TREM) among pathogenic coronaviruses and coronaviruses spike proteins were the top TREM peptide, suggesting that pre-existing immunity against SARS-CoV-2 in Vietnam was due to exposure to common cold coronaviruses. With limited immunity against emerging VOCs, further monitoring, and control of the epidemic, along with COVID-19 vaccine programs against VOCs, are necessary.
Collapse
Affiliation(s)
- Thi Thanh Ngan Nguyen
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Ee Mei Choo
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc., Ibaraki, Japan; Sagamihara National Hospital, Kanagawa, Japan
| | | | | | - Mizuki Fukuta
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Co Thach Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | | | | | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Futoshi Hasebe
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan; Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Meng Ling Moi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Dong M, Galvan Achi JM, Du R, Rong L, Cui Q. Development of SARS-CoV-2 entry antivirals. CELL INSIGHT 2024; 3:100144. [PMID: 38323318 PMCID: PMC10844678 DOI: 10.1016/j.cellin.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 02/08/2024]
Abstract
The global outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatened human health and public safety. The development of anti-SARS-CoV-2 therapies have been essential to curb the spread of SARS-CoV-2. Particularly, antivirals targeting viral entry have become an attractive target for the development of anti-SARS-CoV-2 therapies. In this review, we elucidate the mechanism of SARS-CoV-2 viral entry and summarize the development of antiviral inhibitors targeting viral entry. Moreover, we speculate upon future directions toward more potent inhibitors of SARS-CoV-2 entry. This study is expected to provide novel insights for the efficient discovery of promising candidate drugs against the entry of SARS-CoV-2, and contribute to the development of broad-spectrum anti-coronavirus drugs.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Jazmin M. Galvan Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL60612, USA
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266122, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266122, China
| |
Collapse
|
33
|
Ketaren NE, Mast FD, Fridy PC, Olivier JP, Sanyal T, Sali A, Chait BT, Rout MP, Aitchison JD. Nanobody repertoire generated against the spike protein of ancestral SARS-CoV-2 remains efficacious against the rapidly evolving virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.14.549041. [PMID: 37503298 PMCID: PMC10369967 DOI: 10.1101/2023.07.14.549041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast, Fridy et al. 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia E. Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
| | - Peter C. Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94143, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94143, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
34
|
Li K, Huntwork RHC, Horn GQ, Abraha M, Hastie KM, Li H, Rayaprolu V, Olmedillas E, Feeney E, Cronin K, Schendel SL, Heise M, Bedinger D, Mattocks MD, Baric RS, Alam SM, Ollmann Saphire E, Tomaras GD, Dennison SM. Cryptic-site-specific antibodies to the SARS-CoV-2 receptor binding domain can retain functional binding affinity to spike variants. J Virol 2023; 97:e0107023. [PMID: 38019013 PMCID: PMC10746274 DOI: 10.1128/jvi.01070-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.
Collapse
Affiliation(s)
- Kan Li
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Richard H. C. Huntwork
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Gillian Q. Horn
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vamseedhar Rayaprolu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Melissa D. Mattocks
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
35
|
Malewana RD, Stalls V, May A, Lu X, Martinez DR, Schäfer A, Li D, Barr M, Sutherland LL, Lee E, Parks R, Beck WE, Newman A, Bock KW, Minai M, Nagata BM, DeMarco CT, Denny TN, Oguin TH, Rountree W, Wang Y, Mansouri K, Edwards RJ, Sempowski GD, Eaton A, Muramatsu H, Henderson R, Tam Y, Barbosa C, Tang J, Cain DW, Santra S, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Montefiori DC, Pardi N, Weissman D, Baric RS, Acharya P, Haynes BF, Saunders KO. Broadly neutralizing antibody induction by non-stabilized SARS-CoV-2 Spike mRNA vaccination in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572191. [PMID: 38187726 PMCID: PMC10769253 DOI: 10.1101/2023.12.18.572191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.
Collapse
Affiliation(s)
- R Dilshan Malewana
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Immunobiology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Whitney Edwards Beck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ying Tam
- Acuitas Therapeutics, LLC, Vancouver, BC, V6T 1Z3, Canada
| | | | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
36
|
Adams LJ, VanBlargan LA, Liu Z, Gilchuk P, Zhao H, Chen RE, Raju S, Chong Z, Whitener BM, Shrihari S, Jethva PN, Gross ML, Crowe JE, Whelan SPJ, Diamond MS, Fremont DH. A broadly reactive antibody targeting the N-terminal domain of SARS-CoV-2 spike confers Fc-mediated protection. Cell Rep Med 2023; 4:101305. [PMID: 38039973 PMCID: PMC10772349 DOI: 10.1016/j.xcrm.2023.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Most neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) target the receptor binding domain (RBD) of the spike (S) protein. Here, we characterize a panel of mAbs targeting the N-terminal domain (NTD) or other non-RBD epitopes of S. A subset of NTD mAbs inhibits SARS-CoV-2 entry at a post-attachment step and avidly binds the surface of infected cells. One neutralizing NTD mAb, SARS2-57, protects K18-hACE2 mice against SARS-CoV-2 infection in an Fc-dependent manner. Structural analysis demonstrates that SARS2-57 engages an antigenic supersite that is remodeled by deletions common to emerging variants. In neutralization escape studies with SARS2-57, this NTD site accumulates mutations, including a similar deletion, but the addition of an anti-RBD mAb prevents such escape. Thus, our study highlights a common strategy of immune evasion by SARS-CoV-2 variants and how targeting spatially distinct epitopes, including those in the NTD, may limit such escape.
Collapse
Affiliation(s)
- Lucas J Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
37
|
Wang R, Han Y, Zhang R, Zhu J, Nan X, Liu Y, Yang Z, Zhou B, Yu J, Lin Z, Li J, Chen P, Wang Y, Li Y, Liu D, Shi X, Wang X, Zhang Q, Yang YR, Li T, Zhang L. Dissecting the intricacies of human antibody responses to SARS-CoV-1 and SARS-CoV-2 infection. Immunity 2023; 56:2635-2649.e6. [PMID: 37924813 DOI: 10.1016/j.immuni.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Collapse
Affiliation(s)
- Ruoke Wang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China
| | - Rui Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yaping Liu
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zichun Lin
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinqian Li
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
38
|
Sawula E, Miersch S, Jong ED, Li C, Chou FY, Tang JK, Saberianfar R, Harding J, Sidhu SS, Nagy A. Cell-based passive immunization for protection against SARS-CoV-2 infection. Stem Cell Res Ther 2023; 14:318. [PMID: 37932852 PMCID: PMC10629160 DOI: 10.1186/s13287-023-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Immunologically impaired individuals respond poorly to vaccines, highlighting the need for additional strategies to protect these vulnerable populations from COVID-19. While monoclonal antibodies (mAbs) have emerged as promising tools to manage infectious diseases, the transient lifespan of neutralizing mAbs in patients limits their ability to confer lasting, passive prophylaxis from SARS-CoV-2. Here, we attempted to solve this problem by combining cell and mAb engineering in a way that provides durable immune protection against viral infection using safe and universal cell therapy. METHODS Mouse embryonic stem cells equipped with our FailSafe™ and induced allogeneic cell tolerance technologies were engineered to express factors that potently neutralize SARS-CoV-2, which we call 'neutralizing biologics' (nBios). We subcutaneously transplanted the transgenic cells into mice and longitudinally assessed the ability of the cells to deliver nBios into circulation. To do so, we quantified plasma nBio concentrations and SARS-CoV-2 neutralizing activity over time in transplant recipients. Finally, using similar cell engineering strategies, we genetically modified FailSafe™ human-induced pluripotent stem cells to express SARS-CoV-2 nBios. RESULTS Transgenic mouse embryonic stem cells engineered for safety and allogeneic-acceptance can secrete functional and potent SARS-CoV-2 nBios. As a dormant, subcutaneous tissue, the transgenic cells and their differentiated derivatives long-term deliver a supply of protective nBio titers in vivo. Moving toward clinical relevance, we also show that human-induced pluripotent stem cells, similarly engineered for safety, can secrete highly potent nBios. CONCLUSIONS Together, these findings show the promise and potential of using 'off-the-shelf' cell products that secrete neutralizing antibodies for sustained protective immunity against current and future viral pathogens of public health significance.
Collapse
Affiliation(s)
- Evan Sawula
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Shane Miersch
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Eric D Jong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Fang-Yu Chou
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Reza Saberianfar
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Andras Nagy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
39
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
40
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Mittal N, Kumar S, Rajmani RS, Singh R, Lemoine C, Jakob V, Bj S, Jagannath N, Bhat M, Chakraborty D, Pandey S, Jory A, Sa SS, Kleanthous H, Dubois P, Ringe RP, Varadarajan R. Enhanced protective efficacy of a thermostable RBD-S2 vaccine formulation against SARS-CoV-2 and its variants. NPJ Vaccines 2023; 8:161. [PMID: 37880298 PMCID: PMC10600342 DOI: 10.1038/s41541-023-00755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
With the rapid emergence of variants of concern (VOC), the efficacy of currently licensed vaccines has reduced drastically. VOC mutations largely occur in the S1 subunit of Spike. The S2 subunit of SARS-CoV-2 is conserved and thus more likely to elicit broadly reactive immune responses that could improve protection. However, the contribution of the S2 subunit in improving the overall efficacy of vaccines remains unclear. Therefore, we designed, and evaluated the immunogenicity and protective potential of a stabilized SARS-CoV-2 Receptor Binding Domain (RBD) fused to a stabilized S2. Immunogens were expressed as soluble proteins with approximately fivefold higher purified yield than the Spike ectodomain and formulated along with Squalene-in-water emulsion (SWE) adjuvant. Immunization with S2 alone failed to elicit a neutralizing immune response, but significantly reduced lung viral titers in mice challenged with the heterologous Beta variant. In hamsters, SWE-formulated RS2 (a genetic fusion of stabilized RBD with S2) showed enhanced immunogenicity and efficacy relative to corresponding RBD and Spike formulations. Despite being based on the ancestral Wuhan strain of SARS-CoV-2, RS2 elicited broad neutralization, including against Omicron variants (BA.1, BA.5 and BF.7), and the clade 1a WIV-1 and SARS-CoV-1 strains. RS2 elicited sera showed enhanced competition with both S2 directed and RBD Class 4 directed broadly neutralizing antibodies, relative to RBD and Spike elicited sera. When lyophilized, RS2 retained antigenicity and immunogenicity even after incubation at 37 °C for a month. The data collectively suggest that the RS2 immunogen is a promising modality to combat SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Nidhi Mittal
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Raju S Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Randhir Singh
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Céline Lemoine
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Virginie Jakob
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Sowrabha Bj
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Nayana Jagannath
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Madhuraj Bhat
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Suman Pandey
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Aurélie Jory
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Suba Soundarya Sa
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | | | - Patrice Dubois
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Rajesh P Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India.
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
42
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
43
|
Han Q, Wang S, Wang Z, Zhang C, Wang X, Feng N, Wang T, Zhao Y, Chi H, Yan F, Xia X. Nanobodies with cross-neutralizing activity provide prominent therapeutic efficacy in mild and severe COVID-19 rodent models. Virol Sin 2023; 38:787-800. [PMID: 37423308 PMCID: PMC10590698 DOI: 10.1016/j.virs.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency, which underscores the urgent need for universal therapeutic antibody intervention for clinical patients. Here, we screened three alpacas-derived nanobodies (Nbs) with neutralizing activity from twenty RBD-specific Nbs. The three Nbs were fused with the Fc domain of human IgG, namely aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc, which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD. They effectively neutralized SARS-CoV-2 pseudoviruses D614G, Alpha, Beta, Gamma, Delta, and Omicron sub-lineages BA.1, BA.2, BA.4, and BA.5 and authentic SARS-CoV-2 prototype, Delta, and Omicron BA.1, BA.2 strains. In mice-adapted COVID-19 severe model, intranasal administration of aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc effectively protected mice from lethal challenges and reduced viral loads in both the upper and lower respiratory tracts. In the COVID-19 mild model, aVHH-13-Fc, which represents the optimal neutralizing activity among the above three Nbs, effectively protected hamsters from the challenge of SARS-CoV-2 prototype, Delta, Omicron BA.1 and BA.2 by significantly reducing viral replication and pathological alterations in the lungs. In structural modeling of aVHH-13 and RBD, aVHH-13 binds to the receptor-binding motif region of RBD and interacts with some highly conserved epitopes. Taken together, our study illustrated that alpaca-derived Nbs offered a therapeutic countermeasure against SARS-CoV-2, including those Delta and Omicron variants which have evolved into global pandemic strains.
Collapse
Affiliation(s)
- Qiuxue Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China.
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xianzhu Xia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
44
|
Wang L, Wang Y, Zhou H. Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. Int J Biol Macromol 2023; 249:125997. [PMID: 37499711 DOI: 10.1016/j.ijbiomac.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The development of neutralizing antibodies (nAbs) is an important strategy to tackle the Omicron variant. Omicron N-terminal domain (NTD) mutations including A67V, G142D, and N212I alter the antigenic structure, and mutations in the spike (S) receptor binding domain (RBD), such as N501Y, R346K, and T478K enhance affinity between the RBD and angiotensin-converting enzyme 2 (ACE2), thus conferring Omicron powerful immune evasion. Most nAbs (COV2-2130, ZCB11, REGN10933) and combinations of nAbs (COV2-2196 + COV2-2130, REGN10933 + REGN10987, Brii-196 + Brii-198) have either greatly reduced or lost their neutralizing ability against Omicron, but several nAbs such as SA55, SA58, S309, LY-CoV1404 are still effective in neutralizing most Omicron subvariants. This paper focuses on Omicron subvariants mutations and mechanisms of current therapeutic antibodies that remain efficacious against Omicron subvariants, which will guide us in exploring a new generation of broad nAbs as key therapeutics to tackle SARS-CoV-2 and accelerate the exploration of novel clinical antiviral reagents.
Collapse
Affiliation(s)
- Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
45
|
Huang R, Warner Jenkins G, Kim Y, Stanfield RL, Singh A, Martinez-Yamout M, Kroon GJ, Torres JL, Jackson AM, Kelley A, Shaabani N, Zeng B, Bacica M, Chen W, Warner C, Radoicic J, Joh J, Dinali Perera K, Sang H, Kim T, Yao J, Zhao F, Sok D, Burton DR, Allen J, Harriman W, Mwangi W, Chung D, Teijaro JR, Ward AB, Dyson HJ, Wright PE, Wilson IA, Chang KO, McGregor D, Smider VV. The smallest functional antibody fragment: Ultralong CDR H3 antibody knob regions potently neutralize SARS-CoV-2. Proc Natl Acad Sci U S A 2023; 120:e2303455120. [PMID: 37722054 PMCID: PMC10523490 DOI: 10.1073/pnas.2303455120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/15/2023] [Indexed: 09/20/2023] Open
Abstract
Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.
Collapse
Affiliation(s)
- Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA92127
| | | | - Yunjeong Kim
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Amrinder Singh
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Maria Martinez-Yamout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gerard J. Kroon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Abigail Kelley
- Applied Biomedical Science Institute, San Diego, CA92127
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | | | | | - Wen Chen
- Ligand Pharmaceuticals, San Diego, CA92121
| | | | | | - Joongho Joh
- School of Medicine, Department of Medicine, University of Louisville, Louisville, KY40202
| | - Krishani Dinali Perera
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Huldah Sang
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Tae Kim
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Jianxiu Yao
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Jeff Allen
- Ligand Pharmaceuticals, San Diego, CA92121
| | | | - Waithaka Mwangi
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Donghoon Chung
- School of Medicine, Department of Microbiology and Immunology, University of Louisville, Louisville, KY40202
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Kyeong-Ok Chang
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | | | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA92127
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
46
|
Connor RI, Sakharkar M, Rappazzo CG, Kaku CI, Curtis NC, Shin S, Wieland-Alter WF, Weiner JA, Ackerman ME, Walker LM, Lee J, Wright PF. Characteristics and functions of infection-enhancing antibodies to the N-terminal domain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558444. [PMID: 37786672 PMCID: PMC10541592 DOI: 10.1101/2023.09.19.558444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Characterization of functional antibody responses to the N-terminal domain (NTD) of the SARS-CoV-2 spike (S) protein has included identification of both potent neutralizing activity and putative enhancement of infection. Fcγ-receptor (FcγR)-independent enhancement of SARS-CoV-2 infection mediated by NTD-binding monoclonal antibodies (mAbs) has been observed in vitro , but the functional significance of these antibodies in vivo is not clear. Here we studied 1,213 S-binding mAbs derived from longitudinal sampling of B-cells collected from eight COVID-19 convalescent patients and identified 72 (5.9%) mAbs that enhanced infection in a VSV-SARS-CoV-2-S-Wuhan pseudovirus (PV) assay. The majority (68%) of these mAbs recognized the NTD, were identified in patients with mild and severe disease, and persisted for at least five months post-infection. Enhancement of PV infection by NTD-binding mAbs was not observed using intestinal (Caco-2) and respiratory (Calu-3) epithelial cells as infection targets and was diminished or lost against SARS-CoV-2 variants of concern (VOC). Proteomic deconvolution of the serum antibody repertoire from two of the convalescent subjects identified, for the first time, NTD-binding, infection-enhancing mAbs among the circulating immunoglobulins directly isolated from serum ( i.e ., functionally secreted antibody). Functional analysis of these mAbs demonstrated robust activation of FcγRIIIa associated with antibody binding to recombinant S proteins. Taken together, these findings suggest functionally active NTD-specific mAbs arise frequently during natural infection and can last as major serum clonotypes during convalescence. These antibodies display diverse attributes that include FcγR activation, and may be selected against by mutations in NTD associated with SARS-CoV-2 VOC.
Collapse
|
47
|
Curtis NC, Shin S, Hederman AP, Connor RI, Wieland-Alter WF, Ionov S, Boylston J, Rose J, Sakharkar M, Dorman DB, Dessaint JA, Gwilt LL, Crowley AR, Feldman J, Hauser BM, Schmidt AG, Ashare A, Walker LM, Wright PF, Ackerman ME, Lee J. Characterization of SARS-CoV-2 Convalescent Patients' Serological Repertoire Reveals High Prevalence of Iso-RBD Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556349. [PMID: 37745524 PMCID: PMC10515772 DOI: 10.1101/2023.09.08.556349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.
Collapse
|
48
|
Braun J, Hill ED, Contreras E, Yasuda M, Morgan A, Ditelberg S, Winter E, Callahan C, Mazzoni G, Kirmaier A, Mirebrahim H, Asgharian H, Telman D, Collier ARY, Barouch DH, Riedel S, Dutta S, Rubelt F, Arnaout R. Contrasting Effects of SARS-CoV-2 Vaccination vs. Infection on Antibody and TCR Repertoires. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556703. [PMID: 39829775 PMCID: PMC11741250 DOI: 10.1101/2023.09.08.556703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Antibodies and helper T cells play important roles in SARS-CoV-2 infection and vaccination. We sequenced B- and T-cell receptor repertoires (BCR/TCR) from the blood of 251 infectees, vaccinees, and controls to investigate whether features of these repertoires could predict subjects' SARS-CoV-2 neutralizing antibody titer (NAbs), as measured by enzyme-linked immunosorbent assay (ELISA). We sequenced recombined immunoglobulin heavy-chain (IGH), TCRβ (TRB), and TCRδ (TRD) genes in parallel from all subjects, including select B- and T-cell subsets in most cases, with a focus on their hypervariable CDR3 regions, and correlated this AIRRseq data with demographics and clinical findings from subjects' electronic health records. We found that age affected NAb levels in vaccinees but not infectees. Intriguingly, we found that vaccination, but not infection, has a substantial effect on non-productively recombined IGHs, suggesting a vaccine effect that precedes clonal selection. We found that repertoires' binding capacity to known SARS-CoV-2-specific CD4+ TRBs performs as well as the best hand-tuned fuzzy matching at predicting a protective level of NAbs, while also being more robust to repertoire sample size and not requiring hand-tuning. The overall conclusion from this large, unbiased, clinically well annotated dataset is that B- and T-cell adaptive responses to SARS-CoV-2 infection and vaccination are surprising, subtle, and diffuse. We discuss methodological and statistical challenges faced in attempting to define and quantify such strong-but-diffuse repertoire signatures and present tools and strategies for addressing these challenges.
Collapse
Affiliation(s)
- Jasper Braun
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Elliot D. Hill
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Elisa Contreras
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michie Yasuda
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Alexandra Morgan
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sarah Ditelberg
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ethan Winter
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Cody Callahan
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gabrielle Mazzoni
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Andrea Kirmaier
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | - Dilduz Telman
- Roche Sequencing Solutions, Pleasanton, CA 94588, USA
| | - Ai-Ris Y. Collier
- Harvard Medical School, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dan H. Barouch
- Harvard Medical School, Boston, MA 02215, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Stefan Riedel
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sanjucta Dutta
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Ramy Arnaout
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
- Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
49
|
Liu M, Liang Z, Cheng ZJ, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. SARS-CoV-2 neutralising antibody therapies: Recent advances and future challenges. Rev Med Virol 2023; 33:e2464. [PMID: 37322826 DOI: 10.1002/rmv.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic represents an unparalleled global public health crisis. Despite concerted research endeavours, the repertoire of effective treatment options remains limited. However, neutralising-antibody-based therapies hold promise across an array of practices, encompassing the prophylaxis and management of acute infectious diseases. Presently, numerous investigations into COVID-19-neutralising antibodies are underway around the world, with some studies reaching clinical application stages. The advent of COVID-19-neutralising antibodies signifies the dawn of an innovative and promising strategy for treatment against SARS-CoV-2 variants. Comprehensively, our objective is to amalgamate contemporary understanding concerning antibodies targeting various regions, including receptor-binding domain (RBD), non-RBD, host cell targets, and cross-neutralising antibodies. Furthermore, we critically examine the prevailing scientific literature supporting neutralising antibody-based interventions, and also delve into the functional evaluation of antibodies, with a particular focus on in vitro (vivo) assays. Lastly, we identify and consider several pertinent challenges inherent to the realm of COVID-19-neutralising antibody-based treatments, offering insights into potential future directions for research and development.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Hauser BM, Sangesland M, Lam EC, Denis KJS, Sheehan ML, Vu ML, Cheng AH, Balazs AB, Lingwood D, Schmidt AG. Heterologous sarbecovirus receptor binding domains as scaffolds for SARS-CoV-2 receptor binding motif presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554179. [PMID: 37662405 PMCID: PMC10473630 DOI: 10.1101/2023.08.21.554179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center upon targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potently neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake M. Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | | | - Mya L. Vu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Agnes H. Cheng
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|