1
|
Zhou J, Bränn E, Hysaj E, Seitz C, Hou Y, Song H, Bergstedt J, Chang Z, Fang F, Pedersen NL, Valdimarsdóttir UA, Lu D. Association between inflammatory biomarkers before pregnancy and risk of perinatal depression: A prospective cohort study of 4483 women in Sweden. J Affect Disord 2025; 368:477-486. [PMID: 39303887 DOI: 10.1016/j.jad.2024.09.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
AIM Perinatal depression (PND) is a global health concern, affecting millions of childbearing women. Emerging data suggest that inflammation may play a role in the development of PND. Peripheral blood inflammatory biomarkers before pregnancy are widely tested in clinical practice at minimum cost, yet their potential role in PND risk remains unknown. METHODS We conducted a prospective cohort study of 4483 birthing women during 2009-2021 within the LifeGene study with linkage to Swedish registers. Peripheral blood inflammatory biomarkers were profiled at baseline. Cases of PND were identified using validated tools or clinical diagnosis from subsequent pregnancies and postpartum periods. Logistic regression models were employed to assess the associations of each inflammatory biomarker (z scored) with PND. RESULTS We identified 495 (11.0 %) PND cases with an average age of 29.2 years. Pre-pregnancy platelet-to-lymphocyte ratio (PLR) was positively associated [OR, 95 % CI:1.14(1.01,1.27)], while lymphocyte count was inversely associated [OR, 95 % CI: 0.89(0.80,0.98)] with PND. A dose-response relationship was indicated for both PLR and lymphocytes when analyzed in categories based on tertile distribution. These associations appeared more pronounced for postpartum depression than antepartum depression and were independent of psychiatric comorbidities. CONCLUSION With implications for future mechanistic research, these findings suggest that blood levels of lymphocytes and PLR before pregnancy are associated with subsequent risk of PND in a dose-response manner.
Collapse
Affiliation(s)
- Jing Zhou
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Bränn
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elgeta Hysaj
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ying Hou
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jacob Bergstedt
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Unnur A Valdimarsdóttir
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Donghao Lu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Westergaard D, Lundgaard AT, Vomstein K, Fich L, Hviid KVR, Egerup P, Christiansen AMH, Nielsen JR, Lindman J, Holm PC, Hartwig TS, Jørgensen FS, Zedeler A, Kolte AM, Westh H, Jørgensen HL, la Cour Freiesleben N, Banasik K, Brunak S, Nielsen HS. Immune changes in pregnancy: associations with pre-existing conditions and obstetrical complications at the 20th gestational week-a prospective cohort study. BMC Med 2024; 22:583. [PMID: 39696496 DOI: 10.1186/s12916-024-03797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pregnancy is a complex biological process and serious complications can arise when the delicate balance between the maternal and semi-allogeneic fetal immune systems is disrupted or challenged. Gestational diabetes mellitus (GDM), pre-eclampsia, preterm birth, and low birth weight pose serious threats to maternal and fetal health. Identification of early biomarkers through an in-depth understanding of molecular mechanisms is critical for early intervention. METHODS We analyzed the associations between 47 proteins involved in inflammation, chemotaxis, angiogenesis, and immune system regulation, maternal and neonatal health outcomes, and the baseline characteristics and pre-existing conditions of the mother in a prospective cohort of 1049 pregnant women around the 20th gestational week. We used Bayesian linear regression models to examine the impact of risk factors on biomarker levels and Bayesian cause-specific parametric proportional hazards models to analyze the effect of biomarkers on maternal and neonatal outcomes. We evaluated the predictive value of baseline characteristics and 47 proteins using machine-learning models and identified the most predictive biomarkers using Shapley additive explanation scores. RESULTS Associations were identified between specific inflammatory markers and several conditions, including maternal age and pre-pregnancy body mass index, chronic diseases, complications from prior pregnancies, and COVID-19 exposure. Smoking during pregnancy affected GM-CSF and 9 other biomarkers. Distinct biomarker patterns were observed for different ethnicities. Within obstetric complications, IL-6 inversely correlated with pre-eclampsia risk, while birth weight to gestational age ratio was linked to markers including VEGF and PlGF. GDM was associated with IL-1RA, IL-17D, and eotaxin-3. Severe postpartum hemorrhage correlated with CRP, IL-13, and proteins of the IL-17 family. Predictive modeling yielded area under the receiver operating characteristic curve values of 0.708 and 0.672 for GDM and pre-eclampsia, respectively. Significant predictive biomarkers for GDM included IL-1RA and eotaxin-3, while pre-eclampsia prediction yielded the highest predictions when including MIP-1β, IL-1RA, and IL-12p70. CONCLUSIONS Our study provides novel insights into the interplay between preexisting conditions and immune dysregulation in pregnancy. These findings contribute to our understanding of the pathophysiology of obstetric complications and the identification of novel biomarkers for early intervention(s) to improve maternal and fetal health.
Collapse
Affiliation(s)
- David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Agnete Troen Lundgaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kilian Vomstein
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Line Fich
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Pia Egerup
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | - Johanna Lindman
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Peter Christoffer Holm
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Schlaikjær Hartwig
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Finn Stener Jørgensen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Zedeler
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Astrid Marie Kolte
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Løvendahl Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina la Cour Freiesleben
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Taravat M, Asadpour R, Jafari Jozani R, Fattahi A, Khordadmehr M, Hajipour H. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Syst Biol Reprod Med 2024; 70:3-19. [PMID: 38323586 DOI: 10.1080/19396368.2024.2306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/06/2024] [Indexed: 02/08/2024]
Abstract
Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (MUC-16) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-β (TGF-β), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, Muc-16 genes as well as IL-18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.
Collapse
Affiliation(s)
- Morteza Taravat
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi Jafari Jozani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Hajipour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Indra S, Chalak K, Das P, Mukhopadhyay A. Placenta a potential gateway of prenatal SARS-CoV-2 infection: A review. Eur J Obstet Gynecol Reprod Biol 2024; 303:123-131. [PMID: 39461078 DOI: 10.1016/j.ejogrb.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
SARS-CoV-2, the causative agent of COVID-19, can infect various tissues in the body apart from the lungs. Although placental infection remains controversial, COVID-19-associated placental abnormalities have been reported worldwide. Therefore, COVID-19 poses a significant risk for fetal distress as well. Scientists are currently debating whether such distress results from direct viral induced assault or placental damage caused by the mother's immune response. The placenta develops different histopathological lesions in response to maternal SARS-CoV-2 infection. While some studies support both theories, the transmission rate through the placenta remains low. Therefore, a more in-depth study is necessary to determine the primary cause of maternal SARS-CoV-2-induced fetal distress. This comprehensive review is aimed to shed light on the possible reasons towards fetal distress among mothers with COVID-19. This review describes the various mechanisms of viral entry along with the mechanisms by which the virus could affect the placenta. Reported cases of placental abnormalities and fetal distress symptoms have been collated to provide an overview of the current state of knowledge on vertical transmission of COVID-19.
Collapse
Affiliation(s)
- Subhashis Indra
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Kuheli Chalak
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | | |
Collapse
|
5
|
Sarria-Santamera A, Kapashova N, Sarsenov R, Mukhtarova K, Sipenova A, Terzic M, Bapayeva G, Sarbalina A, Zhumambayeva S, Nadyrov K, Tazhibayeva K, Jaxalykova KK, Myrzabekova A, Khamidullina Z. Characterization of COVID-19 infected pregnant women with ICU admission and the risk of preterm: A cluster analysis. J Infect Public Health 2024; 17:102572. [PMID: 39536614 DOI: 10.1016/j.jiph.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The unique physiological changes during pregnancy present challenges in understanding the full scope and effects of COVID-19 on pregnant women, adding complexity to their medical management. Given the significant changes in the immune, circulatory, respiratory, and hormonal systems during the progression of the pregnancy, and the specific factors with higher risk of COVID-19, like metabolic, vascular, and endothelial factors, typically also associated with maternal and neonatal unfavorable outcomes, the full understanding of how COVID-19 affects pregnant women is not clarified yet. METHODS In this study, anonymous data from medical records of pregnant women with lab-confirmed COVID-19 in Astana, Kazakhstan from May 1, 2021, to July 14, 2021, were collected retrospectively. A multivariate regression model was built to identify factors associated with the risk of ICU admission. Cluster analysis was performed to identify distinct groups among women admitted to the ICU based on their blood parameters, coagulation profiles, and oxygenation saturation levels. RESULTS 10.7 % of pregnant women were admitted to ICU. Among them, 4.36 % were in the 2nd trimester and 13.58 % in the 3rd trimester. No women in the 1st trimester were admitted to ICU. A multivariate regression model demonstrates that gestational diabetes, leukocytes, CRP, and saturation were the factors significantly associated with a higher risk of ICU admission. Three clusters of pregnant women were segmented, and preterm birth was frequent in clusters 1 (serious systemic conditions affecting multiple organs) and 3 (women with hypertension and preeclampsia), whereas cluster 2 represents women who can also be characterized as suffering from infections with a possible autoimmune component. Neutrophil to lymphocyte ratio was frequent in clusters 1 and 3. CONCLUSION In this study, multivariable analysis identified factors with a risk of ICU admission, and clustering analysis helped to identify groups of COVID-19-infected pregnant women admitted to ICU with similar risk profiles. Differences in clusters can help to explain discrepancies in COVID-19 outcomes and suggest biochemical and molecular mechanisms involved in COVID-19 and outline a more personalized approach to understanding, diagnosing, and treating women.
Collapse
Affiliation(s)
- Antonio Sarria-Santamera
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan.
| | - Nurly Kapashova
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Radmir Sarsenov
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Kymbat Mukhtarova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Sipenova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Milan Terzic
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Gauri Bapayeva
- Clinical Academic Department of Women's Health, Corporate Fund "University Medical Center", Astana, Kazakhstan
| | - Asselzhan Sarbalina
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, England, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Gao F, Li X, Wang H, Xu Z, Qian W, Bai G. Single-cell profiling of the peripheral blood immune landscape during mid- and late-stage pregnancy. Physiol Genomics 2024; 56:855-868. [PMID: 39555960 DOI: 10.1152/physiolgenomics.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024] Open
Abstract
We aimed to determine the peripheral blood mononuclear cell (PBMC) immune profiles of mid- and late-stage pregnant women to establish a foundation for studying pregnancy-related diseases. Peripheral blood samples were collected from three women each during mid- and late-stage pregnancy, and PBMCs were extracted for single-cell RNA sequencing (scRNA-seq). Peripheral blood samples were also collected for flow cytometry analysis to validate the analytical results. HOPX+ CD4+ T cells, ZNF683+CD8+ T cells, and KLRB1+CD8+ T cells significantly differed in quantitative ratio and gene transcript level between women at mid- and late-stage pregnancy. In late pregnancy, cell-to-cell communication was enhanced and effector CD8+ T cells highly expressed infection-related pathways. A rare T cell subtype, "XIST+ T cells," exhibited high XIST expression, a gene that may be involved in the regulation of immune-related gene transcription and translation, and insulin signaling pathway, during pregnancy. Monocytes exhibited significant proinflammatory and metabolic properties in mid- and late-stage pregnancy, respectively. Natural killer (NK) cells were mainly involved in T- and B-cell-mediated signaling pathways, and in T cell differentiation, in mid-pregnancy. Enhanced innate immunity of NK cells was observed. Moreover, NK cells expressed genes associated with diabetes-related pathways in late-stage pregnancy. To conclude, we present detailed changes in the immune response occurring in pregnant women from mid- to late-stage gestation, revealing significant differences in PBMC subtypes and molecular properties. These findings provide insights into the physiopathological mechanisms of chronic hepatitis B infection, systemic lupus erythematosus, and gestational diabetes mellitus underlying systemic immune responses during mid- and late-stage pregnancy.NEW & NOTEWORTHY There are significant differences in three subtypes of memory/effector T cells (HOPX+ CD4+ T cells, ZNF683+CD8+ T cells, and KLRB1+CD8+ T cells) between mid- and late pregnancy. In late pregnancy, intercellular interaction was enhanced and effector CD8+ T cells highly expressed infection-related pathways. A rare T cell subtype, "XIST+ T cells," may be involved in the regulation of immune-related gene transcription and translation with a strong female bias.
Collapse
Affiliation(s)
- Fan Gao
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xia Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongyan Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhen Xu
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wenjun Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Guiqin Bai
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Zhang Y, Sylvester KG, Wong RJ, Blumenfeld YJ, Hwa KY, Chou CJ, Thyparambil S, Liao W, Han Z, Schilling J, Jin B, Marić I, Aghaeepour N, Angst MS, Gaudilliere B, Winn VD, Shaw GM, Tian L, Luo RY, Darmstadt GL, Cohen HJ, Stevenson DK, McElhinney DB, Ling XB. Prediction of risk for early or very early preterm births using high-resolution urinary metabolomic profiling. BMC Pregnancy Childbirth 2024; 24:783. [PMID: 39587571 PMCID: PMC11587579 DOI: 10.1186/s12884-024-06974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Preterm birth (PTB) is a serious health problem. PTB complications is the main cause of death in infants under five years of age worldwide. The ability to accurately predict risk for PTB during early pregnancy would allow early monitoring and interventions to provide personalized care, and hence improve outcomes for the mother and infant. OBJECTIVE This study aims to predict the risks of early preterm (< 35 weeks of gestation) or very early preterm (≤ 26 weeks of gestation) deliveries by using high-resolution maternal urinary metabolomic profiling in early pregnancy. DESIGN A retrospective cohort study was conducted by two independent preterm and term cohorts using high-density weekly urine sampling. Maternal urine was collected serially at gestational weeks 8 to 24. Global metabolomics approaches were used to profile urine samples with high-resolution mass spectrometry. The significant features associated with preterm outcomes were selected by Gini Importance. Metabolite biomarker identification was performed by liquid chromatography tandem mass spectrometry (LCMS-MS). XGBoost models were developed to predict early or very early preterm delivery risk. SETTING AND PARTICIPANTS The urine samples included 329 samples from 30 subjects at Stanford University, CA for model development, and 156 samples from 24 subjects at the University of Alabama, Birmingham, AL for validation. RESULTS 12 metabolites associated with PTB were selected and identified for modelling among 7,913 metabolic features in serial-collected urine samples of pregnant women. The model to predict early PTB was developed using a set of 12 metabolites that resulted in the area under the receiver operating characteristic (AUROCs) of 0.995 (95% CI: [0.992, 0.995]) and 0.964 (95% CI: [0.937, 0.964]), and sensitivities of 100% and 97.4% during development and validation testing, respectively. Using the same metabolites, the very early PTB prediction model achieved AUROCs of 0.950 (95% CI: [0.878, 0.950]) and 0.830 (95% CI: [0.687, 0.826]), and sensitivities of 95.0% and 60.0% during development and validation, respectively. CONCLUSION Models for predicting risk of early or very early preterm deliveries were developed and tested using metabolic profiling during the 1st and 2nd trimesters of pregnancy. With patient validation studies, risk prediction models may be used to identify at-risk pregnancies prompting alterations in clinical care, and to gain biological insights of preterm birth.
Collapse
Affiliation(s)
- Yaqi Zhang
- College of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yair J Blumenfeld
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kuo Yuan Hwa
- Center for Biomedical Industry, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - C James Chou
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | - Zhi Han
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Bo Jin
- mProbe Inc., Palo Alto, CA, 94303, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lu Tian
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruben Y Luo
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gary L Darmstadt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Harvey J Cohen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Doff B McElhinney
- Departments of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xuefeng B Ling
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Stevenson DK, Chang AL, Wong RJ, Reiss JD, Gaudillière B, Sylvester KG, Ling XB, Angst MS, Shaw GM, Katz M, Aghaeepour N, Marić I. Towards a new taxonomy of preterm birth. J Perinatol 2024:10.1038/s41372-024-02183-z. [PMID: 39567650 DOI: 10.1038/s41372-024-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Disease categories traditionally reflect a historical clustering of clinical phenotypes based on biologic and nonbiologic features. Multiomics approaches have striven to identify signatures to develop individualized categorizations through tests and/or therapies for 'personalized' medicine. Precision health classifies clinical syndromes into endotype clusters based on novel technological advancements, which can reveal insights into the etiologies of phenotypical syndromes. A new taxonomy of preterm birth should be considered in this context, as not all preterm infants of similar gestational ages are the same because most have different biologic vulnerabilities and hence different health trajectories. Even the choice of interventions may affect observed clinical conditions. Thus, a new taxonomy of prematurity would help to advance the field of neonatology, but also obstetrics and perinatology by adopting anticipatory and more targeted approaches to the care of preterm infants with the intent of preventing and treating some of the most common newborn pathologic conditions.
Collapse
Affiliation(s)
- David K Stevenson
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Alan L Chang
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan D Reiss
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuefeng B Ling
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Katz
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2024; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Ottinger S, Larson AB, Mercado-Evans V, Branthoover H, Zulk JJ, Serchejian C, Mejia ME, Hameed ZA, Walde R, Fleck RC, Shea AE, Patras KA. Distinct maternofetal immune signatures delineate preterm birth onset following urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619711. [PMID: 39484515 PMCID: PMC11527006 DOI: 10.1101/2024.10.22.619711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Preterm birth is the leading cause of infant mortality resulting in over one million neonatal deaths annually. Maternal urinary tract infection (UTI) during pregnancy increases risk for preterm birth; however, biological processes mediating UTI-associated preterm birth are not well-described. We established a murine maternal UTI model in which challenge with uropathogenic E. coli resulted in preterm birth in about half of dams. Dams experiencing preterm birth displayed excessive bladder inflammation and altered uteroplacental T cell polarization compared to non-laboring infected dams, with no differences in bacterial burdens. Additional factors associated with preterm birth included higher proportions of male fetuses and lower maternal serum IL-10. Furthermore, exogenous maternal IL-10 treatment absolved UTI-associated preterm birth but contributed to fetal growth restriction in this model. Using urine samples from a cohort of human pregnancies with or without UTI, we correlated urinary cytokines with birth outcomes and urine culture status. These analyses yielded a non-invasive, highly predictive three-model system for evaluating preterm birth risk implicating cytokines IL-10, IL-15, IL-1β, and IL-1RA. Our unique bimodal murine model coupled with patient samples provides a platform to investigate immunological and microbial factors governing UTI-associated preterm birth, revealing novel therapeutic opportunities to predict or prevent preterm birth.
Collapse
Affiliation(s)
- Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Addison B Larson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine
| | - Holly Branthoover
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Zainab A Hameed
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Walde
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
| | - Rachel C Fleck
- Department of Microbiology and Immunology, University of South Alabama
| | - Allyson E Shea
- Department of Microbiology and Immunology, University of South Alabama
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine
| |
Collapse
|
12
|
Hederman AP, Remmel CA, Sharma S, Natarajan H, Weiner JA, Wrapp D, Donner C, Delforge ML, d’Angelo P, Furione M, Fornara C, McLellan JS, Lilleri D, Marchant A, Ackerman ME. Discrimination of primary and chronic cytomegalovirus infection based on humoral immune profiles in pregnancy. J Clin Invest 2024; 134:e180560. [PMID: 39207860 PMCID: PMC11473158 DOI: 10.1172/jci180560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDMost humans have been infected with cytomegalovirus (CMV) by midlife without clinical signs of disease. However, in settings in which the immune system is undeveloped or compromised, the virus is not adequately controlled and consequently presents a major infectious cause of both congenital disease during pregnancy as well as opportunistic infection in children and adults. With clear evidence that risk to the fetus varies with gestational age at the time of primary maternal infection, further research on humoral responses to primary CMV infection during pregnancy is needed.METHODSHere, systems serology tools were applied to characterize antibody responses to CMV infection in pregnant and nonpregnant women experiencing either primary or chronic infection.RESULTSWhereas strikingly different antibody profiles were observed depending on infection status, limited differences were associated with pregnancy status. Beyond known differences in IgM responses used clinically for identification of primary infection, distinctions observed in IgA and FcγR-binding antibodies and among antigen specificities accurately predicted infection status. Machine learning was used to define the transition from primary to chronic states and predict time since infection with high accuracy. Humoral responses diverged over time in an antigen-specific manner, with IgG3 responses toward tegument decreasing over time as typical of viral infections, while those directed to pentamer and glycoprotein B were lower during acute and greatest during chronic infection.CONCLUSIONIn sum, this work provides insights into the antibody response associated with CMV infection status in the context of pregnancy, revealing aspects of humoral immunity that have the potential to improve CMV diagnostics.FUNDINGCYMAF consortium and NIH NIAID.
Collapse
Affiliation(s)
- Andrew P. Hederman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Catherine Donner
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Obstetrics and Gynecology, Brussels, Belgium
| | - Marie-Luce Delforge
- ULB, H.U.B., CUB Hôpital Erasme, National Reference Center for Congenital Infections, Brussels, Belgium
| | - Piera d’Angelo
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fornara
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Daniele Lilleri
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
13
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
14
|
Teng M, Wu TJ, Jing X, Day BW, Pritchard KA, Naylor S, Teng RJ. Temporal Dynamics of Oxidative Stress and Inflammation in Bronchopulmonary Dysplasia. Int J Mol Sci 2024; 25:10145. [PMID: 39337630 PMCID: PMC11431892 DOI: 10.3390/ijms251810145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common lung complication of prematurity. Despite extensive research, our understanding of its pathophysiology remains limited, as reflected by the stable prevalence of BPD. Prematurity is the primary risk factor for BPD, with oxidative stress (OS) and inflammation playing significant roles and being closely linked to premature birth. Understanding the interplay and temporal relationship between OS and inflammation is crucial for developing new treatments for BPD. Animal studies suggest that OS and inflammation can exacerbate each other. Clinical trials focusing solely on antioxidants or anti-inflammatory therapies have been unsuccessful. In contrast, vitamin A and caffeine, with antioxidant and anti-inflammatory properties, have shown some efficacy, reducing BPD by about 10%. However, more than one-third of very preterm infants still suffer from BPD. New therapeutic agents are needed. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), is a reversible myeloperoxidase inhibitor and a systems pharmacology agent. It reduces BPD severity by inhibiting MPO, enhancing antioxidative proteins, and alleviating endoplasmic reticulum stress and cellular senescence in a hyperoxia rat model. KYC represents a promising new approach to BPD treatment.
Collapse
Affiliation(s)
- Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
15
|
Chen CJ, Yi H, Stanley N. Conditional Similarity Triplets Enable Covariate-Informed Representations of Single-Cell Data. RESEARCH SQUARE 2024:rs.3.rs-4915088. [PMID: 39315265 PMCID: PMC11419254 DOI: 10.21203/rs.3.rs-4915088/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Single-cell technologies enable comprehensive profiling of diverse immune cell-types through the measurement of multiple genes or proteins per cell. In order to translate data from immune profiling assays into powerful diagnostics, machine learning approaches are used to compute per-sample immunological summaries, or featurizations that can be used as inputs to models for outcomes of interest. Current supervised learning approaches for computing per-sample representations are optimized based only on the outcome variable to be predicted and do not take into account clinically-relevant covariates that are likely to also be measured. Here we expand the optimization problem to also take into account such additional patient covariates to directly inform the learned per-sample representations. To do this, we introduce CytoCoSet, a set-based encoding method, which formulates a loss function with an additional triplet term penalizing samples with similar covariates from having disparate embedding results in per-sample representations. Overall, incorporating clinical covariates leads to improved prediction of clinical phenotypes.
Collapse
Affiliation(s)
- Chi-Jane Chen
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haidong Yi
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Yin L, Venturi GM, Barfield R, Fischer BM, Kim-Chang JJ, Chan C, De Paris K, Goodenow MM, Sleasman JW. Maternal immunity shapes biomarkers of germinal center development in HIV-exposed uninfected infants. Front Immunol 2024; 15:1443886. [PMID: 39328414 PMCID: PMC11424517 DOI: 10.3389/fimmu.2024.1443886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction HIV-exposed uninfected (HEU) infants exhibit elevated pro-inflammatory biomarkers that persist after birth. However, comprehensive assessments of bioprofiles associated with immune regulation and development in pregnant women with HIV (PWH) and HEU infants has not been performed. Maternal immunity in PWH may be imprinted on their HEU newborns, altering immune bioprofiles during early immune development. Methods Cryopreserved paired plasma samples from 46 HEU infants and their mothers enrolled in PACTG 316, a clinical trial to prevent perinatal HIV-1 transmission were analyzed. PWH received antiretrovirals (ARV) and had either fully suppressed or unsuppressed viral replication. Maternal blood samples obtained during labor and infant samples at birth and 6 months were measured for 21 biomarkers associated with germinal centers (GC), macrophage activation, T-cell activation, interferon gamma (IFN-γ)-inducible chemokines, and immune regulatory cytokines using Mesoscale assays. Pregnant women without HIV (PWOH) and their HIV unexposed uninfected (HUU) newborns and non-pregnant women without HIV (NPWOH) served as reference groups. Linear regression analysis fitted for comparison among groups and adjusted for covariant(s) along with principal component analysis performed to assess differences among groups. Results Compared with NPWOH, PWOH displayed higher levels of GC, macrophage, and regulatory biomarkers. PWH compared to PWOH displayed elevated GC, T cell activation, and IFN-γ-inducible chemokines biomarkers at delivery. Similar to their mothers, HEU infants had elevated GC, macrophage, and IFN-γ-inducible chemokines, as well as elevated anti-inflammatory cytokines, IL-10 and IL-1RA. Across all mother/newborn dyads, multiple biomarkers positively correlated, providing further evidence that maternal inflammation imprints on newborn bioprofiles. By 6 months, many HEU biomarkers normalized to levels similar to HUU infants, but some GC and inflammatory biomarkers remained perturbed. Bioprofiles in PWH and HEU infants were similar regardless of the extent of maternal viral suppression by ARV. Conclusions GC immune pathways are perturbed in HEU newborns, but immune regulatory responses down regulate inflammation during early infancy, indicating a transient inflammatory effect. However, several GC biomarkers that may alter immune development remain perturbed.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Guglielmo M. Venturi
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Bernard M. Fischer
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Julie J. Kim-Chang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute of Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maureen M. Goodenow
- Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - John W. Sleasman
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
17
|
Mahyuddin AP, Swa HLF, Weng R, Zhang J, Dhanaraj JP, Sesurajan BP, Rauff M, Dashraath P, Kanneganti A, Lee R, Wang LF, Young BE, Tambyah PA, Lye DC, Chai LYA, Yee S, Choolani M, Mattar CNZ. COVID-19 vaccination before or during pregnancy results in high, sustained maternal neutralizing activity to SARS-CoV-2 wild-type and Delta/Omicron variants of concern, particularly following a booster dose or infection. Int J Infect Dis 2024; 146:107121. [PMID: 38823622 DOI: 10.1016/j.ijid.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES To investigate multi-dose and timings of COVID-19 vaccines in preventing antenatal infection. DESIGN Prospective observational study investigating primary vaccinations, boosters, antenatal COVID-19 infections, neutralizing antibody (Nab) durability, and cross-reactivity to Delta and Omicron variants of concern (VOCs). RESULTS Ninety-eight patients completed primary vaccination prepregnancy (29.6%) and antenatally (63.3%), 24.2% of whom had antenatal COVID-19, while 7.1% were unvaccinated (28.6% had antenatal COVID-19). None had severe COVID-19. Prepregnancy vaccination resulted in vaccination-to-infection delay of 23.3 weeks, which extended to 45.2 weeks with a booster, compared to 16.9 weeks following antenatal vaccination (P < 0.001). Infections occurred at 26.2 weeks gestation in women vaccinated prepregnancy compared to 36.2 weeks gestation in those vaccinated during pregnancy (P < 0.007). The risk of COVID-19 infection was higher without antenatal vaccination (hazard ratio [HR] 14.6, P = 0.05) and after prepregnancy vaccination without a booster (HR 10.4, P = 0.002). Antenatal vaccinations initially led to high Nab levels, with mild waning but subsequent rebound. Significant Nab enhancement occurred with a third-trimester booster. Maternal-neonatal Nab transfer was efficient (transfer ratio >1), and cross-reactivity to VOCs was observed. CONCLUSION Completing vaccination during any trimester delays COVID-19 infection and maintains effective neutralizing activity throughout pregnancy, with robust cross-reactivity to VOCs and efficient maternal-neonatal transfer.
Collapse
Affiliation(s)
- Aniza P Mahyuddin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah L F Swa
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ruifen Weng
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jingxian Zhang
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Janice P Dhanaraj
- Diagnostics Development Hub, Agency for Science, Technology and Research, Singapore, Singapore
| | - Binny P Sesurajan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mary Rauff
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Pradip Dashraath
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Abhiram Kanneganti
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Rachel Lee
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; The Programme for Research in Epidemic Preparedness and Response (PREPARE), National Centre for Infectious Diseases, Singapore, Singapore
| | - Barnaby E Young
- The Programme for Research in Epidemic Preparedness and Response (PREPARE), National Centre for Infectious Diseases, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul A Tambyah
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - David C Lye
- The Programme for Research in Epidemic Preparedness and Response (PREPARE), National Centre for Infectious Diseases, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Louis Y A Chai
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Sidney Yee
- Innovation and Enterprise, Agency for Science, Technology and Research, Connexis North Tower, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Citra N Z Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore.
| |
Collapse
|
18
|
Baumgarten SC, Wyatt MA, Ainsworth AJ, Fedyshyn B, Van Oort CC, Shenoy CC, Enninga EAL. Evaluation of the maternal systemic immune system during frozen euploid embryo transfer according to cycle outcome. J Reprod Immunol 2024; 164:104261. [PMID: 38865895 DOI: 10.1016/j.jri.2024.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Infertility affects 15 % of couples in the US, and many turn to assisted reproductive technologies, including in vitro fertilization and subsequent frozen embryo transfer (FET) to become pregnant. This study aimed to perform a broad assessment of the maternal immune system to determine if there are systemic differences on the day of FET in cycles that result in a live birth compared to those that do not. Women undergoing FET of euploid embryos were recruited and blood was collected on the day of FET as well as at early timepoints in pregnancy. Sixty immune and angiogenic proteins were measured in plasma, and gene expression of 92 immune-response related genes were evaluated in peripheral blood mononuclear cells (PBMCs). We found plasma concentrations of interleukin-13 (IL-13) and macrophage derived chemokine (MDC) were significantly lower on the day of FET in cycles that resulted in a live birth. We also found genes encoding C-C chemokine receptor type 5 (CCR5), CD8 subunit alpha (CD8A) and SMAD family member 3 (SMAD3) were upregulated in PBMCs on the day of FET in cycles that resulted in live birth. Measurements of immune mediators from maternal blood could serve as prognostic markers during FET to guide clinical decision making and further our understanding of implantation failure.
Collapse
Affiliation(s)
- Sarah C Baumgarten
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States
| | - Michelle A Wyatt
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States
| | - Alessandra J Ainsworth
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States
| | - Bohdana Fedyshyn
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States
| | - Chelsie C Van Oort
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States
| | - Chandra C Shenoy
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States
| | - Elizabeth Ann L Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States; Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, United States.
| |
Collapse
|
19
|
Svenvik M, Jenmalm MC, Brudin L, Raffetseder J, Hellberg S, Axelsson D, Lindell G, Blomberg M, Ernerudh J. Chemokine and cytokine profiles in preterm and term labor, in preterm prelabor rupture of the membranes, and in normal pregnancy. J Reprod Immunol 2024; 164:104278. [PMID: 38901109 DOI: 10.1016/j.jri.2024.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The objective of this study was to investigate the immune mechanisms involved in preterm labor (PTL), preterm prelabor rupture of the membranes (PPROM), and normal pregnancies. The second objective was to explore immune profiles in PTL for association with early ( < 34 gestational weeks (gw)) or instant ( < 48 h) delivery. This prospective observational multi-center study included women with singleton pregnancies with PTL (n = 80) or PPROM (n = 40) before 34 gw, women with normal pregnancies scheduled for antenatal visits (n = 44), and women with normal pregnancies in active labor at term (n = 40). Plasma samples obtained at admission were analyzed for cytokine and chemokine quantification using a multiplex bead assay in order to compare the immune profiles between PTL, PPROM, and normal pregnancies. In PTL, CXCL1 and CCL17 were significantly higher compared to gestational age-matched women at antenatal visits, whereas for PPROM, CXCL1 and IL-6 were increased. Women in term labor had a more pronounced inflammatory pattern with higher levels of CXCL1, CXCL8, and IL-6 compared with PTL (p = 0.007, 0.003, and 0.013, respectively), as well as higher levels of CCL17, CXCL1 and IL-6 (all p < 0.001) compared with the women at antenatal visits. In PTL, CXCL8 was higher in women with delivery before 34 gw, whereas CXCL8, GM-CSF, and IL-6 were significantly higher in women with delivery within 48 h. To conclude, PTL and PPROM were associated with a complex pattern of inflammation, both involving Th17 (CXCL1) responses. Although further studies are needed, CXCL8, GM-CSF, and IL-6 may be potential candidates for predicting preterm birth in PTL.
Collapse
Affiliation(s)
- Maria Svenvik
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Maria C Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lars Brudin
- Department of Clinical Physiology, Region Kalmar County, Kalmar, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Axelsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Obstetrics and Gynecology, Ryhov County Hospital, Jönköping, Sweden
| | - Gunnel Lindell
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden
| | - Marie Blomberg
- Department of Obstetrics and Gynecology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Svenvik M, Raffetseder J, Brudin L, Berg G, Hellberg S, Blomberg M, Jenmalm MC, Ernerudh J. Early prediction of spontaneous preterm birth before 34 gestational weeks based on a combination of inflammation-associated plasma proteins. Front Immunol 2024; 15:1415016. [PMID: 39076980 PMCID: PMC11284114 DOI: 10.3389/fimmu.2024.1415016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background In order to identify and possibly offer prophylactic treatment to women at risk for preterm birth (PTB), novel prediction models for PTB are needed. Our objective was to utilize high-sensitive plasma protein profiling to investigate whether early prediction of spontaneous PTB (sPTB) before 34 gestational weeks (gw) was possible in a low-risk population. Methods A case-control study was conducted on 46 women with sPTB before 34 gw and 46 women with normal pregnancies and term deliveries. Prospectively collected plasma sampled at gw 11 (range 7-16) and gw 25 (range 23-30) was analyzed with a high-sensitivity Proximity Extension Assay for levels of 177 inflammation-associated proteins, and statistically processed with multivariate logistic regression analysis. Results In the first trimester, higher levels of hepatocyte growth factor (HGF) were associated with sPTB <34 gw (OR 1.49 (1.03-2.15)). In the second trimester, higher levels of interleukin (IL)-10 (OR 2.15 (1.18-3.92)), IL-6 (OR 2.59 (1.34-4.99)), and the receptor activator of nuclear factor κB (RANK) (OR 2.18 (1.26-3.77)) were associated with sPTB <34 gw. The area under the curve for the prediction models including these proteins was 0.653 (0.534-0.759) in the first trimester and 0.854 (0.754-0.925) in the second trimester. Conclusion A combination of inflammation-associated plasma proteins from the second trimester of pregnancy showed a good predictive ability regarding sPTB before 34 gw, suggesting it could be a valuable supplement for the assessment of the clinical risk of sPTB. However, although a high number (n=177) of plasma proteins were analyzed with a high-sensitivity method, the prediction of sPTB in the first trimester remains elusive.
Collapse
Affiliation(s)
- Maria Svenvik
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lars Brudin
- Department of Clinical Physiology, Region Kalmar County, Kalmar, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Göran Berg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Marie Blomberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
Mealy G, Brennan K, Killeen SL, Kilbane M, Yelverton C, Saldova R, Groeger D, VanSinderen D, Cotter PD, Doyle SL, McAuliffe FM. Impact of previous pregnancy and BMI on cellular and serum immune activity from early to late pregnancy. Sci Rep 2024; 14:16055. [PMID: 38992196 PMCID: PMC11239859 DOI: 10.1038/s41598-024-66651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Immunological adaptions during pregnancy play a crucial role in healthy fetal development. Aberrant immune modifications however contribute to adverse pregnancy outcomes, which may be driven by maternal factors such as previous pregnancies and BMI. This secondary analysis of the MicrobeMom2 RCT investigates the changes to maternal inflammatory biomarkers derived from serum and stimulated peripheral blood mononuclear cells (PBMCs) during pregnancy, and the effects of previous pregnancies (parity) and BMI on maternal immune responses. Changes in immune and metabolic biomarkers from early (11-15 weeks' gestation) to late (28-32 weeks' gestation) pregnancy were compared using paired t-tests. Participants were then split by parity (nulliparous, parous) and BMI (BMI < 25, BMI > = 25), and the relationship between parity and BMI with immune biomarker levels was examined using independent t-tests, paired t-tests, ANCOVA, and linear regression. Equivalent non-parametric tests were used for skewed data. Recruited women (n = 72) were on average 31.17 (SD ± 4.53) years of age and 25.11 (SD ± 3.82) BMI (kg/m2). Of these, 51 (70.8%) had a previous term pregnancy. Throughout gestation, PBMC cytokines displayed contrasting trends to serum, with a dampening of immune responses noted in PBMCs, and enhanced production of cytokines observed in the serum. Significant decreases in PBMC derived TNF-α, IL-10 and IFN-γ were seen from early to late pregnancy. Serum C3, IL-17A, IL-6, TNF-α, CD163, GDF-15 and leptin increased throughout gestation. First pregnancy was associated with higher levels of leptin in late pregnancy, while parous women showed significant decreases in PBMC derived TNF-α, IL10, and IFN-γ with gestation. Differences in levels of C3, IL-17A, TNF-α, GDF-15 and leptin were observed across BMI groups. Overall, serum-derived cytokines exhibit contrasting levels to those derived from stimulated PBMCs. Maternal immune responses undergo significant changes from early to late pregnancy, which are influenced by parity and BMI. These differences aid our understanding as to why first-time mothers are at greater risk of placental disease such as pre-eclampsia and fetal growth restriction.
Collapse
Affiliation(s)
- Grace Mealy
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Kiva Brennan
- Department of Clinical Medicine, Trinity College Institute of Neuroscience, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Mark Kilbane
- Department of Clinical Chemistry, St Vincent's University Hospital, Dublin, Ireland
| | - Cara Yelverton
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Radka Saldova
- The National Institute for Bioprocessing, Research, and Training (NIBRT), Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland
| | - David Groeger
- PrecisionBiotics Group Ltd (Novozymes), Cork Airport Business Park, Kinsale Road, Cork, Ireland
| | - Douwe VanSinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Moorepark, Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Sarah L Doyle
- Department of Clinical Medicine, Trinity College Institute of Neuroscience, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland.
| |
Collapse
|
22
|
Pike MR, Lipner E, O'Brien KJ, Breen EC, Cohn BA, Cirillo PM, Krigbaum NY, Kring AM, Olino TM, Alloy LB, Ellman LM. Prenatal maternal Inflammation, childhood cognition and adolescent depressive symptoms. Brain Behav Immun 2024; 119:908-918. [PMID: 38761818 DOI: 10.1016/j.bbi.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Accumulating evidence indicates that higher prenatal maternal inflammation is associated with increased depression risk in adolescent and adult-aged offspring. Prenatal maternal inflammation (PNMI) may increase the likelihood for offspring to have lower cognitive performance, which, in turn, may heighten risk for depression onset. Therefore, this study explored the potential mediating role of childhood cognitive performance in the relationship between PNMI and adolescent depressive symptoms in offspring. METHODS Participants included 696 mother-offspring dyads from the Child Health and Development Studies (CHDS) cohort. Biomarkers of maternal inflammation [interleukin (IL)-6, IL-8, IL-1 receptor antagonist (IL-1RA) and soluble TNF receptor-II (sTNF-RII)] were assayed from first (T1) and second trimester (T2) sera. Childhood (ages 9-11) cognitive performance was assessed via standardized Peabody Picture Vocabulary Test (PPVT), a measure of receptive vocabulary correlated with general intelligence. Adolescent (ages 15-17) depressive symptoms were assessed via self-report. RESULTS There were no significant associations between T1 biomarkers and childhood PPVT or adolescent depressive symptoms. Higher T2 IL1-RA was directly associated with lower childhood PPVT (b = -0.21, SE = 0.08, t = -2.55, p = 0.01), but not with adolescent depressive symptoms. T2 IL-6 was not directly associated with childhood PPVT, but higher T2 IL-6 was directly associated at borderline significance with greater depressive symptoms in adolescence (b = 0.05, SE = 0.03, t = 1.96, p = 0.05). Lower childhood PPVT predicted significantly higher adolescent depressive symptoms (b = -0.07, SE = 0.02, t = -2.99, p < 0.01). There was a significant indirect effect of T2 IL-1RA on adolescent depressive symptoms via childhood PPVT (b = 0.03, 95 % CI = 0.002-0.03) indicating a partially mediated effect. No significant associations were found with T2 sTNF-RII nor IL-8. CONCLUSIONS Lower childhood cognitive performance, such as that indicated by a lower PPVT score, represents a potential mechanism through which prenatal maternal inflammation contributes to adolescent depression risk in offspring.
Collapse
Affiliation(s)
- Madeline R Pike
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA.
| | - Emily Lipner
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Kathleen J O'Brien
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, University of California-Los Angeles, 300 Medical Plaza, Suite 3306, Los Angeles, CA 90095-7076, USA
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Ave., Suite B, Berkeley, CA 94709, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Ave., Suite B, Berkeley, CA 94709, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Ave., Suite B, Berkeley, CA 94709, USA
| | - Ann M Kring
- University of California, Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Thomas M Olino
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Lauren B Alloy
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Lauren M Ellman
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| |
Collapse
|
23
|
Gay L, Madariaga Zarza S, Abou Atmeh P, Rouvière MS, Andrieu J, Richaud M, Boumaza A, Miquel L, Diallo AB, Bechah Y, Otmani Idrissi M, La Scola B, Olive D, Resseguier N, Bretelle F, Mezouar S, Mege JL. Protective role of macrophages from maternal-fetal interface in unvaccinated coronavirus disease 2019 pregnant women. J Med Virol 2024; 96:e29819. [PMID: 39030992 DOI: 10.1002/jmv.29819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Pregnant women represent a high-risk population for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. The presence of SARS-CoV-2 has been reported in placenta from infected pregnant women, but whether the virus influences placenta immune response remains unclear. We investigated the properties of maternal-fetal interface macrophages (MFMs) in a cohort of unvaccinated women who contracted coronavirus disease 2019 (COVID-19) during their pregnancy. We reported an infiltration of CD163+ macrophages in placenta from COVID-19 women 19 whereas lymphoid compartment was not affected. Isolated MFMs exhibited nonpolarized activated signature (NOS2, IDO1, IFNG, TNF, TGFB) mainly in women infected during the second trimester of pregnancy. COVID-19 during pregnancy primed MFM to produce type I and III interferon response to SARS-CoV-2 (Wuhan and δ strains), that were unable to elicit this in MFMs from healthy pregnant women. COVID-19 also primed SARS-CoV-2 internalization by MFM in an angiotensin-converting enzyme 2-dependent manner. Activation and recall responses of MFMs were influenced by fetal sex. Collectively, these findings support a role for MFMs in the local immune response to SARS-CoV-2 infection, provide a basis for protective placental immunity in COVID-19, and highlight the interest of vaccination in pregnant women.
Collapse
Affiliation(s)
- Laetitia Gay
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Sandra Madariaga Zarza
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Perla Abou Atmeh
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Marie-Sarah Rouvière
- Institut Paoli-Calmettes, UM105, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Jonatane Andrieu
- Centre National de la Recherche Scientifique, Etablissement Français du Sang, Anthropologie bio-culturelle, Droit, Ethique et Santé, Aix-Marseille University, Marseille, France
| | - Manon Richaud
- Institut Paoli-Calmettes, UM105, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Asma Boumaza
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Laura Miquel
- Department of Gynaecology-Obstetrics, La Conception Hospital, Marseille, France
| | - Aïssatou Bailo Diallo
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Yassina Bechah
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Myriem Otmani Idrissi
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Bernard La Scola
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Daniel Olive
- Institut Paoli-Calmettes, UM105, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Noémie Resseguier
- Assistance Publique-Hôpitaux de Marseille, La Timone Hospital, Department of Epidemiology and Health Economics, Clinical Research Unit, Direction of Health Research, Aix Marseille University, Marseille, France
| | - Florence Bretelle
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
- Department of Gynaecology-Obstetrics, La Conception Hospital, Marseille, France
| | - Soraya Mezouar
- Centre National de la Recherche Scientifique, Etablissement Français du Sang, Anthropologie bio-culturelle, Droit, Ethique et Santé, Aix-Marseille University, Marseille, France
| | - Jean-Louis Mege
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
- Department of Immunology, Timone Hospital, Marseille, France
| |
Collapse
|
24
|
Stevenson DK, Gotlib IH, Buthmann JL, Marié I, Aghaeepour N, Gaudilliere B, Angst MS, Darmstadt GL, Druzin ML, Wong RJ, Shaw GM, Katz M. Stress and Its Consequences-Biological Strain. Am J Perinatol 2024; 41:1282-1284. [PMID: 35292943 DOI: 10.1055/a-1798-1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Understanding the role of stress in pregnancy and its consequences is important, particularly given documented associations between maternal stress and preterm birth and other pathological outcomes. Physical and psychological stressors can elicit the same biological responses, known as biological strain. Chronic stressors, like poverty and racism (race-based discriminatory treatment), may create a legacy or trajectory of biological strain that no amount of coping can relieve in the absence of larger-scale socio-behavioral or societal changes. An integrative approach that takes into consideration simultaneously social and biological determinants of stress may provide the best insights into the risk of preterm birth. The most successful computational approaches and the most predictive machine-learning models are likely to be those that combine information about the stressors and the biological strain (for example, as measured by different omics) experienced during pregnancy.
Collapse
Affiliation(s)
- David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ian H Gotlib
- Department of Psychology, Stanford University School of Humanities and Science, Stanford, California
| | - Jessica L Buthmann
- Department of Psychology, Stanford University School of Humanities and Science, Stanford, California
| | - Ivana Marié
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Gary L Darmstadt
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Maurice L Druzin
- Department of Obstetrics and Gynecology-Maternal-Fetal Medicine, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Michael Katz
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
25
|
Zwicklbauer K, von la Roche D, Krentz D, Kolberg L, Alberer M, Zablotski Y, Hartmann K, von Both U, Härtle S. Adapting the SMART tube technology for flow cytometry in feline full blood samples. Front Vet Sci 2024; 11:1377414. [PMID: 38988976 PMCID: PMC11234156 DOI: 10.3389/fvets.2024.1377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Flow cytometry of blood samples is a very valuable clinical and research tool to monitor the immune response in human patients. Furthermore, it has been successfully applied in cats, such as for infections with feline immune deficiency virus (FIV). However, if cells are not isolated and frozen, analysis of anticoagulated blood samples requires mostly prompt processing following blood collection, making later analysis of stored full blood samples obtained in clinical studies often impossible. The SMART Tube system (SMART TUBE Inc., California, United States; SMT) allows fixation and long-term preservation of whole blood samples at -80°C. However, this system has so far only been applied to human biological samples. In the present study, a new flow cytometry SMART Tube protocol adapted for feline whole blood samples was successfully established allowing quantification of T-helper cells, cytotoxic T-cells, B-cells, monocytes, and neutrophils up to 2 years post sampling. Results obtained from frozen stabilized and fresh blood samples were compared for validation purposes and correlated to differential blood counts from a conventional hematology analyzer. Clinical applicability of the new technique was verified by using samples from a treatment study for feline infectious peritonitis (FIP). Using the new SMT protocol on retained samples, it could be demonstrated that long-term storage of these SMT tubes is also possible. In summary, the newly adapted SMT protocol proved suitable for performing flow cytometry analysis on stored feline whole blood samples, thus opening up new avenues for veterinary research on a variety of aspects of clinical interest.
Collapse
Affiliation(s)
- Katharina Zwicklbauer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | - Daniela Krentz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Yury Zablotski
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| |
Collapse
|
26
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
27
|
Gigase FAJ, Suleri A, Isaevska E, Rommel AS, Boekhorst MGBM, Dmitrichenko O, El Marroun H, Steegers EAP, Hillegers MHJ, Muetzel RL, Lieb W, Cecil CAM, Pop V, Breen M, Bergink V, de Witte LD. Inflammatory markers in pregnancy - surprisingly stable. Mapping trajectories and drivers in four large cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599718. [PMID: 38948713 PMCID: PMC11213028 DOI: 10.1101/2024.06.19.599718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Adaptations of the immune system throughout gestation have been proposed as important mechanisms regulating successful pregnancy. Dysregulation of the maternal immune system has been associated with adverse maternal and fetal outcomes. To translate findings from mechanistic preclinical studies to human pregnancies, studies of serum immune markers are the mainstay. The design and interpretation of human biomarker studies require additional insights in the trajectories and drivers of peripheral immune markers. The current study mapped maternal inflammatory markers (C-reactive protein (CRP), interleukin (IL)-1β, IL-6, IL-17A, IL-23, interferon- γ ) during pregnancy and investigated the impact of demographic, environmental and genetic drivers on maternal inflammatory marker levels in four multi-ethnic and socio-economically diverse population-based cohorts with more than 12,000 pregnant participants. Additionally, pregnancy inflammatory markers were compared to pre-pregnancy levels. Cytokines showed a high correlation with each other, but not with CRP. Inflammatory marker levels showed high variability between individuals, yet high concordance within an individual over time during and pre-pregnancy. Pre-pregnancy body mass index (BMI) explained more than 9.6% of the variance in CRP, but less than 1% of the variance in cytokines. The polygenic score of CRP was the best predictor of variance in CRP (>14.1%). Gestational age and previously identified inflammation drivers, including tobacco use and parity, explained less than 1% of variance in both cytokines and CRP. Our findings corroborate differential underlying regulatory mechanisms of CRP and cytokines and are suggestive of an individual inflammatory marker baseline which is, in part, genetically driven. While prior research has mainly focused on immune marker changes throughout pregnancy, our study suggests that this field could benefit from a focus on intra-individual factors, including metabolic and genetic components.
Collapse
|
28
|
Siddiq A, D’lamanda VG, Anggi MD, Rakhmilla LE, Pramatirta AY, Pusianawati D, Lismayanti L, Widjajakusuma A, Nugrahani AD, Santoso DPJ. Characteristics of COVID-19 comorbidities and severity profiles among pregnant women from a single-center cross-sectional study. Medicine (Baltimore) 2024; 103:e38636. [PMID: 38905361 PMCID: PMC11191956 DOI: 10.1097/md.0000000000038636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
The study aimed to determine the characteristics of comorbidities, association between comorbidities and coronavirus disease 2019 (COVID-19), as well as characteristics of COVID-19 severity among pregnant women at a tertiary hospital in Bandung. We conducted a cross-sectional study by taking secondary data between January 2020 and December 2021 involving 278 pregnant women aged 16 to 45 years that confirmedly diagnosed with COVID-19 via RT-PCR. We collected information from the medical record on severity and comorbidities. The admission C-reactive protein (CRP) profiles were compared between the severe and nonsevere COVID-19 patients. This study employed bivariate analysis, t test, and multivariate analysis with logistic regression models. Of the 278 data included in this study, 120 cases had comorbidities. Most patients were asymptomatic (82%). Obesity was the most common comorbid proportion. Only hypertension as comorbid showed a significant association with symptomatic or asymptomatic COVID-19 (<0.05). Pregnant women with hypertension were 6 times more likely to show symptoms than those without hypertension (OR = 6.092; 95% CI 3.103-11.962). Pregnant women with comorbidities were at higher risk of cesarean sections and stillbirth. The CRP levels which were found to have statistically significant association with COVID-19 severity (<0.05). The domination of asymptomatic COVID-19 in pregnant women was found in this study. Hypertension comorbid has a significant association with COVID-19 symptoms. Maternal and neonatal outcomes appear to be influenced by maternal comorbidities. Moreover, the CRP levels were found to be significant risk factors for COVID-19 severity in pregnant women that might have association with comorbidities.
Collapse
Affiliation(s)
- Amillia Siddiq
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Vischila Geray D’lamanda
- Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Muhamad Dwi Anggi
- Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Lulu Eva Rakhmilla
- Department of Public Health (Epidemiology), Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Akhmad Yogi Pramatirta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Dini Pusianawati
- Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Leni Lismayanti
- Department of Clinical Pathology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Anggraini Widjajakusuma
- Department of Internal Medicine, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Annisa Dewi Nugrahani
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| | - Dhanny Primantara Johari Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran – Dr. Hasan Sadikin General Hospital Bandung, West Java, Indonesia
| |
Collapse
|
29
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Stevenson DK, Winn VD, Shaw GM, England SK, Wong RJ. Solving the Puzzle of Preterm Birth. Clin Perinatol 2024; 51:291-300. [PMID: 38705641 DOI: 10.1016/j.clp.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Solving the puzzle of preterm birth has been challenging and will require novel integrative solutions as preterm birth likely arises from many etiologies. It has been demonstrated that many sociodemographic and psychological determinants of preterm birth relate to its complex biology. It is this understanding that has enabled the development of a novel preventative strategy, which integrates the omics profile (genome, epigenome, transcriptome, proteome, metabolome, microbiome) with sociodemographic, environmental, and psychological determinants of individual pregnant people to solve the puzzle of preterm birth.
Collapse
Affiliation(s)
- David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Room 2652, Stanford, CA 94305, USA.
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Division of Reproductive, Stem Cell and Perinatal Biology, Stanford University of School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Module 2700, Stanford, CA 94305, USA
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Room 2652, Stanford, CA 94305, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Room 2652, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Feyaerts D, Marić I, Arck PC, Prins JR, Gomez-Lopez N, Gaudillière B, Stelzer IA. Predicting Spontaneous Preterm Birth Using the Immunome. Clin Perinatol 2024; 51:441-459. [PMID: 38705651 DOI: 10.1016/j.clp.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Throughout pregnancy, the maternal peripheral circulation contains valuable information reflecting pregnancy progression, detectable as tightly regulated immune dynamics. Local immune processes at the maternal-fetal interface and other reproductive and non-reproductive tissues are likely to be the pacemakers for this peripheral immune "clock." This cellular immune status of pregnancy can be leveraged for the early risk assessment and prediction of spontaneous preterm birth (sPTB). Systems immunology approaches to sPTB subtypes and cross-tissue (local and peripheral) interactions, as well as integration of multiple biological data modalities promise to improve our understanding of preterm birth pathobiology and identify potential clinically actionable biomarkers.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Petra C Arck
- Department of Obstetrics and Fetal Medicine and Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Postbus 30.001, 9700RB, Groningen, The Netherlands
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Palo Alto, CA 94304, USA
| | - Ina A Stelzer
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Mirzaei A, Hiller BC, Stelzer IA, Thiele K, Tan Y, Becker M. Computational Approaches for Connecting Maternal Stress to Preterm Birth. Clin Perinatol 2024; 51:345-360. [PMID: 38705645 DOI: 10.1016/j.clp.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Multiple studies have hinted at a complex connection between maternal stress and preterm birth (PTB). This article describes the potential of computational methods to provide new insights into this relationship. For this, we outline existing approaches for stress assessments and various data modalities available for profiling stress responses, and review studies that sought either to establish a connection between stress and PTB or to predict PTB based on stress-related factors. Finally, we summarize the challenges of computational methods, highlighting potential future research directions within this field.
Collapse
Affiliation(s)
- Amin Mirzaei
- Department of Computer Science and Electrical Engineering, Institute for Visual and Analytic Computing, Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany
| | - Bjarne C Hiller
- Department of Computer Science and Electrical Engineering, Institute for Visual and Analytic Computing, Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany
| | - Ina A Stelzer
- Department of Pathology, University of California San Diego, GPL/CMM-West, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kristin Thiele
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Center for Obstetrics and Pediatrics, Martinistrasse 52, 20246 Hamburg, Germany
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University School of Medicine, CSSR3220, 269 Campus Drive, Stanford, CA 94305, USA
| | - Martin Becker
- Department of Computer Science and Electrical Engineering, Institute for Visual and Analytic Computing, Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany.
| |
Collapse
|
33
|
Seong D, Espinosa C, Aghaeepour N. Computational Approaches for Predicting Preterm Birth and Newborn Outcomes. Clin Perinatol 2024; 51:461-473. [PMID: 38705652 PMCID: PMC11070639 DOI: 10.1016/j.clp.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Preterm birth (PTB) and its associated morbidities are a leading cause of infant mortality and morbidity. Accurate predictive models and a better biological understanding of PTB-associated morbidities are critical in reducing their adverse effects. Increasing availability of multimodal high-dimensional data sets with concurrent advances in artificial intelligence (AI) have created a rich opportunity to gain novel insights into PTB, a clinically complex and multifactorial disease. Here, the authors review the use of AI to analyze 3 modes of data: electronic health records, biological omics, and social determinants of health metrics.
Collapse
Affiliation(s)
- David Seong
- Immunology Program, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Medical Scientist Training Program, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA
| | - Camilo Espinosa
- Immunology Program, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Biomedical Data Science, Stanford University, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA; Department of Biomedical Data Science, Stanford University, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA.
| |
Collapse
|
34
|
Marić I, Stevenson DK, Aghaeepour N, Gaudillière B, Wong RJ, Angst MS. Predicting Preterm Birth Using Proteomics. Clin Perinatol 2024; 51:391-409. [PMID: 38705648 PMCID: PMC11186213 DOI: 10.1016/j.clp.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The complexity of preterm birth (PTB), both spontaneous and medically indicated, and its various etiologies and associated risk factors pose a significant challenge for developing tools to accurately predict risk. This review focuses on the discovery of proteomics signatures that might be useful for predicting spontaneous PTB or preeclampsia, which often results in PTB. We describe methods for proteomics analyses, proteomics biomarker candidates that have so far been identified, obstacles for discovering biomarkers that are sufficiently accurate for clinical use, and the derivation of composite signatures including clinical parameters to increase predictive power.
Collapse
Affiliation(s)
- Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA.
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Grant Building, Office 276A, 300 Pasteur Drive, Stanford, CA 94305-5117, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Grant Building, Office 276A, 300 Pasteur Drive, Stanford, CA 94305-5117, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Grant Building, Office 276A, 300 Pasteur Drive, Stanford, CA 94305-5117, USA
| |
Collapse
|
35
|
Dong Y, Lau HX, Suaini NHA, Kee MZL, Ooi DSQ, Shek LPC, Lee BW, Godfrey KM, Tham EH, Ong MEH, Liu N, Wong L, Tan KH, Chan JKY, Yap FKP, Chong YS, Eriksson JG, Feng M, Loo EXL. A machine-learning exploration of the exposome from preconception in early childhood atopic eczema, rhinitis and wheeze development. ENVIRONMENTAL RESEARCH 2024; 250:118523. [PMID: 38382664 DOI: 10.1016/j.envres.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Most previous research on the environmental epidemiology of childhood atopic eczema, rhinitis and wheeze is limited in the scope of risk factors studied. Our study adopted a machine learning approach to explore the role of the exposome starting already in the preconception phase. METHODS We performed a combined analysis of two multi-ethnic Asian birth cohorts, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) and the Singapore PREconception Study of long Term maternal and child Outcomes (S-PRESTO) cohorts. Interviewer-administered questionnaires were used to collect information on demography, lifestyle and childhood atopic eczema, rhinitis and wheeze development. Data training was performed using XGBoost, genetic algorithm and logistic regression models, and the top variables with the highest importance were identified. Additive explanation values were identified and inputted into a final multiple logistic regression model. Generalised structural equation modelling with maternal and child blood micronutrients, metabolites and cytokines was performed to explain possible mechanisms. RESULTS The final study population included 1151 mother-child pairs. Our findings suggest that these childhood diseases are likely programmed in utero by the preconception and pregnancy exposomes through inflammatory pathways. We identified preconception alcohol consumption and maternal depressive symptoms during pregnancy as key modifiable maternal environmental exposures that increased eczema and rhinitis risk. Our mechanistic model suggested that higher maternal blood neopterin and child blood dimethylglycine protected against early childhood wheeze. After birth, early infection was a key driver of atopic eczema and rhinitis development. CONCLUSION Preconception and antenatal exposomes can programme atopic eczema, rhinitis and wheeze development in utero. Reducing maternal alcohol consumption during preconception and supporting maternal mental health during pregnancy may prevent atopic eczema and rhinitis by promoting an optimal antenatal environment. Our findings suggest a need to include preconception environmental exposures in future research to counter the earliest precursors of disease development in children.
Collapse
Affiliation(s)
- Yizhi Dong
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.
| | - Hui Xing Lau
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Noor Hidayatul Aini Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Michelle Zhi Ling Kee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore.
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Keith M Godfrey
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom; MRC Lifecourse Epidemiology Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Marcus Eng Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore; Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore.
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore; Health Services Research Centre, Singapore Health Services, Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| | - Limsoon Wong
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore.
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore.
| | - Jerry Kok Yen Chan
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital (KKH), Singapore.
| | - Fabian Kok Peng Yap
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Paediatrics, KK Women's and Children's Hospital (KKH), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| | - Johan Gunnar Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore; Folkhälsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, Finland.
| | - Mengling Feng
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Dean's Office, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Fernandes KA, Lim AI. Maternal-driven immune education in offspring. Immunol Rev 2024; 323:288-302. [PMID: 38445769 DOI: 10.1111/imr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.
Collapse
Affiliation(s)
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
37
|
Yang L, Xu HR, Zhang X, Shi Y, Shi JX, Chen QQ, Shen XR, He YP, Tang JN, Gu WW, Wang J. Increased miR-3074-5p expression promotes M1 polarization and pyroptosis of macrophages via ERα/NLRP3 pathway and induces adverse pregnancy outcomes in mice. Cell Death Discov 2024; 10:171. [PMID: 38600077 PMCID: PMC11006911 DOI: 10.1038/s41420-024-01941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Decidual macrophages (dMϕs) play critical roles in regulation of immune-microhomeostasis at maternal-fetal interface during pregnancy, but the underlying molecular mechanisms are still unclear. In this study, it was found that litter size and fetal weight were significantly reduced, whereas the rate of embryo resorption was increased in miR-3074-5p knock-in (3074-KI) pregnant mice, compared to that of wild-type (WT) pregnant mice. Plasma levels of pro-inflammatory cytokines in 3074-KI pregnant mice were also significantly elevated compared to WT pregnant mice at GD7.5. The quantity of M1-Mϕs in uterine tissues of 3074-KI pregnant mice was significantly increased compared to WT pregnant mice at GD13.5. Estrogen receptor-α (ERα) was validated to be a target of miR-3074-5p. Either miR-3074-5p overexpression or ERα knockdown promoted transcriptional activity of NF-κB/p65, induced M1-polarization and pyroptosis of THP1-derived Mϕs, accompanied with increased intracellular levels of cleaved Caspase-1, cleaved IL-1β, NLRP3, cleaved GSDMD and ASC aggregation. Furthermore, ERα could not only bind to NLRP3 or ASC directly, but also inhibit the interaction between NLRP3 and ASC. The endometrial miR-3074-5p expression level at the middle secretory stage of repeated implantation failure (RIF) patients was significantly decreased compared to that of control fertile women. These data indicated that miR-3074-5p could promote M1 polarization and pyroptosis of Mϕs via activation of NLRP3 inflammasome by targeting ERα, and the dysregulation of miR-3074-5p expression in dMϕs might damage the embryo implantation and placentation by interfering with inflammatory microenvironment at the maternal-fetal interface during early pregnancy.
Collapse
Affiliation(s)
- Long Yang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Xuan Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Yan Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Jia-Xin Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Qian-Qian Chen
- Reproductive Medicine Center, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiao-Rong Shen
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Ya-Ping He
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Jia-Nan Tang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Wen-Wen Gu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China.
| | - Jian Wang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Key Lab of Health and Diease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
38
|
Ho SJ, Chaput D, Sinkey RG, Garces AH, New EP, Okuka M, Sang P, Arlier S, Semerci N, Steffensen TS, Rutherford TJ, Alsina AE, Cai J, Anderson ML, Magness RR, Uversky VN, Cummings DAT, Tsibris JCM. Proteomic studies of VEGFR2 in human placentas reveal protein associations with preeclampsia, diabetes, gravidity, and labor. Cell Commun Signal 2024; 22:221. [PMID: 38594674 PMCID: PMC11003095 DOI: 10.1186/s12964-024-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.
Collapse
Grants
- Department of Obstetrics and Gynecology, University of South Florida
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida
- Department of Chemistry, University of South Florida
- Tampa General Hospital, Tampa, Florida
- Teasley Foundation
- Department of Molecular Medicine, University of South Florida
- Department of Biology, University of Florida
- Emerging Pathogens Institute, University of Florida
Collapse
Affiliation(s)
- Shannon J Ho
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Rachel G Sinkey
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Amanda H Garces
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida, Tampa, FL, USA
| | - Erika P New
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | | | - Thomas J Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Angel E Alsina
- Transplant Surgery Center, Tampa General Hospital, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Matthew L Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Derek A T Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
39
|
Wu T, Li S, Gong X, Li J, Li X, Zhai Y, Huang J, Li X, Li L, Yang J, Wang X, Shi H, Yuan P, Zhao Y, Wei Y. Longitudinal Cervical Length Measurements and Spontaneous Preterm Birth in Singleton and Twin Pregnancies. JAMA Netw Open 2024; 7:e244592. [PMID: 38602679 PMCID: PMC11009824 DOI: 10.1001/jamanetworkopen.2024.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
Importance Changes in cervical length in twin pregnancies exhibit various patterns, but it is unclear whether the mechanism underlying spontaneous preterm birth (sPTB) is consistent. The existence of detailed phenomena in singleton pregnancies is also unclear. Objectives To explore the different patterns in cervical length trajectories in singleton and twin pregnancies and to analyze whether the immunological mechanisms of sPTB are consistent among these cervical length patterns. Design, Setting, and Participants This cohort study recruited pregnant individuals who received antenatal care and delivered at Peking University Third Hospital in Beijing, China, between January 1, 2014, and December 31, 2022. Individuals with singleton and twin pregnancies were included. Exposures Cervical length measurements and white blood cell (WBC) indicators. Main Outcomes and Measures The primary outcome was sPTB. Longitudinal trajectory cluster analysis was used to identify patterns of changes in cervical length in singleton and twin pregnancies. A random-effects model with cubic spline was used to fit and compare the longitudinal trajectory of WBC indicators among early preterm birth, moderate to late preterm birth, and term birth. Results A total of 43 559 pregnant individuals were included; of these, 41 706 had singleton pregnancies (mean [SD)] maternal age, 33.0 [4.0] years) and 1853 had twin pregnancies (mean [SD] maternal age, 33.3 [3.6] years). Two distinct patterns of cervical length changes were observed in both singleton and twin pregnancies: shortened (21 366 singletons and 546 twins) and stable (20 340 singletons and 1307 twins). In singleton pregnancies, WBC count was associated with early sPTB in individuals with both shortened cervix (odds ratio [OR], 1.35; 95% CI, 1.00-1.82) and stable cervix (OR, 1.64; 95% CI, 1.07-2.50). However, for twin pregnancies, the association of WBC count (OR, 3.13; 95% CI, 1.58-6.18) with the risk of early sPTB was observed only in individuals with a shortened cervix. Conclusions and Relevance This study identified 2 distinct cervical length patterns: shortened and stable. These patterns revealed 2 preterm birth mechanisms in twin pregnancies, with the immunopathogenesis of sPTB found only in the shortened cervix pattern; in singleton pregnancies, maternal immune response was associated with a higher risk of sPTB regardless of a shortened or stable cervix.
Collapse
Affiliation(s)
- Tianchen Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Shuang Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Xuening Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Yujia Zhai
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Jiaqi Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Luyao Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Xueju Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Huifeng Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Pengbo Yuan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| |
Collapse
|
40
|
Fang Q, Qiao Z, Luo L, Bai S, Chen M, Zhang X, Zong L, Tong XH, Wu LM. Predictive models of recurrent implantation failure in patients receiving ART treatment based on clinical features and routine laboratory data. Reprod Biol Endocrinol 2024; 22:32. [PMID: 38509534 PMCID: PMC10953148 DOI: 10.1186/s12958-024-01203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024] Open
Abstract
STUDY QUESTION The objective was to construct a model for predicting the probability of recurrent implantation failure (RIF) after assisted reproductive technology (ART) treatment based on the clinical characteristics and routine laboratory test data of infertile patients. A model was developed to predict RIF. The model showed high calibration in external validation, helped to identify risk factors for RIF, and improved the efficacy of ART therapy. WHAT IS KNOWN ALREADY Research on the influencing factors of RIF has focused mainly on embryonic factors, endometrial receptivity, and immune factors. However, there are many kinds of examinations regarding these aspects, and comprehensive screening is difficult because of the limited time and economic conditions. Therefore, we should try our best to analyse the results of routine infertility screenings to make general predictions regarding the occurrence of RIF. STUDY DESIGN, SIZE, DURATION A retrospective study was conducted with 5212 patients at the Reproductive Center of the First Affiliated Hospital of USTC from January 2018 to June 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS This study included 462 patients in the RIF group and 4750 patients in the control group. The patients' basic characteristics, clinical treatment data, and laboratory test indices were compared. Logistic regression was used to analyse RIF-related risk factors, and the prediction model was evaluated by receiver operating characteristic (ROC) curves and the corresponding areas under the curve (AUCs). Further analysis of the influencing factors of live births in the first cycle of subsequent assisted reproduction treatment in RIF patients was performed, including the live birth subgroup (n = 116) and the no live birth subgroup (n = 200). MAIN RESULTS AND THE ROLE OF CHANCE (1) An increased duration of infertility (1.978; 95% CI, 1.264-3.097), uterine cavity abnormalities (2.267; 95% CI, 1.185-4.336), low AMH levels (0.504; 95% CI, 0.275-0.922), insulin resistance (3.548; 95% CI, 1.931-6.519), antinuclear antibody (ANA)-positive status (3.249; 95% CI, 1.20-8.797) and anti-β2-glycoprotein I antibody (A-β2-GPI Ab)-positive status (5.515; 95% CI, 1.481-20.536) were associated with an increased risk of RIF. The area under the curve of the logistic regression model was 0.900 (95% CI, 0.870-0.929) for the training cohort and 0.895 (95% CI, 0.865-0.925) for the testing cohort. (2) Advanced age (1.069; 95% CI, 1.015-1.126) was a risk factor associated with no live births after the first cycle of subsequent assisted reproduction treatment in patients with RIF. Blastocyst transfer (0.365; 95% CI = 0.181-0.736) increased the probability of live birth in subsequent cycles in patients with RIF. The area under the curve of the logistic regression model was 0.673 (95% CI, 0.597-0.748). LIMITATIONS, REASONS FOR CAUTION This was a single-centre regression study, for which the results need to be evaluated and verified by prospective large-scale randomized controlled studies. The small sample size for the analysis of factors influencing pregnancy outcomes in subsequent assisted reproduction cycles for RIF patients resulted in the inclusion of fewer covariates, and future studies with larger samples and the inclusion of more factors are needed for assessment and validation. WIDER IMPLICATIONS OF THE FINDINGS Prediction of embryo implantation prior to transfer will facilitate the clinical management of patients and disease prediction and further improve ART treatment outcomes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the General Project of the National Natural Science Foundation of China (Nos. 82,201,792, 82,301,871, 81,971,446, and 82,374,212) and the Natural Science Foundation of Anhui Province (No. 2208085MH206). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This study was registered with the Chinese Clinical Trial Register (Clinical Trial Number: ChiCTR1800018298 ).
Collapse
Affiliation(s)
- Qunying Fang
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
- University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Zonghui Qiao
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Lei Luo
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Shun Bai
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Min Chen
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
- University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Xiangjun Zhang
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
- University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Lu Zong
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| | - Xian-Hong Tong
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| | - Li-Min Wu
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| |
Collapse
|
41
|
Gigase FAJ, Graziani M, Castro J, Lesseur C, Rommel AS, Flores T, Perez-Rodriguez MM, Dolan S, Stone J, Janevic T, Lieb W, Bergink V, de Witte LD. The effect of SARS-CoV-2 infection and vaccination on Th17 and regulatory T cells in a pregnancy cohort in NYC. Front Immunol 2024; 15:1350288. [PMID: 38504979 PMCID: PMC10948419 DOI: 10.3389/fimmu.2024.1350288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Disturbances in T-cells, specifically the Th17/Treg balance, have been implicated in adverse pregnancy outcomes. We investigated these two T-cell populations following pre-pregnancy and pregnancy SARS-CoV-2 infection and COVID-19 vaccination in 351 participants from a pregnancy cohort in New York City (Generation C; 2020-2022). SARS-CoV-2 infection status was determined via laboratory or medical diagnosis and COVID-19 vaccination status via survey and electronic medical records data. Peripheral blood mononuclear cells (PBMCs) were collected at routine prenatal visits throughout gestation (median 108 days; IQR 67-191 days) with repeated measures for 104 participants (29.6%). T-cell populations CD4+/CD3+, Th17/CD4+, Treg/CD4+ and the Th17/Treg ratio were quantified using flow cytometry. Results showed that inter-individual differences are a main influencing factor in Th17 and Treg variance, however total variance explained remained small (R2 = 15-39%). Overall, Th17 and Treg populations were not significantly affected by SARS-CoV-2 infection during pregnancy in adjusted linear mixed models (p>0.05), however comparison of repeated measures among SARS-CoV-2 infected participants and non-infected controls suggests a relative increase of the Th17/Treg ratio following infection. In addition, the Th17/Treg ratio was significantly higher after SARS-CoV-2 infection prior to pregnancy (10-138 weeks) compared to controls (β=0.48, p=0.003). COVID-19 vaccination was not associated with Th17 and Treg cells. Our findings suggest an impact of SARS-CoV-2 infection on the Th17/Treg ratio, likely depending on severity of infection, yet the observed trends and their potential consequences for pregnancy outcomes require further investigation. Our study contributes to growing evidence that COVID-19 vaccination during pregnancy does not lead to an exacerbated immune response.
Collapse
Affiliation(s)
- Frederieke A. J. Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Human Genetics, Radboud University Medical Center (UMC), Nijmegen, Netherlands
| | - Juliana Castro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tammy Flores
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Siobhan Dolan
- Department of Obstetrics and Gynecology, Stamford Health, Stamford, CT, United States
| | - Joanne Stone
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Teresa Janevic
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Whitney Lieb
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Blavatnik Family Women’s Health Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Blavatnik Family Women’s Health Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | - Lot D. de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Human Genetics, Radboud University Medical Center (UMC), Nijmegen, Netherlands
- Department of Psychiatry, Radboud University Medical Center (UMC), Nijmegen, Netherlands
| |
Collapse
|
42
|
Prodan-Barbulescu C, Bratosin F, Folescu R, Boeriu E, Popa ZL, Citu C, Ratiu A, Rosca O, Ilie AC. Analysis of Vaginal Microbiota Variations in the Third Trimester of Pregnancy and Their Correlation with Preterm Birth: A Case-Control Study. Microorganisms 2024; 12:417. [PMID: 38399821 PMCID: PMC10892439 DOI: 10.3390/microorganisms12020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study conducted a detailed analysis of the vaginal microbiota in pregnant women to explore its correlation with preterm birth (PTB) outcomes. The primary objective was to identify microbial variations associated with increased PTB risk. Secondary objectives included investigating how changes in microbial composition relate to the local immune environment and PTB. Utilizing a retrospective case-control design, the study involved pregnant women with liveborn infants between 2019 and 2023. In total, 89 women who delivered preterm and 106 term deliveries were included. Data collection focused on third-trimester vaginal cultures. Statistically significant differences were observed between the preterm and full-term groups in several areas. The median white blood cell count (10.2 × 103/mm3 vs. 7.6 × 103/mm3, p = 0.009) and neutrophil count (7.2 × 103/mm3 vs. 5.1 × 103/mm3, p < 0.001) were higher in the preterm group. Vaginal pH was also elevated in preterm births (5.6 vs. 4.4, p < 0.001), with a higher prevalence of bacterial vaginosis (29.2% vs. 12.3%, p = 0.001) as indicated by the Nugent Score. The study noted a significant association of PTB with the presence of Candida spp. (OR = 1.84, p = 0.018), Gardnerella vaginalis (OR = 2.29, p = 0.003), Mycoplasma hominis (OR = 1.97, p = 0.007), and Ureaplasma urealyticum (OR = 2.43, p = 0.001). Conversely, a reduction in Lactobacillus spp. correlated with a decreased PTB risk (OR = 0.46, p = 0.001). The study provides compelling evidence that specific vaginal microbiota components, particularly certain pathogenic bacteria and an altered Lactobacillus profile, are significantly associated with PTB risk. These findings highlight the potential of targeting microbial factors in strategies aimed at reducing PTB rates. Further research is necessary to fully understand the complex interplay between microbial dynamics, host immunity, and PTB outcomes.
Collapse
Affiliation(s)
- Catalin Prodan-Barbulescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- IInd Surgery Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Department I, Discipline of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Roxana Folescu
- Department of Family Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Estera Boeriu
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Zoran Laurentiu Popa
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (Z.L.P.); (C.C.); (A.R.)
| | - Cosmin Citu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (Z.L.P.); (C.C.); (A.R.)
| | - Adrian Ratiu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (Z.L.P.); (C.C.); (A.R.)
| | - Ovidiu Rosca
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Adrian Cosmin Ilie
- Department III Functional Sciences, Division of Public Health and Management, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
43
|
Mancuso RA, Ross KM, Accortt E, Coussons-Read M, Okun ML, Irwin J, Carroll J, Hobel CJ, Schetter CD. Prenatal mood and anxiety disorders and associated cytokine changes. J Affect Disord 2024; 347:635-644. [PMID: 38070749 PMCID: PMC11375962 DOI: 10.1016/j.jad.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND We examined whether women with prenatal mood and anxiety disorders would exhibit differential pro- and anti-inflammatory marker trajectories during the prenatal and postpartum periods compared to women without these disorders. METHODS Approximately 179 pregnant women participated in a longitudinal study conducted in two urban areas. Blood samples for inflammatory markers were collected at six study visits. The Structured Clinical Interview for the DSM-IV (SCID) was administered to participants scoring above cutoffs on anxiety and depression. Pregnant women with SCID Axis I diagnoses of mood and/or anxiety disorders were compared to other participants on inflammatory markers. Multilevel modeling tested associations between SCID diagnoses and within-person interleukin (IL)6 and IL10 trajectories. RESULTS Prenatal SCID diagnoses were associated with linear, quadratic and cubic change in IL6 from prenatal to postpartum timepoints. Women with a prenatal SCID diagnosis had steeper decreases and increases in IL6 during prenatal and postpartum periods. SCID diagnoses were associated with lower IL10 in mid-pregnancy to postpartum (b = -0.078, SE = 0.019; p = .015). LIMITATIONS Future studies would benefit from a larger sample size and a larger number of participants with SCID diagnoses. Future research should also examine whether different prenatal Axis 1 diagnoses are associated with different patterns of immune response in pregnancy. CONCLUSIONS Pregnant women with prenatal mood and anxiety disorders had greater fluctuations in IL6 across prenatal and postpartum periods and lower IL10 through pregnancy and postpartum. They may have different proinflammatory states that remain after birth without a reciprocal anti-inflammatory response.
Collapse
Affiliation(s)
- Roberta A Mancuso
- Department of Psychology and Neuroscience, Regis University, Denver, CO, USA.
| | - Kharah M Ross
- Centre for Social Sciences, Athabasca University, Athabasca, AB, Canada
| | - Eynav Accortt
- Reproductive Psychology Program, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mary Coussons-Read
- Department of Psychology, University of Colorado - Colorado Springs, Colorado Springs, CO, USA
| | - Michele L Okun
- Sleep and Biobehavioral Health Research Laboratory, University of Colorado - Colorado Springs, Colorado Springs, CO, USA
| | - Jessica Irwin
- Department of Psychology, University of La Verne, La Verne, CA, USA
| | - Judith Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin J Hobel
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
44
|
Becker M, Fehr K, Goguen S, Miliku K, Field C, Robertson B, Yonemitsu C, Bode L, Simons E, Marshall J, Dawod B, Mandhane P, Turvey SE, Moraes TJ, Subbarao P, Rodriguez N, Aghaeepour N, Azad MB. Multimodal machine learning for modeling infant head circumference, mothers' milk composition, and their shared environment. Sci Rep 2024; 14:2977. [PMID: 38316895 PMCID: PMC10844250 DOI: 10.1038/s41598-024-52323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Links between human milk (HM) and infant development are poorly understood and often focus on individual HM components. Here we apply multi-modal predictive machine learning to study HM and head circumference (a proxy for brain development) among 1022 mother-infant dyads of the CHILD Cohort. We integrated HM data (19 oligosaccharides, 28 fatty acids, 3 hormones, 28 chemokines) with maternal and infant demographic, health, dietary and home environment data. Head circumference was significantly predictable at 3 and 12 months. Two of the most associated features were HM n3-polyunsaturated fatty acid C22:6n3 (docosahexaenoic acid, DHA; p = 9.6e-05) and maternal intake of fish (p = 4.1e-03), a key dietary source of DHA with established relationships to brain function. Thus, using a systems biology approach, we identified meaningful relationships between HM and brain development, which validates our statistical approach, gives credence to the novel associations we observed, and sets the foundation for further research with additional cohorts and HM analytes.
Collapse
Affiliation(s)
- Martin Becker
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Stanford University, Stanford, 94305, USA
| | - Kelsey Fehr
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- University of Manitoba, Winnipeg, R3E3P4, Canada
| | - Stephanie Goguen
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- University of Manitoba, Winnipeg, R3E3P4, Canada
| | - Kozeta Miliku
- University of Toronto, Toronto, M5S 1A8, Canada
- McMaster University, Hamilton, M5S 1A8, Canada
| | | | | | - Chloe Yonemitsu
- University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lars Bode
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | - Stuart E Turvey
- University of British Columbia and British Columbia Children's Hospital, Vancouver, V5Z4H4, Canada
| | | | - Padmaja Subbarao
- University of Toronto, Toronto, M5S 1A8, Canada
- McMaster University, Hamilton, M5S 1A8, Canada
- SickKids, Toronto, M5G 0A4, Canada
| | - Natalie Rodriguez
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- University of Manitoba, Winnipeg, R3E3P4, Canada
| | - Nima Aghaeepour
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada.
- Stanford University, Stanford, 94305, USA.
| | - Meghan B Azad
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada.
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
- University of Manitoba, Winnipeg, R3E3P4, Canada.
| |
Collapse
|
45
|
Brummaier T, Rinchai D, Toufiq M, Karim MY, Habib T, Utzinger J, Paris DH, McGready R, Marr AK, Kino T, Terranegra A, Al Khodor S, Chaussabel D, Syed Ahamed Kabeer B. Design of a targeted blood transcriptional panel for monitoring immunological changes accompanying pregnancy. Front Immunol 2024; 15:1319949. [PMID: 38352867 PMCID: PMC10861739 DOI: 10.3389/fimmu.2024.1319949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Immunomodulatory processes exert steering functions throughout pregnancy. Detecting diversions from this physiologic immune clock may help identify pregnant women at risk for pregnancy-associated complications. We present results from a data-driven selection process to develop a targeted panel of mRNAs that may prove effective in detecting pregnancies diverting from the norm. Methods Based on a de novo dataset from a resource-constrained setting and a dataset from a resource-rich area readily available in the public domain, whole blood gene expression profiles of uneventful pregnancies were captured at multiple time points during pregnancy. BloodGen3, a fixed blood transcriptional module repertoire, was employed to analyze and visualize gene expression patterns in the two datasets. Differentially expressed genes were identified by comparing their abundance to non-pregnant postpartum controls. The selection process for a targeted gene panel considered (i) transcript abundance in whole blood; (ii) degree of correlation with the BloodGen3 module; and (iii) pregnancy biology. Results We identified 176 transcripts that were complemented with eight housekeeping genes. Changes in transcript abundance were seen in the early stages of pregnancy and similar patterns were observed in both datasets. Functional gene annotation suggested significant changes in the lymphoid, prostaglandin and inflammation-associated compartments, when compared to the postpartum controls. Conclusion The gene panel presented here holds promise for the development of predictive, targeted, transcriptional profiling assays. Such assays might become useful for monitoring of pregnant women, specifically to detect potential adverse events early. Prospective validation of this targeted assay, in-depth investigation of functional annotations of differentially expressed genes, and assessment of common pregnancy-associated complications with the aim to identify these early in pregnancy to improve pregnancy outcomes are the next steps.
Collapse
Affiliation(s)
- Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Darawan Rinchai
- Research Department, Sidra Medicine, Doha, Qatar
- Department of Infectious Diseases, St. Jude Children Research Hospital, Memphis, TN, United States
| | | | | | - Tanwir Habib
- Research Department, Sidra Medicine, Doha, Qatar
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniel H. Paris
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | - Damien Chaussabel
- Research Department, Sidra Medicine, Doha, Qatar
- Computational Sciences Department, The Jackson Laboratory, Farmington, CT, United States
| | | |
Collapse
|
46
|
Shahir JA, Stanley N, Purvis JE. Cellograph: a semi-supervised approach to analyzing multi-condition single-cell RNA-sequencing data using graph neural networks. BMC Bioinformatics 2024; 25:25. [PMID: 38221640 PMCID: PMC10788980 DOI: 10.1186/s12859-024-05641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
With the growing number of single-cell datasets collected under more complex experimental conditions, there is an opportunity to leverage single-cell variability to reveal deeper insights into how cells respond to perturbations. Many existing approaches rely on discretizing the data into clusters for differential gene expression (DGE), effectively ironing out any information unveiled by the single-cell variability across cell-types. In addition, DGE often assumes a statistical distribution that, if erroneous, can lead to false positive differentially expressed genes. Here, we present Cellograph: a semi-supervised framework that uses graph neural networks to quantify the effects of perturbations at single-cell granularity. Cellograph not only measures how prototypical cells are of each condition but also learns a latent space that is amenable to interpretable data visualization and clustering. The learned gene weight matrix from training reveals pertinent genes driving the differences between conditions. We demonstrate the utility of our approach on publicly-available datasets including cancer drug therapy, stem cell reprogramming, and organoid differentiation. Cellograph outperforms existing methods for quantifying the effects of experimental perturbations and offers a novel framework to analyze single-cell data using deep learning.
Collapse
Affiliation(s)
- Jamshaid A Shahir
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Garcia-Flores V, Romero R, Tarca AL, Peyvandipour A, Xu Y, Galaz J, Miller D, Chaiworapongsa T, Chaemsaithong P, Berry SM, Awonuga AO, Bryant DR, Pique-Regi R, Gomez-Lopez N. Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci Transl Med 2024; 16:eadh8335. [PMID: 38198568 PMCID: PMC11238316 DOI: 10.1126/scitranslmed.adh8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| | - Azam Peyvandipour
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Zhou W, Chen Y, Zheng Y, Bai Y, Yin J, Wu XX, Hong M, Liang L, Zhang J, Gao Y, Sun N, Li J, Zhang Y, Wu L, Jin X, Niu J. Characterizing immune variation and diagnostic indicators of preeclampsia by single-cell RNA sequencing and machine learning. Commun Biol 2024; 7:32. [PMID: 38182876 PMCID: PMC10770323 DOI: 10.1038/s42003-023-05669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Preeclampsia is a multifactorial and heterogeneous complication of pregnancy. Here, we utilize single-cell RNA sequencing to dissect the involvement of circulating immune cells in preeclampsia. Our findings reveal downregulation of immune response in lymphocyte subsets in preeclampsia, such as reduction in natural killer cells and cytotoxic genes expression, and expansion of regulatory T cells. But the activation of naïve T cell and monocyte subsets, as well as increased MHC-II-mediated pathway in antigen-presenting cells were still observed in preeclampsia. Notably, we identified key monocyte subsets in preeclampsia, with significantly increased expression of angiogenesis pathways and pro-inflammatory S100 family genes in VCAN+ monocytes and IFN+ non-classical monocytes. Furthermore, four cell-type-specific machine-learning models have been developed to identify potential diagnostic indicators of preeclampsia. Collectively, our study demonstrates transcriptomic alternations of circulating immune cells and identifies immune components that could be involved in pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Wenwen Zhou
- BGI Research, Shenzhen, 518103, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yixuan Chen
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Yuhui Zheng
- BGI Research, Shenzhen, 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Bai
- BGI Research, Shenzhen, 518103, China
| | | | - Xiao-Xia Wu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
| | - Jing Zhang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Ya Gao
- BGI Research, Shenzhen, 518103, China
| | - Ning Sun
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | | | - Yiwei Zhang
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China
| | - Linlin Wu
- Department of Obstetrics, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Xin Jin
- BGI Research, Shenzhen, 518103, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jianmin Niu
- Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, China.
| |
Collapse
|
49
|
Yang J, Li L, Wang L, Chen R, Yang X, Wu J, Feng G, Ding J, Diao L, Chen J, Yang J. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway. J Transl Med 2024; 22:19. [PMID: 38178171 PMCID: PMC10768263 DOI: 10.1186/s12967-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Macrophages phenotypic deviation and immune imbalance play vital roles in pregnancy-associated diseases such as spontaneous miscarriage. Trophoblasts regulate phenotypic changes in macrophages, however, their underlying mechanism during pregnancy remains unclear. Therefore, this study aimed to elucidate the potential function of trophoblast-derived miRNAs (miR-410-5p) in macrophage polarization during pregnancy. METHODS Patient decidual macrophage tissue samples in spontaneous abortion group and normal pregnancy group (those who had induced abortion for non-medical reasons) were collected at the Reproductive Medicine Center of Renmin Hospital of Wuhan University from April to December 2021. Furthermore, placental villi and decidua tissue samples were collected from patients who had experienced a spontaneous miscarriage and normal pregnant women for validation and subsequent experiments at the Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), from March 2021 to September 2022. As an animal model, 36 female mice were randomly divided into six groups as follows: naive-control, lipopolysaccharide-model, agomir-negative control prevention, agomir-410-5p prevention, agomir-negative control treatment, and agomir-410-5p treatment groups. We analyzed the miR-410-5p expression in abortion tissue and plasma samples; and supplemented miR-410-5p to evaluate embryonic absorption in vivo. The main source of miR-410-5p at the maternal-fetal interface was analyzed, and the possible target gene, signal transducer and activator of transcription (STAT) 1, of miR-410-5p was predicted. The effect of miR-410-5p and STAT1 regulation on macrophage phenotype, oxidative metabolism, and mitochondrial membrane potential was analyzed in vitro. RESULTS MiR-410-5p levels were lower in the spontaneous abortion group compared with the normal pregnancy group, and plasma miR-410-5p levels could predict pregnancy and spontaneous abortion. Prophylactic supplementation of miR-410-5p in pregnant mice reduced lipopolysaccharide-mediated embryonic absorption and downregulated the decidual macrophage pro-inflammatory phenotype. MiR-410-5p were mainly distributed in villi, and trophoblasts secreted exosomes-miR-410-5p at the maternal-fetal interface. After macrophages captured exosomes, the cells shifted to the tolerance phenotype. STAT1 was a potential target gene of miR-410-5p. MiR-410-5p bound to STAT1 mRNA, and inhibited the expression of STAT1 protein. STAT1 can drive macrophages to mature to a pro-inflammatory phenotype. MiR-410-5p competitive silencing of STAT1 can avoid macrophage immune disorders. CONCLUSION MiR-410-5p promotes M2 macrophage polarization by inhibiting STAT1, thus ensuring a healthy pregnancy. These findings are of great significance for diagnosing and preventing spontaneous miscarriage, providing a new perspective for further research in this field.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
- Department of Gynecology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China.
| | - Linlin Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Ruizhi Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Xiaobing Yang
- Department of Clinical Laboratory, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Juanhua Wu
- Department of Gynecology, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Gang Feng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
50
|
Marta CI, Craina M, Nitu R, Maghiari AL, Abu-Awwad SA, Boscu L, Diaconu M, Dumitru C, Dahma G, Yasar II, Babes K. A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome. Diseases 2023; 12:10. [PMID: 38248361 PMCID: PMC10814387 DOI: 10.3390/diseases12010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The cardiac biomarker NT-proBNP is released by the ventricles in response to increased cardiac wall tension, showing cardiac activity in heart failure. The primary objective of this comparative study was to analyze the variations of NT-proBNP levels among pregnant patients and to determine the potential influence of SARS-CoV-2 infection on these values. Secondly, the study focused on NT-proBNP levels and their influence on the type of birth. METHODS Blood samples were taken from 160 pregnant mothers in order to determine, through the solid-phase enzyme-linked immunosorbent assay (ELISA) method, the NT-proBNP concentrations from the plasma. The cohort was separated into two distinct groups based on SARS-CoV-2 diagnostic results: negative to the infection, and positive to the infection. RESULTS The SARS-CoV-2-positive group of patients presented with higher levels of NT-proBNP and had higher rates of cesarean sections. (4) Conclusions: Our research highlights the crucial relationship between elevated NT-proBNP values and the mode of giving birth, natural delivery or cesarean section, and also the influence of SARS-CoV-2 viral infection and this biomarker.
Collapse
Affiliation(s)
- Carmen-Ioana Marta
- Doctoral School, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410087 Oradea, Romania;
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Nitu
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Anca Laura Maghiari
- Department I—Discipline of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Simona-Alina Abu-Awwad
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
| | - Lioara Boscu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
| | - Mircea Diaconu
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Dahma
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
| | - Ionela-Iasmina Yasar
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
- Department IX: Surgery I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Katalin Babes
- Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410087 Oradea, Romania;
- Clinical County Emergency Hospital of Oradea, 410167 Oradea, Romania
| |
Collapse
|