1
|
Ubhayarathna M, Langmead CJ, Diepenhorst NA, Stewart GD. Molecular and structural insights into the 5-HT 2C receptor as a therapeutic target for substance use disorders. Br J Pharmacol 2024; 181:4414-4429. [PMID: 37679998 DOI: 10.1111/bph.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Substance use disorder (SUD) is a chronic condition, with maintained abuse of a substance leading to physiological and psychological alterations and often changes in cognitive and social behaviours. Current therapies include psychotherapy coupled with medication; however, high relapse rates reveal the shortcomings of these therapies. The signalling, expression profile, and neurological function of the serotonin 2C receptor (5-HT2C receptor) make it a candidate of interest for the treatment of SUD. Recently, psychedelics, which broadly act at 5-HT2 receptors, have indicated potential for the treatment of SUD, implicating the 5-HT2C receptor. The modern psychedelic movement has rekindled interest in the 5-HT2C receptor, resulting in many new studies, especially structural analyses. This review explores the structural, molecular and cellular mechanisms governing 5-HT2C receptor function in the context of SUD. This provides the basis of the preclinical and clinical evidence for their role in SUD and highlights the potential for future exploration.
Collapse
Affiliation(s)
- Maleesha Ubhayarathna
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Natalie A Diepenhorst
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| |
Collapse
|
2
|
Butler JJ, Ricci D, Aman C, Beyeler A, De Deurwaerdère P. Classical psychedelics' action on brain monoaminergic systems. Int J Biochem Cell Biol 2024; 176:106669. [PMID: 39332625 DOI: 10.1016/j.biocel.2024.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The study of the mechanism of action of classical psychedelics has gained significant interest due to their clinical potential in the treatment of several psychiatric conditions, including major depressive and anxiety disorders. These drugs bind 5-hydroxytryptamine receptors (5-HTR) including 5-HT1AR, 5-HT2AR, 5-HT2BR, and/or 5-HT2CR, as well as other targets. 5-HTRs regulate the activity of ascending monoaminergic neurons, a mechanism primarily involved in the action of classical antidepressant drugs, antipsychotics, and drugs of abuse. Sparse neurochemical data have been produced on the control of monoaminergic neuron activity in response to classical psychedelics. Here we review the available data in order to determine whether classical psychedelics have specific neurochemical effects on serotonergic, dopaminergic, and noradrenergic neurons. The data show that these drugs have disparate effects on each monoaminergic system, demonstrating a complex response with state-dependent and region-specific effects. For instance, several psychedelics inhibit the firing of serotonergic neurons, although this is not necessarily associated with a decrease in serotonin release in all regions. Noradrenergic neuron spontaneous activity also appears to be inhibited by psychedelics, also not necessarily associated with a decrease in noradrenaline release in all regions. Psychedelics influence on dopaminergic systems is also complex as the above-mentioned 5-HTRs may have opposing effects on dopaminergic neuron activity, in a state-dependent manner. There is an apparent lack of clear neuronal signature induced by psychedelics on monoaminergic neuron activity despite specific recurrent mechanisms. This review provides a current summary of the action of psychedelics on monoamine neuromodulators serotonin, dopamine and noradrenaline, compiling reoccurring and contradictory findings demonstrating that a monoamine signature of psychedelics, if applicable, would be state- and region-dependant.
Collapse
Affiliation(s)
- Jasmine Jade Butler
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France
| | - Daria Ricci
- University of Bordeaux, France; Institut National pour la Santé et la Recherche Médicale (INSERM), unit 1215, Neurocentre Magendie, Bordeaux, France
| | - Chloé Aman
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France
| | - Anna Beyeler
- University of Bordeaux, France; Institut National pour la Santé et la Recherche Médicale (INSERM), unit 1215, Neurocentre Magendie, Bordeaux, France.
| | - Philippe De Deurwaerdère
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France.
| |
Collapse
|
3
|
Ren W, Yu S, Guo K, Lu C, Zhang YQ. Disrupted Human-Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402493. [PMID: 39257367 PMCID: PMC11538694 DOI: 10.1002/advs.202402493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Indexed: 09/12/2024]
Abstract
Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human-dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human-dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human-dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human-dog interactions. Furthermore, dogs with Shank3 mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human-dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human-dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain‐inspired IntelligenceInstitute of Automation, Chinese Academy of SciencesBeijing100190China
| | - Kun Guo
- School of PsychologyUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Life SciencesHubei UniversityWuhan430062China
| |
Collapse
|
4
|
Lee S. Development of the novel amylin and calcitonin receptor activators by peptide mutagenesis. Arch Biochem Biophys 2024; 762:110191. [PMID: 39481742 DOI: 10.1016/j.abb.2024.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
The amylin peptide hormone receptor is the complex of the calcitonin peptide hormone receptor and an accessory protein. The calcitonin receptor activation controls calcium homeostasis, while it also functions as the main component of the amylin receptor. Amylin receptor activation in brains controls blood glucose and appetite. Currently, non-selective amylin and calcitonin receptor activators have been tested for body weight reduction to treat obesity. Here, multiple peptide activators for human amylin and calcitonin receptors were developed by introducing comprehensive mutagenesis to rat amylin peptide. The rat amylin peptide C-terminal fragment that interacts with amylin receptor extracellular domain was used to screen for affinity-enhancing mutations. Up to twelve mutational combinations were found to significantly increase peptide affinity both for amylin and calcitonin receptor extracellular domains by over 100-fold. Using these affinity-enhancing mutations, three representative rat amylin analogs with thirty-seven amino acids were made to test the potency increase for amylin and calcitonin receptor activation. All three mutated rat amylin analogs showed significant potency increases by 5- to 10-fold compared to endogenous rat amylin. These mutated peptide activators also showed higher potency for human amylin and calcitonin receptor activation than a clinically available amylin receptor activator pramlintide. These amylin and calcitonin receptor activators developed in this study may be useful as the valuable pharmacological tools that activate amylin receptors in cell-based systems.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
5
|
da Costa Gonçalves KT, de Tavares VDO, de Morais Barros ML, de Brito AJC, Cavalcanti-Ribeiro P, Palhano-Fontes F, Falchi-Carvalho M, Arcoverde E, Dos Santos RG, Hallak JEC, de Araujo DB, Galvão-Coelho NL. Ketamine-induced altered states of consciousness: a systematic review of implications for therapeutic outcomes in psychiatric practices. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01925-6. [PMID: 39467856 DOI: 10.1007/s00406-024-01925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
This systematic review aims to elucidate the nexus between ketamine's psychoactive properties and its efficacy in treating a broad spectrum of psychiatric disorders. We searched three databases and used citation tracking to include 29 studies. Predominantly, mood disorders, including bipolar disorder (BD) and major depressive disorder (MDD) (MDD + BD: + n = 25 studies), a large part of them involve treatment-resistant patients (n = 14 studies), substance use disorder (SUD, n = 3 studies), and social anxiety disorder (SAD, n = 1 study). From all included studies (n = 29), 15 (51.72%) of them identified a positive relation between ketamine-induced altered states of consciousness and clinical outcomes, while 13 studies (44.83%) showed no linkage between them, and one study (3.45%) delineated a negative association. Focusing solely on intravenous (IV) ketamine infusions (n = 25), 14 studies (56%) reported a positive modulation of ketamine's psychoactive effects and therapeutic benefits, whereas 10 studies (40%) confirmed no relationship, and one study (4%) showed a negative association. The single study (33.34%) involving subcutaneous ketamine and all three studies (66.6%) intranasal administration did not demonstrate a significant interaction between ketamine's psychoactive effects and therapeutic response. All three SUD studies reported a positive correlation between ketamine's psychoactive effects and therapeutic response. In contrast, the single SAD study did not find a relationship between these parameters. For studies involving mood disorders (n = 25), 12 studies (48%) reported a positive relationship between psychoactive effects and therapeutic response. Others 12 studies (48%) identified a null relationship, and one study (4%) found a significant negative association. Although we have found a larger association than previous studies between ketamine's psychoactive properties and its efficacy in treating a broad spectrum of psychiatric disorders, its topic remains indeterminate, mainly due to the high heterogeneity.
Collapse
Affiliation(s)
- Kaike Thiê da Costa Gonçalves
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vagner Deuel O de Tavares
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Maria Luiza de Morais Barros
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aldielyson Jorge Cavalcante de Brito
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Cavalcanti-Ribeiro
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Fernanda Palhano-Fontes
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Emerson Arcoverde
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rafael Guimarães Dos Santos
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- National Institute for Science and Technology in Translational Medicine (INCT-TM), CNPq/FAPESP/CAPES, Ribeirão Preto, Brazil
| | - Jaime E C Hallak
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- National Institute for Science and Technology in Translational Medicine (INCT-TM), CNPq/FAPESP/CAPES, Ribeirão Preto, Brazil
| | - Draulio Barros de Araujo
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nicole Leite Galvão-Coelho
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil.
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
- National Institute for Science and Technology in Translational Medicine (INCT-TM), CNPq/FAPESP/CAPES, Ribeirão Preto, Brazil.
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia.
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Caixa Postal, 1511, Natal, RN, Brazil.
| |
Collapse
|
6
|
Alexander L, Anderson D, Baxter L, Claydon M, Rucker J, Robinson ESJ. Preclinical models for evaluating psychedelics in the treatment of major depressive disorder. Br J Pharmacol 2024. [PMID: 39467003 DOI: 10.1111/bph.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Psychedelic drugs have seen a resurgence in interest as a next generation of psychiatric medicines with potential as rapid-acting antidepressants (RAADs). Despite promising early clinical trials, the mechanisms which underlie the effects of psychedelics are poorly understood. For example, key questions such as whether antidepressant and psychedelic effects involve related or independent mechanisms are unresolved. Preclinical studies in relevant animal models are key to understanding the pharmacology of psychedelics and translating these findings to explain efficacy and safety in patients. Understanding the mechanisms of action associated with the behavioural effects of psychedelic drugs can also support the identification of novel drug targets and more effective treatments. Here we review the behavioural approaches currently used to quantify the psychedelic and antidepressant effects of psychedelic drugs. We discuss conceptual and methodological issues, the importance of using clinically relevant doses and the need to consider possible sex differences in preclinical psychedelic studies.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Dasha Anderson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Luke Baxter
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Matthew Claydon
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - James Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. Mol Psychiatry 2024:10.1038/s41380-024-02788-y. [PMID: 39433903 DOI: 10.1038/s41380-024-02788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Preclinical and human studies indicate psilocybin may reduce perseverant maladaptive behaviors, including nicotine and alcohol seeking. Such studies in the opioid field are lacking, though opioids are involved in >50% of overdose deaths. Psilocybin is an agonist at the serotonin 2A receptor (5-HT2AR), a well-documented target for modulation of drug seeking, and evidence suggests 5-HT2AR agonists may dampen motivation for opioids. We sought to investigate the therapeutic efficacy of psilocybin in mediating cessation of opioid use and maintenance of long-lasting abstinence from opioid seeking behavior in a rat model of heroin self-administration (SA). Psilocybin or 5-HT2AR antagonists ketanserin and volinanserin were administered systemically to rats prior to SA of 0.075 mg/kg/infusion of heroin, or relapse following forced abstinence. Psilocybin did not alter heroin taking, but a single exposure to 3.0 mg/kg psilocybin 4-24 h prior to a relapse test blunted cue-induced heroin seeking. Conversely, 5-HT2AR antagonists exacerbated heroin relapse. To begin to elucidate mechanisms of psilocybin, drug-naïve rats received psilocybin and/or ketanserin, and tissue was collected from the prefrontal cortex (PFC), a region critical for drug seeking and responsive to psilocybin, 24 h later for RNA-sequencing. 3.0 mg/kg psilocybin regulated ~2-fold more genes in the PFC than 1.0 mg/kg, including genes involved in the cytoskeleton and cytokine signaling. Ketanserin blocked >90% of psilocybin-regulated genes, including the IL-17a cytokine receptor, Il17ra. Psychedelic compounds have reported anti-inflammatory properties, and therefore we performed a gene expression array to measure chemokine/cytokine molecules in the PFC of animals that displayed psilocybin-mediated inhibition of heroin seeking. Psilocybin regulated 4 genes, including Il17a, and a subset of genes correlated with relapse behavior. Selective inhibition of PFC IL-17a was sufficient to reduce heroin relapse. We conclude that psilocybin reduces heroin relapse and highlight IL-17a signaling as a potential downstream pathway of psilocybin that also reduces heroin seeking.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Cui M, Lu Y, Mezei M, Logothetis DE. Molecular Dynamics (MD) Simulations Provide Insights into the Activation Mechanisms of 5-HT 2A Receptors. Molecules 2024; 29:4935. [PMID: 39459303 PMCID: PMC11510212 DOI: 10.3390/molecules29204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Recent breakthroughs in the determination of atomic resolution 3-D cryo-electron microscopy structures of membrane proteins present an unprecedented opportunity for drug discovery. Structure-based drug discovery utilizing in silico methods enables the study of dynamic connectivity of stable conformations induced by the drug in achieving its effect. With the ever-expanding computational power, simulations of this type reveal protein dynamics in the nano-, micro-, and even millisecond time scales. In the present study, aiming to characterize the protein dynamics of the 5HT2A receptor stimulated by ligands (agonist/antagonist), we performed 1 µs MD simulations on 5HT2A/DOI (agonist), 5HT2A/GSK215083 (antagonist), and 5HT2A (APO, no ligand) systems. The crystal structure of 5HT2A/zotepine (antagonist) (PDB: 6A94) was used to set up the simulation systems in a lipid bilayer environment. We found the monitoring of the ionic lock residue pair (R3.50-E6.30) of 5HT2A in MD simulations to be a good approximation of the effects of agonists (ionic lock breakage) or antagonists (ionic lock formation) on receptor activation. We further performed analyses of the MD trajectories, including Principal Component Analysis (PCA), hydrogen bond, salt bridge, and hydrophobic interaction network analyses, and correlation between residues to identify key elements of receptor activation. Our results suggest that in order to trigger receptor activation, DOI must interact with 5HT2A through residues V5.39, G5.42, S5.43, and S5.46 on TM5, inducing significant conformational changes in the backbone angles of G5.42 and S5.43. DOI also interacted with residues W6.48 (toggle switch) and F6.51 on TM6, causing major conformational shifts in the backbone angles of F6.44 and V6.45. These structural changes were transmitted to the intracellular ends of TM5, TM6, and ICL3, resulting in the breaking of the ionic lock and subsequent G protein activation. The studies could be helpful in future design of selective agonists/antagonists for various serotonin receptors (5HT1A, 5HT2A, 5HT2B, 5HT2C, and 5HT7) involved in detrimental disorders, such as addiction and schizophrenia.
Collapse
Affiliation(s)
- Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Yongcheng Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Diomedes E. Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
- Affiliate of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
- Affiliate of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Affiliate of Roux Institute, Northeastern University, Portland, ME 04101, USA
| |
Collapse
|
9
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiqiong Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Licong He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang 261021, China
| | - Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China.
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Zhang M, Wang Y, Gao TM, Wang X. Psychedelics and Consciousness: Expanding the Horizons of Mind and Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0495. [PMID: 39371688 PMCID: PMC11450474 DOI: 10.34133/research.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Psychedelics have long been recognized not only for their profound impact on human consciousness but also for their potential therapeutic applications. This perspective explores the multifaceted relationship between psychedelics and consciousness, emphasizing their capacity to alter sensory perceptions, disrupt self-referential thought processes, and catalyze profound spiritual and existential experiences. As research advances, psychedelics are being integrated into therapeutic settings, challenging existing psychiatric models and offering new insights into the complex nature of consciousness and mental health. This emerging paradigm marks the need for careful regulation and ethical considerations in the therapeutic use of psychedelics, promising a more holistic approach to mental health disorders.
Collapse
Affiliation(s)
- Miyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology,
Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Gumpper RH, Nichols DE. Chemistry/structural biology of psychedelic drugs and their receptor(s). Br J Pharmacol 2024. [PMID: 39354889 DOI: 10.1111/bph.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/03/2024] Open
Abstract
This brief review highlights some of the structure-activity relationships of classic serotonergic psychedelics. In particular, we discuss structural features of three chemotypes: phenethylamines, ergolines and certain tryptamines, which possess psychedelic activity in humans. Where they are known, we point out the underlying molecular mechanisms utilized by each of the three chemotypes of psychedelic molecules. With a focus on the 5-HT2A receptor subtype, a G-protein coupled receptor known to be the primary target of psychedelics, we refer to several X-ray and cryoEM structures, with a variety of ligands bound, to illustrate the underlying atomistic basis for some of the known pharmacological observations of psychedelic drug actions.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David E Nichols
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Kordylewski SK, Bugno R, Bojarski AJ, Podlewska S. Uncovering the unique characteristics of different groups of 5-HT 5AR ligands with reference to their interaction with the target protein. Pharmacol Rep 2024; 76:1130-1146. [PMID: 38971919 PMCID: PMC11387456 DOI: 10.1007/s43440-024-00622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The serotonin 5-HT5A receptor has attracted much more research attention, due to the therapeutic potential of its ligands being increasingly recognized, and the possibilities that lie ahead of these findings. There is a growing body of evidence indicating that these ligands have procognitive, pro-social, and anti-depressant properties, which offers new avenues for the development of treatments that could address socially important conditions related to the malfunctioning of the central nervous system. The aim of our study was to unravel the molecular determinants for 5-HT5AR ligands that govern their activity towards the receptor. METHODS In response to the need for identification of molecular determinants for 5-HT5AR activity, we prepared a comprehensive collection of 5-HT5AR ligands, carefully gathering literature and patent data. Leveraging molecular modeling techniques, such as pharmacophore hypothesis development, docking, and molecular dynamics simulations enables to gain valuable insights into the specific interactions of 5-HT5AR ligand groups with the receptor. RESULTS The obtained comprehensive set of 2160 compounds was divided into dozens of subsets, and a pharmacophore model was developed for each group. The results from the docking and molecular dynamics simulations have enabled the identification of crucial ligand-protein interactions that are essential for the compound's activity towards 5-HT5AR. CONCLUSIONS The findings from the molecular modeling study provide valuable insights that can guide medicinal chemists in the development of new 5-HT5AR ligands. Considering the pharmacological significance of these compounds, they have the potential to become impactful treatments for individuals and communities in the future. Understanding how different crystal/cryo-EM structures of 5-HT5AR affect molecular modeling experiments could have major implications for future computational studies on this receptor.
Collapse
Affiliation(s)
- Szymon K Kordylewski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ryszard Bugno
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
13
|
Pyka P, Garbo S, Murzyn A, Satała G, Janusz A, Górka M, Pietruś W, Mituła F, Popiel D, Wieczorek M, Palmisano B, Raucci A, Bojarski AJ, Zwergel C, Szymańska E, Kucwaj-Brysz K, Battistelli C, Handzlik J, Podlewska S. Unlocking the potential of higher-molecular-weight 5-HT 7R ligands: Synthesis, affinity, and ADMET examination. Bioorg Chem 2024; 151:107668. [PMID: 39079393 DOI: 10.1016/j.bioorg.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Aleksandra Murzyn
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Artur Janusz
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał Górka
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Wojciech Pietruś
- Medicinal Chemistry Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Filip Mituła
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland; Clinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| |
Collapse
|
14
|
Rakoczy RJ, Runge GN, Sen AK, Sandoval O, Wells HG, Nguyen Q, Roberts BR, Sciortino JH, Gibbons WJ, Friedberg LM, Jones JA, McMurray MS. Pharmacological and behavioural effects of tryptamines present in psilocybin-containing mushrooms. Br J Pharmacol 2024; 181:3627-3641. [PMID: 38825326 DOI: 10.1111/bph.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Demand for new antidepressants has resulted in a re-evaluation of the therapeutic potential of psychedelic drugs. Several tryptamines found in psilocybin-containing "magic" mushrooms share chemical similarities with psilocybin. Early work suggests they may share biological targets. However, few studies have explored their pharmacological and behavioural effects. EXPERIMENTAL APPROACH We compared baeocystin, norbaeocystin and aeruginascin with psilocybin to determine if they are metabolized by the same enzymes, similarly penetrate the blood-brain barrier, serve as ligands for similar receptors and modulate behaviour in rodents similarly. We also assessed the stability and optimal storage and handling conditions for each compound. KEY RESULTS In vitro enzyme kinetics assays found that all compounds had nearly identical rates of dephosphorylation via alkaline phosphatase and metabolism by monoamine oxidase. Further, we found that only the dephosphorylated products of baeocystin and norbaeocystin crossed a blood-brain barrier mimetic to a similar degree as the dephosphorylated form of psilocybin, psilocin. The dephosphorylated form of norbaeocystin was found to activate the 5-HT2A receptor with similar efficacy to psilocin and norpsilocin in in vitro cell imaging assays. Behaviourally, only psilocybin induced head twitch responses in rats, a marker of 5-HT2A-mediated psychedelic effects and hallucinogenic potential. However, like psilocybin, norbaeocystin improved outcomes in the forced swim test. All compounds caused minimal changes to metrics of renal and hepatic health, suggesting innocuous safety profiles. CONCLUSIONS AND IMPLICATIONS Collectively, this work suggests that other naturally occurring tryptamines, especially norbaeocystin, may share overlapping therapeutic potential with psilocybin, but without causing hallucinations.
Collapse
Affiliation(s)
- Ryan J Rakoczy
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Grace N Runge
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Abhishek K Sen
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Oscar Sandoval
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Hunter G Wells
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - Quynh Nguyen
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | | | - Jon H Sciortino
- Department of Psychology, Miami University, Oxford, Ohio, USA
| | - William J Gibbons
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - Lucas M Friedberg
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | - J Andrew Jones
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
15
|
Ye J, Li P, Liu P, Pei W, Wang R, Liu H, Ma C, Zhao D. Serum Metabolomics Analysis Revealed Metabolic Pathways Related to AECOPD Complicated with Anxiety and Depression. Int J Chron Obstruct Pulmon Dis 2024; 19:2135-2151. [PMID: 39355059 PMCID: PMC11444062 DOI: 10.2147/copd.s471817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background Anxiety and depression are two of the most common comorbidities of COPD, which can directly lead to the number of acute exacerbations and hospitalizations of COPD patients and reduce their quality of life. At present, there are many studies on anxiety and depression in stable COPD, but few studies on anxiety and depression in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Objective We aim to explore the changes of serum metabolomics in AECOPD complicated with anxiety and depression and to provide some clues for further understanding its pathogenesis. Methods This is an observational high-throughput experimental study based on retrospective data extraction. Twenty-one AECOPD with anxiety and depressive patients and 17 healthy controls (HCs) were retrospectively enrolled in the Second Affiliated Hospital of Anhui Medical University. Hamilton anxiety scale (HAMA) and Hamilton depression scale (HAMD) for anxiety and depression were used to assess the patients with AECOPD. Untargeted metabolomics analysis was carried out to investigate different molecules in the serum of all participants. General information of all participants, baseline data and clinical measurement data of AECOPD patients were collected. Statistical analysis and bioinformatics analysis were performed to reveal different metabolites and perturbed metabolic pathways. Results A total of 724 metabolites in positive ionization mode and 555 metabolites in negative ionization mode were different in AECOPD patients with anxiety and depression. The 1,279 serum metabolites could be divided into 77 categories. Based on multivariate and univariate analysis, 74 metabolites were detected in positive ionization mode, and 60 metabolites were detected in negative ionization as differential metabolites. The 134 metabolites were enriched in 18 pathways, including biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, protein digestion and absorption, ovarian steroidogenesis, long-term depression, retrograde endocannabinoid signaling, and so on. Conclusion This work highlights the key metabolites and metabolic pathways disturbed in AECOPD patients with anxiety and depression. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in AECOPD patients with anxiety and depression.
Collapse
Affiliation(s)
- Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ruowen Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Changxiu Ma
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
16
|
Mantas I, Flais I, Masarapu Y, Ionescu T, Frapard S, Jung F, Le Merre P, Saarinen M, Tiklova K, Salmani BY, Gillberg L, Zhang X, Chergui K, Carlén M, Giacomello S, Hengerer B, Perlmann T, Svenningsson P. Claustrum and dorsal endopiriform cortex complex cell-identity is determined by Nurr1 and regulates hallucinogenic-like states in mice. Nat Commun 2024; 15:8176. [PMID: 39289358 PMCID: PMC11408527 DOI: 10.1038/s41467-024-52429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The Claustrum/dorsal endopiriform cortex complex (CLA) is an enigmatic brain region with extensive glutamatergic projections to multiple cortical areas. The transcription factor Nurr1 is highly expressed in the CLA, but its role in this region is not understood. By using conditional gene-targeted mice, we show that Nurr1 is a crucial regulator of CLA neuron identity. Although CLA neurons remain intact in the absence of Nurr1, the distinctive gene expression pattern in the CLA is abolished. CLA has been hypothesized to control hallucinations, but little is known of how the CLA responds to hallucinogens. After the deletion of Nurr1 in the CLA, both hallucinogen receptor expression and signaling are lost. Furthermore, functional ultrasound and Neuropixel electrophysiological recordings revealed that the hallucinogenic-receptor agonists' effects on functional connectivity between prefrontal and sensorimotor cortices are altered in Nurr1-ablated mice. Our findings suggest that Nurr1-targeted strategies provide additional avenues for functional studies of the CLA.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ivana Flais
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Department of Neuroimaging King's College London, London, UK
| | - Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tudor Ionescu
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Felix Jung
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Tiklova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bastian Hengerer
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Dong X, Lin H, Li Y, Pei G, Huang S. Psychedelic LSD activates neurotrophic signal but fails to stimulate neural stem cells. Stem Cell Res Ther 2024; 15:285. [PMID: 39256856 PMCID: PMC11389355 DOI: 10.1186/s13287-024-03909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Accumulating evidence has shown that some hallucinogens, such as LSD, have fast and persistent effects on anxiety and depression. According to a proposed mechanism, LSD activates the TrkB and HTR2A signaling pathways, which enhance the density of neuronal dendritic spines and synaptic function, and thus promote brain function. Moreover, TrkB signaling is also known to be crucial for neural stem cell (NSC)-mediated neuroregeneration to repair dysfunctional neurons. However, the impact of LSD on neural stem cells remains to be elucidated. In this study, we observed that LSD and BDNF activated the TrkB pathway in human NSCs similarly to neurons. However, unlike BDNF, LSD did not promote NSC proliferation. These results suggest that LSD may activate an alternative mechanism to counteract the effects of BDNF-TrkB signaling on NSCs. Our findings shed light on the previously unrecognized cell type-specificity of LSD. This could be crucial for deepening our understanding of the mechanisms underlying the effects of LSD.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - He Lin
- The Drug Reference Materials Laboratory, The Third Research Institute of Ministry of Public Security, Beijing, China
| | - Yuting Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100045, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
18
|
Morales P, Scharf MM, Bermudez M, Egyed A, Franco R, Hansen OK, Jagerovic N, Jakubík J, Keserű GM, Kiss DJ, Kozielewicz P, Larsen O, Majellaro M, Mallo-Abreu A, Navarro G, Prieto-Díaz R, Rosenkilde MM, Sotelo E, Stark H, Werner T, Wingler LM. Progress on the development of Class A GPCR-biased ligands. Br J Pharmacol 2024. [PMID: 39261899 DOI: 10.1111/bph.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 09/13/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Magdalena M Scharf
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcel Bermudez
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Attila Egyed
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Olivia K Hansen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - György M Keserű
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana Mallo-Abreu
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Tobias Werner
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
19
|
Low ZXB, Ng WS, Lim ESY, Goh BH, Kumari Y. The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2024:111139. [PMID: 39251080 DOI: 10.1016/j.pnpbp.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Wei Shen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Eugene Sheng Yao Lim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yatinesh Kumari
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
20
|
Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res 2024; 1846:149226. [PMID: 39251056 DOI: 10.1016/j.brainres.2024.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Psychedelic drugs that activate the 5HT2A receptor have long been the target of extensive clinical research, particularly in models of psychiatric illness. The aim of this literature review was to investigate the therapeutic effects of 5HT2A receptor activation in the anterior cingulate cortex (ACC) and the respective mechanisms that underlie them. Based on the available research, I suggest that 5HT2A receptors in the ACC exert profound changes in excitatory neurotransmission and brain network connectivity in a way that reduces anxious preoccupation and obsessional thoughts, as well as promoting cognitive flexibility and long-lasting mood improvements in anhedonia. This is possibly due to a complex interplay with glutamate and gamma-butyric acid neurotransmission, particularly 5HT2A activation enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signalling, thus altering the ratio of AMPA to N-methyl-D-Aspartate (NMDA) activity in the ACC, which can dismantle previously established neuronal connections and aid the formation of new ones, an effect that may be beneficial for fear extinction and reversal learning. Psychedelics potentially change intra- and internetwork connectivity, strengthening connectivity from the dorsal ACC / Salience Network to the Default Mode Network (DMN) and Central Executive Network (CEN), which correlates with improvements in attentional shifting and anti-anhedonic effects. Additionally, they may decrease inhibitory influence of the DMN over the CEN which may reduce overevaluation of internal states and ameliorate cognitive deficits. Activation of ACC 5HT2A receptors also has important downstream effects on subcortical areas, including reducing amygdala reactivity to threatening stimuli and enhancing mesolimbic dopamine, respectively improving anxiety and the experience of natural rewards.
Collapse
|
21
|
Islam MT, Chowdhury R, Bhuia MS, Chakrabarty B, Kundu N, Akbor MS, Sheikh S, Chowdhury RI, Ansari SA, Ansari IA, Islam MA. Daidzin enhances memory and the antischizophrenia drug olanzapine's effects, possibly through the 5-HT 2A and D 2 receptor interaction pathways. Drug Dev Res 2024; 85:e22259. [PMID: 39233388 DOI: 10.1002/ddr.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Schizophrenia affects identification and disturbs our thinking and motivational capacity. Long-term use of daidzin (DZN) is evident to enhance attention and memory in experimental animals. This study aimed to investigate the effect of DZN on Swiss mice. To check animals' attention, identification, thinking, and motivational ability, we performed behavioral studies using marble burying, dust removal, and trained swimming protocols. For this, a total of 36 male Swiss albino mice were randomly divided into six groups, consisting of 6 animals in each group, as follows: control (vehicle), DZN-1.25, DZN-2.5, DZN-5 mg/kg, olanzapine (OLN)-2, and a combination of DZN-1.25 with OLN-2. Additionally, in silico studies are also performed to understand the possible molecular mechanisms behind this neurological effect. Findings suggest that DZN dose-dependently and significantly (p < .05) increased marble burying and removed dust while reducing the time to reach the target point. DZN-1.25 was found to enhance OLN's effect significantly (p < .05), possibly via agonizing its activity in animals. In silico findings suggest that DZN has strong binding affinities of -10.1 and -10.4 kcal/mol against human serotonin 2 A (5-HT2A) and dopamine 2 (D2) receptors, respectively. Additionally, DZN exhibits favorable pharmacokinetic and toxicity properties. We suppose that DZN may exert its attention- and memory-enhancing abilities by interacting with 5-HT2A and D2 receptors. It may exert a synergistic antischizophrenia-like effect with the standard drug, OLN. Further studies are required to discover the exact molecular mechanism for this neurological function in animals.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Brototi Chakrabarty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Neloy Kundu
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Rokibul Islam Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| |
Collapse
|
22
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Psilocybin as a lead candidate molecule in preclinical therapeutic studies of psychiatric disorders: A systematic review. J Neurochem 2024; 168:1687-1720. [PMID: 38019032 DOI: 10.1111/jnc.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Puigseslloses P, Nadal-Gratacós N, Ketsela G, Weiss N, Berzosa X, Estrada-Tejedor R, Islam MN, Holy M, Niello M, Pubill D, Camarasa J, Escubedo E, Sitte HH, López-Arnau R. Structure-activity relationships of serotonergic 5-MeO-DMT derivatives: insights into psychoactive and thermoregulatory properties. Mol Psychiatry 2024; 29:2346-2358. [PMID: 38486047 DOI: 10.1038/s41380-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
Recent studies have sparked renewed interest in the therapeutic potential of psychedelics for treating depression and other mental health conditions. Simultaneously, the novel psychoactive substances (NPS) phenomenon, with a huge number of NPS emerging constantly, has changed remarkably the illicit drug market, being their scientific evaluation an urgent need. Thus, this study aims to elucidate the impact of amino-terminal modifications to the 5-MeO-DMT molecule on its interactions with serotonin receptors and transporters, as well as its psychoactive and thermoregulatory properties. Our findings demonstrated, using radioligand binding methodologies, that all examined 5-MeO-tryptamines exhibited selectivity for 5-HT1AR over 5-HT2AR. In fact, computational docking analyses predicted a better interaction in the 5-HT1AR binding pocket compared to 5-HT2AR. Our investigation also proved the interaction of these compounds with SERT, revealing that the molecular size of the amino group significantly influenced their affinity. Subsequent experiments involving serotonin uptake, electrophysiology, and superfusion release assays confirmed 5-MeO-pyr-T as the most potent partial 5-HT releaser tested. All tested tryptamines elicited, to some degree, the head twitch response (HTR) in mice, indicative of a potential hallucinogenic effect and mainly mediated by 5-HT2AR activation. However, 5-HT1AR was also shown to be implicated in the hallucinogenic effect, and its activation attenuated the HTR. In fact, tryptamines that produced a higher hypothermic response, mediated by 5-HT1AR, tended to exhibit a lower hallucinogenic effect, highlighting the opposite role of both 5-HT receptors. Moreover, although some 5-MeO-tryptamines elicited very low HTR, they still act as potent 5-HT2AR agonists. In summary, this research offers a comprehensive understanding of the psychopharmacological profile of various amino-substituted 5-MeO-tryptamines, keeping structural aspects in focus and accumulating valuable data in the frame of NPS. Moreover, the unique characteristics of some 5-MeO-tryptamines render them intriguing molecules as mixed-action drugs and provide insight within the search of non-hallucinogenic but 5-HT2AR ligands as therapeutical agents.
Collapse
MESH Headings
- Animals
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Structure-Activity Relationship
- Mice
- Humans
- Molecular Docking Simulation/methods
- Serotonin/metabolism
- Male
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Hallucinogens/pharmacology
- Psychotropic Drugs/pharmacology
- Body Temperature Regulation/drug effects
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Plasma Membrane Transport Proteins/drug effects
- Methoxydimethyltryptamines/pharmacology
- Methoxydimethyltryptamines/metabolism
- HEK293 Cells
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/drug effects
Collapse
Affiliation(s)
- Pol Puigseslloses
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Gabriel Ketsela
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Nicola Weiss
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Roger Estrada-Tejedor
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Mohammad Nazmul Islam
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
- Genetics of Cognition Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science, Medical University Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
24
|
Hu J, Lian Z, Weng Z, Xu Z, Gao J, Liu Y, Luo T, Wang X. Intranasal Delivery of Near-Infrared and Magnetic Dual-Response Nanospheres to Rapidly Produce Antidepressant-Like and Cognitive Enhancement Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405547. [PMID: 38778461 DOI: 10.1002/adma.202405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Restricted by synaptic plasticity, dopamine receptor (DR) upregulation takes a long time to work. Moreover, the impact of the blood-brain barrier (BBB) on delivery efficiency restricts the development of drugs. Taking inspiration from snuff bottles, a convenient, fast-acting, and nonaddictive nasal drug delivery system has been developed to rapidly reshape the balance of synaptic transmitters. This optical and magnetic response system called CFs@DP, comprised of carbonized MIL-100 (Fe) frameworks (CFs) and domperidone (DP), which can enter the brain via nasal administration. Under dual stimulation of near-infrared (NIR) irradiation and catecholamine-induced complexation, CFs@DP disintegrates to release iron ions and DP, causing upregulation of the dopamine type 1 (D1), type 2 (D2) receptors, and brain-derived neurotrophic factor (BDNF) to achieve a therapeutic effect. In vivo experiments demonstrate that the DR density of mice (postnatal day 50-60) increased in the prefrontal cortex (PFC) and the hippocampus (HPC) after 10 days of therapy, resulting in antidepressant-like and cognitive enhancement effects. Interestingly, the cognitive enhancement effect of CFs@DP is even working in noniron deficiency (normal fed) mice, making it a promising candidate for application in enhancing learning ability.
Collapse
Affiliation(s)
- Jiangnan Hu
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenglong Lian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zihao Xu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Yuanyuan Liu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
25
|
Scarano N, Espinoza S, Brullo C, Cichero E. Computational Methods for the Discovery and Optimization of TAAR1 and TAAR5 Ligands. Int J Mol Sci 2024; 25:8226. [PMID: 39125796 PMCID: PMC11312273 DOI: 10.3390/ijms25158226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1-ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| |
Collapse
|
26
|
Warren HT, Chow WL, Chytil M, Rasmussen K, Olson DE. Identification of Psychoplastogenic Tropanes Lacking Muscarinic Activity. J Med Chem 2024; 67:12410-12427. [PMID: 38979862 DOI: 10.1021/acs.jmedchem.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tropane-containing small molecules like scopolamine are a promising class of psychoplastogens. However, their potent antagonism of all muscarinic receptor subtypes presents the potential for undesirable anticholinergic side effects. In an effort to decouple their neuroplasticity-promoting effects from their muscarinic activity, we performed phenotypic structure-activity relationship studies across a variety of structurally distinct subclasses of tropanes. We discovered several novel tropanes capable of significantly increasing cortical neuronal growth while exhibiting drastically reduced activity at all muscarinic receptor subtypes compared to scopolamine.
Collapse
Affiliation(s)
- Hunter T Warren
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California 95616, United States
| | - Winston L Chow
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California 95616, United States
| | - Milan Chytil
- Delix Therapeutics, Inc., Bedford, Massachusetts 01730, United States
| | - Kurt Rasmussen
- Delix Therapeutics, Inc., Bedford, Massachusetts 01730, United States
| | - David E Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California 95616, United States
- Delix Therapeutics, Inc., Bedford, Massachusetts 01730, United States
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, California 95817, United States
- Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| |
Collapse
|
27
|
Otun O, Aljamous C, Del Nero E, Arimont-Segura M, Bosma R, Zarzycka B, Girbau T, Leyrat C, de Graaf C, Leurs R, Durroux T, Granier S, Cong X, Bechara C. Conformational dynamics underlying atypical chemokine receptor 3 activation. Proc Natl Acad Sci U S A 2024; 121:e2404000121. [PMID: 39008676 PMCID: PMC11287255 DOI: 10.1073/pnas.2404000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon β-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of β-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.
Collapse
Affiliation(s)
- Omolade Otun
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Christelle Aljamous
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Elise Del Nero
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Reggie Bosma
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Barbara Zarzycka
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Tristan Girbau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
- Institut Universitaire de France, Paris75005, France
| |
Collapse
|
28
|
Zięba A, Bartuzi D, Stępnicki P, Matosiuk D, Wróbel TM, Laitinen T, Castro M, Kaczor AA. Discovery and in vitro Evaluation of Novel Serotonin 5-HT 2A Receptor Ligands Identified Through Virtual Screening. ChemMedChem 2024; 19:e202400080. [PMID: 38619283 DOI: 10.1002/cmdc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marián Castro
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda. de Barcelona, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706, Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
29
|
Zheng S, Ma R, Yang Y, Li G. Psilocybin for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1420601. [PMID: 39050672 PMCID: PMC11266071 DOI: 10.3389/fnins.2024.1420601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment and a prominent contributor to dementia. The scarcity of available therapies for AD accentuates the exigency for innovative treatment modalities. Psilocybin, a psychoactive alkaloid intrinsic to hallucinogenic mushrooms, has garnered attention within the neuropsychiatric realm due to its established safety and efficacy in treating depression. Nonetheless, its potential as a therapeutic avenue for AD remains largely uncharted. This comprehensive review endeavors to encapsulate the pharmacological effects of psilocybin while elucidating the existing evidence concerning its potential mechanisms contributing to a positive impact on AD. Specifically, the active metabolite of psilocybin, psilocin, elicits its effects through the modulation of the 5-hydroxytryptamine 2A receptor (5-HT2A receptor). This modulation causes heightened neural plasticity, diminished inflammation, and improvements in cognitive functions such as creativity, cognitive flexibility, and emotional facial recognition. Noteworthy is psilocybin's promising role in mitigating anxiety and depression symptoms in AD patients. Acknowledging the attendant adverse reactions, we proffer strategies aimed at tempering or mitigating its hallucinogenic effects. Moreover, we broach the ethical and legal dimensions inherent in psilocybin's exploration for AD treatment. By traversing these avenues, We propose therapeutic potential of psilocybin in the nuanced management of Alzheimer's disease.
Collapse
Affiliation(s)
- Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of General Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Xie L, Zhao J, Li Y, Bai J. PET brain imaging in neurological disorders. Phys Life Rev 2024; 49:100-111. [PMID: 38574584 DOI: 10.1016/j.plrev.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Brain disorders are a series of conditions with damage or loss of neurons, such as Parkinson's disease (PD), Alzheimer's disease (AD), or drug dependence. These individuals have gradual deterioration of cognitive, motor, and other central nervous system functions affected. This degenerative trajectory is intricately associated with dysregulations in neurotransmitter systems. Positron Emission Tomography (PET) imaging, employing radiopharmaceuticals and molecular imaging techniques, emerges as a crucial tool for detecting brain biomarkers. It offers invaluable insights for early diagnosis and distinguishing brain disorders. This article comprehensively reviews the application and progress of conventional and novel PET imaging agents in diagnosing brain disorders. Furthermore, it conducts a thorough analysis on merits and limitations. The article also provides a forward-looking perspective in the future development directions of PET imaging agents for diagnosing brain disorders and proposes potential innovative strategies. It aims to furnish clinicians and researchers with an all-encompassing overview of the latest advancements and forthcoming trends in the utilization of PET imaging for diagnosing brain disorders.
Collapse
Affiliation(s)
- Lijun Xie
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Laboratory of Molecular Neurobiology, Medical school, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China
| | - Jihua Zhao
- Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical school, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical school, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
31
|
Zhou X, Zhao C, Xu H, Xu Y, Zhan L, Wang P, He J, Lu T, Gu Y, Yang Y, Xu C, Chen Y, Liu Y, Zeng Y, Tian F, Chen Q, Xie X, Liu J, Hu H, Li J, Zheng Y, Guo J, Gao Z. Pharmacological inhibition of Kir4.1 evokes rapid-onset antidepressant responses. Nat Chem Biol 2024; 20:857-866. [PMID: 38355723 DOI: 10.1038/s41589-024-01555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhao
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Zhan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingyi He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Taotao Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueling Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Yang
- Liangzhu Laboratory, Zhejiang University School of Medicine, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyang Chen
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Qian Chen
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hailan Hu
- Liangzhu Laboratory, Zhejiang University School of Medicine, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- School of Pharmacy, Henan University, Kaifeng, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
32
|
Shahar O, Botvinnik A, Shwartz A, Lerer E, Golding P, Buko A, Hamid E, Kahn D, Guralnick M, Blakolmer K, Wolf G, Lotan A, Lerer L, Lerer B, Lifschytz T. Effect of chemically synthesized psilocybin and psychedelic mushroom extract on molecular and metabolic profiles in mouse brain. Mol Psychiatry 2024; 29:2059-2073. [PMID: 38378926 PMCID: PMC11408259 DOI: 10.1038/s41380-024-02477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Psilocybin, a naturally occurring, tryptamine alkaloid prodrug, is currently being investigated for the treatment of a range of psychiatric disorders. Preclinical reports suggest that the biological effects of psilocybin-containing mushroom extract or "full spectrum" (psychedelic) mushroom extract (PME), may differ from those of chemically synthesized psilocybin (PSIL). We compared the effects of PME to those of PSIL on the head twitch response (HTR), neuroplasticity-related synaptic proteins and frontal cortex metabolomic profiles in male C57Bl/6j mice. HTR measurement showed similar effects of PSIL and PME over 20 min. Brain specimens (frontal cortex, hippocampus, amygdala, striatum) were assayed for the synaptic proteins, GAP43, PSD95, synaptophysin and SV2A, using western blots. These proteins may serve as indicators of synaptic plasticity. Three days after treatment, there was minimal increase in synaptic proteins. After 11 days, PSIL and PME significantly increased GAP43 in the frontal cortex (p = 0.019; p = 0.039 respectively) and hippocampus (p = 0.015; p = 0.027) and synaptophysin in the hippocampus (p = 0.041; p = 0.05) and amygdala (p = 0.035; p = 0.004). PSIL increased SV2A in the amygdala (p = 0.036) and PME did so in the hippocampus (p = 0.014). In the striatum, synaptophysin was increased by PME only (p = 0.023). There were no significant effects of PSIL or PME on PSD95 in any brain area when these were analyzed separately. Nested analysis of variance (ANOVA) showed a significant increase in each of the 4 proteins over all brain areas for PME versus vehicle control, while significant PSIL effects were observed only in the hippocampus and amygdala and were limited to PSD95 and SV2A. Metabolomic analyses of the pre-frontal cortex were performed by untargeted polar metabolomics utilizing capillary electrophoresis - Fourier transform mass spectrometry (CE-FTMS) and showed a differential metabolic separation between PME and vehicle groups. The purines guanosine, hypoxanthine and inosine, associated with oxidative stress and energy production pathways, showed a progressive decline from VEH to PSIL to PME. In conclusion, our synaptic protein findings suggest that PME has a more potent and prolonged effect on synaptic plasticity than PSIL. Our metabolomics data support a gradient of effects from inert vehicle via chemical psilocybin to PME further supporting differential effects. Further studies are needed to confirm and extend these findings and to identify the molecules that may be responsible for the enhanced effects of PME as compared to psilocybin alone.
Collapse
Affiliation(s)
- Orr Shahar
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Alexander Botvinnik
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Amit Shwartz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Elad Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
- Israel Institute for Biology, Nes Ziona, Israel
| | - Peretz Golding
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Alex Buko
- Human Metabolome Technologies, Boston, MA, USA
| | - Ethan Hamid
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Dani Kahn
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Miles Guralnick
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | | | - Gilly Wolf
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
- Achva Academic College, Beer Tuvia, Israel
| | - Amit Lotan
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Leonard Lerer
- Parow Entheobiosciences (ParowBio), Chicago, IL, USA
- Back of the Yards Algae Sciences (BYAS), Chicago, IL, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
33
|
Lyu J, Kapolka N, Gumpper R, Alon A, Wang L, Jain MK, Barros-Álvarez X, Sakamoto K, Kim Y, DiBerto J, Kim K, Glenn IS, Tummino TA, Huang S, Irwin JJ, Tarkhanova OO, Moroz Y, Skiniotis G, Kruse AC, Shoichet BK, Roth BL. AlphaFold2 structures guide prospective ligand discovery. Science 2024; 384:eadn6354. [PMID: 38753765 PMCID: PMC11253030 DOI: 10.1126/science.adn6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.
Collapse
Affiliation(s)
- Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- The Evnin Family Laboratory of Computational Molecular Discovery, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ryan Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Manish K. Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Kensuke Sakamoto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yoojoong Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeffrey DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Isabella S. Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Tia A. Tummino
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Sijie Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Yurii Moroz
- Chemspace LLC, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
- Enamine Ltd., Kyiv 02094, Ukraine
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Glennon RA, Dukat M. 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): From an Obscure to Pivotal Member of the DOX Family of Serotonergic Psychedelic Agents - A Review. ACS Pharmacol Transl Sci 2024; 7:1722-1745. [PMID: 38898956 PMCID: PMC11184610 DOI: 10.1021/acsptsci.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI, or DOX where X = -I) was first synthesized in 1973 in a structure-activity study to explore the effect of various aryl substituents on the then newly identified, and subsequently controlled, hallucinogenic agent 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM, or DOX where X = -CH3). Over time, DOI was found to be a serotonin (5-HT) receptor agonist using various peripheral 5-HT receptor tissue assays and later, following the identification of multiple families of central 5-HT receptors, an agonist at 5-HT2 serotonin receptors in rat and, then, human brain. Today, classical hallucinogens, currently referred to as serotonergic psychedelic agents, are receiving considerable attention for their potential therapeutic application in various neuropsychiatric disorders including treatment-resistant depression. Here, we review, for the first time, the historical and current developments that led to DOI becoming a unique, perhaps a landmark, agent in 5-HT2 receptor research.
Collapse
Affiliation(s)
- Richard A. Glennon
- Department of Medicinal Chemistry
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Małgorzata Dukat
- Department of Medicinal Chemistry
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| |
Collapse
|
35
|
Kalsoom I, Shehzadi K, Li HS, Wen HL, Yu MJ. Unraveling the Mechanisms of Cannabidiol's Pharmacological Actions: A Comprehensive Research Overview. Top Curr Chem (Cham) 2024; 382:20. [PMID: 38829467 DOI: 10.1007/s41061-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.
Collapse
Affiliation(s)
- Iqra Kalsoom
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Han-Sheng Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Hong-Liang Wen
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Ming-Jia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| |
Collapse
|
36
|
Liu X, Luo M, Wang Z, Yang SJ, Su M, Wang Y, Wang W, Sun Z, Cai Y, Wu L, Zhou R, Xu M, Zhao Q, Chen L, Zuo W, Huang Y, Ren P, Huang X. Mind shift I: Fructus Aurantii - Rhizoma Chuanxiong synergistically anchors stress-induced depression-like behaviours and gastrointestinal dysmotility cluster by regulating psycho-immune-neuroendocrine network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155324. [PMID: 38552437 DOI: 10.1016/j.phymed.2023.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.
Collapse
Affiliation(s)
- XiangFei Liu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Luo
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zheng Wang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Shu Jie Yang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Mengqing Su
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Wenzhu Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - ZhongHua Sun
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - YaWen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Lei Wu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - RunZe Zhou
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - QiuLong Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - WenTing Zuo
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - YunKe Huang
- Women's Hospital, Zhejiang University School of Medicine, China
| | - Ping Ren
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596205. [PMID: 38854027 PMCID: PMC11160682 DOI: 10.1101/2024.05.28.596205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Preclinical and human studies indicate psilocybin may reduce perseverant maladaptive behaviors, including nicotine and alcohol seeking. Such studies in the opioid field are lacking, though opioids are involved in more >50% of overdose deaths. Psilocybin is an agonist at the serotonin 2A receptor (5-HT2AR), a well-documented target for modulation of drug seeking, and evidence suggests 5-HT2AR agonists may dampen motivation for opioids. We sought to investigate the therapeutic efficacy of psilocybin in mediating cessation of opioid use and maintenance of long-lasting abstinence from opioid seeking behavior in a rat model of heroin self-administration (SA). Psilocybin or 5-HT2AR antagonists ketanserin and volinanserin were administered systemically to rats prior to SA of 0.075 mg/kg/infusion of heroin, or relapse following forced abstinence. Psilocybin did not alter heroin taking, but a single exposure to 3.0 mg/kg psilocybin 4-24 hours prior to a relapse test blunted cue-induced heroin seeking. Conversely, 5-HT2AR antagonists exacerbated heroin relapse. To begin to elucidate mechanisms of psilocybin, drug-naïve rats received psilocybin and/or ketanserin, and tissue was collected from the prefrontal cortex (PFC), a region critical for drug seeking and responsive to psilocybin, 24 hours later for RNA-sequencing. 3.0 mg/kg psilocybin regulated ~2-fold more genes in the PFC than 1.0 mg/kg, including genes involved in the cytoskeleton and cytokine signaling. Ketanserin blocked >90% of psilocybin-regulated genes, including the IL-17a cytokine receptor, Il17ra. Psychedelic compounds have reported anti-inflammatory properties, and therefore we performed a gene expression array to measure chemokine/cytokine molecules in the PFC of animals that displayed psilocybin-mediated inhibition of heroin seeking. Psilocybin regulated 4 genes, including Il17a, and a subset of genes correlated with relapse behavior. Selective inhibition of PFC IL-17a was sufficient to reduce heroin relapse. We conclude that psilocybin reduces heroin relapse and highlight IL-17a signaling as a potential downstream pathway of psilocybin that also reduces heroin seeking.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Biology, Temple University, Philadelphia, PA USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| |
Collapse
|
38
|
Atiq MA, Baker MR, Voort JLV, Vargas MV, Choi DS. Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06599-5. [PMID: 38743110 DOI: 10.1007/s00213-024-06599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Recent research with classic psychedelics suggests significant therapeutic potential, particularly for neuropsychiatric disorders. A mediating influence behind symptom resolution is thought to be the personal insight - at times, bordering on the mystical - one acquires during the acute phase of a psychedelic session. Indeed, current clinical trials have found strong correlations between the acute subjective effects (ASE) under the influence of psychedelics and their enduring therapeutic properties. However, with potential barriers to widespread clinical implementation, including the healthcare resource-intensive nature of psychedelic sessions and the exclusion of certain at-risk patient groups, there is an active search to determine whether ASE elimination can be accompanied by the retention of persisting therapeutic benefits of these class of compounds. Recognizing the aberrant underlying neural circuitry that characterizes a range of neuropsychiatric disorders, and that classic psychedelics promote neuroplastic changes that may correct abnormal circuitry, investigators are rushing to design and discover compounds with psychoplastogenic, but not hallucinogenic (i.e., ASE), therapeutic potential. These efforts have paved the discovery of 'non-psychedelic/subjective psychedelics', or compounds that lack hallucinogenic activity but with therapeutic efficacy in preclinical models. This review aims to distill the current evidence - both clinical and preclinical - surrounding the question: can the ASE of classic psychedelics be dissociated from their sustained therapeutic properties? Several plausible clinical scenarios are then proposed to offer clarity on and potentially answer this question.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| | - Matthew R Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Maxemiliano V Vargas
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
39
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
40
|
Takaba R, Ibi D, Yoshida K, Hosomi E, Kawase R, Kitagawa H, Goto H, Achiwa M, Mizutani K, Maeda K, González-Maeso J, Kitagaki S, Hiramatsu M. Ethopharmacological evaluation of antidepressant-like effect of serotonergic psychedelics in C57BL/6J male mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3019-3035. [PMID: 37874338 DOI: 10.1007/s00210-023-02778-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Serotonergic psychedelics such as psilocybin, lysergic acid diethylamide, and DOI exert a hallucinatory effect through serotonin 5-HT2A receptor (5-HT2A) activation. Recent studies have revealed that serotonergic psychedelics have therapeutic potential for neuropsychiatric disorders, including major depressive and anxiety-related disorders. However, the involvement of 5-HT2A in mediating the therapeutic effects of these drugs remains unclear. In this study, we ethopharmacologically analyzed the role of 5-HT2A in the occurrence of anxiolytic- and antidepressant-like effects of serotonergic psychedelics such as psilocin, an active metabolite of psilocybin, DOI, and TCB-2 in mice 24 h post-treatment. Mice with acute intraperitoneal psychedelic treatment exhibited significantly shorter immobility times in the forced swimming test (FST) and tail-suspension test (TST) than vehicle-treated control mice. These effects were eliminated by pretreatment with volinanserin, a 5-HT2A antagonist. Surprisingly, the decreasing immobility time in the FST in response to acute psilocin treatment was sustained for at least three weeks. In the novelty-suppressed feeding test (NSFT), the latency to feed, an indicator of anxiety-like behavior, was decreased by acute administration of psilocin; however, pretreatment with volinanserin did not diminish this effect. In contrast, DOI and TCB-2 did not affect the NSFT performance in mice. Furthermore, psilocin, DOI, and TCB-2 treatment did not affect the spontaneous locomotor activity or head-twitch response, a hallucination-like behavior in rodents. These results suggest that 5-HT2A contributes to the antidepressant effects of serotonergic psychedelics rather than anxiolytic effects.
Collapse
Affiliation(s)
- Rika Takaba
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan, 468-8502.
| | - Daisuke Ibi
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan, 468-8502.
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502.
| | - Keisuke Yoshida
- Department of Medical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Eri Hosomi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Ririna Kawase
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Hiroko Kitagawa
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Hirotaka Goto
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Mizuki Achiwa
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Kento Mizutani
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Kyosuke Maeda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Shinji Kitagaki
- Department of Medical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan, 468-8502.
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, 468-8502.
| |
Collapse
|
41
|
Chen Z, Yu J, Wang H, Xu P, Fan L, Sun F, Huang S, Zhang P, Huang H, Gu S, Zhang B, Zhou Y, Wan X, Pei G, Xu HE, Cheng J, Wang S. Flexible scaffold-based cheminformatics approach for polypharmacological drug design. Cell 2024; 187:2194-2208.e22. [PMID: 38552625 DOI: 10.1016/j.cell.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HT2AR to act as an antagonist and a "stretching-up" binding pose at 5-HT1AR to function as an agonist. IHCH-7179 demonstrated promising results in alleviating cognitive deficits and psychoactive symptoms in mice by blocking 5-HT2AR for psychoactive symptoms and activating 5-HT1AR to alleviate cognitive deficits. By analyzing aminergic receptor structures, we identified two featured motifs, the "agonist filter" and "conformation shaper," which determine ligand binding pose and predict activity at aminergic receptors. With these motifs, FSCA can be applied to the design of polypharmacological ligands at other receptors.
Collapse
Affiliation(s)
- Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Yu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Peiyu Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fengxiu Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sijie Huang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pei Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Shuo Gu
- ComMedX, Beijing 100094, China
| | | | - Yue Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Gang Pei
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Sheng Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
42
|
Muneta-Arrate I, Miranda-Azpiazu P, Horrillo I, Diez-Alarcia R, Meana JJ. Ligand bias and inverse agonism on 5-HT 2A receptor-mediated modulation of G protein activity in post-mortem human brain. Br J Pharmacol 2024. [PMID: 38644550 DOI: 10.1111/bph.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Whereas biased agonism on the 5-HT2A receptor has been ascribed to hallucinogenic properties of psychedelics, no information about biased inverse agonism on this receptor is available. In schizophrenia, increased 5-HT2A receptor constitutive activity has been suggested, highlighting the therapeutic relevance of inverse agonism. This study characterized the modulation of G protein activity promoted by different drugs, commonly considered as 5-HT2A receptor antagonists, in post-mortem human brain cortex. EXPERIMENTAL APPROACH Modulation of [35S]GTPγS binding to different subtypes of Gα proteins exerted by different 5-HT2A receptor drugs was determined by scintillation proximity assays in brain from human, WT and 5-HT2A receptor KO mice. KEY RESULTS MDL-11,939 was the only drug having no effect on the basal activity of 5-HT2A receptor. Altanserin and pimavanserin decreased basal activation of Gi1, but not Gq/11 proteins. This effect was blocked by MDL-11,939 and absent in 5-HT2A receptor KO mice. Volinanserin showed 5-HT2A receptor-mediated inverse agonism both on Gi1 and Gq/11 proteins. Ketanserin exhibited 5-HT2A receptor partial agonism exclusively on Gq/11 proteins. On the other hand, eplivanserin and nelotanserin displayed inverse agonism on Gq/11 and/or Gi1 proteins, which was insensitive to MDL-11,939 and was present in KO mice suggesting a role for another receptor. CONCLUSION AND IMPLICATIONS The results reveal the existence of constitutively active 5-HT2A receptors in human pre-frontal cortex and demonstrate different pharmacological profiles of various 5-HT2A receptor drugs previously considered antagonists. These findings indicate that altanserin and pimavanserin possess biased inverse agonist profile towards 5-HT2A receptor activation of Gi1 proteins.
Collapse
Affiliation(s)
- Itziar Muneta-Arrate
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Current address: Department of Basic Neuroscience, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Patricia Miranda-Azpiazu
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
| | - Igor Horrillo
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
43
|
Maia JM, de Oliveira BSA, Branco LGS, Soriano RN. Therapeutic potential of psychedelics: History, advancements, and unexplored frontiers. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110951. [PMID: 38307161 DOI: 10.1016/j.pnpbp.2024.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics (serotonergic hallucinogens) are psychoactive substances that can alter perception and mood, and affect cognitive functions. These substances activate 5-HT2A receptors and may exert therapeutic effects. Some of the disorders for which psychedelic-assisted therapy have been studied include depression, addiction, anxiety and post-traumatic stress disorder. Despite the increasing number of studies reporting clinical effectiveness, with fewer negative symptoms and, additionally, minimal side effects, questions remain to be explored in the field of psychedelic medicine. Although progress has been achieved, there is still little understanding of the relationship among human brain and the modulation induced by these drugs. The present article aimed to describe, review and highlight the most promising findings in the literature regarding the (putative) therapeutic effects of psychedelics.
Collapse
Affiliation(s)
- Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | | | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35020-360, Brazil
| |
Collapse
|
44
|
MacGowan SA, Madeira F, Britto-Borges T, Barton GJ. A unified analysis of evolutionary and population constraint in protein domains highlights structural features and pathogenic sites. Commun Biol 2024; 7:447. [PMID: 38605212 PMCID: PMC11009406 DOI: 10.1038/s42003-024-06117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Protein evolution is constrained by structure and function, creating patterns in residue conservation that are routinely exploited to predict structure and other features. Similar constraints should affect variation across individuals, but it is only with the growth of human population sequencing that this has been tested at scale. Now, human population constraint has established applications in pathogenicity prediction, but it has not yet been explored for structural inference. Here, we map 2.4 million population variants to 5885 protein families and quantify residue-level constraint with a new Missense Enrichment Score (MES). Analysis of 61,214 structures from the PDB spanning 3661 families shows that missense depleted sites are enriched in buried residues or those involved in small-molecule or protein binding. MES is complementary to evolutionary conservation and a combined analysis allows a new classification of residues according to a conservation plane. This approach finds functional residues that are evolutionarily diverse, which can be related to specificity, as well as family-wide conserved sites that are critical for folding or function. We also find a possible contrast between lethal and non-lethal pathogenic sites, and a surprising clinical variant hot spot at a subset of missense enriched positions.
Collapse
Affiliation(s)
- Stuart A MacGowan
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK
| | - Fábio Madeira
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Thiago Britto-Borges
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Geoffrey J Barton
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
45
|
Xu Y, Lv J, Kong C, Liu Y, Wang K, Tang Z, Chen X. Introducing urea into tirapazamine derivatives to enhance anticancer therapy. Natl Sci Rev 2024; 11:nwae038. [PMID: 38440219 PMCID: PMC10911816 DOI: 10.1093/nsr/nwae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Tirapazamine (TPZ) has been approved for multiple clinical trials relying on its excellent anticancer potential. However, as a typical hypoxia-activated prodrug (HAP), TPZ did not exhibit survival advantages in Phase III clinical trials when used in combination therapy due to the insufficient hypoxia levels in patients' tumors. In this study, to improve the therapeutic effects of TPZ, we first introduced urea to synthesize a series of urea-containing derivatives of TPZ. All urea-containing TPZ derivatives showed increased hypoxic cytotoxicity (9.51-30.85-fold) compared with TPZ, while maintaining hypoxic selectivity. TPZP, one of these derivatives, showed 20-fold higher cytotoxicity than TPZ while maintaining a similar hypoxic cytotoxicity ratio. To highly efficiently deliver TPZP to the tumors and reduce its side effects on healthy tissues, we further prepared TPZP into a nanodrug with fibrin-targeting ability: FT11-TPZP-NPs. CA4-NPs, a vascular disrupting agent, was used to increase the fibrin level within tumors and exacerbate tumor hypoxia. By being combined with CA4-NPs, FT11-TPZP-NPs can accumulate in the hypoxia-aggravated tumors and activate sufficiently to kill tumor cells. After a single-dose treatment, FT11-TPZP-NPs + CA4-NPs showed a high inhibition rate of 98.1% against CT26 tumor models with an initial volume of ∼480 mm3 and four out of six tumors were completely eliminated; it thereby exerted a significant antitumor effect. This study provides a new strategy for improving the therapeutic effect of TPZ and other HAPs in anticancer therapy.
Collapse
Affiliation(s)
- Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoying Kong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Braun D, Rosenberg AM, Rabaniam E, Haruvi R, Malamud D, Barbara R, Aiznkot T, Levavi-Sivan B, Kawashima T. High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin. Mol Psychiatry 2024; 29:1046-1062. [PMID: 38233467 PMCID: PMC11176078 DOI: 10.1038/s41380-023-02391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Dotan Braun
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
- The Jerusalem Mental Health Center, Jerusalem, Israel
| | - Ayelet M Rosenberg
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Elad Rabaniam
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Dorel Malamud
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Tomer Aiznkot
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel.
| |
Collapse
|
47
|
Vandevelde M, Simoens A, Vandekerckhove B, Stevens C. Synthesis and bioactivity of psilocybin analogues containing a stable carbon-phosphorus bond. RSC Med Chem 2024; 15:998-1002. [PMID: 38516602 PMCID: PMC10953488 DOI: 10.1039/d4md00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Psilocybin analogues have been synthesized comprising a non-hydrolysable P-C bond to evaluate the biological activity and the selectivity towards 5-HT2AR, 5-HT2BR and the TNAP receptor. No activity was observed towards the phosphatase, however all compounds showed good binding affinity for 5-HT2AR and 5-HT2BR and one compound showed a higher selectivity towards 5-HT2AR than psilocin.
Collapse
Affiliation(s)
- Marthe Vandevelde
- Department of Green Chemistry and Technology, Synthesis, Bioresources and Bioorganic Chemistry Research Group, Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Andreas Simoens
- Department of Green Chemistry and Technology, Synthesis, Bioresources and Bioorganic Chemistry Research Group, Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Bavo Vandekerckhove
- Department of Green Chemistry and Technology, Synthesis, Bioresources and Bioorganic Chemistry Research Group, Ghent University Coupure Links 653 9000 Ghent Belgium
| | - Christian Stevens
- Department of Green Chemistry and Technology, Synthesis, Bioresources and Bioorganic Chemistry Research Group, Ghent University Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
48
|
Wang WW, Ji SY, Zhang W, Zhang J, Cai C, Hu R, Zang SK, Miao L, Xu H, Chen LN, Yang Z, Guo J, Qin J, Shen DD, Liang P, Zhang Y, Zhang Y. Structure-based design of non-hypertrophic apelin receptor modulator. Cell 2024; 187:1460-1475.e20. [PMID: 38428423 DOI: 10.1016/j.cell.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Apelin is a key hormone in cardiovascular homeostasis that activates the apelin receptor (APLNR), which is regarded as a promising therapeutic target for cardiovascular disease. However, adverse effects through the β-arrestin pathway limit its pharmacological use. Here, we report cryoelectron microscopy (cryo-EM) structures of APLNR-Gi1 complexes bound to three agonists with divergent signaling profiles. Combined with functional assays, we have identified "twin hotspots" in APLNR as key determinants for signaling bias, guiding the rational design of two exclusive G-protein-biased agonists WN353 and WN561. Cryo-EM structures of WN353- and WN561-stimulated APLNR-G protein complexes further confirm that the designed ligands adopt the desired poses. Pathophysiological experiments have provided evidence that WN561 demonstrates superior therapeutic effects against cardiac hypertrophy and reduced adverse effects compared with the established APLNR agonists. In summary, our designed APLNR modulator may facilitate the development of next-generation cardiovascular medications.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
| | - Chenxi Cai
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rubi Hu
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Luwei Miao
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Haomang Xu
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Li-Nan Chen
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Zongkuai Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jia Guo
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jiao Qin
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
49
|
Lyu J, Kapolka N, Gumpper R, Alon A, Wang L, Jain MK, Barros-Álvarez X, Sakamoto K, Kim Y, DiBerto J, Kim K, Tummino TA, Huang S, Irwin JJ, Tarkhanova OO, Moroz Y, Skiniotis G, Kruse AC, Shoichet BK, Roth BL. AlphaFold2 structures template ligand discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572662. [PMID: 38187536 PMCID: PMC10769324 DOI: 10.1101/2023.12.20.572662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
AlphaFold2 (AF2) and RosettaFold have greatly expanded the number of structures available for structure-based ligand discovery, even though retrospective studies have cast doubt on their direct usefulness for that goal. Here, we tested unrefined AF2 models prospectively, comparing experimental hit-rates and affinities from large library docking against AF2 models vs the same screens targeting experimental structures of the same receptors. In retrospective docking screens against the σ2 and the 5-HT2A receptors, the AF2 structures struggled to recapitulate ligands that we had previously found docking against the receptors' experimental structures, consistent with published results. Prospective large library docking against the AF2 models, however, yielded similar hit rates for both receptors versus docking against experimentally-derived structures; hundreds of molecules were prioritized and tested against each model and each structure of each receptor. The success of the AF2 models was achieved despite differences in orthosteric pocket residue conformations for both targets versus the experimental structures. Intriguingly, against the 5-HT2A receptor the most potent, subtype-selective agonists were discovered via docking against the AF2 model, not the experimental structure. To understand this from a molecular perspective, a cryoEM structure was determined for one of the more potent and selective ligands to emerge from docking against the AF2 model of the 5-HT2A receptor. Our findings suggest that AF2 models may sample conformations that are relevant for ligand discovery, much extending the domain of applicability of structure-based ligand discovery.
Collapse
Affiliation(s)
- Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- The Evnin Family Laboratory of Computational Molecular Discovery, The Rockefeller University, New York, NY 10065, USA (present address)
| | - Nicholas Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Ryan Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Pharmacology Department, Yale School of Medicine, New Haven, CT 06510, USA (present address)
| | - Liang Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kensuke Sakamoto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Yoojoong Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Jeffrey DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea (present address)
| | - Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Sijie Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Yurii Moroz
- Chemspace LLC, Kyiv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
- Enamine Ltd., Kyiv, 02094, Ukraine
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, US
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| |
Collapse
|
50
|
Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH. Comparative Pharmacological Effects of Lisuride and Lysergic Acid Diethylamide Revisited. ACS Pharmacol Transl Sci 2024; 7:641-653. [PMID: 38481684 PMCID: PMC10928901 DOI: 10.1021/acsptsci.3c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 11/01/2024]
Abstract
Lisuride is a non-psychedelic serotonin (5-HT) 2A receptor (5-HT2A) agonist and analogue of the psychedelic lysergic acid diethylamide (LSD). Lisuride also acts as an agonist at the serotonin 1A receptor (5-HT1A), a property known to counter psychedelic effects. Here, we tested whether lisuride lacks psychedelic activity due to a dual mechanism: (1) partial agonism at 5-HT2A and (2) potent agonism at 5-HT1A. The in vitro effects of lisuride, LSD, and related analogues on 5-HT2A signaling were characterized by using miniGαq and β-arrestin 2 recruitment assays. The 5-HT1A- and 5-HT2A-mediated effects of lisuride and LSD were also compared in male C57BL/6J mice. The in vitro results confirmed that LSD is an agonist at 5-HT2A, with high efficacy and potency for recruiting miniGαq and β-arrestin 2. By contrast, lisuride displayed partial efficacy for both functional end points (6-52% of 5-HT or LSD Emax) and antagonized the effects of LSD. The mouse experiments demonstrated that LSD induces head twitch responses (HTRs)(ED50 = 0.039 mg/kg), while lisuride suppresses HTRs (ED50 = 0.006 mg/kg). Lisuride also produced potent hypothermia and hypolocomotion (ED50 = 0.008-0.023 mg/kg) that was blocked by the 5-HT1A antagonist WAY100635 (3 mg/kg). Blockade of 5-HT1A prior to lisuride restored basal HTRs, but it failed to increase HTRs above baseline levels. HTRs induced by LSD were blocked by lisuride (0.03 mg/kg) or the 5-HT1A agonist 8-OH-DPAT (1 mg/kg). Overall, our findings show that lisuride is an ultrapotent 5-HT1A agonist in C57BL/6J mice, limiting its use as a 5-HT2A ligand in mouse studies examining acute drug effects. Results also indicate that the 5-HT2A partial agonist-antagonist activity of lisuride explains its lack of psychedelic effects.
Collapse
Affiliation(s)
- Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ghent 460 9000, Belgium
| | - John S. Partilla
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ghent 460 9000, Belgium
| | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|