1
|
Miranda S, Lassnig C, Schmidhofer K, Kjartansdottir H, Vogl C, Tangermann S, Tsymala I, Babl V, Müller M, Kuchler K, Strobl B. Lack of TYK2 signaling enhances host resistance to Candida albicans skin infection. Nat Commun 2024; 15:10493. [PMID: 39622833 PMCID: PMC11612186 DOI: 10.1038/s41467-024-54888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing diseases ranging from local to life-threating systemic infections. Tyrosine kinase 2 (TYK2), a crucial mediator in several cytokine signaling pathways, has been associated with protective functions in various microbial infections. However, its specific contribution in the immune response to fungal infections has remained elusive. In this study, we show that mice lacking TYK2 or its enzymatic activity exhibit enhanced resistance to C. albicans skin infections, limiting fungal spread and accelerating wound healing. Impaired TYK2-signaling prompted the formation of a distinctive layer of necrotic neutrophils around the fungal pathogens. Transcriptomic analysis revealed TYK2's pivotal role in regulating interferon-inducible genes in neutrophils, thereby impacting their antifungal capacity during infection. Furthermore, we show that TYK2-dependent interferon-gamma (IFNγ) production contributes to fungal dissemination from the skin to the kidneys. Our study uncovers a hitherto unrecognized detrimental role of TYK2 in cutaneous C. albicans infections.
Collapse
Affiliation(s)
- Sara Miranda
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Schmidhofer
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hrönn Kjartansdottir
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Centre of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Verena Babl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Casanova JL, Abel L. The Microbe, the Infection Enigma, and the Host. Annu Rev Microbiol 2024; 78:103-124. [PMID: 38986133 DOI: 10.1146/annurev-micro-092123-022855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Human infectious diseases are unique in that the discovery of their environmental trigger, the microbe, was sufficient to drive the development of extraordinarily effective principles and tools for their prevention or cure. This unique medical prowess has outpaced, and perhaps even hindered, the development of scientific progress of equal magnitude in the biological understanding of infectious diseases. Indeed, the hope kindled by the germ theory of disease was rapidly subdued by the infection enigma, in need of a host solution, when it was realized that most individuals infected with most infectious agents continue to do well. The root causes of disease and death in the unhappy few remained unclear. While canonical approaches in vitro (cellular microbiology), in vivo (animal models), and in natura (clinical studies) analyzed the consequences of infection with a microbe, considered to be the cause of disease, in cells, tissues, or organisms seen as a uniform host, alternative approaches searched for preexisting causes of disease, particularly human genetic and immunological determinants in populations of diverse individuals infected with a trigger microbe.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Laurent Abel
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| |
Collapse
|
3
|
Laval G, Patin E, Quintana-Murci L, Kerner G. Deep estimation of the intensity and timing of natural selection from ancient genomes. Mol Ecol Resour 2024; 24:e14015. [PMID: 39215552 DOI: 10.1111/1755-0998.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Leveraging past allele frequencies has proven to be key for identifying the impact of natural selection across time. However, this approach suffers from imprecise estimations of the intensity (s) and timing (T) of selection, particularly when ancient samples are scarce in specific epochs. Here, we aimed to bypass the computation of allele frequencies across arbitrarily defined past epochs and refine the estimations of selection parameters by implementing convolutional neural networks (CNNs) algorithms that directly use ancient genotypes sampled across time. Using computer simulations, we first show that genotype-based CNNs consistently outperform an approximate Bayesian computation (ABC) approach based on past allele frequency trajectories, regardless of the selection model assumed and the number of available ancient genotypes. When applying this method to empirical data from modern and ancient Europeans, we replicated the reported increased number of selection events in post-Neolithic Europe, independently of the continental subregion studied. Furthermore, we substantially refined the ABC-based estimations of s and T for a set of positively and negatively selected variants, including iconic cases of positive selection and experimentally validated disease-risk variants. Our CNN predictions support a history of recent positive and negative selection targeting variants associated with host defence against pathogens, aligning with previous work that highlights the significant impact of infectious diseases, such as tuberculosis, in Europe. These findings collectively demonstrate that detecting the footprints of natural selection on ancient genomes is crucial for unravelling the history of severe human diseases.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Chair of Human Genomics and Evolution, Collège de France, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| |
Collapse
|
4
|
Arias AA, Neehus AL, Ogishi M, Meynier V, Krebs A, Lazarov T, Lee AM, Arango-Franco CA, Yang R, Orrego J, Corcini Berndt M, Rojas J, Li H, Rinchai D, Erazo-Borrás L, Han JE, Pillay B, Ponsin K, Chaldebas M, Philippot Q, Bohlen J, Rosain J, Le Voyer T, Janotte T, Amarajeeva K, Soudée C, Brollo M, Wiegmann K, Marquant Q, Seeleuthner Y, Lee D, Lainé C, Kloos D, Bailey R, Bastard P, Keating N, Rapaport F, Khan T, Moncada-Vélez M, Carmona MC, Obando C, Alvarez J, Cataño JC, Martínez-Rosado LL, Sanchez JP, Tejada-Giraldo M, L'Honneur AS, Agudelo ML, Perez-Zapata LJ, Arboleda DM, Alzate JF, Cabarcas F, Zuluaga A, Pelham SJ, Ensser A, Schmidt M, Velásquez-Lopera MM, Jouanguy E, Puel A, Krönke M, Ghirardello S, Borghesi A, Pahari S, Boisson B, Pittaluga S, Ma CS, Emile JF, Notarangelo LD, Tangye SG, Marr N, Lachmann N, Salvator H, Schlesinger LS, Zhang P, Glickman MS, Nathan CF, Geissmann F, Abel L, Franco JL, Bustamante J, Casanova JL, Boisson-Dupuis S. Tuberculosis in otherwise healthy adults with inherited TNF deficiency. Nature 2024; 633:417-425. [PMID: 39198650 PMCID: PMC11390478 DOI: 10.1038/s41586-024-07866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Homozygote
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/cytology
- Inflammation/immunology
- Interferon-gamma/immunology
- Loss of Function Mutation
- Lung/cytology
- Lung/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mycobacterium tuberculosis/immunology
- Phenotype
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Respiratory Burst
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/genetics
- Tumor Necrosis Factor Inhibitors/pharmacology
- Tumor Necrosis Factors/deficiency
- Tumor Necrosis Factors/genetics
- Adolescent
- Young Adult
Collapse
Affiliation(s)
- Andrés A Arias
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Vincent Meynier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Adam Krebs
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Angela M Lee
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carlos A Arango-Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Julio Orrego
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Melissa Corcini Berndt
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Julian Rojas
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Lucia Erazo-Borrás
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bethany Pillay
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Khoren Ponsin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Chaldebas
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Till Janotte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Krishnajina Amarajeeva
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marion Brollo
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Quentin Marquant
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
| | - Rasheed Bailey
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Franck Rapaport
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Marcela Moncada-Vélez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - María Camila Carmona
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Catalina Obando
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Jesús Alvarez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Carlos Cataño
- Infectious Diseases Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Larry Luber Martínez-Rosado
- Latin American Research Team in Infectiology and Public Health (ELISAP), La Maria Hospital, Medellín, Colombia
| | - Juan P Sanchez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Manuela Tejada-Giraldo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Anne-Sophie L'Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, AP-HP, Paris, France
| | - María L Agudelo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Lizet J Perez-Zapata
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Diana M Arboleda
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Fernando Alzate
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Felipe Cabarcas
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- SISTEMIC Group, Department of Electronic Engineering, Faculty of Engineering, University of Antioquia UdeA, Medellín, Colombia
| | | | - Simon J Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Armin Ensser
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Schmidt
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Margarita M Velásquez-Lopera
- Dermatology Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Dermatological Research Center (CIDERM), Medellín, Colombia
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Susanta Pahari
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stefania Pittaluga
- Center for Cancer Research, Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Hélène Salvator
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
- Respiratory Diseases Department, FOCH Hospital, Suresnes, France
- Simone Veil Department of Health Sciences, Versailles Saint Quentin University, Montigny le Bretonneux, France
| | - Larry S Schlesinger
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carl F Nathan
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - José Luis Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia.
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
5
|
Montgomery TL, Peipert D, Krementsov DN. Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet. Immunol Rev 2024; 325:131-151. [PMID: 38717158 PMCID: PMC11338732 DOI: 10.1111/imr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dan Peipert
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Abel L, Casanova JL. Human determinants of age-dependent patterns of death from infection. Immunity 2024; 57:1457-1465. [PMID: 38986441 PMCID: PMC11345826 DOI: 10.1016/j.immuni.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Regardless of microbial virulence (i.e., the global infection-fatality ratio), age generally drives the prevalence of death from infection in unvaccinated humans. Four mortality patterns are recognized: the common U- and L-shaped curves of endemic infections and the unique W- and J-shaped curves of pandemic infections. We suggest that these patterns result from different sets of human genetic and immunological determinants. In this model, it is the interplay between (1) monogenic genotypes affecting immunity to primary infection that preferentially manifest early in life and related genotypes or their phenocopies, including auto-antibodies, which manifest later in life and (2) the occurrence and persistence of adaptive, acquired immunity to primary or cross-reactive infections, which shapes the age-dependent pattern of human deaths from infection.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
7
|
Yang XT, Yang WL, Lau YL. NGS data analysis for molecular diagnosis of Inborn Errors of Immunity. Semin Immunol 2024; 74-75:101901. [PMID: 39509871 DOI: 10.1016/j.smim.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Inborn errors of immunity (IEI) encompass a group of disorders with a strong genetic component. Prompt and accurate diagnosis of these disorders is essential for effective clinical management. Next-generation sequencing (NGS) has significantly enhanced the diagnostic process by offering a comprehensive and scalable approach for identifying genomic variations causal for these disorders. Nevertheless, the bioinformatics analysis of NGS data poses several challenges. In this review, we explore these challenges and share our insights on addressing them, aiming to improve the overall diagnostic yield.
Collapse
Affiliation(s)
- X T Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - W L Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Y L Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Gao Y, Wang Y, Zhou L, Lv G, Yu J, Zhang L, Meng Y, He W, Chen R, Zhao X, Dou Y. Successful Immune Reconstitution in a Patient with a TYK2 Deficiency after Allogeneic Stem Cell Transplantation from Unrelated Donors. J Clin Immunol 2024; 44:152. [PMID: 38896258 DOI: 10.1007/s10875-024-01753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
A boy with primary immunodeficiency, caused by a tyrosine kinase 2 (TYK2) mutation, presented with immune defects and a lifelong history of severe infections. Our aim was to determine whether allogeneic hematopoietic stem cell transplantation (HSCT) could restore the patient's immune defenses and reduce susceptibility to infection. In the absence of a suitable HLA-matched blood relative to act as a donor, the patient received an allogeneic HSCT from unrelated donors. The patient's clinical data were analyzed in the Children's Hospital of Chongqing Medical University (Chongqing, China) before transplantation and during the 4-year follow-up period using a combination of western blotting (e.g., TYK2 and STAT levels), qRT-PCR (e.g., T cell receptor rearrangement excision circles, kappa deletion element recombination circles, and TYK2 transcript levels), and flow cytometry (e.g., lymphocyte subpopulations and CD107α secretion). We found that HSCT significantly reduced the incidence of severe infections, restored normal TKY2 levels, and reversed defects such as impaired JAK/STAT signaling in response to interferon-α or interleukin-10 treatment. Although the patient did not develop acute graft-versus-host disease (GVHD) after transplantation, he did experience chronic GVHD symptoms in a number of organs, which were effectively managed. Our findings suggest that HSCT is a feasible strategy for reconstituting the immune system in TYK2-deficient patients; however, the factors associated with GVHD and autoimmune thyroiditis development in TYK2-deficient patients undergoing HSCT warrant further investigation.
Collapse
Affiliation(s)
- Yelei Gao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ya Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ge Lv
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Yu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Luying Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yan Meng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wenli He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ran Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Ying Dou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
9
|
Khavandegar A, Mahdaviani SA, Zaki-Dizaji M, Khalili-Moghaddam F, Ansari S, Alijani S, Taherzadeh-Ghahfarrokhi N, Mansouri D, Casanova JL, Bustamante J, Jamee M. Genetic, immunologic, and clinical features of 830 patients with Mendelian susceptibility to mycobacterial diseases (MSMD): A systematic review. J Allergy Clin Immunol 2024; 153:1432-1444. [PMID: 38341181 DOI: 10.1016/j.jaci.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare clinical syndrome characterized by vulnerability to weakly virulent mycobacterial species, including Bacillus Calmette-Guérin (BCG) vaccines and environmental mycobacteria. OBJECTIVE We sought to perform a systematic review of the genetic, immunologic, and clinical findings for reported patients with MSMD. METHODS We searched PubMed, Web of Science, and Scopus databases for publications in English relating to MSMD. All full texts were evaluated for eligibility for inclusion. Two reviewers independently selected the publications, with a third reviewer consulted in cases of disagreement. RESULTS A primary systematic search and searches of other resources identified 16,155 articles. In total, 158 articles from 63 countries were included in qualitative and quantitative analyses. In total, 830 patients-436 males (52.5%), 369 females (44.5%), and 25 patients of unknown sex (3.0%)-from 581 families were evaluated. A positive family history was reported in 347 patients (45.5%). The patients had a mean age of 10.41 ± 0.42 (SEM) years. The frequency of MSMD was highest in Iran, Turkey, and Saudi Arabia. Lymphadenopathy was the most common clinical manifestation of MSMD, reported in 378 (45.5%) cases and multifocal in 35.1%. Fever, organomegaly, and sepsis were the next most frequent findings, reported in 251 (30.2%), 206 (24.8%), and 171 (20.8%) cases, respectively. In total, 299 unique mutations in 21 genes known to be involved in MSMD were reported: 100 missense (34%), 80 indel-frameshift (insertion or deletion, 27%), 53 nonsense (18%), 35 splice site (12%), 10 indel-in frame (2.7%), 6 indel (2%), and 15 large deletion/duplication mutations. Finally, 61% of the reported patients with MSMD had mutations of IL12RB1 (41%) or IFNGR1 (20%). At the time of the report, 177 of the patients (21.3%) were dead and 597 (71.9%) were still alive. CONCLUSIONS MSMD is associated with a high mortality rate, mostly due to impaired control of infection. Preexposure strategies, such as changes in vaccination policy in endemic areas, the establishment of a worldwide registry of patients with MSMD, and precise follow-up over generations in affected families, appear to be vital to decrease MSMD-related mortality.
Collapse
Affiliation(s)
- Armin Khavandegar
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | - Sarina Ansari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Alijani
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Mahnaz Jamee
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
11
|
Tsilifis C, Spegarova JS, Good R, Griffin H, Engelhardt KR, Graham S, Hughes S, Arkwright PD, Hambleton S, Gennery AR. Omenn Syndrome in Two Infants with Different Hypomorphic Variants in Janus Kinase 3. J Clin Immunol 2024; 44:98. [PMID: 38598033 PMCID: PMC11006754 DOI: 10.1007/s10875-024-01699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Biallelic null or hypomorphic variants in JAK3 cause SCID and less frequently Omenn syndrome. We investigated homozygous hypomorphic JAK3 mutations in two patients, and expression and function of a novel JAK3R431P variant in Omenn syndrome. Immunophenotyping of PBMC from the patient with the novel JAK3R431P variant was undertaken, by flow cytometry and Phosflow after stimulation with IL-2, IL-7, and IL-15. JAK3 expression was investigated by Western blotting. We report two patients with homozygous hypomorphic JAK3 variants and clinical features of Omenn syndrome. One patient had a previously described JAK3R775H variant, and the second had a novel JAK3R431P variant. One patient with a novel JAK3R431P variant had normal expression of JAK3 in immortalised EBV-LCL cells but reduced phosphorylation of STAT5 after stimulation with IL-2, IL-7, and IL-15 consistent with impaired kinase activity. These results suggest the JAK3R431P variant to be hypomorphic. Both patients are alive and well after allogeneic haematopoietic stem cell transplantation. They have full donor chimerism, restitution of thymopoiesis and development of appropriate antibody responses following vaccination. We expand the phenotype of hypomorphic JAK3 deficiency and demonstrate the importance of functional testing of novel variants in disease-causing genes.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Victoria Wing, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Ross Good
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Helen Griffin
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Graham
- Faculty of Medical Sciences, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Stephen Hughes
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Sophie Hambleton
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Victoria Wing, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Victoria Wing, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
12
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
13
|
Kim T, Martínez-Bonet M, Wang Q, Hackert N, Sparks JA, Baglaenko Y, Koh B, Darbousset R, Laza-Briviesca R, Chen X, Aguiar VRC, Chiu DJ, Westra HJ, Gutierrez-Arcelus M, Weirauch MT, Raychaudhuri S, Rao DA, Nigrovic PA. Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nat Commun 2024; 15:2150. [PMID: 38459032 PMCID: PMC10923805 DOI: 10.1038/s41467-024-46457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance.
Collapse
Affiliation(s)
- Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolaj Hackert
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byunghee Koh
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roxane Darbousset
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquel Laza-Briviesca
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Darren J Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev 2024; 48:fuae006. [PMID: 38365982 PMCID: PMC10906988 DOI: 10.1093/femsre/fuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Camille Sous
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Jan Madacki
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Unit for Human Evolutionary Genetics, 75015 Paris, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| |
Collapse
|
16
|
Sharma M, Suratannon N, Leung D, Baris S, Takeuchi I, Samra S, Yanagi K, Rosa Duque JS, Benamar M, Del Bel KL, Momenilandi M, Béziat V, Casanova JL, van Hagen PM, Arai K, Nomura I, Kaname T, Chatchatee P, Morita H, Chatila TA, Lau YL, Turvey SE. Human germline gain-of-function in STAT6: from severe allergic disease to lymphoma and beyond. Trends Immunol 2024; 45:138-153. [PMID: 38238227 DOI: 10.1016/j.it.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.
Collapse
|
17
|
Choon YW, Choon YF, Nasarudin NA, Al Jasmi F, Remli MA, Alkayali MH, Mohamad MS. Artificial intelligence and database for NGS-based diagnosis in rare disease. Front Genet 2024; 14:1258083. [PMID: 38371307 PMCID: PMC10870236 DOI: 10.3389/fgene.2023.1258083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/24/2023] [Indexed: 02/20/2024] Open
Abstract
Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs. Concomitantly, a suite of bioinformatics tools has been developed to sort through big data generated by NGS to understand RDs better. However, there are concerns regarding the lack of consistency among different methods, primarily linked to factors such as the lack of uniformity in input and output formats, the absence of a standardized measure for predictive accuracy, and the regularity of updates to the annotation database. Today, artificial intelligence (AI), particularly deep learning, is widely used in a variety of biological contexts, changing the healthcare system. AI has demonstrated promising capabilities in boosting variant calling precision, refining variant prediction, and enhancing the user-friendliness of electronic health record (EHR) systems in NGS-based diagnostics. This paper reviews the state of the art of AI in NGS-based genetics, and its future directions and challenges. It also compare several rare disease databases.
Collapse
Affiliation(s)
- Yee Wen Choon
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
- Faculty of Data Science and Informatics, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
| | - Yee Fan Choon
- Faculty of Dentistry, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Nurul Athirah Nasarudin
- Health Data Science Lab, Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al Jasmi
- Health Data Science Lab, Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhamad Akmal Remli
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
- Faculty of Data Science and Informatics, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
| | | | - Mohd Saberi Mohamad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Bonelli M, Kerschbaumer A, Kastrati K, Ghoreschi K, Gadina M, Heinz LX, Smolen JS, Aletaha D, O'Shea J, Laurence A. Selectivity, efficacy and safety of JAKinibs: new evidence for a still evolving story. Ann Rheum Dis 2024; 83:139-160. [PMID: 37923366 PMCID: PMC10850682 DOI: 10.1136/ard-2023-223850] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 11/07/2023]
Abstract
Fundamental insight gained over the last decades led to the discovery of cytokines as pivotal drivers of inflammatory diseases such as rheumatoid arthritis, psoriasis/psoriasis arthritis, inflammatory bowel diseases, atopic dermatitis and spondylarthritis. A deeper understanding of the pro-inflammatory and anti-inflammatory effects of various cytokines has prompted new cytokine-targeting therapies, which revolutionised the treatment options in the last years for patients with inflammatory disorders. Disease-associated immune responses typically involve a complex interplay of multiple cytokines. Therefore, blockade of one single cytokine does not necessarily lead to a persistent remission in all patients with inflammatory disorders and fostered new therapeutic strategies targeting intracellular pathways shared by multiple cytokines. By inhibiting JAK-STAT signalling pathways common to families of cytokines, JAK-inhibitors (JAKinibs) have created a new paradigm for the treatment of inflammatory diseases. Multiple agents have been approved for various disorders and more are being investigated for several new indications. Second-generation selective JAKinibs have been devised with the aim to achieve an increased selectivity and a possible reduced risk of side effects. In the current review, we will summarise the current body of evidence of pan versus selective JAKinibs and the most recent insights on new side effects and indications, including COVID-19.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kastriot Kastrati
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Massimo Gadina
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - John O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- Translational Gastroenterology Unit, Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Bohlen J, Zhou Q, Philippot Q, Ogishi M, Rinchai D, Nieminen T, Seyedpour S, Parvaneh N, Rezaei N, Yazdanpanah N, Momenilandi M, Conil C, Neehus AL, Schmidt C, Arango-Franco CA, Voyer TL, Khan T, Yang R, Puchan J, Erazo L, Roiuk M, Vatovec T, Janda Z, Bagarić I, Materna M, Gervais A, Li H, Rosain J, Peel JN, Seeleuthner Y, Han JE, L'Honneur AS, Moncada-Vélez M, Martin-Fernandez M, Horesh ME, Kochetkov T, Schmidt M, AlShehri MA, Salo E, Saxen H, ElGhazali G, Yatim A, Soudée C, Sallusto F, Ensser A, Marr N, Zhang P, Bogunovic D, Cobat A, Shahrooei M, Béziat V, Abel L, Wang X, Boisson-Dupuis S, Teleman AA, Bustamante J, Zhang Q, Casanova JL. Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria. Cell 2023; 186:5114-5134.e27. [PMID: 37875108 PMCID: PMC10841658 DOI: 10.1016/j.cell.2023.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.
Collapse
Affiliation(s)
- Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| | - Qinhua Zhou
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Tea Nieminen
- New Children's Hospital, 00290 Helsinki, Finland
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Nanomedicine Research Association (NRA), P94V+8MF Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Department of Pediatrics, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Children's Medical Center, P94V+8MF Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 1419733151 Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 1419733151 Tehran, Iran
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Clément Conil
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carltin Schmidt
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Faculty of Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Carlos A Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Taushif Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, 8C8M+6Q Doha, Qatar; Department of Immunology, Sidra Medicine, 8C8M+6Q Doha, Qatar; The Jackson Laboratory, Farmington, CT, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, 8049 Zürich, Switzerland
| | - Lucia Erazo
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mykola Roiuk
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Taja Vatovec
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Heidelberg University, 69120 Heidelberg, Germany
| | - Zarah Janda
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Heidelberg University, 69120 Heidelberg, Germany
| | - Ivan Bagarić
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Heidelberg University, 69120 Heidelberg, Germany
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Michael E Horesh
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Tatiana Kochetkov
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Monika Schmidt
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mohammed A AlShehri
- King Fahad Medical City, Children's Specialized Hospital, 12231 Riyadh, Saudi Arabia
| | - Eeva Salo
- New Children's Hospital, 00290 Helsinki, Finland
| | - Harri Saxen
- New Children's Hospital, 00290 Helsinki, Finland
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City- Union71, Purehealth, Abu Dhabi, United Arab Emirates, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, 8049 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nico Marr
- College of Health and Life Sciences, Hamad Bin Khalifa University, 8C8M+6Q Doha, Qatar; Department of Immunology, Sidra Medicine, 8C8M+6Q Doha, Qatar
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, KU Leuven, 3000 Leuven, Belgium; Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Xiaochuan Wang
- Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, 75015 Paris, France.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10032, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
20
|
Jensen LT, Attfield KE, Feldmann M, Fugger L. Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1-3 inhibitors. EBioMedicine 2023; 97:104840. [PMID: 37863021 PMCID: PMC10589750 DOI: 10.1016/j.ebiom.2023.104840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
JAK inhibitors impact multiple cytokine pathways simultaneously, enabling high efficacy in treating complex diseases such as cancers and immune-mediated disorders. However, their broad reach also poses safety concerns, which have fuelled a demand for increasingly selective JAK inhibitors. Deucravacitinib, a first-in-class allosteric TYK2 inhibitor, represents a remarkable advancement in the field. Rather than competing at kinase domain catalytic sites as classical JAK1-3 inhibitors, deucravacitinib targets the regulatory pseudokinase domain of TYK2. It strikingly mirrors the functional effect of an evolutionary conserved naturally occurring TYK2 variant, P1104A, known to protect against multiple autoimmune diseases yet provide sufficient TYK2-mediated cytokine signalling required to prevent immune deficiency. The unprecedentedly high functional selectivity and efficacy-safety profile of deucravacitinib, initially demonstrated in psoriasis, combined with genetic support, and promising outcomes in early SLE clinical trials make this inhibitor ripe for exploration in other autoimmune diseases for which better, safe, and efficacious treatments are urgently needed.
Collapse
Affiliation(s)
- Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Kathrine E Attfield
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Feldmann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute for Rheumatology, Botnar Research Institute, University of Oxford, Oxford OX3 7LD, UK
| | - Lars Fugger
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
21
|
Sun Q, Rowland B, Wang W, Miller-Fleming TW, Cox N, Graff M, Faucon A, Shuey MM, Blue EE, Auer P, Li Y, Sankaran VG, Reiner AP, Raffield LM. Genetic examination of hematological parameters in SARS-CoV-2 infection and COVID-19. Blood Cells Mol Dis 2023; 103:102782. [PMID: 37558590 PMCID: PMC10507673 DOI: 10.1016/j.bcmd.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
People hospitalized with COVID-19 often exhibit altered hematological traits associated with disease prognosis (e.g., lower lymphocyte and platelet counts). We investigated whether inter-individual variability in baseline hematological traits influences risk of acute SARS-CoV-2 infection or progression to severe COVID-19. We report inconsistent associations between blood cell traits with incident SARS-CoV-2 infection and severe COVID-19 in UK Biobank and the Vanderbilt University Medical Center Synthetic Derivative (VUMC SD). Since genetically determined blood cell measures better represent cell abundance across the lifecourse, we also assessed the shared genetic architecture of baseline blood cell traits on COVID-19 related outcomes by Mendelian randomization (MR) analyses. We found significant relationships between COVID-19 severity and mean sphered cell volume after adjusting for multiple testing. However, MR results differed significantly across different freezes of COVID-19 summary statistics and genetic correlation between these traits was modest (0.1), decreasing our confidence in these results. We observed overlapping genetic association signals between other hematological and COVID-19 traits at specific loci such as MAPT and TYK2. In conclusion, we did not find convincing evidence of relationships between the genetic architecture of blood cell traits and either SARS-CoV-2 infection or COVID-19 hospitalization, though we do see evidence of shared signals at specific loci.
Collapse
Affiliation(s)
- Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bryce Rowland
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wanjiang Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nancy Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Misa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Annika Faucon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megan M Shuey
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Paul Auer
- Division of Biostatistics, Institute for Health and Equity, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
22
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
23
|
Garnish SE, Martin KR, Kauppi M, Jackson VE, Ambrose R, Eng VV, Chiou S, Meng Y, Frank D, Tovey Crutchfield EC, Patel KM, Jacobsen AV, Atkin-Smith GK, Di Rago L, Doerflinger M, Horne CR, Hall C, Young SN, Cook M, Athanasopoulos V, Vinuesa CG, Lawlor KE, Wicks IP, Ebert G, Ng AP, Slade CA, Pearson JS, Samson AL, Silke J, Murphy JM, Hildebrand JM. A common human MLKL polymorphism confers resistance to negative regulation by phosphorylation. Nat Commun 2023; 14:6046. [PMID: 37770424 PMCID: PMC10539340 DOI: 10.1038/s41467-023-41724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-β induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.
Collapse
Affiliation(s)
- Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Maria Kauppi
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Victoria E Jackson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Rebecca Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Yanxiang Meng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Georgia K Atkin-Smith
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Christopher R Horne
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Samuel N Young
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Matthew Cook
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The Francis Crick Institute, London, UK
- University College London, London, UK
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Ashley P Ng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Clinical Haematology Department, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Charlotte A Slade
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - André L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Cobat A, Zhang Q, Abel L, Casanova JL, Fellay J. Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants. Annu Rev Biomed Data Sci 2023; 6:465-486. [PMID: 37196358 PMCID: PMC10879986 DOI: 10.1146/annurev-biodatasci-020222-021705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.
Collapse
Affiliation(s)
- Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Lai R, Gong DN, Williams T, Ogunsola AF, Cavallo K, Lindestam Arlehamn CS, Acolatse S, Beamer GL, Ferris MT, Sassetti CM, Lauffenburger DA, Behar SM. Host genetic background is a barrier to broadly effective vaccine-mediated protection against tuberculosis. J Clin Invest 2023; 133:e167762. [PMID: 37200108 PMCID: PMC10313364 DOI: 10.1172/jci167762] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diana N. Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Travis Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Abiola F. Ogunsola
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Sarah Acolatse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
26
|
Abstract
Autoimmune diseases display a high degree of comorbidity within individuals and families, suggesting shared risk factors. Over the past 15 years, genome-wide association studies have established the polygenic basis of these common conditions and revealed widespread sharing of genetic effects, indicative of a shared immunopathology. Despite ongoing challenges in determining the precise genes and molecular consequences of these risk variants, functional experiments and integration with multimodal genomic data are providing valuable insights into key immune cells and pathways driving these diseases, with potential therapeutic implications. Moreover, genetic studies of ancient populations are shedding light on the contribution of pathogen-driven selection pressures to the increased prevalence of autoimmune disease. This Review summarizes the current understanding of autoimmune disease genetics, including shared effects, mechanisms, and evolutionary origins.
Collapse
Affiliation(s)
- Adil Harroud
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- The Neuro (Montreal Neurological Institute and Hospital), McGill University, Montréal, Quebec, Canada
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| |
Collapse
|
27
|
Rockstrom M, Lutz R, Dickeson K, O'Rorke EV, Narita M, Amram O, Chan ED. Fulminant pulmonary tuberculosis in a previously healthy young woman from the Marshall Islands: Potential risk factors. J Clin Tuberc Other Mycobact Dis 2023; 31:100351. [PMID: 36923241 PMCID: PMC10009541 DOI: 10.1016/j.jctube.2023.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
A 19-year-old woman originally from the Republic of the Marshall Islands presented with diffuse pneumonia and acute hypoxemic respiratory failure. She dies one month into her hospitalization but the diagnosis of pulmonary tuberculosis (TB) was not made until one day before her demise. A contact investigation screened a total of 155 persons with 36 (23%) found to have latent TB infection and seven (4.5%) with active pulmonary TB. This unfortunate case provided the opportunity to analyze the epidemiology of TB in the state of Washington in the context of those who emigrated from the Marshall Islands. The development of fulminant pulmonary TB in this previously healthy young woman also provides a segue to discuss potential risk factors for TB in the index case that include: (i) foreign-born in a TB-endemic country; (ii) race and genetic factors; (iii) age; (iv) body habitus; (v) pregnancy; and (vi) use of glucocorticoids.
Collapse
Affiliation(s)
- Matthew Rockstrom
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert Lutz
- Washington State Department of Health, Tumwater, WA, United States
| | - Katie Dickeson
- Spokane Regional Health District, Spokane, WA, United States
| | - Erin V O'Rorke
- Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Masahiro Narita
- Public Health - Seattle & King County Public Health, and University of Washington, Seattle, WA, United States
| | - Ofer Amram
- Washington State University, Pullman, WA, United States
| | - Edward D Chan
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Academic Affairs, National Jewish Health, Denver, CO, United States.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
28
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
29
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
30
|
Al-Mousa H, Barbouche MR. Genetics of Inborn Errors of Immunity in highly consanguineous Middle Eastern and North African populations. Semin Immunol 2023; 67:101763. [PMID: 37075586 DOI: 10.1016/j.smim.2023.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Consanguineous marriages in Middle Eastern and North African (MENA) countries are deeply-rooted tradition and highly prevalent resulting into increased prevalence of autosomal recessive diseases including Inborn Errors of Immunity (IEIs). Molecular genetic testing is an important diagnostic tool for IEIs since it provides a definite diagnosis, genotype-phenotype correlation, and guide therapy. In this review, we will discuss the current state and challenges of genomic and variome studies in MENA region populations, as well as the importance of funding advanced genome projects. In addition, we will review the MENA underlying molecular genetic defects of over 2457 patients published with the common IEIs, where autosomal recessive mode of inheritance accounts for 76% of cases with increased prevalence of combined immunodeficiency diseases (50%). The efforts made in the last three decades in terms of international collaboration and of in situ capacity building in MENA region countries led to the discovery of more than 150 novel genes involved in IEIs. Expanding sequencing studies within the MENA will undoubtedly be a unique asset for the IEI genetics which can advance research, and support precise genomic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hamoud Al-Mousa
- Section of Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mohamed-Ridha Barbouche
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
31
|
Massa C, Wang Y, Marr N, Seliger B. Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. Int J Mol Sci 2023; 24:ijms24076736. [PMID: 37047709 PMCID: PMC10095295 DOI: 10.3390/ijms24076736] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 04/08/2023] Open
Abstract
Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.
Collapse
Affiliation(s)
- Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| | - Yuan Wang
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Nico Marr
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
32
|
Ogishi M, Yang R, Rosain J, Bustamante J, Casanova JL, Boisson-Dupuis S. Inborn errors of human transcription factors governing IFN-γ antimycobacterial immunity. Curr Opin Immunol 2023; 81:102296. [PMID: 36867972 PMCID: PMC10023504 DOI: 10.1016/j.coi.2023.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Inborn errors of immunity (IEI) delineate redundant and essential defense mechanisms in humans. We review 15 autosomal-dominant (AD) or -recessive (AR) IEI involving 11 transcription factors (TFs) and impairing interferon-gamma (IFN-γ) immunity, conferring a predisposition to mycobacterial diseases. We consider three mechanism-based categories: 1) IEI mainly affecting myeloid compartment development (AD GATA2 and AR and AD IRF8 deficiencies), 2) IEI mainly affecting lymphoid compartment development (AR FOXN1, AR PAX1, AR RORγ/RORγT, AR T-bet, AR c-Rel, AD STAT3 gain-of-function (GOF), and loss-of-function (LOF) deficiencies), and 3) IEI mainly affecting myeloid and/or lymphoid function (AR and AD STAT1 LOF, AD STAT1 GOF, AR IRF1, and AD NFKB1 deficiencies). We discuss the contribution of the discovery and study of inborn errors of TFs essential for host defense against mycobacteria to molecular and cellular analyses of human IFN-γ immunity.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program, Rockefeller University, New York, NY, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
33
|
Sahin A, Kara-Aksay A, Yilmaz D, Bicmen C, Belkaya S, Kaya A, Yilmaz D. Isolated Subcutaneous Abscess: A Rare Presentation of Extrapulmonary Tuberculosis. Pediatr Infect Dis J 2023:00006454-990000000-00409. [PMID: 37054384 DOI: 10.1097/inf.0000000000003929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- Aslihan Sahin
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ahu Kara-Aksay
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Dilek Yilmaz
- Department of Pediatric Infectious Diseases, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Can Bicmen
- Department of Microbiology, Dr. Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, Izmir, Turkey
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramaci Bilkent University, Ankara, Turkey
| | - Ahmet Kaya
- Department of Orthopedics and Traumatology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Dilek Yilmaz
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
34
|
Sabikunnahar B, Caldwell S, Varnum S, Hogan T, Cooper A, Lahue KG, Bivona JJ, Cousens PM, Symeonides M, Ballif BA, Poynter ME, Krementsov DN. Long Noncoding RNA U90926 Is Induced in Activated Macrophages, Is Protective in Endotoxic Shock, and Encodes a Novel Secreted Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:807-819. [PMID: 36705532 PMCID: PMC9998366 DOI: 10.4049/jimmunol.2200215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023]
Abstract
Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.
Collapse
Affiliation(s)
- Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Stella Varnum
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Tyler Hogan
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Alexei Cooper
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Joseph J Bivona
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT
- Department of Medicine, University of Vermont, Burlington, VT
| | | | - Menelaos Symeonides
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT
| | | | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| |
Collapse
|
35
|
Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, Martin-Fernandez M, Conil C, Rinchai D, Momenilandi M, Mahdaviani A, Keramatipour M, Rosain J, Yang R, Khan T, Neehus AL, Materna M, Han JE, Peel J, Mele F, Weisshaar M, Jovic S, Bastard P, Lévy R, Le Voyer T, Zhang P, Renkilaraj MRLM, Arango-Franco CA, Pelham S, Seeleuthner Y, Pochon M, Ata MMA, Ali FA, Migaud M, Soudée C, Kochetkov T, Molitor A, Carapito R, Bahram S, Boisson B, Fieschi C, Mansouri D, Marr N, Okada S, Shahrooei M, Parvaneh N, Chavoshzadeh Z, Cobat A, Bogunovic D, Abel L, Tangye S, Ma CS, Béziat V, Sallusto F, Boisson-Dupuis S, Bustamante J, Casanova JL, Puel A. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol 2023; 8:eabq5204. [PMID: 36763636 PMCID: PMC10069949 DOI: 10.1126/sciimmunol.abq5204] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rβ1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clement Conil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Simon Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | | | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Tatiana Kochetkov
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
| | - Davood Mansouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha Qatar
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, Japan
| | | | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Teheran University of Medical Sciences, Teheran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stuart Tangye
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy S. Ma
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
36
|
Kerner G, Neehus AL, Philippot Q, Bohlen J, Rinchai D, Kerrouche N, Puel A, Zhang SY, Boisson-Dupuis S, Abel L, Casanova JL, Patin E, Laval G, Quintana-Murci L. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. CELL GENOMICS 2023; 3:100248. [PMID: 36819665 PMCID: PMC9932995 DOI: 10.1016/j.xgen.2022.100248] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/24/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.
Collapse
Affiliation(s)
- Gaspard Kerner
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Guillaume Laval
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
- Collège de France, Chair of Human Genomics and Evolution, 75005 Paris, France
| |
Collapse
|
37
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
38
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
39
|
Abstract
This perspective draws on the record of ancient pathogen genomes and microbiomes illuminating patterns of infectious disease over the course of the Holocene in order to address the following question. How did major changes in living circumstances involving the transition to and intensification of farming alter pathogens and their distributions? Answers to this question via ancient DNA research provide a rapidly expanding picture of pathogen evolution and in concert with archaeological and historical data, give a temporal and behavioral context for heath in the past that is relevant for challenges facing the world today, including the rise of novel pathogens.
Collapse
|
40
|
Errami A, El Baghdadi J, Ailal F, Benhsaien I, Ouazahrou K, Abel L, Casanova JL, Boisson-Dupuis S, Bustamante J, Bousfiha AA. Mendelian susceptibility to mycobacterial disease: an overview. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
Mycobacteria include ubiquitous species of varying virulence. However, environmental and individual-specific factors, particularly host genetics, play a crucial role in the outcome of exposure to mycobacteria. The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD), a rare inborn error of IFN-γ immunity conferring a selective susceptibility to infections even with low virulent mycobacteria, in patients, mostly children, without recognizable immune defects in routine tests. This article provides a global and updated description of the most important molecular, cellular, and clinical features of all known monogenic defects of MSMD.
Results
Over the last 20 years, 19 genes were found to be mutated in MSMD patients (IFNGR1, IFNGR2, IFNG, IL12RB1, IL12RB2, IL23R, IL12B, ISG15, USP18, ZNFX1, TBX21, STAT1, TYK2, IRF8, CYBB, JAK1, RORC, NEMO, and SPPL2A), and the allelic heterogeneity at these loci has led to the definition of 35 different genetic defects. Despite the clinical and genetic heterogeneity, almost all genetic etiologies of MSMD alter the interferon gamma (IFN-γ)-mediated immunity, by impairing or abolishing IFN-γ production or the response to this cytokine or both. It was proven that the human IFN-γ level is a quantitative trait that defines the outcome of mycobacterial infection.
Conclusion
The study of these monogenic defects contributes to understanding the molecular mechanism of mycobacterial infections in humans and to the development of new diagnostic and therapeutic approaches to improve care and prognosis. These discoveries also bridge the gap between the simple Mendelian inheritance and complex human genetics.
Collapse
|
41
|
Ogishi M, Yang R, Rodriguez R, Golec DP, Martin E, Philippot Q, Bohlen J, Pelham SJ, Arias AA, Khan T, Ata M, Al Ali F, Rozenberg F, Kong XF, Chrabieh M, Laine C, Lei WT, Han JE, Seeleuthner Y, Kaul Z, Jouanguy E, Béziat V, Youssefian L, Vahidnezhad H, Rao VK, Neven B, Fieschi C, Mansouri D, Shahrooei M, Pekcan S, Alkan G, Emiroğlu M, Tokgöz H, Uitto J, Hauck F, Bustamante J, Abel L, Keles S, Parvaneh N, Marr N, Schwartzberg PL, Latour S, Casanova JL, Boisson-Dupuis S. Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis. J Exp Med 2023; 220:213662. [PMID: 36326697 PMCID: PMC9641312 DOI: 10.1084/jem.20220484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Inborn errors of IFN-γ immunity can underlie tuberculosis (TB). We report three patients from two kindreds without EBV viremia or disease but with severe TB and inherited complete ITK deficiency, a condition associated with severe EBV disease that renders immunological studies challenging. They have CD4+ αβ T lymphocytopenia with a concomitant expansion of CD4-CD8- double-negative (DN) αβ and Vδ2- γδ T lymphocytes, both displaying a unique CD38+CD45RA+T-bet+EOMES- phenotype. Itk-deficient mice recapitulated an expansion of the γδ T and DN αβ T lymphocyte populations in the thymus and spleen, respectively. Moreover, the patients' T lymphocytes secrete small amounts of IFN-γ in response to TCR crosslinking, mitogens, or forced synapse formation with autologous B lymphocytes. Finally, the patients' total lymphocytes secrete small amounts of IFN-γ, and CD4+, CD8+, DN αβ T, Vδ2+ γδ T, and MAIT cells display impaired IFN-γ production in response to BCG. Inherited ITK deficiency undermines the development and function of various IFN-γ-producing T cell subsets, thereby underlying TB.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,The David Rockefeller Graduate Program, Rockefeller University, New York, NY
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Quentin Philippot
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Jonathan Bohlen
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia.,School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Taushif Khan
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Manar Ata
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Maya Chrabieh
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Candice Laine
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Yoann Seeleuthner
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Zenia Kaul
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Vivien Béziat
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bénédicte Neven
- Pediatric Immunology and Hematology Department, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP Université de Paris, Paris, France.,INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Gulsum Alkan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Melike Emiroğlu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Fabian Hauck
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France.,Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| |
Collapse
|
42
|
Urdinez L, Goris V, Danielian S, Oleastro M, Torres NH, Marti JL, Izaguirre MJ. Disseminated BCG Disease in a Patient with Hyper IgE Syndrome due to Dominant-Negative STAT3 Mutation-Case Report. J Clin Immunol 2023; 43:65-68. [PMID: 36031667 DOI: 10.1007/s10875-022-01359-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/21/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Luciano Urdinez
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina.
| | - Veronica Goris
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Silvia Danielian
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Matias Oleastro
- Immunology and Rheumatology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Barmania F, Mellet J, Holborn MA, Pepper MS. Genetic Associations with Coronavirus Susceptibility and Disease Severity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:119-140. [PMID: 37378764 DOI: 10.1007/978-3-031-28012-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global public health emergency, and the disease it causes is highly variable in its clinical presentation. Host genetic factors are increasingly recognised as a determinant of infection susceptibility and disease severity. Several initiatives and groups have been established to analyse and review host genetic epidemiology associated with COVID-19 outcomes. Here, we review the genetic loci associated with COVID-19 susceptibility and severity focusing on the common variants identified in genome-wide association studies.
Collapse
Affiliation(s)
- Fatima Barmania
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Megan A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
44
|
Yarmolinsky J, Amos CI, Hung RJ, Moreno V, Burrows K, Smith‐Byrne K, Atkins JR, Brennan P, McKay JD, Martin RM, Davey Smith G. Association of germline TYK2 variation with lung cancer and non-Hodgkin lymphoma risk. Int J Cancer 2022; 151:2155-2160. [PMID: 35747941 PMCID: PMC9588593 DOI: 10.1002/ijc.34180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023]
Abstract
Deucravacitinib, a novel, selective inhibitor of TYK2 is currently under review at the FDA and EMA for treatment of moderate-to-severe plaque psoriasis. It is unclear whether recent safety concerns (ie, elevated rates of lung cancer and lymphoma) related to similar medications (ie, other JAK inhibitors) are shared with this novel TYK2 inhibitor. We used a partial loss-of-function variant in TYK2 (rs34536443), previously shown to protect against psoriasis and other autoimmune diseases, to evaluate the potential effect of therapeutic TYK2 inhibition on risk of lung cancer and non-Hodgkin lymphoma. Summary genetic association data on lung cancer risk were obtained from a GWAS meta-analysis of 29 266 cases and 56 450 controls in the Integrative Analysis of Lung Cancer Risk and Aetiology (INTEGRAL) consortium. Summary genetic association data on non-Hodgkin lymphoma risk were obtained from a GWAS meta-analysis of 8489 cases and 374 506 controls in the UK Biobank and InterLymph consortium. In the primary analysis, each copy of the minor allele of rs34536443, representing partial TYK2 inhibition, was associated with an increased risk of lung cancer (OR 1.15, 95% CI 1.09-1.23, P = 2.29 × 10-6 ) and non-Hodgkin lymphoma (OR 1.18, 95% CI 1.05-1.33, P = 5.25 × 10-3 ). Our analyses using an established partial loss-of-function mutation to mimic TYK2 inhibition provide genetic evidence that therapeutic TYK2 inhibition may increase risk of lung cancer and non-Hodgkin lymphoma. These findings, consistent with recent reports from postmarketing trials of similar JAK inhibitors, could have important implications for future safety assessment of deucravacitinib and other TYK2 inhibitors in development.
Collapse
Affiliation(s)
- James Yarmolinsky
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health SciencesBristol Medical School, University of BristolBristolUK
| | | | - Rayjean J. Hung
- Lunenfeld‐Tanenbaum Research InstituteSinai HealthTorontoOntarioCanada
- University of TorontoTorontoOntarioCanada
| | - Victor Moreno
- Biomarkers and Susceptibility Unit, Oncology Data Analytics ProgramCatalan Institute of Oncology (ICO), L'Hospitalet de LlobregatBarcelonaSpain
- Colorectal Cancer Group, ONCOBELL ProgramBellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
- Department of Clinical Sciences, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Kimberley Burrows
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health SciencesBristol Medical School, University of BristolBristolUK
| | - Karl Smith‐Byrne
- Cancer Epidemiology Unit, Oxford Population HealthUniversity of OxfordOxfordUK
| | - Joshua R. Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO)LyonFrance
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO)LyonFrance
| | | | - James D. McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO)LyonFrance
| | - Richard M. Martin
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health SciencesBristol Medical School, University of BristolBristolUK
- University Hospitals Bristol, NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research Centre, University of BristolBristolUK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health SciencesBristol Medical School, University of BristolBristolUK
| |
Collapse
|
45
|
Rabaan AA, Mutair AA, Aljeldah M, Shammari BRA, Sulaiman T, Alshukairi AN, Alfaresi M, Al-Jishi JM, Al Bati NA, Al-Mozaini MA, Bshabshe AA, Almatouq JA, Abuzaid AA, Alfaraj AH, Al-Adsani W, Alabdullah M, Alwarthan S, Alsalman F, Alwashmi ASS, Alhumaid S. Genetic Variants and Protective Immunity against SARS-CoV-2. Genes (Basel) 2022; 13:2355. [PMID: 36553622 PMCID: PMC9778397 DOI: 10.3390/genes13122355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain 499, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia
| | - Neda A. Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed Al-Mana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
46
|
Hsu AP, Korzeniowska A, Aguilar CC, Gu J, Karlins E, Oler AJ, Chen G, Reynoso GV, Davis J, Chaput A, Peng T, Sun L, Lack JB, Bays DJ, Stewart ER, Waldman SE, Powell DA, Donovan FM, Desai JV, Pouladi N, Long Priel DA, Yamanaka D, Rosenzweig SD, Niemela JE, Stoddard J, Freeman AF, Zerbe CS, Kuhns DB, Lussier YA, Olivier KN, Boucher RC, Hickman HD, Frelinger J, Fierer J, Shubitz LF, Leto TL, Thompson GR, Galgiani JN, Lionakis MS, Holland SM. Immunogenetics associated with severe coccidioidomycosis. JCI Insight 2022; 7:e159491. [PMID: 36166305 PMCID: PMC9746810 DOI: 10.1172/jci.insight.159491] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Disseminated coccidioidomycosis (DCM) is caused by Coccidioides, pathogenic fungi endemic to the southwestern United States and Mexico. Illness occurs in approximately 30% of those infected, less than 1% of whom develop disseminated disease. To address why some individuals allow dissemination, we enrolled patients with DCM and performed whole-exome sequencing. In an exploratory set of 67 patients with DCM, 2 had haploinsufficient STAT3 mutations, and defects in β-glucan sensing and response were seen in 34 of 67 cases. Damaging CLEC7A and PLCG2 variants were associated with impaired production of β-glucan-stimulated TNF-α from PBMCs compared with healthy controls. Using ancestry-matched controls, damaging CLEC7A and PLCG2 variants were overrepresented in DCM, including CLEC7A Y238* and PLCG2 R268W. A validation cohort of 111 patients with DCM confirmed the PLCG2 R268W, CLEC7A I223S, and CLEC7A Y238* variants. Stimulation with a DECTIN-1 agonist induced DUOX1/DUOXA1-derived hydrogen peroxide [H2O2] in transfected cells. Heterozygous DUOX1 or DUOXA1 variants that impaired H2O2 production were overrepresented in discovery and validation cohorts. Patients with DCM have impaired β-glucan sensing or response affecting TNF-α and H2O2 production. Impaired Coccidioides recognition and decreased cellular response are associated with disseminated coccidioidomycosis.
Collapse
Affiliation(s)
- Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Agnieszka Korzeniowska
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Cynthia C. Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Eric Karlins
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Glennys V. Reynoso
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Alexandria Chaput
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Tao Peng
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Respiratory and Critical Care Medicine, Laboratory of Pulmonary Immunology and Inflammation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
| | - Ethan R. Stewart
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
| | - Sarah E. Waldman
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
| | - Daniel A. Powell
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Fariba M. Donovan
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Medicine, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Jigar V. Desai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nima Pouladi
- Center for Biomedical Informatics and Biostatistics and
- The Center for Applied Genetics and Genomic Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Debra A. Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daisuke Yamanaka
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center and
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center and
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Christa S. Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yves A. Lussier
- Center for Biomedical Informatics and Biostatistics and
- The Center for Applied Genetics and Genomic Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Richard C. Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jeffrey Frelinger
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Joshua Fierer
- VA HealthCare San Diego, San Diego, California, USA
- Division of Infectious Diseases, Departments of Pathology and Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lisa F. Shubitz
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Thomas L. Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Medicine, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Wang Y, Guga S, Wu K, Khaw Z, Tzoumkas K, Tombleson P, Comeau ME, Langefeld CD, Cunninghame Graham DS, Morris DL, Vyse TJ. COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection. PLoS Genet 2022; 18:e1010253. [PMID: 36327221 PMCID: PMC9632821 DOI: 10.1371/journal.pgen.1010253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Genome wide association studies show there is a genetic component to severe COVID-19. We find evidence that the genome-wide genetic association signal with severe COVID-19 is correlated with that of systemic lupus erythematosus (SLE), having formally tested this using genetic correlation analysis by LD score regression. To identify the shared associated loci and gain insight into the shared genetic effects, using summary level data we performed meta-analyses, a local genetic correlation analysis and fine-mapping using stepwise regression and functional annotation. This identified multiple loci shared between the two traits, some of which exert opposing effects. The locus with most evidence of shared association is TYK2, a gene critical to the type I interferon pathway, where the local genetic correlation is negative. Another shared locus is CLEC1A, where the direction of effects is aligned, that encodes a lectin involved in cell signaling, and the anti-fungal immune response. Our analyses suggest that several loci with reciprocal effects between the two traits have a role in the defense response pathway, adding to the evidence that SLE risk alleles are protective against infection. We observed a correlation between the genetic associations with severe COVID-19 and those with systemic lupus erythematosus (SLE, Lupus), and aimed to discover which genetic loci were shared by these diseases and what biological processes were involved. This resulted in the discovery of several genetic loci, some of which had alleles that were risk for both diseases and some of which were risk for severe COVID-19 yet protective for SLE. The locus with most evidence of shared association (TYK2) is involved in interferon production, a process that is important in response to viral infection and known to be dysregulated in SLE patients. Other shared associated loci contained genes also involved in the defense response and the immune system signaling. These results add to the growing evidence that there are alleles in the human genome that provide protection against viral infection yet are risk for autoimmune disease.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Suri Guga
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Kejia Wu
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Zoe Khaw
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Konstantinos Tzoumkas
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Phil Tombleson
- NIHR GSTFT/KCL Biomedical Research Centre, London, United Kingdom
| | - Mary E. Comeau
- Department of Biostatistics and Data Science and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | | | - David L. Morris
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
- * E-mail:
| | - Timothy J. Vyse
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
48
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, Halpern J, Mulwa J, Keating N, Chrabieh M, Lainé C, Seeleuthner Y, Ramírez-Alejo N, Nekooie-Marnany N, Guennoun A, Muller-Fleckenstein I, Fleckenstein B, Kilic SS, Minegishi Y, Ehl S, Kaiser-Labusch P, Kendir-Demirkol Y, Rozenberg F, Errami A, Zhang SY, Zhang Q, Bohlen J, Philippot Q, Puel A, Jouanguy E, Pourmoghaddas Z, Bakhtiar S, Willasch AM, Horneff G, Llanora G, Shek LP, Chai LY, Tay SH, Rahimi HH, Mahdaviani SA, Nepesov S, Bousfiha AA, Erdeniz EH, Karbuz A, Marr N, Navarrete C, Adeli M, Hammarstrom L, Abolhassani H, Parvaneh N, Al Muhsen S, Alosaimi MF, Alsohime F, Nourizadeh M, Moin M, Arnaout R, Alshareef S, El-Baghdadi J, Genel F, Sherkat R, Kiykim A, Yücel E, Keles S, Bustamante J, Abel L, Casanova JL, Boisson-Dupuis S. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med 2022; 219:e20220094. [PMID: 36094518 PMCID: PMC9472563 DOI: 10.1084/jem.20220094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022] Open
Abstract
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.
Collapse
Affiliation(s)
- Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joshua Halpern
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jeanette Mulwa
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Noé Ramírez-Alejo
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sara S. Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Zahra Pourmoghaddas
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andre M. Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Gerd Horneff
- Center for Pediatric Rheumatology, Department of Pediatrics, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Genevieve Llanora
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
| | - Lynette P. Shek
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, National University of Singapore, Singapore
| | - Louis Y.A. Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute; Synthetic Biology Translational Research Program, National University of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | - Hamid H. Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Serdar Nepesov
- Department of Pediatric Allergy and Immunology, Istanbul Medipol University, Istanbul, Turkey
| | - Aziz A. Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, King Hassan II University, Ibn-Rochd Hospital, Casablanca, Morocco
| | - Emine Hafize Erdeniz
- Division of Pediatric Infectious Diseases, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Karbuz
- Division of Pediatric Infectious Diseases, Okmeydani Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Carmen Navarrete
- Department of Immunology, Hospital de Niños Roberto del Río, Santiago de Chile, Chile
| | - Mehdi Adeli
- Division of Allergy and Immunology, Sidra Medicine/Hamad Medical Corp., Doha, Qatar
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Beijing Genomics Institute, Shenzhen, China
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saleh Al Muhsen
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alosaimi
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Pediatric Intensive Care Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Rand Arnaout
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Al Faisal University, Riyadh, Saudi Arabia
| | - Saad Alshareef
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Ferah Genel
- University of Health Sciences, Dr Behçet Uz Children’s Hospital, Division of Pediatric Immunology, Izmir, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ayça Kiykim
- Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Yücel
- Division of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Deparment of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
50
|
Genetic architecture of tuberculosis susceptibility: A comprehensive research synopsis, meta-analyses, and epidemiological evidence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105352. [PMID: 35998870 DOI: 10.1016/j.meegid.2022.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
To date, many studies have been conducted to investigate associations between variants and tuberculosis risk; however, the results have been inconclusive. Here, we systematically provide a summary of the understanding of the genetic architecture of tuberculosis susceptibility. We searched PubMed, Embase and Web of Science to identify genetic association studies of tuberculosis published through October 31, 2021. We conducted meta-analyses for the genetic association with tuberculosis risk. We graded levels of cumulative epidemiological evidence of significant associations with risk of tuberculosis and false-positive report probability tests. We performed functional annotations for these variants using data from the Encyclopedia of DNA Elements (ENCODE) Project and other databases. We identified 703 eligible articles comprising 298,074 cases and 879,593 controls through screening a total of 24,398 citations. Meta-analyses were conducted for 614 genetic variants in 469 genes or loci. We found 39 variants that were nominally significantly associated with tuberculosis risk. Cumulative epidemiological evidence for a significant association was graded strong for 9 variants in or near 9 genes. Among them, 5 variants were associated with tuberculosis risk in at least three main ethnicity (African, Asian and White) which together explained approximately 9.59% of the familial relative risk of tuberculosis. Data from ENCODE and other databases suggested that 8 of these 9 genetic variants with strong evidence might fall within putative functional regions. Our study summarizes the current literature on the genetic architecture of tuberculosis susceptibility and provides useful data for designing future studies to investigate the genetic association with tuberculosis risk.
Collapse
|