1
|
Schrell L, Fuchs HL, Dickmanns A, Scheibner D, Olejnik J, Hume AJ, Reineking W, Störk T, Müller M, Graaf-Rau A, Diederich S, Finke S, Baumgärtner W, Mühlberger E, Balkema-Buschmann A, Dobbelstein M. Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine. Antiviral Res 2025; 233:106046. [PMID: 39638153 DOI: 10.1016/j.antiviral.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
RNA viruses present a constant threat to human health, often with limited options for vaccination or therapy. Notable examples include influenza viruses and coronaviruses, which have pandemic potential. Filo- and henipaviruses cause more limited outbreaks, but with high case fatality rates. All RNA viruses rely on the activity of a virus-encoded RNA-dependent RNA polymerase (RdRp). An antiviral nucleoside analogue, 4'-Fluorouridine (4'-FlU), targets RdRp and diminishes the replication of several RNA viruses, including influenza A virus and SARS-CoV-2, through incorporation into nascent viral RNA and delayed chain termination. However, the effective concentration of 4'-FlU varied among different viruses, raising the need to fortify its efficacy. Here we show that inhibitors of dihydroorotate dehydrogenase (DHODH), an enzyme essential for pyrimidine biosynthesis, can synergistically enhance the antiviral effect of 4'-FlU against influenza A viruses, SARS-CoV-2, henipaviruses, and Ebola virus. Even 4'-FlU-resistant mutant influenza A virus was re-sensitized towards 4'-FlU by DHODH inhibition. The addition of uridine rescued influenza A virus replication, strongly suggesting uridine depletion as a mechanism of this synergy. 4'-FlU was also highly effective against SARS-CoV-2 in a hamster model of COVID. We propose that the impairment of endogenous uridine synthesis by DHODH inhibition enhances the incorporation of 4'-FlU into viral RNAs. This strategy may be broadly applicable to enhance the efficacy of pyrimidine nucleoside analogues for antiviral therapy.
Collapse
Affiliation(s)
- Leon Schrell
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Hannah L Fuchs
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Antje Dickmanns
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - David Scheibner
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Adam J Hume
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Elke Mühlberger
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2024:e0012823. [PMID: 39714175 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Welch SR, Spengler JR, Westover JB, Bailey KW, Davies KA, Aida-Ficken V, Bluemling GR, Boardman KM, Wasson SR, Mao S, Kuiper DL, Hager MW, Saindane MT, Andrews MK, Krueger RE, Sticher ZM, Jung KH, Chatterjee P, Shrivastava-Ranjan P, Lo MK, Coleman-McCray JD, Sorvillo TE, Genzer SC, Scholte FEM, Kelly JA, Jenks MH, McMullan LK, Albariño CG, Montgomery JM, Painter GR, Natchus MG, Kolykhalov AA, Gowen BB, Spiropoulou CF, Flint M. Delayed low-dose oral administration of 4'-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease. Sci Transl Med 2024; 16:eado7034. [PMID: 39565871 DOI: 10.1126/scitranslmed.ado7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Development of broad-spectrum antiviral therapies is critical for outbreak and pandemic preparedness against emerging and reemerging viruses. Viruses inducing hemorrhagic fevers cause high morbidity and mortality in humans and are associated with several recent international outbreaks, but approved therapies for treating most of these pathogens are lacking. Here, we show that 4'-fluorouridine (4'-FlU; EIDD-2749), an orally available ribonucleoside analog, has antiviral activity against multiple hemorrhagic fever viruses in cell culture, including Nipah virus, Crimean-Congo hemorrhagic fever virus, orthohantaviruses, and arenaviruses. We performed preclinical in vivo evaluation of oral 4'-FlU against two arenaviruses, Old World Lassa virus (LASV) and New World Junín virus (JUNV), in guinea pig models of lethal disease. 4'-FlU demonstrated both advantageous pharmacokinetic characteristics and high efficacy in both of these lethal disease guinea pig models. Additional experiments supported protection of the infected animals even when 4'-FlU delivery was reduced to a low dose of 0.5 milligram per kilogram. To demonstrate clinical utility, 4'-FlU treatment was evaluated when initiated late in the course of infection (12 or 9 days after infection for LASV and JUNV, respectively). Delayed treatment resulted in rapid resolution of clinical signs, demonstrating an extended window for therapeutic intervention. These data support the use of 4'-FlU as a potent and efficacious treatment against highly pathogenic arenaviruses of public health concern with a virus inhibition profile suggesting broad-spectrum utility as an orally available antiviral drug against a wide variety of viral pathogens.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jonna B Westover
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin W Bailey
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, US Department of Agriculture, Manhattan, KS 66506, USA
| | - Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Gregory R Bluemling
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Kirsten M Boardman
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Samantha R Wasson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Shuli Mao
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Damien L Kuiper
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Michael W Hager
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Rebecca E Krueger
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Kie Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sarah C Genzer
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - George R Painter
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | | | - Brian B Gowen
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
5
|
Zhang G, Zhao B, Liu J. The Development of Animal Models for Respiratory Syncytial Virus (RSV) Infection and Enhanced RSV Disease. Viruses 2024; 16:1701. [PMID: 39599816 PMCID: PMC11598872 DOI: 10.3390/v16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The development of immunoprophylactic products against respiratory syncytial virus (RSV) has resulted in notable advancements, leading to an increased demand for preclinical experiments and placing greater demands on animal models. Nevertheless, the field of RSV research continues to face the challenge of a lack of ideal animal models. Despite the demonstration of efficacy in animal studies, numerous RSV vaccine candidates have been unsuccessful in clinical trials, primarily due to the lack of suitable animal models. The most commonly utilized animal models for RSV research are cotton rats, mice, lambs, and non-human primates. These animals have been extensively employed in mechanistic studies and in the development and evaluation of vaccines and therapeutics. However, each model only exemplifies some, but not all, aspects of human RSV disease. The aim of this study was to provide a comprehensive summary of the disease symptoms, viral replication, pathological damage, and enhanced RSV disease (ERD) conditions across different RSV animal models. Furthermore, the advantages and disadvantages of each model are discussed, with the intention of providing a valuable reference for related RSV research.
Collapse
Affiliation(s)
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| |
Collapse
|
6
|
Haas GD, Kowdle S, Schmitz KS, Azarm KD, Johnson KN, Klain WR, Freiberg AN, Cox RM, Plemper RK, Lee B. Tetracistronic minigenomes elucidate a functional promoter for Ghana virus and unveils Cedar virus replicase promiscuity for all henipaviruses. J Virol 2024; 98:e0080624. [PMID: 39345144 PMCID: PMC11495047 DOI: 10.1128/jvi.00806-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Batborne henipaviruses, such as Nipah and Hendra viruses, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often, the scope and capacity of research, which can be conducted at BSL-4, is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription, and replication-competent minigenomes for the Nipah, Hendra, and Cedar viruses, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently driving replication and transcription of minigenomes from all tested henipaviruses. We also apply this technology to Ghana virus (GhV), an emergent species that has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. The use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals that are highly efficacious against the GhV polymerase. IMPORTANCE Henipaviruses are recognized as significant global health threats due to their high mortality rates and lack of effective vaccines or therapeutics. Due to the requirement for high biocontainment facilities, the scope of research which may be conducted on henipaviruses is limited. To address this challenge, we developed innovative tetracistronic, transcription, and replication-competent minigenomes. We demonstrate that these systems replicate key aspects of the viral life cycle, such as budding, fusion, and receptor binding, and are safe for use in lower biocontainment settings. Importantly, the application of this system to the Ghana virus revealed that its known sequence is incomplete; however, substituting the missing sequences with those from other henipaviruses allowed us to overcome this challenge. We demonstrate that the Ghana virus replicative machinery is functional and can identify two orally efficacious antivirals effective against it. Our research offers a versatile system for life-cycle modeling of highly pathogenic henipaviruses at low biocontainment.
Collapse
Affiliation(s)
- Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kendra N. Johnson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William R. Klain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Lieber CM, Kang HJ, Sobolik EB, Sticher ZM, Ngo VL, Gewirtz AT, Kolykhalov AA, Natchus MG, Greninger AL, Suthar MS, Plemper RK. Efficacy of late-onset antiviral treatment in immunocompromised hosts with persistent SARS-CoV-2 infection. J Virol 2024; 98:e0090524. [PMID: 39207133 PMCID: PMC11406939 DOI: 10.1128/jvi.00905-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Immunocompromised people are at high risk of prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and progression to severe coronavirus disease 2019 (COVID-19). However, the efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4+ and CD8+ T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for 5 weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorouridine (4'-FlU, EIDD-2749) significantly reduced virus load in the upper and lower respiratory compartments 4 days postinfection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract 7 days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. IMPORTANCE Four years after the onset of the global coronavirus disease 2019 (COVID-19) pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4+ and CD8+ T cell-depleted immunocompromised mouse model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-fluorouridine (4'-FlU). Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals (DAAs) for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.
Collapse
Affiliation(s)
- Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Elizabeth B Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Vu L Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | | | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
10
|
Yin P, May NA, Lello LS, Fayed A, Parks MG, Drobish AM, Wang S, Andrews M, Sticher Z, Kolykhalov AA, Natchus MG, Painter GR, Merits A, Kielian M, Morrison TE. 4'-Fluorouridine inhibits alphavirus replication and infection in vitro and in vivo. mBio 2024; 15:e0042024. [PMID: 38700353 PMCID: PMC11237586 DOI: 10.1128/mbio.00420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped, positive-sense RNA virus that has re-emerged to cause millions of human infections worldwide. In humans, acute CHIKV infection causes fever and severe muscle and joint pain. Chronic and debilitating arthritis and joint pain can persist for months to years. To date, there are no approved antivirals against CHIKV. Recently, the ribonucleoside analog 4'-fluorouridine (4'-FlU) was reported as a highly potent orally available inhibitor of SARS-CoV-2, respiratory syncytial virus, and influenza virus replication. In this study, we assessed 4'-FlU's potency and breadth of inhibition against a panel of alphaviruses including CHIKV, and found that it broadly suppressed alphavirus production in cell culture. 4'-FlU acted on the viral RNA replication step, and the first 4 hours post-infection were the critical time for its antiviral effect. In vitro replication assays identified nsP4 as the target of inhibition. In vivo, treatment with 4'-FlU reduced disease signs, inflammatory responses, and viral tissue burden in mouse models of CHIKV and Mayaro virus infection. Treatment initiated at 2 hours post-infection was most effective; however, treatment initiated as late as 24-48 hours post-infection produced measurable antiviral effects in the CHIKV mouse model. 4'-FlU showed effective oral delivery in our mouse model and resulted in the accumulation of both 4'-FlU and its bioactive triphosphate form in tissues relevant to arthritogenic alphavirus pathogenesis. Together, our data indicate that 4'-FlU inhibits CHIKV infection in vitro and in vivo and is a promising oral therapeutic candidate against CHIKV infection.IMPORTANCEAlphaviruses including chikungunya virus (CHIKV) are mosquito-borne positive-strand RNA viruses that can cause various diseases in humans. Although compounds that inhibit CHIKV and other alphaviruses have been identified in vitro, there are no licensed antivirals against CHIKV. Here, we investigated a ribonucleoside analog, 4'-fluorouridine (4'-FlU), and demonstrated that it inhibited infectious virus production by several alphaviruses in vitro and reduced virus burden in mouse models of CHIKV and Mayaro virus infection. Our studies also indicated that 4'-FlU treatment reduced CHIKV-induced footpad swelling and reduced the production of pro-inflammatory cytokines. Inhibition in the mouse model correlated with effective oral delivery of 4'-FlU and accumulation of both 4'-FlU and its bioactive form in relevant tissues. In summary, 4'-FlU exhibits potential as a novel anti-alphavirus agent targeting the replication of viral RNA.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas A. May
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Atef Fayed
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - M. Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Adam M. Drobish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sainan Wang
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Meghan Andrews
- Emory Institute for Drug Development (EIDD), Atlanta, Georgia, USA
| | - Zachary Sticher
- Emory Institute for Drug Development (EIDD), Atlanta, Georgia, USA
| | | | | | - George R. Painter
- Emory Institute for Drug Development (EIDD), Atlanta, Georgia, USA
- Drug Innovations Ventures at Emory (DRIVE), Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Chen Y, Li X, Han F, Ji B, Li Y, Yan J, Wang M, Fan J, Zhang S, Lu L, Zou P. The nucleoside analog 4'-fluorouridine suppresses the replication of multiple enteroviruses by targeting 3D polymerase. Antimicrob Agents Chemother 2024; 68:e0005424. [PMID: 38687016 PMCID: PMC11620493 DOI: 10.1128/aac.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Human enteroviruses are the major pathogens causing hand-foot-and-mouth disease in infants and young children throughout the world, and infection with enterovirus is also associated with severe complications, such as aseptic meningitis and myocarditis. However, there are no antiviral drugs available to treat enteroviruses infection at present. In this study, we found that 4'-fluorouridine (4'-FlU), a nucleoside analog with low cytotoxicity, exhibited broad-spectrum activity against infections of multiple enteroviruses with EC50 values at low micromolar levels, including coxsackievirus A10 (CV-A10), CV-A16, CV-A6, CV-A7, CV-B3, enterovirus A71 (EV-A71), EV-A89, EV-D68, and echovirus 6. With further investigation, the results indicated that 4'-FlU directly interacted with the RNA-dependent RNA polymerase of enterovirus, the 3D pol, and impaired the polymerase activity of 3D pol, hence inhibiting viral RNA synthesis and significantly suppressing viral replication. Our findings suggest that 4'-FlU could be promisingly developed as a broad-spectrum direct-acting antiviral agent for anti-enteroviruses therapy.
Collapse
Affiliation(s)
- Yongkang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingjing Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Lieber CM, Kang HJ, Sobolik EB, Sticher ZM, Ngo VL, Gewirtz AT, Kolykhalov AA, Natchus MG, Greninger AL, Suthar MS, Plemper RK. Efficacy of late-onset antiviral treatment in immune-compromised hosts with persistent SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595478. [PMID: 38826222 PMCID: PMC11142196 DOI: 10.1101/2024.05.23.595478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The immunocompromised are at high risk of prolonged SARS-CoV-2 infection and progression to severe COVID-19. However, efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4 + and CD8 + T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for five weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorourdine (4'-FlU, EIDD-2749) significantly reduced virus load in upper and lower respiratory compartments four days post infection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract seven days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. Importance Four years after the onset of the global COVID-19 pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4 + and CD8 + T cell-depleted immunocompromised mouse model of SARS-CoV-2 infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-FlU. Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.
Collapse
|
13
|
Mesaros EF, Dugan BJ, Gao M, Sheraz M, McGovern-Gooch K, Xu F, Fan KY, Nguyen D, Kultgen SG, Lindstrom A, Stever K, Tercero B, Binder RJ, Liu F, Micolochick Steuer HM, Mani N, Harasym TO, Thi EP, Cuconati A, Dorsey BD, Cole AG, Lam AM, Sofia MJ. Discovery of C-Linked Nucleoside Analogues with Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2024; 10:1780-1792. [PMID: 38651692 DOI: 10.1021/acsinfecdis.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.
Collapse
Affiliation(s)
- Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin J Dugan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Muhammad Sheraz
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Fran Xu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Aaron Lindstrom
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Breanna Tercero
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Randall J Binder
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Cuconati
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Angela M Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
14
|
Westover JB, Jung KH, Alkan C, Boardman KM, Van Wettere AJ, Martens C, Rojas I, Hicks P, Thomas AJ, Saindane MT, Bluemling GR, Mao S, Kolykhalov AA, Natchus MG, Bates P, Painter GR, Ikegami T, Gowen BB. Modeling Heartland virus disease in mice and therapeutic intervention with 4'-fluorouridine. J Virol 2024; 98:e0013224. [PMID: 38511932 PMCID: PMC11019845 DOI: 10.1128/jvi.00132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heartland virus (HRTV) is an emerging tick-borne bandavirus that causes a febrile illness of varying severity in humans, with cases reported in eastern and midwestern regions of the United States. No vaccines or approved therapies are available to prevent or treat HRTV disease. Here, we describe the genetic changes, natural history of disease, and pathogenesis of a mouse-adapted HRTV (MA-HRTV) that is uniformly lethal in 7- to 8-week-old AG129 mice at low challenge doses. We used this model to assess the efficacy of the ribonucleoside analog, 4'-fluorouridine (EIDD-2749), and showed that once-daily oral treatment with 3 mg/kg of drug, initiated after the onset of disease, protects mice against lethal MA-HRTV challenge and reduces viral loads in blood and tissues. Our findings provide insights into HRTV virulence and pathogenesis and support further development of EIDD-2749 as a therapeutic intervention for HRTV disease. IMPORTANCE More than 60 cases of HRTV disease spanning 14 states have been reported to the United States Centers for Disease Control and Prevention. The expanding range of the Lone Star tick that transmits HRTV, the growing population of at-risk persons living in geographic areas where the tick is abundant, and the lack of antiviral treatments or vaccines raise significant public health concerns. Here, we report the development of a new small-animal model of lethal HRTV disease to gain insight into HRTV pathogenesis and the application of this model for the preclinical development of a promising new antiviral drug candidate, EIDD-2749. Our findings shed light on how the virus causes disease and support the continued development of EIDD-2749 as a therapeutic for severe cases of HRTV infection.
Collapse
Affiliation(s)
- Jonna B. Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Kie Hoon Jung
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Kirsten M. Boardman
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Arnaud J. Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Utah Veterinary Diagnostic Laboratory, Logan, Utah, USA
| | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Inioska Rojas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron J. Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Manohar T. Saindane
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | | | - Shuli Mao
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Alexander A. Kolykhalov
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, Georgia, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George R. Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, Georgia, USA
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Brian B. Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| |
Collapse
|
15
|
Haas GD, Schmitz KS, Azarm KD, Johnson KN, Klain WR, Freiberg AN, Cox RM, Plemper RK, Lee B. Tetracistronic Minigenomes Elucidate a Functional Promoter for Ghana Virus and Unveils Cedar Virus Replicase Promiscuity for all Henipaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589704. [PMID: 38659760 PMCID: PMC11042316 DOI: 10.1101/2024.04.16.589704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Batborne henipaviruses, such as Nipah virus and Hendra virus, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often the scope and capacity of research which can be conducted at BSL-4 is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription and replication competent minigenomes for Nipah virus, Hendra virus, Cedar virus, and Ghana virus, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently rescuing minigenomes from all tested henipaviruses. We also apply this technology to GhV, an emergent species which has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. Use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals which are highly efficacious against the GhV polymerase.
Collapse
Affiliation(s)
- Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kendra N. Johnson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - William R. Klain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
Min Y, Xiong W, Shen W, Liu X, Qi Q, Zhang Y, Fan R, Fu F, Xue H, Yang H, Sun X, Ning Y, Tian T, Zhou X. Developing nucleoside tailoring strategies against SARS-CoV-2 via ribonuclease targeting chimera. SCIENCE ADVANCES 2024; 10:eadl4393. [PMID: 38598625 PMCID: PMC11006213 DOI: 10.1126/sciadv.adl4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
In response to the urgent need for potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics, this study introduces an innovative nucleoside tailoring strategy leveraging ribonuclease targeting chimeras. By seamlessly integrating ribonuclease L recruiters into nucleosides, we address RNA recognition challenges and effectively inhibit severe acute respiratory syndrome coronavirus 2 replication in human cells. Notably, nucleosides tailored at the ribose 2'-position outperform those modified at the nucleobase. Our in vivo validation using hamster models further bolsters the promise of this nucleoside tailoring approach, positioning it as a valuable asset in the development of innovative antiviral drugs.
Collapse
Affiliation(s)
- Yuanqin Min
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Ruochen Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Heng Xue
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Hang Yang
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Xiulian Sun
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Yunjia Ning
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
17
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 2024; 32:335-348.e8. [PMID: 38295788 PMCID: PMC10942762 DOI: 10.1016/j.chom.2024.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Science, Athens, GA 30602, USA
| | - Michal Kuczma
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
19
|
Xiong Y, Tao K, Li T, Ou W, Zhou Y, Zhang W, Wang S, Qi R, Ji J. Resveratrol inhibits respiratory syncytial virus replication by targeting heparan sulfate proteoglycans. Food Funct 2024; 15:1948-1962. [PMID: 38270052 DOI: 10.1039/d3fo05131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Resveratrol, renowned as an antioxidant, also exhibits significant potential in combatting severe respiratory infections, particularly the respiratory syncytial virus (RSV). Nevertheless, the specific mechanism underlying its inhibition of RSV replication remains unexplored. Heparan sulfate proteoglycans (HSPGs) play a pivotal role as attachment factors for numerous viruses, offering a promising avenue for countering viral infections. Our research has unveiled that resveratrol effectively curbs RSV infection in a dose-dependent manner. Remarkably, resveratrol disrupts the early stages of RSV infection by engaging with HSPGs, rather than interacting with RSV surface proteins like fusion (F) protein and glycoprotein (G). Resveratrol's affinity appears to be predominantly directed towards the negatively charged sites on HSPGs, thus impeding the binding of viral receptors. In an in vivo study involving RSV-infected mice, resveratrol demonstrates its potential by ameliorating pulmonary pathology. This improvement is attributed to the inhibition of pro-inflammatory cytokine expression and a reduction in viral load within the lungs. Notably, resveratrol specifically alleviates inflammation characterized by an abundance of neutrophils in RSV-infected mice. In summation, our data first shows how resveratrol combats RSV infection through interactions with HSPGs, positioning it as a promising candidate for innovative drug development targeting RSV infections. Our study provides insight into the mechanism of resveratrol antiviral infection.
Collapse
Affiliation(s)
- Yingcai Xiong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Keyu Tao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Tao Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Wenyang Zhang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
20
|
Shannon A, Chazot A, Feracci M, Falcou C, Fattorini V, Selisko B, Good S, Moussa A, Sommadossi JP, Ferron F, Alvarez K, Canard B. An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex. Nucleic Acids Res 2024; 52:1325-1340. [PMID: 38096103 PMCID: PMC10853775 DOI: 10.1093/nar/gkad1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.
Collapse
Affiliation(s)
- Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Camille Falcou
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Steven Good
- ATEA Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA 02110, USA
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA 02110, USA
| | | | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
21
|
Cox RM, Wolf JD, Lieberman NA, Lieber CM, Kang HJ, Sticher ZM, Yoon JJ, Andrews MK, Govindarajan M, Krueger RE, Sobolik EB, Natchus MG, Gewirtz AT, deSwart RL, Kolykhalov AA, Hekmatyar K, Sakamoto K, Greninger AL, Plemper RK. Therapeutic mitigation of measles-like immune amnesia and exacerbated disease after prior respiratory virus infections in ferrets. Nat Commun 2024; 15:1189. [PMID: 38331906 PMCID: PMC10853234 DOI: 10.1038/s41467-024-45418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Nicole A Lieberman
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | | | - Rebecca E Krueger
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth B Sobolik
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Rik L deSwart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Khan Hekmatyar
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA.
| |
Collapse
|
22
|
Lieber CM, Kang HJ, Aggarwal M, Lieberman NA, Sobolik EB, Yoon JJ, Natchus MG, Cox RM, Greninger AL, Plemper RK. Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation in vitro and in vivo. PLoS Pathog 2024; 20:e1011993. [PMID: 38300953 PMCID: PMC10863857 DOI: 10.1371/journal.ppat.1011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/13/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.
Collapse
Affiliation(s)
- Carolin M. Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Nicole A. Lieberman
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| |
Collapse
|
23
|
Apaydın ÇB, Göktaş F, Naesens L, Karalı N. Novel 2-indolinone derivatives as promising agents against respiratory syncytial and yellow fever viruses. Future Med Chem 2024; 16:295-310. [PMID: 38288568 DOI: 10.4155/fmc-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Background: A vaccine or antiviral drug for respiratory syncytial virus (RSV) infections and a specific antiviral drug for yellow fever virus (YFV) infections has not yet been developed. Method: In this study, 2-indolinone-based N-(4-sulfamoylphenyl)hydrazinecarbothioamides were synthesized. Along with these new compounds, previously synthesized 2-indolinone-based N-(3-sulfamoylphenyl)hydrazinecarbothioamides were evaluated against various DNA and RNA viruses. Results: Some 2-indolinone compounds exhibited nontoxic and selective antiviral activities against RSV and YFV. Halogen substitution at the indole ring increased the anti-RSV activities. Moreover, 1-benzyl and 5-halogen or nitro-substituted compounds were the most effective compounds against YFV. Conclusion: Generally, the 3-sulfonamide-substituted compounds were determined to be more effective than 4-sulfonamide-substituted compounds against RSV and YFV.
Collapse
Affiliation(s)
- Çağla Begüm Apaydın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34126, Istanbul, Turkey
| | - Füsun Göktaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34126, Istanbul, Turkey
| | - Lieve Naesens
- Rega Institute, KU Leuven, Department of Microbiology, Immunology & Transplantation, B-3000, Leuven, Belgium
| | - Nilgün Karalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34126, Istanbul, Turkey
| |
Collapse
|
24
|
Sun H, Ye ZW, Yuan S. SFTSV-Nluc: a useful tool for studying SFTSV biology and countermeasures. EBioMedicine 2024; 100:104968. [PMID: 38194743 PMCID: PMC10792557 DOI: 10.1016/j.ebiom.2024.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Affiliation(s)
- Haoran Sun
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
25
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558814. [PMID: 37790571 PMCID: PMC10542499 DOI: 10.1101/2023.09.21.558814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.
Collapse
|
26
|
Xu H, Jian X, Wen Y, Xu M, Jin R, Wu X, Zhou F, Cao J, Xiao G, Peng K, Xie Y, Chen H, Zhang L. A nanoluciferase SFTSV for rapid screening antivirals and real-time visualization of virus infection in mice. EBioMedicine 2024; 99:104944. [PMID: 38176215 PMCID: PMC10806088 DOI: 10.1016/j.ebiom.2023.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that causes severe hemorrhagic fever in humans, but no FDA-approved specific antivirals or vaccines are available to treat or prevent SFTS. METHODS The plasmids construction and transfection were performed to generate the recombinant SFTSV harboring the nanoluciferase gene (SFTSV-Nluc). Immunostaining plaque assay was performed to measure viral titers, and DNA electrophoresis and Sanger sequencing were performed to evaluate the genetic stability. Luciferase assay and quantitative RT-PCR were performed to evaluate the efficacy of antivirals in vitro. Bioluminescence imaging, titration of virus from excised organs, hematology, and histopathology and immunohistochemistry were performed to evaluate the efficacy of antivirals in vivo. FINDINGS SFTSV-Nluc exhibited high genetic stability and replication kinetics similar to those of wild-type virus (SFTSVwt), then a rapid high-throughput screening system for identifying inhibitors to treat SFTS was developed, and a nucleoside analog, 4-FlU, was identified to effectively inhibit SFTSV in vitro. SFTSV-Nluc mimicked the replication characteristics and localization of SFTSVwt in counterpart model mice. Bioluminescence imaging of SFTSV-Nluc allowed real-time visualization and quantification of SFTSV replication in the mice. 4-FlU was demonstrated to inhibit the replication of SFTSV with more efficiency than T-705 and without obvious adverse effect in vivo. INTERPRETATION The high-throughput screening system based on SFTSV-Nluc for use in vitro and in vivo revealed that a safe and effective antiviral nucleoside analog, 4-FlU, may be a basis for the strategic treatment of SFTSV and other bunyavirus infections, paving the way for the discovery of antivirals. FUNDING This work was supported by grants from the National Key Research and Development Plan of China (2021YFC2300700 to L. Zhang, 2022YFC2303300 to L. Zhang), Strategic Priority Research Program of Chinese Academy of Sciences (XDB0490000 to L. Zhang), National Natural Science Foundation of China (31970165 to L. Zhang, U22A20379 to G. Xiao), the Science and Technology Commission of Shanghai Municipality (21S11903100 to Y. Xie), Hubei Natural Science Foundation for Distinguished Young Scholars (2022CFA099 to L. Zhang).
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqin Jian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwei Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyuan Cao
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China.
| | | | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
27
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
29
|
Lieber CM, Kang HJ, Aggarwal M, Lieberman NA, Sobolik EB, Yoon JJ, Natchus MG, Cox RM, Greninger AL, Plemper RK. Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563370. [PMID: 37905070 PMCID: PMC10614940 DOI: 10.1101/2023.10.20.563370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD 50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU. Author Summary Reduced sensitivity to FDA-approved influenza drugs is a major obstacle to effective antiviral therapy. We have previously demonstrated oral efficacy of a novel clinical candidate drug, 4'-FlU, against seasonal, pandemic, and highly pathogenic avian influenza viruses. In this study, we have determined possible routes of influenza virus escape from 4'-FlU and addressed whether resistance imposes a viral fitness penalty, affecting pathogenicity or ability to transmit. We identified three distinct clusters of mutations that lead to moderately reduced viral sensitivity to the drug. Testing of resistant variants against two chemically unrelated nucleoside analog inhibitors of influenza virus, conditionally approved favipiravir and the broad-spectrum SARS-CoV-2 drug molnupiravir, revealed cross-resistance of one cluster with favipiravir, whereas no viral escape from molnupiravir was noted. We found that the resistant variants are severely attenuated in mice, impaired in their ability to invade the lower respiratory tract and cause viral pneumonia in ferrets, and transmission-defective or compromised. We could fully mitigate lethal infection of mice with the resistant variants with standard or 5-fold elevated oral dose of 4'-FlU. These results demonstrate that partial viral escape from 4'-FlU is feasible in principle, but escape mutation clusters are unlikely to reach clinical significance or persist in circulating influenza virus strains.
Collapse
|
30
|
Uemura K, Nobori H, Sato A, Toba S, Kusakabe S, Sasaki M, Tabata K, Matsuno K, Maeda N, Ito S, Tanaka M, Anraku Y, Kita S, Ishii M, Kanamitsu K, Orba Y, Matsuura Y, Hall WW, Sawa H, Kida H, Matsuda A, Maenaka K. 2-thiouridine is a broad-spectrum antiviral nucleoside analogue against positive-strand RNA viruses. Proc Natl Acad Sci U S A 2023; 120:e2304139120. [PMID: 37831739 PMCID: PMC10589713 DOI: 10.1073/pnas.2304139120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.
Collapse
Affiliation(s)
- Kentaro Uemura
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - Haruaki Nobori
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
| | - Shinsuke Toba
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Shinji Kusakabe
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Keita Matsuno
- Unit of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Naoyoshi Maeda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayu Tanaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayumi Ishii
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Kayoko Kanamitsu
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - William W. Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, DublinD04, Ireland
- Global Virus Network, Baltimore, MD21201
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Global Virus Network, Baltimore, MD21201
| | - Hiroshi Kida
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo060-0812, Japan
| |
Collapse
|
31
|
Li J, Zhao Y, Dai Y, Zhao J. Identification of γ-Fagarine as a novel antiviral agent against respiratory virus (hMPV) infection. Virus Res 2023; 336:199223. [PMID: 37734492 PMCID: PMC10522984 DOI: 10.1016/j.virusres.2023.199223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Human metapneumovirus (hMPV) causes significant upper and lower respiratory disease in all age groups worldwide. However, there is no licensed drugs or vaccine available against hMPV. γ-Fagarine, an alkaloid isolated from the root of zanthoxylum, has been reported to be effective in the treatment of cancer, inflammatory diseases and antivirals. However, little is known about the inhibitory effect of γ-Fagarine against respiratory virus infection and the mechanism. In this study, we aim to investigate the effect of γ-Fagarine on hMPV infection and explore its underlying molecular mechanisms. Vero-E6 and 16HBE cells were used as cell models. Virus replication and microcosm character were explored in Vero-E6 cells. Then, the antiviral activities were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), and indirect immunofluorescence assays (IFAs) in Vero-E6 and 16HBE. Potential mechanisms of γ-Fagarine related to HSPG and lysosome pH were assessed in 16HBE cells. Lastly, a virus-infected mouse model was established and antiviral assay in vivo was conducted. γ-Fagarine showed no toxicity toward Vero-E6 cells and 16HBE cells but demonstrated anti-hMPV activity. Virus titers of γ-Fagarine group were reduced to 33% and 45% of the hMPV groups, respectively. Besides, mechanistic studies revealed that γ-Fagarine could inhibit hMPV by dual mechanisms of direct restraining virus binding with HSPG and influencing lysosome pH. Furthermore, oral delivery of γ-Fagarine to hMPV-infected mice at a dosage of 25 mg/kg reduced the hMPV load in lung tissues. After γ-Fagarine treatment, pathological damage caused by viral infection was also ameliorated. These findings suggest that γ-Fagarine has antiviral effects in vitro and in vivo, which are associated with its ability to restrain virus binding with HSPG and influence lysosome pH, thus indicating that γ-Fagarine has the potential to serve as a candidate to fight against hMPV infection and other respiratory viruses such as influenza viruses and SARS-CoV-2.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Junning Zhao
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| |
Collapse
|
32
|
Bueno CA, Salinas FM, Vazquez L, Alché LE, Michelini FM. Two synthetic steroid analogs reduce human respiratory syncytial virus replication and the immune response to infection both in vitro and in vivo. Heliyon 2023; 9:e20148. [PMID: 37822633 PMCID: PMC10562772 DOI: 10.1016/j.heliyon.2023.e20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
HRSV is responsible for many acute lower airway infections and hospitalizations in infants, the elderly and those with weakened immune systems around the world. The strong inflammatory response that mediates viral clearance contributes to pathogenesis, and is positively correlated with disease severity. There is no specific effective therapy on hand. Antiviral synthetic stigmastanes (22S, 23S)-22,23-dihydroxystigmast-4-en-3-one (Compound 1) and 22,23-dihydroxystigmasta-1,4-dien-3-one (Compound 2) have shown to be active inhibiting unrelated virus like Herpes Simplex type 1 virus (HSV-1) and Adenovirus, without cytotoxicity. We have also shown that Compound 1 modulates the activation of cell signaling pathways and cytokine secretion in infected epithelial cells as well as in inflammatory cells activated by nonviral stimuli. In the present work, we investigated the inhibitory effect of both compounds on HRSV replication and their modulatory effect on infected epithelial and inflammatory cells. We show that compounds 1 and 2 inhibit in vitro HRSV replication and propagation and reduce cytokine secretion triggered by HRSV infection in epithelial and inflammatory cells. The compounds reduce viral loads and inflammatory infiltration in the lungs of mice infected with HRSV.
Collapse
Affiliation(s)
- Carlos A. Bueno
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Franco M. Salinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - L. Vazquez
- UOCCB (Unidad Operativa Centro de Contención Biológica), Instituto Dr. Carlos G. Malbrán, ANLIS (Administración Nacional de Laboratorios e Institutos de Salud), Argentina
| | - Laura E. Alché
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Flavia M. Michelini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
33
|
Xu T, Zhang L. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Comput Struct Biotechnol J 2023; 21:4385-4394. [PMID: 37711189 PMCID: PMC10498173 DOI: 10.1016/j.csbj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural biology and computational research are presented through the classification of inhibitory mechanisms. This review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhibiting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral transcriptional mechanisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian 361005, China
| |
Collapse
|
34
|
Deshpande S, Huo W, Shrestha R, Sparrow K, Wood JM, Evans GB, Harris LD, Kingston RL, Bulloch EMM. Galidesivir Triphosphate Promotes Stalling of Dengue-2 Virus Polymerase Immediately Prior to Incorporation. ACS Infect Dis 2023; 9:1658-1673. [PMID: 37488090 PMCID: PMC10739630 DOI: 10.1021/acsinfecdis.3c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Millions of people are infected by the dengue and Zika viruses each year, resulting in significant morbidity and mortality. Galidesivir is an adenosine nucleoside analog that can attenuate flavivirus replication in cell-based assays and animal models of infection. Galidesivir is converted to the triphosphorylated form by host kinases and subsequently incorporated into viral RNA by viral RNA polymerases. This has been proposed to lead to the delayed termination of RNA synthesis. Here, we report direct in vitro testing of the effects of Galidesivir triphosphate on dengue-2 and Zika virus polymerase activity. Galidesivir triphosphate was chemically synthesized, and inhibition of RNA synthesis followed using a dinucleotide-primed assay with a homopolymeric poly(U) template. Galidesivir triphosphate was equipotent against dengue-2 and Zika polymerases, with IC50 values of 42 ± 12 μM and 47 ± 5 μM, respectively, at an ATP concentration of 20 μM. RNA primer extension assays show that the dengue-2 polymerase stalls while attempting to add a Galidesivir nucleotide to the nascent RNA chain, evidenced by the accumulation of RNA products truncated immediately upstream of Galidesivir incorporation sites. Nevertheless, Galidesivir is incorporated at isolated sites with low efficiency, leading to the subsequent synthesis of full-length RNA with no evidence of delayed chain termination. The incorporation of Galidesivir at consecutive sites is strongly disfavored, highlighting the potential for modulation of inhibitory effects of nucleoside analogs by the template sequence. Our results suggest that attenuation of dengue replication by Galidesivir may not derive from the early termination of RNA synthesis following Galidesivir incorporation.
Collapse
Affiliation(s)
- Sandesh Deshpande
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Wenjuan Huo
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Rinu Shrestha
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Kevin Sparrow
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
| | - James M. Wood
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Gary B. Evans
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Lawrence D. Harris
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Richard L. Kingston
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Esther M. M. Bulloch
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
35
|
Cox RM, Lieber CM, Wolf JD, Karimi A, Lieberman NAP, Sticher ZM, Roychoudhury P, Andrews MK, Krueger RE, Natchus MG, Painter GR, Kolykhalov AA, Greninger AL, Plemper RK. Comparing molnupiravir and nirmatrelvir/ritonavir efficacy and the effects on SARS-CoV-2 transmission in animal models. Nat Commun 2023; 14:4731. [PMID: 37550333 PMCID: PMC10406822 DOI: 10.1038/s41467-023-40556-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Therapeutic options against SARS-CoV-2 are underutilized. Two oral drugs, molnupiravir and paxlovid (nirmatrelvir/ritonavir), have received emergency use authorization. Initial trials suggested greater efficacy of paxlovid, but recent studies indicated comparable potency in older adults. Here, we compare both drugs in two animal models; the Roborovski dwarf hamster model for severe COVID-19-like lung infection and the ferret SARS-CoV-2 transmission model. Dwarf hamsters treated with either drug survive VOC omicron infection with equivalent lung titer reduction. Viral RNA copies in the upper respiratory tract of female ferrets receiving 1.25 mg/kg molnupiravir twice-daily are not significantly reduced, but infectious titers are lowered by >2 log orders and direct-contact transmission is stopped. Female ferrets dosed with 20 or 100 mg/kg nirmatrelvir/ritonavir twice-daily show 1-2 log order reduction of viral RNA copies and infectious titers, which correlates with low nirmatrelvir exposure in nasal turbinates. Virus replication resurges towards nirmatrelvir/ritonavir treatment end and virus transmits efficiently (20 mg/kg group) or partially (100 mg/kg group). Prophylactic treatment with 20 mg/kg nirmatrelvir/ritonavir does not prevent spread from infected ferrets, but prophylactic 5 mg/kg molnupiravir or 100 mg/kg nirmatrelvir/ritonavir block productive transmission. These data confirm reports of similar efficacy in older adults and inform on possible epidemiologic benefit of antiviral treatment.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Amirhossein Karimi
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Nicole A P Lieberman
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98185, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Pavitra Roychoudhury
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98185, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Rebecca E Krueger
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
- Department of Pharmacology, Emory University, Atlanta, GA, 30322, USA
| | | | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98185, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA.
| |
Collapse
|
36
|
Xu E, Park S, Calderon J, Cao D, Liang B. In Silico Identification and In Vitro Validation of Repurposed Compounds Targeting the RSV Polymerase. Microorganisms 2023; 11:1608. [PMID: 37375110 DOI: 10.3390/microorganisms11061608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the top cause of infant hospitalization globally, with no effective treatments available. Researchers have sought small molecules to target the RNA-dependent RNA Polymerase (RdRP) of RSV, which is essential for replication and transcription. Based on the cryo-EM structure of the RSV polymerase, in silico computational analysis including molecular docking and the protein-ligand simulation of a database, including 6554 molecules, is currently undergoing phases 1-4 of clinical trials and has resulted in the top ten repurposed compound candidates against the RSV polymerase, including Micafungin, Totrombopag, and Verubecestat. We performed the same procedure to evaluate 18 small molecules from previous studies and chose the top four compounds for comparison. Among the top identified repurposed compounds, Micafungin, an antifungal medication, showed significant inhibition and binding affinity improvements over current inhibitors such as ALS-8112 and Ribavirin. We also validated Micafungin's inhibition of the RSV RdRP using an in vitro transcription assay. These findings contribute to RSV drug development and hold promise for broad-spectrum antivirals targeting the non-segmented negative-sense (NNS) RNA viral polymerases, including those of rabies (RABV) and Ebola (EBOV).
Collapse
Affiliation(s)
- Eric Xu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seohyun Park
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Calderon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2023; 91:101108. [PMID: 35987701 PMCID: PMC9384546 DOI: 10.1016/j.mam.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The field of precision medicine allows for tailor-made treatments specific to a patient and thereby improve the efficiency and accuracy of disease prevention, diagnosis, and treatment and at the same time would reduce the cost, redundant treatment, and side effects of current treatments. Here, the combination of organ-on-a-chip and bioprinting into engineering high-content in vitro tissue models is envisioned to address some precision medicine challenges. This strategy could be employed to tackle the current coronavirus disease 2019 (COVID-19), which has made a significant impact and paradigm shift in our society. Nevertheless, despite that vaccines against COVID-19 have been successfully developed and vaccination programs are already being deployed worldwide, it will likely require some time before it is available to everyone. Furthermore, there are still some uncertainties and lack of a full understanding of the virus as demonstrated in the high number new mutations arising worldwide and reinfections of already vaccinated individuals. To this end, efficient diagnostic tools and treatments are still urgently needed. In this context, the convergence of bioprinting and organ-on-a-chip technologies, either used alone or in combination, could possibly function as a prominent tool in addressing the current pandemic. This could enable facile advances of important tools, diagnostics, and better physiologically representative in vitro models specific to individuals allowing for faster and more accurate screening of therapeutics evaluating their efficacy and toxicity. This review will cover such technological advances and highlight what is needed for the field to mature for tackling the various needs for current and future pandemics as well as their relevancy towards precision medicine.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Thiago Domingues Stocco
- Bioengineering Program, Technological and Scientific Institute, Brazil University, 08230-030, São Paulo, SP, Brazil; Faculty of Medical Sciences, Unicamp - State University of Campinas, 13083-877, Campinas, SP, Brazil
| | | | - André Sales Aguiar Furtado
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo Fernandes de Sousa
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Thomas J Webster
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Hebei University of Technology, Tianjin, China
| | - Fernanda R Marciano
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA.
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Respiratory syncytial virus (RSV) continues to be a major cause of severe lower respiratory tract infection in infants, young children, and older adults. In this review, changes in the epidemiology of RSV during the coronavirus disease 2019 (COVID-19) pandemic are highlighted together with the role which increased molecular surveillance efforts will have in future in assessing the efficacy of vaccines and therapeutics. RECENT FINDINGS The introduction of nonpharmaceutical intervention (NPIs) strategies during the COVID-19 pandemic between 2020 and 2022 resulted in worldwide disruption to the epidemiology of RSV infections, especially with respect to the timing and peak case rate of annual epidemics. Increased use of whole genome sequencing along with efforts to better standardize the nomenclature of RSV strains and discrimination of RSV genotypes will support increased monitoring of relevant antigenic sites in the viral glycoproteins. Several RSV vaccine candidates based on subunit, viral vectors, nucleic acid, or live attenuated virus strategies have shown efficacy in Phase 2 or 3 clinical trials with vaccines using RSVpreF protein currently the closest to approval and use in high-risk populations. Finally, the recent approval and future use of the extended half-life human monoclonal antibody Nirsevimab will also help to alleviate the morbidity and mortality burden caused by annual epidemics of RSV infections. SUMMARY The ongoing expansion and wider coordination of RSV molecular surveillance efforts via whole genome sequencing will be crucial for future monitoring of the efficacy of a new generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
39
|
Abas AH, Tallei TE, Fatimawali F, Celik I, Alhumaydhi FA, Emran TB, Dhama K, Rabaan AA, Garout MA, Halwani MA, Al Mutair A, Alhumaid S, Harapan H. 4’-fluorouridine as a potential COVID-19 oral drug?: a review. F1000Res 2023; 11:410. [DOI: 10.12688/f1000research.109701.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The available antiviral drugs against coronavirus disease 2019 (COVID-19) are limited. Oral drugs that can be prescribed to non-hospitalized patients are required. The 4′-fluoruridine, a nucleoside analog similar to remdesivir, is one of the promising candidates for COVID-19 oral therapy due to its ability to stall viral RdRp. Available data suggested that 4'-fluorouridine has antiviral activity against the respiratory syncytial virus, hepatitis C virus, lymphocytic choriomeningitis virus, and other RNA viruses, including SARS-CoV-2. In vivo study revealed that SARS-CoV-2 is highly susceptible to 4'-fluorouridine and was effective with a single daily dose versus molnupiravir administered twice daily. Although 4'-fluorouridine is considered as strong candidates, further studies are required to determine its efficacy in the patients and it’s genetic effects on humans. In this review, we the antiviral activity of 4′-fluorouridine is reviewed and compared it to other drugs currently in development. The current literature on 4′-fluorouridine's antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is compiled and discussed.
Collapse
|
40
|
Lieber CM, Aggarwal M, Yoon JJ, Cox RM, Kang HJ, Sourimant J, Toots M, Johnson SK, Jones CA, Sticher ZM, Kolykhalov AA, Saindane MT, Tompkins SM, Planz O, Painter GR, Natchus MG, Sakamoto K, Plemper RK. 4'-Fluorouridine mitigates lethal infection with pandemic human and highly pathogenic avian influenza viruses. PLoS Pathog 2023; 19:e1011342. [PMID: 37068076 PMCID: PMC10138230 DOI: 10.1371/journal.ppat.1011342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Influenza outbreaks are associated with substantial morbidity, mortality and economic burden. Next generation antivirals are needed to treat seasonal infections and prepare against zoonotic spillover of avian influenza viruses with pandemic potential. Having previously identified oral efficacy of the nucleoside analog 4'-Fluorouridine (4'-FlU, EIDD-2749) against SARS-CoV-2 and respiratory syncytial virus (RSV), we explored activity of the compound against seasonal and highly pathogenic influenza (HPAI) viruses in cell culture, human airway epithelium (HAE) models, and/or two animal models, ferrets and mice, that assess IAV transmission and lethal viral pneumonia, respectively. 4'-FlU inhibited a panel of relevant influenza A and B viruses with nanomolar to sub-micromolar potency in HAE cells. In vitro polymerase assays revealed immediate chain termination of IAV polymerase after 4'-FlU incorporation, in contrast to delayed chain termination of SARS-CoV-2 and RSV polymerase. Once-daily oral treatment of ferrets with 2 mg/kg 4'-FlU initiated 12 hours after infection rapidly stopped virus shedding and prevented transmission to untreated sentinels. Treatment of mice infected with a lethal inoculum of pandemic A/CA/07/2009 (H1N1)pdm09 (pdmCa09) with 4'-FlU alleviated pneumonia. Three doses mediated complete survival when treatment was initiated up to 60 hours after infection, indicating a broad time window for effective intervention. Therapeutic oral 4'-FlU ensured survival of animals infected with HPAI A/VN/12/2003 (H5N1) and of immunocompromised mice infected with pdmCa09. Recoverees were protected against homologous reinfection. This study defines the mechanistic foundation for high sensitivity of influenza viruses to 4'-FlU and supports 4'-FlU as developmental candidate for the treatment of seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Julien Sourimant
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Mart Toots
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Alexander A Kolykhalov
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Manohar T Saindane
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Stephen M Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| |
Collapse
|
41
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
42
|
Xiang L, Hu T, Xue H, Pan W, Xie Y, Shen J. Synthesis and evaluation of NHC derivatives and 4'-fluorouridine prodrugs. Org Biomol Chem 2023; 21:2754-2767. [PMID: 36917467 DOI: 10.1039/d3ob00268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
β-D-N4-Hydroxycytidine (NHC) derivatives with structural modifications at the C4', O4' or C6 position and 4'-fluorouridine prodrugs were synthesized and evaluated for their antiviral activities against respiratory syncytial virus (RSV) or influenza virus (IFV) in vitro. The NHC derivatives were found inactive, but 4'-fluorouridine and its prodrugs had potent anti-RSV and anti-IFV activities. 4'-Fluorouridine was proved to be a nucleoside with poor stability, but the tri-ester prodrugs exhibited enhanced stability, especially tri-isobutyrate ester 1a. This prodrug also showed excellent oral pharmacokinetic properties in rats, with potential to be an oral antiviral candidate.
Collapse
Affiliation(s)
- Li Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tianwen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haitao Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfang Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanchao Xie
- Lingang Laboratory, Shanghai 200031, P. R. China.
| | - Jingshan Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
43
|
Zhao Y, Wang CL, Gao ZY, Qiao HX, Wang WJ, Liu XY, Chuai X. Ferrets: A powerful model of SARS-CoV-2. Zool Res 2023; 44:323-330. [PMID: 36799224 PMCID: PMC10083223 DOI: 10.24272/j.issn.2095-8137.2022.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent years not only caused a global pandemic but resulted in enormous social, economic, and health burdens worldwide. Despite considerable efforts to combat coronavirus disease 2019 (COVID-19), various SARS-CoV-2 variants have emerged, and their underlying mechanisms of pathogenicity remain largely unknown. Furthermore, effective therapeutic drugs are still under development. Thus, an ideal animal model is crucial for studying the pathogenesis of COVID-19 and for the preclinical evaluation of vaccines and antivirals against SARS-CoV-2 and variant infections. Currently, several animal models, including mice, hamsters, ferrets, and non-human primates (NHPs), have been established to study COVID-19. Among them, ferrets are naturally susceptible to SARS-CoV-2 infection and are considered suitable for COVID-19 study. Here, we summarize recent developments and application of SARS-CoV-2 ferret models in studies on pathogenesis, therapeutic agents, and vaccines, and provide a perspective on the role of these models in preventing COVID-19 spread.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chang-Le Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zhi-Yun Gao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hong-Xiu Qiao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wei-Jie Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin-Yan Liu
- Department of Oncology, Hebei Provincial Thoracic Hospital, Shijiazhuang, Hebei 050010, China
| | - Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Institute of Medicine and Healthy of Hebei Medical University, Shijiazhuang, Hebei 050017, China. E-mail:
| |
Collapse
|
44
|
Biteau NG, Amichai SA, Azadi N, De R, Downs-Bowen J, Lecher JC, MacBrayer T, Schinazi RF, Amblard F. Synthesis of 4'-Substituted Carbocyclic Uracil Derivatives and Their Monophosphate Prodrugs as Potential Antiviral Agents. Viruses 2023; 15:v15020544. [PMID: 36851758 PMCID: PMC9962574 DOI: 10.3390/v15020544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Over the past decades, both 4'-modified nucleoside and carbocyclic nucleoside analogs have been under the spotlight as several compounds from either family showed anti-HIV, HCV, RSV or SARS-CoV-2 activity. Herein, we designed compounds combining these two features and report the synthesis of a series of novel 4'-substituted carbocyclic uracil derivatives along with their corresponding monophosphate prodrugs. These compounds were successfully prepared in 19 to 22 steps from the commercially available (-)-Vince lactam and were evaluated against a panel of RNA viruses including SARS-CoV-2, influenza A/B viruses and norovirus.
Collapse
|
45
|
Hassan AEA, Hegazy HA, Zaki I, Hassan MH, Ramadan M, Haikal AZ, Sheng J, Abou-Elkhair RAI. Design, synthesis, and evaluation of 4'-phosphonomethoxy pyrimidine ribonucleosides as potential anti-influenza agents. Arch Pharm (Weinheim) 2023:e2200382. [PMID: 36792964 DOI: 10.1002/ardp.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Influenza viruses belong to the Orthomyxoviridae family and cause acute respiratory distress in humans. The developed drug resistance toward existing drugs and the emergence of viral mutants that can escape vaccines mandate the search for novel antiviral drugs. Herein, the synthesis of epimeric 4'-methyl-4'-phosphonomethoxy [4'-C-Me-4'-C-(O-CH2 P═O)] pyrimidine ribonucleosides, their phosphonothioate [4'-C-Me-4'-C-(O-CH2 P═S)] derivatives, and their evaluation against an RNA viral panel are described. Selective formation of the α- l-lyxo epimer, [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] over the β- d-ribo epimer [4'-C-(β)-Me-4'-C-(α)-(O-CH2 -P(═O)(OEt)2 )] was explained by DFT equilibrium geometry optimizations studies. Pyrimidine nucleosides having the [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] framework showed specific activity against influenza A virus. Significant anti-influenza virus A (H1N1 California/07/2009 isolate) was observed with the 4'-C-(α)-Me-4'-C-(β)-O-CH2 -P(═O)(OEt)2 -uridine derivative 1 (EC50 = 4.56 mM, SI50 > 56), 4-ethoxy-2-oxo-1(2H)-pyrimidin-1-yl derivative 3 (EC50 = 5.44 mM, SI50 > 43) and the cytidine derivative 2 (EC50 = 0.81 mM, SI50 > 13), respectively. The corresponding thiophosphonates 4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P( S)(OEt)2 ) and thionopyrimidine nucleosides were devoid of any antiviral activity. This study shows that the 4'-C-(α)-Me-4'-(β)-O-CH2 -P(═O)(OEt)2 ribonucleoside can be further optimized to provide potent antiviral agents.
Collapse
Affiliation(s)
- Abdalla E A Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hend A Hegazy
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa H Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Medhat Ramadan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdelfattah Z Haikal
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Reham A I Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
46
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Liu J, Wang F, Wang X, Fan S, Li Y, Xu M, Hu H, Liu K, Zheng B, Wang L, Zhang H, Li J, Li W, Zhang W, Hu Z, Cao R, Zhuang X, Wang M, Zhong W. Antiviral effects and tissue exposure of tetrandrine against SARS-CoV-2 infection and COVID-19. MedComm (Beijing) 2023; 4:e206. [PMID: 36699286 PMCID: PMC9851407 DOI: 10.1002/mco2.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Tetrandrine (TET) has been used to treat silicosis in China for decades. The aim of this study was to facilitate rational repurposing of TET against SARS-CoV-2 infection. In this study, we confirmed that TET exhibited antiviral potency against SARS-CoV-2 in the African green monkey kidney (Vero E6), human hepatocarcinoma (Huh7), and human lung adenocarcinoma epithelial (Calu-3) cell lines. TET functioned during the early-entry stage of SARS-CoV-2 and impeded intracellular trafficking of the virus from early endosomes to endolysosomes. An in vivo study that used adenovirus (AdV) 5-human angiotensin-converting enzyme 2 (hACE2)-transduced mice showed that although TET did not reduce pulmonary viral load, it significantly alleviated pathological damage in SARS-CoV-2-infected murine lungs. The systemic preclinical pharmacokinetics were investigated based on in vivo and in vitro models, and the route-dependent biodistribution of TET was explored. TET had a large volume of distribution, which contributed to its high tissue accumulation. Inhaled administration helped TET target the lung and reduced its exposure to other tissues, which mitigated its off-target toxicity. Based on the available human pharmacokinetic data, it appeared feasible to achieve an unbound TET 90% maximal effective concentration (EC90) in human lungs. This study provides insights into the route-dependent pulmonary biodistribution of TET associated with its efficacy.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Furun Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xi Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Shiyong Fan
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yufeng Li
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Mingyue Xu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Hengrui Hu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Ke Liu
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Bohong Zheng
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Lingchao Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Huanyu Zhang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Jiang Li
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Wei Li
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Wenpeng Zhang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Zhihong Hu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiaomei Zhuang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Manli Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Hubei Jiangxia LaboratoryWuhanChina
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
48
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
49
|
Cao D, Gooneratne I, Mera C, Vy J, Royal M, Huang B, Park Y, Manjunath A, Liang B. Analysis of Template Variations on RNA Synthesis by Respiratory Syncytial Virus Polymerase. Viruses 2022; 15:47. [PMID: 36680087 PMCID: PMC9863079 DOI: 10.3390/v15010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant threat to infants and elderly individuals globally. Currently, there are no effective therapies or treatments for RSV infection because of an insufficient understanding of the RSV viral machinery. In this study, we investigated the effects of the template variations on RNA synthesis by the RSV polymerase through in vitro RNA synthesis assays. We confirmed the previously reported back-priming activity of the RSV polymerase, which is likely due to the secondary structure of the RNA template. We found that the expansion of the hairpin loop size of the RNA template abolishes the RSV polymerase back-priming activity. At the same time, it seemingly does not affect the de novo RNA synthesis activities of the RSV polymerase. Interestingly, our results show that the RSV polymerase also has a new primer-based terminal extension activity that adds nucleotides to the template and primer in a nonspecific manner. We also mapped the impact of the RNA 5' chemical group on its mobility in a urea-denaturing RNA gel shift assay. Overall, these results enhance our knowledge about the RNA synthesis processes of the RSV polymerase and may guide future therapeutic efforts to develop effective antiviral drugs for RSV treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Stevaert A, Groaz E, Naesens L. Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy. Curr Opin Virol 2022; 57:101279. [PMID: 36403338 PMCID: PMC9671222 DOI: 10.1016/j.coviro.2022.101279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
The COVID-19 pandemic has accelerated the development of nucleoside analogs to treat respiratory virus infections, with remdesivir being the first compound to receive worldwide authorization and three other nucleoside analogs (i.e. favipiravir, molnupiravir, and bemnifosbuvir) in the pipeline. Here, we summarize the current knowledge concerning their clinical efficacy in suppressing the virus and reducing the need for hospitalization or respiratory support. We also mention trials of favipiravir and lumicitabine, for influenza and respiratory syncytial virus, respectively. Besides, we outline how nucleoside analogs interact with the polymerases of respiratory viruses, to cause lethal virus mutagenesis or disturbance of viral RNA synthesis. In this way, we aim to convey the key findings on this rapidly evolving class of respiratory virus medication.
Collapse
Affiliation(s)
- Annelies Stevaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1043, B-3000 Leuven, Belgium
| | - Elisabetta Groaz
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49 box 1041, B-3000 Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Lieve Naesens
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1043, B-3000 Leuven, Belgium.
| |
Collapse
|