1
|
Cross GB, Sari IP, Burkill SM, Yap CW, Nguyen H, Quyet D, Dalay VB, Gutierrez E, Balanag VM, Castillo RJ, Chang CC, Kelleher AD, O'Doherty J, Paton NI. PET-CT outcomes from a randomised controlled trial of rosuvastatin as an adjunct to standard tuberculosis treatment. Nat Commun 2024; 15:10475. [PMID: 39622823 PMCID: PMC11611914 DOI: 10.1038/s41467-024-54419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Adjunctive rosuvastatin for rifampicin-susceptible pulmonary tuberculosis (rs-PTB) shows no effect on microbiological or radiological outcomes in a phase IIb randomised, controlled trial (NCT04504851). We explore the impact of adjunctive rosuvastatin on 18F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) imaging in a sub-study of 24 participants. Changes in standardised uptake value (SUVmax, SUVmean), Total Metabolic Volume, (TMV), Total Lesion Glycolysis (TLG), cavity diameter and volume, between week 0 and week 8 post-randomisation, are evaluated. Here we show no evidence of difference in the reduction in TLG [median 65.8% for the rosuvastatin group (Q1, Q3 38.6, 94.5) vs 64.3% for standard tuberculosis treatment group (Q1, Q3 -20.0, 81.7), P = 0.32], reduction in cavity volume on CT [median 3.2 cm3 (IQR 11.1, 0.5) for rosuvastatin, 2.2 cm3 (IQR 4.6, 0.7) for control (p = 0.72)], or any other PET-CT parameter measured. We show that the first 8-weeks of standard tuberculosis treatment results in a reduction in the volumetric indices (TLG and TMV), but had little change in SUVmax or SUVmean. Change in TLG and TMV holds promise as biomarkers of tuberculosis treatment response: future PET-CT studies should evaluate their role in predicting relapse-free cure, and the overall role of 18F-FDG-PET-CT as a tool for early-phase tuberculosis clinical trials.
Collapse
Affiliation(s)
- Gail B Cross
- National University Hospital, Department of Medicine, Singapore, Singapore.
- National University of Singapore, Infectious Disease Translational Research Programme, Singapore, Singapore.
- Kirby Institute, University of New South Wales, Sydney, Australia.
- Burnet Institute, Melbourne, Australia.
| | - Intan P Sari
- National University Hospital, Department of Medicine, Singapore, Singapore
| | | | - Chee Woei Yap
- National University Health Systems, Department of Diagnostic Imaging, Singapore, Singapore
| | - Han Nguyen
- Vietnam Military Medical University, Respiratory Medicine, Hanoi, Viet Nam
- Karolinska Institute, Department of Medicine Solna, Stockholm, Sweden
| | - Do Quyet
- Vietnam Military Medical University, Respiratory Medicine, Hanoi, Viet Nam
| | - Victoria B Dalay
- De La Salle Medical and Health Sciences Institute, Cavite, Philippines
| | | | | | | | | | | | - Jim O'Doherty
- National University of Singapore, Clinical Imaging Research Centre, Singapore, Singapore
- Siemens Medical Solutions, Malvern, USA
| | - Nicholas I Paton
- National University Hospital, Department of Medicine, Singapore, Singapore
- National University of Singapore, Infectious Disease Translational Research Programme, Singapore, Singapore
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Gomes TA, da Silva TP, Machado E, Vasconcelos SEG, Mietto BS, de Faria Bertoluci DF, Rosa PS, Pinheiro RO, Suffys PN, Lery LMS, Lara FA. Genomic and Phenotypic Variations Among Thai-53 and Mycobacterium leprae Clinical Isolates: Implications for Leprosy Pathogenesis and Research. Pathogens 2024; 13:986. [PMID: 39599539 PMCID: PMC11597610 DOI: 10.3390/pathogens13110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024] Open
Abstract
Throughout Mycobacterium leprae's (M. leprae) evolutionary trajectory, nearly half of its genome was converted into pseudogenes. Despite this drastic reduction in genetic content, the genome sequence identity among M. leprae isolates worldwide is remarkably high compared to other pathogens. In this study, we investigated the genotype and morphotype of three M. leprae strains: the reference strain Thai-53 (genotype 1A), and two clinical isolates from Brazilian leprosy relapse patients, which were Br014-03 (genotypes 3I) and Br014-01(4N). We compared their genome sequences and their interaction with human Schwann cells from the ST88-14 lineage and with human primary macrophages. On the genetic level, we observed over a hundred missense mutations in the three strains, translated into significant phenotypic changes such as: prolonged doubling time, altered cytokine induction, reduced interaction rates, and decreased intracellular viability in Schwann cells. Our findings underscore the concept that despite their 99.992% identity, even small genomic disparities in M. leprae genomes can elicit substantial alterations in bacilli interaction with host cells and subsequent immune responses. Consequently, our data could lead to better comprehension of correlation between pathogen mutations and the diverse clinical manifestations observed in leprosy patients.
Collapse
Affiliation(s)
- Tiago Araujo Gomes
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.A.G.); (L.M.S.L.)
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
| | - Tatiana Pereira da Silva
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Edson Machado
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Sidra Ezidio Gonçalves Vasconcelos
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Bruno Siqueira Mietto
- Laboratório de Neurobiologia, Instituto de Ciências Biológicas, Universidade de Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | | | - Patricia Sammarco Rosa
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, Bauru 17034-971, Brazil; (D.F.d.F.B.); (P.S.R.)
| | - Roberta Olmo Pinheiro
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Philip Noel Suffys
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Letícia Miranda Santos Lery
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.A.G.); (L.M.S.L.)
| | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.A.G.); (L.M.S.L.)
- Rede de Micobactérias, Programa Inova-IOC, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.P.d.S.); (E.M.); (S.E.G.V.); (R.O.P.); (P.N.S.)
| |
Collapse
|
3
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
4
|
Sardana K, Muddebihal A, Scollard DM, Khurana A. Implications of drug resistance in leprosy: disease course, reactions and the use of novel drugs. Int J Dermatol 2024. [PMID: 39258760 DOI: 10.1111/ijd.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Leprosy remains a significant neglected tropical disease despite the goal of elimination having been achieved in various endemic nations over the past two decades. Reactional episodes complicate the disease course, resulting in deformities and disability. The main aim of treatment is to kill Mycobacterium leprae and decrease the bacterial load, which could help prevent further bacilli transmission. A major concern in breaking the chain of transmission and possibly for recurrent reactions is the role of drug-resistant bacilli. Though some data is available on the background prevalence of drug resistance in leprosy, there is a paucity of studies that look for resistance specifically in leprosy reactions. Administration of long-term steroids or immunosuppressants for chronic and recurrent responses in the presence of drug resistance has the twin effect of perpetuating the multiplication of resistant bacilli and encouraging the dissemination of leprosy. The increasing trend of prescribing second-line drugs for leprosy or type 2 reactions without prior assessment of drug resistance can potentially precipitate a severe public health problem as this can promote the development of resistance to second-line drugs as well. A comprehensive multicenter study, including drug resistance surveillance testing in cases of reactions, is necessary, along with the current measures to stop the spread of leprosy. Here, we have detailed the history of drug resistance in leprosy, given pointers on when to suspect drug resistance, described the role of resistance in reactions, methods of resistance testing, and the management of resistant cases with second-line therapy.
Collapse
Affiliation(s)
- Kabir Sardana
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Aishwarya Muddebihal
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | | | - Ananta Khurana
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
5
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
6
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Helaine S, Conlon BP, Davis KM, Russell DG. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics. Cell Host Microbe 2024; 32:852-862. [PMID: 38870901 PMCID: PMC11446042 DOI: 10.1016/j.chom.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance, typically associated with genetic changes within a bacterial population, is a frequent contributor to antibiotic treatment failures. Antibiotic persistence and tolerance, which we collectively term recalcitrance, represent transient phenotypic changes in the bacterial population that prolong survival in the presence of typically lethal concentrations of antibiotics. Antibiotic recalcitrance is challenging to detect and investigate-traditionally studied under in vitro conditions, our understanding during infection and its contribution to antibiotic failure is limited. Recently, significant progress has been made in the study of antibiotic-recalcitrant populations in pathogenic species, including Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica, and Yersiniae, in the context of the host environment. Despite the diversity of these pathogens and infection models, shared signals and responses promote recalcitrance, and common features and vulnerabilities of persisters and tolerant bacteria have emerged. These will be discussed here, along with progress toward developing therapeutic interventions to better treat recalcitrant pathogens.
Collapse
Affiliation(s)
- Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Shapira T, Christofferson M, Av-Gay Y. The antimicrobial activity of innate host-directed therapies: A systematic review. Int J Antimicrob Agents 2024; 63:107138. [PMID: 38490573 DOI: 10.1016/j.ijantimicag.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Christofferson
- Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Murillo Moreno MA, López Gutiérrez LV, Vinck EE, Roncancio Villamil G, Gallego Muñoz C, Saldarriaga Giraldo CI. Coronary heart disease and tuberculosis: an unnoticed syndemia. Review of literature and management proposal. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2024; 5:e375. [PMID: 39015190 PMCID: PMC11247974 DOI: 10.47487/apcyccv.v5i2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024]
Abstract
Tuberculosis is an increasing disease that affects about one-third of the global population. In line with the rise of tuberculosis, cardiovascular disease has shown a similar trend, with ischemic coronary heart disease becoming the leading cause of death worldwide. Based on the literature, a relationship can be drawn between tuberculosis and ischemic coronary heart disease through their shared multiple risk factors and a possible pathophysiological substrate linking them. The presentation of these two conditions reported so far is varied: it has been found as the onset of acute coronary syndrome in patients with active tuberculosis, the progressive development of coronary atherosclerosis in patients with latent tuberculosis, among others. Given this possible link and the progressive increase in their incidence rates, we can assert that we are facing an unnoticed syndemic, with their concurrent management posing a challenge due to significant pharmacological interactions. The purpose of this review is to clarify this possible link, propose an approach for diagnosis, and provide a treatment algorithm for the entire spectrum of coronary disease coexisting with tuberculosis according to the current available literature.
Collapse
Affiliation(s)
- Mauricio Andrés Murillo Moreno
- Departamento de Medicina Interna, Universidad CES, Medellín, Colombia.Universidad CESDepartamento de Medicina InternaUniversidad CESMedellínColombia
| | - Laura Valentina López Gutiérrez
- Departamento de Cardiología, Clínica Cardio VID, Medellín, Colombia.Departamento de CardiologíaClínica Cardio VIDMedellínColombia
| | - Eric Edward Vinck
- Departamento de Cirugía Cardiovascular, Clínica Cardio VID, Medellín, Colombia.Departamento de Cirugía CardiovascularClínica Cardio VIDMedellínColombia
| | - Gustavo Roncancio Villamil
- Departamento de Enfermedades Infecciosas, Clínica Cardio VID, Medellín, Colombia.Departamento de Enfermedades InfecciosasClínica Cardio VIDMedellínColombia
| | - Catalina Gallego Muñoz
- Departamento de Cardiología, Clínica Cardio VID, Medellín, Colombia.Departamento de CardiologíaClínica Cardio VIDMedellínColombia
| | - Clara Inés Saldarriaga Giraldo
- Departamento de Cardiología, Clínica Cardio VID, Medellín, Colombia.Departamento de CardiologíaClínica Cardio VIDMedellínColombia
| |
Collapse
|
10
|
Zhou S, Zhang D, Li D, Wang H, Ding C, Song J, Huang W, Xia X, Zhou Z, Han S, Jin Z, Yan B, Gonzales J, Via LE, Zhang L, Wang D. Pathogenic mycobacterium upregulates cholesterol 25-hydroxylase to promote granuloma development via foam cell formation. iScience 2024; 27:109204. [PMID: 38420591 PMCID: PMC10901098 DOI: 10.1016/j.isci.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Pathogenic mycobacteria orchestrate the complex cell populations known as granuloma that is the hallmark of tuberculosis. Foam cells, a lipid-rich cell-type, are considered critical for granuloma formation; however, the causative factor in foam cell formation remains unclear. Atherosclerosis is a chronic inflammatory disease characterized by the abundant accumulation of lipid-laden-macrophage-derived foam cells during which cholesterol 25-hydroxylase (CH25H) is crucial in foam cell formation. Here, we show that M. marinum (Mm), a relative of M. tuberculosis, induces foam cell formation, leading to granuloma development following CH25H upregulation. Moreover, the Mm-driven increase in CH25H expression is associated with the presence of phthiocerol dimycocerosate, a determinant for Mm virulence and integrity. CH25H-null mice showed decreased foam cell formation and attenuated pathology. Atorvastatin, a recommended first-line lipid-lowering drug, promoted the elimination of M. marinum and concomitantly reduced CH25H production. These results define a previously unknown role for CH25H in controlling macrophage-derived foam cell formation and Tuberculosis pathology.
Collapse
Affiliation(s)
- Shuang Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Dan Li
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Hankun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Cairong Ding
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingrui Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Weifeng Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ziwei Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Zhu Jin
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
11
|
Dos Reis SA, Gonçalves JD, Lima KDA, Demaria TM, Costa-Bartuli E, Gomes TA, Corrêa MBC, Atella GC, Sola-Penna M, Rosa PS, Pessolani MCV, Nagajyothi J, Lara FA. Mycobacterium leprae is able to infect adipocytes, inducing lipolysis and modulating the immune response. Microbes Infect 2024; 26:105283. [PMID: 38141852 DOI: 10.1016/j.micinf.2023.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Leprosy is a chronic infectious disease caused by the intracellular bacillus Mycobacterium leprae (M. leprae), which is known to infect skin macrophages and Schwann cells. Although adipose tissue is a recognized site of Mycobacterium tuberculosis infection, its role in the histopathology of leprosy was, until now, unknown. We analyzed the M. leprae capacity to infect and persist inside adipocytes, characterizing the induction of a lipolytic phenotype in adipocytes, as well as the effect of these infected cells on macrophage recruitment. We evaluated 3T3-L1-derived adipocytes, inguinal adipose tissue of SWR/J mice, and subcutaneous adipose tissue biopsies of leprosy patients. M. leprae was able to infect 3T3-L1-derived adipocytes in vitro, presenting a strong lipolytic profile after infection, followed by significant cholesterol efflux. This lipolytic phenotype was replicated in vivo by M. leprae injection into mice inguinal adipose tissue. Furthermore, M. leprae was detected inside crown-like structures in the subcutaneous adipose tissue of multibacillary patients. These data indicate that subcutaneous adipose tissue could be an important site of infection, and probably persistence, for M. leprae, being involved in the modulation of the innate immune control in leprosy via the release of cholesterol, MCP-1, and adiponectin.
Collapse
Affiliation(s)
- Sabrina Alves Dos Reis
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Imunoterapia Celular e Gênica, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Jessica Dias Gonçalves
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karoline Dos Anjos Lima
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaina Magalhaes Demaria
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emylle Costa-Bartuli
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago Araujo Gomes
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- The MetaboliZSm GrouP, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jyothi Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ-07110, USA
| | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Liao KM, Lee CS, Wu YC, Shu CC, Ho CH. Association between statin use and tuberculosis risk in patients with bronchiectasis: a retrospective population-based cohort study in Taiwan. BMJ Open Respir Res 2024; 11:e002077. [PMID: 38387995 PMCID: PMC10884254 DOI: 10.1136/bmjresp-2023-002077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic airway diseases have been associated with an increased risk of tuberculosis (TB); however, data in patients with bronchiectasis is limited. Statins have been shown to exhibit anti-inflammatory effects by modulating the inflammatory response. This study investigated whether statin treatment could reduce the risk of TB in patients with bronchiectasis. METHODS We conducted a retrospective cohort study using a nationwide population database of patients with bronchiectasis who did or did not receive statin treatment. The defined daily dose (DDD) of statin, current or past statin user and statin exposure time were measured for the impact of statin use. The primary outcome was the incidence of new-onset TB. Considering of potential immortal time bias due to stain exposure time, Cox regression models with time-dependent covariates were employed to estimate HRs with 95% CIs for TB incidence among patients with bronchiectasis. RESULTS Patients with bronchiectasis receiving statin treatment had a decreased risk of TB. After adjusting for age, sex, income, comorbidities and Charlson Comorbidity Index, statin users had a 0.59-fold lower risk of TB incidence compared with non-statin users (95% CI 0.40 to 0.88; p=0.0087). Additionally, compared with non-statin users, statin treatment was a protective factor against TB in users with a cumulative DDD greater than 180 per year, with an HR of 0.32 (95% CI 0.12 to 0.87; p=0.0255). CONCLUSIONS Statin treatment demonstrated a dose-dependent protective effect and was associated with a reduced risk of TB in patients with bronchiectasis. These findings suggest that statins may play a role in lowering TB risk by modulating airway inflammation in this patient population.
Collapse
Affiliation(s)
- Kuang-Ming Liao
- Department of Internal Medicine, Chi Mei Medical Center Chiali Branch, Tainan, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Chung-Shu Lee
- Department of Pulmonary and Critical Care Medicine, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taipei, Taiwan
| | - Yu-Cih Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University, Taipei, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
14
|
Dwivedi R, Baindara P. Differential Regulation of TFEB-Induced Autophagy during Mtb Infection and Starvation. Microorganisms 2023; 11:2944. [PMID: 38138088 PMCID: PMC10746089 DOI: 10.3390/microorganisms11122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Through the promotion of phagolysosome formation, autophagy has emerged as a crucial mechanism to eradicate intracellular Mycobacterium tuberculosis (Mtb). A cell-autonomous host defense mechanism called lysosome biogenesis and autophagy transports cytoplasmic cargos and bacterial phagosomes to lysosomes for destruction during infection. Similar occurrences occurred in stressful or starvation circumstances and led to autophagy, which is harmful to the cell. It is interesting to note that under both hunger and infection states, the transcription factor EB (TFEB) acts as a master regulator of lysosomal activities and autophagy. This review highlighted recent research on the multitier regulation of TFEB-induced autophagy by a variety of host effectors and Mtb sulfolipid during Mtb infection and starvation. In general, the research presented here sheds light on how lysosome biogenesis and autophagy are differentially regulated by the TFEB during Mtb infection and starvation.
Collapse
Affiliation(s)
- Richa Dwivedi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Dominguez J, Mendes AI, Pacheco AR, Peixoto MJ, Pedrosa J, Fraga AG. Repurposing of statins for Buruli Ulcer treatment: antimicrobial activity against Mycobacterium ulcerans. Front Microbiol 2023; 14:1266261. [PMID: 37840746 PMCID: PMC10570734 DOI: 10.3389/fmicb.2023.1266261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium ulcerans causes Buruli Ulcer, a neglected infectious skin disease that typically progresses from an early non-ulcerative lesion to an ulcer with undermined edges. If not promptly treated, these lesions can lead to severe disfigurement and disability. The standard antibiotic regimen for Buruli Ulcer treatment has been oral rifampicin combined with intramuscular streptomycin administered daily for 8 weeks. However, there has been a recent shift toward replacing streptomycin with oral clarithromycin. Despite the advantages of this antibiotic regimen, it is limited by low compliance, associated side effects, and refractory efficacy for severe ulcerative lesions. Therefore, new drug candidates with a safer pharmacological spectrum and easier mode of administration are needed. Statins are lipid-lowering drugs broadly used for dyslipidemia treatment but have also been reported to have several pleiotropic effects, including antimicrobial activity against fungi, parasites, and bacteria. In the present study, we tested the susceptibility of M. ulcerans to several statins, namely atorvastatin, simvastatin, lovastatin and fluvastatin. Using broth microdilution assays and cultures of M. ulcerans-infected macrophages, we found that atorvastatin, simvastatin and fluvastatin had antimicrobial activity against M. ulcerans. Furthermore, when using the in vitro checkerboard assay, the combinatory additive effect of atorvastatin and fluvastatin with the standard antibiotics used for Buruli Ulcer treatment highlighted the potential of statins as adjuvant drugs. In conclusion, statins hold promise as potential treatment options for Buruli Ulcer. Further studies are necessary to validate their effectiveness and understand the mechanism of action of statins against M. ulcerans.
Collapse
Affiliation(s)
- Juan Dominguez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana I. Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana R. Pacheco
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria J. Peixoto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Cross GB, Sari IP, Kityo C, Lu Q, Pokharkar Y, Moorakonda RB, Thi HN, Do Q, Dalay VB, Gutierrez E, Balanag VM, Castillo RJ, Mugerwa H, Fanusi F, Kwan P, Chew KL, Paton NI. Rosuvastatin adjunctive therapy for rifampicin-susceptible pulmonary tuberculosis: a phase 2b, randomised, open-label, multicentre trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:847-855. [PMID: 36966799 DOI: 10.1016/s1473-3099(23)00067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Shorter treatments are needed for drug-susceptible tuberculosis. Adjunctive statins increase bactericidal activity in preclinical tuberculosis models. We investigated the safety and efficacy of adjunctive rosuvastatin in people with tuberculosis. We tested the hypothesis that adjunctive rosuvastatin accelerates sputum culture conversion within the first 8 weeks of treatment of rifampicin-susceptible tuberculosis. METHODS This phase 2b, randomised, open-label, multicentre trial conducted in five hospitals or clinics in three countries with high tuberculosis burden (ie, the Philippines, Viet Nam, and Uganda) enrolled adult participants aged 18-75 years with sputum smear or Xpert MTB/RIF positive, rifampicin-susceptible tuberculosis who had received less than 7 days of previous tuberculosis treatment. Participants were randomly assigned via a web-based system to receive either 10 mg rosuvastatin once per day for 8 weeks plus standard tuberculosis therapy (rifampicin, isoniazid, pyrazinamide, and ethambutol; rosuvastatin group) or standard tuberculosis therapy alone (control group). Randomisation was stratified by trial site, history of diabetes, and HIV co-infection. Laboratory staff and central investigators involved in data cleaning and analysis were masked to treatment allocation, but study participants and site investigators were not. Both groups continued standard treatment to week 24. Sputum samples were collected once per week for the first 8 weeks after randomisation, and then at weeks 10, 12, and 24. The primary efficacy outcome was time to culture conversion (TTCC; days) in liquid culture by week 8, assessed in randomised participants who had microbiological confirmation of tuberculosis, took at least one dose of rosuvastatin, and who did not show resistance to rifampicin (modified intention-to-treat population), for which groups were compared with the Cox proportional hazards model. The main safety outcome was grade 3-5 adverse events by week 24, assessed in the intention-to-treat population, for which groups were compared with Fisher's exact test. All participants completed 24 weeks of follow-up. This trial is registered with ClinicalTrials.gov (NCT04504851). FINDINGS Between Sept 2, 2020, and Jan 14, 2021, 174 participants were screened and 137 were randomly assigned to the rosuvastatin group (70 participants) or control group (67 participants). In the modified intention-to-treat population of 135 participants, 102 (76%) were men and 33 (24%) were women. Median TTCC in liquid media was 42 days (95% CI 35-49) in the rosuvastatin group (68 participants) and 42 days (36-53) in the control group (67 participants; hazard ratio 1·30 [0·88-1·91], p=0·19). Grade 3-5 adverse events occurred in six (9%) of 70 in the rosuvastatin group (none were considered related to rosuvastatin) and four (6%) of 67 in the control group (p=0·75). There were no serious adverse events that were considered to be related to rosuvastatin. INTERPRETATION Adjunctive rosuvastatin at 10 mg once per day was safe but did not produce substantive benefits on culture conversion in the overall study population. Future trials could explore the safety and efficacy of higher doses of adjunctive rosuvastatin. FUNDING National Medical Research Council, Singapore.
Collapse
Affiliation(s)
- Gail B Cross
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore; Department of Medicine, National University Health Systems, Singapore.
| | - Intan P Sari
- Department of Medicine, National University Health Systems, Singapore
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Qingshu Lu
- Singapore Clinical Research Institute, Singapore
| | | | | | - Han-Nguyen Thi
- Respiratory Center, Viet Nam Military Medical University, Hanoi, Viet Nam
| | - Quyet Do
- Respiratory Center, Viet Nam Military Medical University, Hanoi, Viet Nam
| | - Victoria B Dalay
- De La Salle Medical and Health Sciences Institute, Manila, Philippines
| | | | | | | | | | - Felic Fanusi
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore
| | - Philip Kwan
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore
| | - Ka Lip Chew
- Department of Microbiology, National University Health Systems, Singapore
| | - Nicholas I Paton
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore; Department of Medicine, National University Health Systems, Singapore; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
18
|
Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS OMEGA 2023; 8:17362-17380. [PMID: 37251185 PMCID: PMC10210030 DOI: 10.1021/acsomega.2c05511] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
The devastating impact of Tuberculosis (TB) has been a menace to mankind for decades. The World Health Organization (WHO) End TB Strategy aims to reduce TB mortality up to 95% and 90% of overall TB cases worldwide, by 2035. This incessant urge will be achieved with a breakthrough in either a new TB vaccine or novel drugs with higher efficacy. However, the development of novel drugs is a laborious process involving a timeline of almost 20-30 years with huge expenditure; on the other hand, repurposing previously approved drugs is a viable technique for overcoming current bottlenecks in the identification of new anti-TB agents. The present comprehensive review discusses the progress of almost all the repurposed drugs that have been identified to the present day (∼100) and are in the development or clinical testing phase against TB. We have also emphasized the efficacy of repurposed drugs in combination with already available frontline anti-TB medications along with the scope of future investigations. This study would provide the researchers a detailed overview of nearly all identified anti-TB repurposed drugs and may assist them in selecting the lead compounds for further in vivo/clinical research.
Collapse
Affiliation(s)
- Khushbu Sharma
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Ahmed
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
19
|
Davuluri KS, Singh AK, Singh AV, Chaudhary P, Raman SK, Kushwaha S, Singh SV, Chauhan DS. Atorvastatin Potentially Reduces Mycobacterial Severity through Its Action on Lipoarabinomannan and Drug Permeability in Granulomas. Microbiol Spectr 2023; 11:e0319722. [PMID: 36719189 PMCID: PMC10100658 DOI: 10.1128/spectrum.03197-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/05/2022] [Indexed: 02/01/2023] Open
Abstract
The majority of preclinical research has shown that Mycobacterium tuberculosis can modify host lipids in various ways. To boost its intramacrophage survival, M. tuberculosis causes host lipids to build up, resulting in the development of lipid-laden foam cells. M. tuberculosis binds to and enters the macrophage via the cell membrane cholesterol. Aggregation of cholesterol in the cell wall of M. tuberculosis and an increase in vascularity at the granuloma site reduce the permeability of rifampicin and isoniazid concentrations. However, very few studies have assessed the effect of statins on drug penetration. Here, we used atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to observe its effect on the bacterial burden by increasing the drug concentration at the infection site. We looked into how atorvastatin could be used in conjunction with first-line drugs to promote drug permeation. In this study, we detected an accumulation of drugs at the peripheral sites of the lungs and impaired drug distribution to the diseased sites. The efficacy of antituberculosis drugs, with atorvastatin as an adjunct, on the viability of M. tuberculosis cells was demonstrated. A nontoxic statin dosage established phenotypic and normal granuloma vasculature and showed an additive effect with rifampicin and isoniazid. Our data show that statins help to reduce the tuberculosis bacterial burden. Our findings reveal that the bacterial load is connected with impaired drug permeability resulting from lipid accumulation in the bacterial cell wall. Statin therapy combined with antituberculosis medications have the potential to improve treatment in tuberculosis patients. IMPORTANCE Mycobacterium tuberculosis binds to and enters the macrophage via the cell membrane cholesterol. M. tuberculosis limits phagosomal maturation and activation without engaging in phagocytosis. Aggregation of cholesterol in the cell wall of M. tuberculosis and an increase in the vascularity at the granuloma site reduce the permeability of rifampicin and isoniazid concentrations. However, very few studies have assessed the effect of statins on drug penetration, which can be increased through a reduction in cholesterol and vascularity. Herein, we used atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to observe its effect on bacterial burden through increasing the drug concentration at the infection site. Our main research goal is to diminish mycobacterial dissemination and attenuate bacterial growth by increasing drug permeability.
Collapse
Affiliation(s)
- Kusuma Sai Davuluri
- Department of Microbiology and Molecular Biology, ICMR, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Amit Kumar Singh
- Department of Microbiology and Molecular Biology, ICMR, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Pooja Chaudhary
- Department of Microbiology and Molecular Biology, ICMR, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Sunil Kumar Raman
- Division of Pharmaceutics and Pharmacokinetics, CSIR, Central Drug Research Institute, Lucknow, India
| | - Shweta Kushwaha
- Department of Microbiology and Molecular Biology, ICMR, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | | - Devendra Singh Chauhan
- Department of Microbiology and Molecular Biology, ICMR, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| |
Collapse
|
20
|
Girardi KDCDV, Mietto BS, Dos Anjos Lima K, Atella GC, da Silva DS, Pereira AMR, Rosa PS, Lara FA. Phenolic glycolipid-1 of Mycobacterium leprae is involved in human Schwann cell line ST8814 neurotoxic phenotype. J Neurochem 2023; 164:158-171. [PMID: 36349509 DOI: 10.1111/jnc.15722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.
Collapse
Affiliation(s)
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Karoline Dos Anjos Lima
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos da Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
22
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
23
|
Cubillos-Angulo JM, Nogueira BMF, Arriaga MB, Barreto-Duarte B, Araújo-Pereira M, Fernandes CD, Vinhaes CL, Villalva-Serra K, Nunes VM, Miguez-Pinto JP, Amaral EP, Andrade BB. Host-directed therapies in pulmonary tuberculosis: Updates on anti-inflammatory drugs. Front Med (Lausanne) 2022; 9:970408. [PMID: 36213651 PMCID: PMC9537567 DOI: 10.3389/fmed.2022.970408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB) is a lethal disease and remains one of the top ten causes of mortality by an infectious disease worldwide. It can also result in significant morbidity related to persistent inflammation and tissue damage. Pulmonary TB treatment depends on the prolonged use of multiple drugs ranging from 6 months for drug-susceptible TB to 6-20 months in cases of multi-drug resistant disease, with limited patient tolerance resulting from side effects. Treatment success rates remain low and thus represent a barrier to TB control. Adjunct host-directed therapy (HDT) is an emerging strategy in TB treatment that aims to target the host immune response to Mycobacterium tuberculosis in addition to antimycobacterial drugs. Combined multi-drug treatment with HDT could potentially result in more effective therapies by shortening treatment duration, improving cure success rates and reducing residual tissue damage. This review explores the rationale and challenges to the development and implementation of HDTs through a succinct report of the medications that have completed or are currently being evaluated in ongoing clinical trials.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Betânia M. F. Nogueira
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Beatriz Barreto-Duarte
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Araújo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Catarina D. Fernandes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, Brazil
| | - Klauss Villalva-Serra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
| | | | | | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, Brazil
| |
Collapse
|
24
|
Cabral N, de Figueiredo V, Gandini M, de Souza CF, Medeiros RA, Lery LMS, Lara FA, de Macedo CS, Pessolani MCV, Pereira GMB. Modulation of the Response to Mycobacterium leprae and Pathogenesis of Leprosy. Front Microbiol 2022; 13:918009. [PMID: 35722339 PMCID: PMC9201476 DOI: 10.3389/fmicb.2022.918009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.
Collapse
Affiliation(s)
- Natasha Cabral
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vilma de Figueiredo
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cíntia Fernandes de Souza
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rychelle Affonso Medeiros
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Letícia Miranda Santos Lery
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cristiana Santos de Macedo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Geraldo Moura Batista Pereira
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Pellegrini JM, Tateosian NL, Morelli MP, García VE. Shedding Light on Autophagy During Human Tuberculosis. A Long Way to Go. Front Cell Infect Microbiol 2022; 11:820095. [PMID: 35071056 PMCID: PMC8769280 DOI: 10.3389/fcimb.2021.820095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Immunity against Mycobacterium tuberculosis (Mtb) is highly complex, and the outcome of the infection depends on the role of several immune mediators with particular temporal dynamics on the host microenvironment. Autophagy is a central homeostatic mechanism that plays a role on immunity against intracellular pathogens, including Mtb. Enhanced autophagy in macrophages mediates elimination of intracellular Mtb through lytic and antimicrobial properties only found in autolysosomes. Additionally, it has been demonstrated that standard anti-tuberculosis chemotherapy depends on host autophagy to coordinate successful antimicrobial responses to mycobacteria. Notably, autophagy constitutes an anti-inflammatory mechanism that protects against endomembrane damage triggered by several endogenous components or infectious agents and precludes excessive inflammation. It has also been reported that autophagy can be modulated by cytokines and other immunological signals. Most of the studies on autophagy as a defense mechanism against Mycobacterium have been performed using murine models or human cell lines. However, very limited information exists about the autophagic response in cells from tuberculosis patients. Herein, we review studies that face the autophagy process in tuberculosis patients as a component of the immune response of the human host against an intracellular microorganism such as Mtb. Interestingly, these findings might contribute to recognize new targets for the development of novel therapeutic tools to combat Mtb. Actually, either as a potential successful vaccine or a complementary immunotherapy, efforts are needed to further elucidate the role of autophagy during the immune response of the human host, which will allow to achieve protective and therapeutic benefits in human tuberculosis.
Collapse
Affiliation(s)
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
26
|
Leal-Calvo T, Avanzi C, Mendes MA, Benjak A, Busso P, Pinheiro RO, Sarno EN, Cole ST, Moraes MO. A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathog 2021; 17:e1009972. [PMID: 34695167 PMCID: PMC8568100 DOI: 10.1371/journal.ppat.1009972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/04/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin lesions of leprosy patients or controls affected by other dermal conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of accurately distinguishing multibacillary and paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and enriched pathways, we conclude that paucibacillary disease is characterized by epithelioid transformation and granuloma formation, with an exacerbated cellular immune response, while multibacillary leprosy features epithelial-mesenchymal transition with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze the development of better diagnostic tools and potential host-based therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical manifestations.
Collapse
Affiliation(s)
- Thyago Leal-Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charlotte Avanzi
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mayara Abud Mendes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Busso
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stewart Thomas Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Habiburrahman M, Ariq H, Yusharyahya SN. The Role of Lipid and the Benefit of Statin in Augmenting Rifampicin Effectivity for a Better Leprosy Treatment. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Although leprosy remains as a serious disease of the skin and nervous system, the current treatment is still lacking in its effectiveness. This literature review will explore the association of lipid and leprosy, as well as the potential of statin and other lipid-lowering agents as adjunctive drugs to combat leprosy. Articles were searched through the PubMed, EBSCOhost, and Google Scholar with the keywords: immunomodulation, lipid-body, lipids, leprosy, Mycobacterium leprae, pathogenesis, rifampin or rifampicin, and statins. A manual searching is also carried out to find an additional relevant information to make this literature review more comprehensive. The literatures showed that lipids are highly correlated with leprosy through alterations in serum lipid profile, metabolism, pathogenesis, and producing oxidative stress. Statins can diminish lipid utilization in the pathogenesis of leprosy and show a mycobactericidal effect by increasing the effectiveness of rifampicin and recover the function of macrophages. In addition, Statins have anti-inflammatory properties which may aid in preventing type I and II reactions in leprosy. Standard multidrug therapy might reduce the efficacy of statins, but the effect is not clinically significant. The statin dose-response curve also allows therapeutic response to be achieved with minimal dose. The various pleiotropic effects of statins make it a potential adjunct to standard treatment for leprosy in the future.
Collapse
|
29
|
Rosa TLSA, Marques MAM, DeBoard Z, Hutchins K, Silva CAA, Montague CR, Yuan T, Amaral JJ, Atella GC, Rosa PS, Mattos KA, VanderVen BC, Lahiri R, Sampson NS, Brennan PJ, Belisle JT, Pessolani MCV, Berrêdo-Pinho M. Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Front Cell Infect Microbiol 2021; 11:709972. [PMID: 34395315 PMCID: PMC8355898 DOI: 10.3389/fcimb.2021.709972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3β-hydroxysteroid dehydrogenase (3β-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3β-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3β-HSD activity with the 17β-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3β-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.
Collapse
Affiliation(s)
- Thabatta L S A Rosa
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Angela M Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zachary DeBoard
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kelly Hutchins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Carlos Adriano A Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Christine R Montague
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Julio J Amaral
- Laboratório de Química Biológica, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia S Rosa
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Katherine A Mattos
- Departmento de Controle de Qualidade, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Patrick J Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Maria Cristina V Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Park HE, Lee W, Shin MK, Shin SJ. Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis? Front Immunol 2021; 12:703060. [PMID: 34262571 PMCID: PMC8273550 DOI: 10.3389/fimmu.2021.703060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a global health threat despite recent advances and insights into host-pathogen interactions and the identification of diverse pathways that may be novel therapeutic targets for TB treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to a low success rate of TB treatments. Thus, novel strategies involving the host immune system that boost the effectiveness of existing antibiotics have been recently suggested to better control TB. However, the lack of comprehensive understanding of the immunomodulatory effects of anti-TB drugs, including first-line drugs and newly introduced antibiotics, on bystander and effector immune cells curtailed the development of effective therapeutic strategies to combat Mtb infection. In this review, we focus on the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs facilitate the generation of Mtb populations that are resistant to host immune response or disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs and host immune responses may enhance effective host antimicrobial activities and prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights novel adjunctive therapeutic approaches against Mtb infection for better disease outcomes, shorter treatment duration, and improved treatment efficacy based on reciprocal interactions between current TB antibiotics and host immune cells.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Adikesavalu H, Gopalaswamy R, Kumar A, Ranganathan UD, Shanmugam S. Autophagy Induction as a Host-Directed Therapeutic Strategy against Mycobacterium tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:522. [PMID: 34070995 PMCID: PMC8224563 DOI: 10.3390/medicina57060522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), a bacterialinfectious disease caused by Mycobacterium tuberculosis (M.tb), which causes significant mortality in humans worldwide. Current treatment regimen involve the administration of multiple antibiotics over the course of several months that contributes to patient non-compliance leading to relapse and the development of drug-resistant M.tb (MDR and XDR) strains. Together, these facts highlight the need for the development of shorter TB treatment regimens. Host-directed therapy (HDT) is a new and emerging concept that aims to augment host immune response using drugs/compounds with or without adjunct antibiotics against M.tb infection. Autophagy is a natural catabolic mechanism of the cell that involves delivering the cytosolic constituents to the lysosomes for degradation and recycling the components; thereby maintaining the cellular and energy homoeostasis of a cell. However, over the past decade, an improved understanding of the role of autophagy in immunity has led to autophagy activation by using drugs or agents. This autophagy manipulation may represent a promising host-directed therapeutic strategy for human TB. However, current clinical knowledge on implementing autophagy activation by drugs or agents, as a stand-alone HDT or as an adjunct with antibiotics to treat human TB is insufficient. In recent years, many reports on high-throughput drug screening and measurement of autophagic flux by fluorescence, high-content microscopy, flow cytometry, microplate reader and immunoblotting have been published for the discovery of drugs that modulate autophagy. In this review, we discuss the commonly used chemical screening approaches in mammalian cells for the discovery of autophagy activating drugs against M.tbinfection. We also summarize the various autophagy-activating agents, both pre-clinical candidates and compounds approved for advanced clinical investigation during mycobacterial infection. Finally, we discuss the opportunities and challenges in using autophagy activation as HDT strategy to improve TB outcome and shorten treatment regimen.
Collapse
Affiliation(s)
- Harresh Adikesavalu
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Ashok Kumar
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India;
| | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| |
Collapse
|
32
|
de Oliveira MF, Medeiros RCA, Mietto BS, Calvo TL, Mendonça APM, Rosa TLSA, da Silva DS, do Carmo de Vasconcelos KG, Pereira AMR, de Macedo CS, Pereira GMB, de Berrêdo Pinho Moreira M, Pessolani MCV, Moraes MO, Lara FA. Reduction of host cell mitochondrial activity as Mycobacterium leprae's strategy to evade host innate immunity. Immunol Rev 2021; 301:193-208. [PMID: 33913182 PMCID: PMC10084840 DOI: 10.1111/imr.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.
Collapse
Affiliation(s)
- Marcus Fernandes de Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Miranda Mendonça
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Cristiana Santos de Macedo
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Fatima S, Bhaskar A, Dwivedi VP. Repurposing Immunomodulatory Drugs to Combat Tuberculosis. Front Immunol 2021; 12:645485. [PMID: 33927718 PMCID: PMC8076598 DOI: 10.3389/fimmu.2021.645485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by an obligate intracellular pathogen, Mycobacterium tuberculosis (M.tb) and is responsible for the maximum number of deaths due to a single infectious agent. Current therapy for TB, Directly Observed Treatment Short-course (DOTS) comprises multiple antibiotics administered in combination for 6 months, which eliminates the bacteria and prevents the emergence of drug-resistance in patients if followed as prescribed. However, due to various limitations viz., severe toxicity, low efficacy and long duration; patients struggle to comply with the prescribed therapy, which leads to the development of drug resistance (DR). The emergence of resistance to various front-line anti-TB drugs urgently require the introduction of new TB drugs, to cure DR patients and to shorten the treatment course for both drug-susceptible and resistant populations of bacteria. However, the development of a novel drug regimen involving 2-3 new and effective drugs will require approximately 20-30 years and huge expenditure, as seen during the discovery of bedaquiline and delamanid. These limitations make the field of drug-repurposing indispensable and repurposing of pre-existing drugs licensed for other diseases has tremendous scope in anti-DR-TB therapy. These repurposed drugs target multiple pathways, thus reducing the risk of development of drug resistance. In this review, we have discussed some of the repurposed drugs that have shown very promising results against TB. The list includes sulfonamides, sulfanilamide, sulfadiazine, clofazimine, linezolid, amoxicillin/clavulanic acid, carbapenems, metformin, verapamil, fluoroquinolones, statins and NSAIDs and their mechanism of action with special emphasis on their immunomodulatory effects on the host to attain both host-directed and pathogen-targeted therapy. We have also focused on the studies involving the synergistic effect of these drugs with existing TB drugs in order to translate their potential as adjunct therapies against TB.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashima Bhaskar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
34
|
Lösslein AK, Lohrmann F, Scheuermann L, Gharun K, Neuber J, Kolter J, Forde AJ, Kleimeyer C, Poh YY, Mack M, Triantafyllopoulou A, Dunlap MD, Khader SA, Seidl M, Hölscher A, Hölscher C, Guan XL, Dorhoi A, Henneke P. Monocyte progenitors give rise to multinucleated giant cells. Nat Commun 2021; 12:2027. [PMID: 33795674 PMCID: PMC8016882 DOI: 10.1038/s41467-021-22103-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/23/2021] [Indexed: 01/12/2023] Open
Abstract
The immune response to mycobacteria is characterized by granuloma formation, which features multinucleated giant cells as a unique macrophage type. We previously found that multinucleated giant cells result from Toll-like receptor-induced DNA damage and cell autonomous cell cycle modifications. However, the giant cell progenitor identity remained unclear. Here, we show that the giant cell-forming potential is a particular trait of monocyte progenitors. Common monocyte progenitors potently produce cytokines in response to mycobacteria and their immune-active molecules. In addition, common monocyte progenitors accumulate cholesterol and lipids, which are prerequisites for giant cell transformation. Inducible monocyte progenitors are so far undescribed circulating common monocyte progenitor descendants with high giant cell-forming potential. Monocyte progenitors are induced in mycobacterial infections and localize to granulomas. Accordingly, they exhibit important immunological functions in mycobacterial infections. Moreover, their signature trait of high cholesterol metabolism may be piggy-backed by mycobacteria to create a permissive niche.
Collapse
Affiliation(s)
- Anne Kathrin Lösslein
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MOTI-VATE Graduate School, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florens Lohrmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM) and IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kourosh Gharun
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jana Neuber
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Kleimeyer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Yee Poh
- Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Matthias Mack
- University Hospital Regensburg, Internal Medicine II, Nephrology, Regensburg, Germany
| | - Antigoni Triantafyllopoulou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Rheumatism Research Centre Berlin, Leibniz Association, Berlin, Germany
| | - Micah D Dunlap
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency and Institute for Clinical Pathology, Department of Pathology, Medical Center and Faculty of Medicine, Freiburg, Germany and Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Duesseldorf, Germany
| | | | - Christoph Hölscher
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Borstel, Borstel, Germany
| | - Xue Li Guan
- Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
35
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
36
|
Lemes RM, Pessolani MC, de Macedo CS. High-density lipoprotein as a new target for leprosy therapy. Future Microbiol 2020; 15:1197-1199. [PMID: 32972242 DOI: 10.2217/fmb-2020-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Robertha Mr Lemes
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, RJ, 21040-361, Brazil
| | - Maria Cv Pessolani
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, RJ, 21040-361, Brazil
| | - Cristiana S de Macedo
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, RJ, 21040-361, Brazil.,Center for Technological Development in Health, Oswaldo Cruz Foundation, RJ, 21040-361, Brazil
| |
Collapse
|
37
|
Li X, Sheng L, Lou L. Statin Use May Be Associated With Reduced Active Tuberculosis Infection: A Meta-Analysis of Observational Studies. Front Med (Lausanne) 2020; 7:121. [PMID: 32391364 PMCID: PMC7194006 DOI: 10.3389/fmed.2020.00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Tuberculosis remains one of the leading causes of mortality among the infectious diseases, while statins were suggested to confer anti-infective efficacy in experimental studies. We aimed to evaluate the association between statin use and tuberculosis infection in a meta-analysis. Method: Relevant studies were obtained via systematically search of PubMed and Embase databases. A random or a fixed effect model was applied to pool the results according to the heterogeneity among the included studies. Subgroup analyses according to the gender and diabetic status of the participants were performed. We assessed the quality of evidence with the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Results: Nine observational studies were included. Significant heterogeneity was detected among the studies (p for Cochrane's Q test <0.001, I2 = 93%). The GRADE approach showed generally low quality of evidence. Pooled results showed that statin use was associated with reduced active tuberculosis infection (risk ratio [RR]: 0.60, 95% confidence interval [CI]: 0.45 to 0.75, p < 0.001). Subgroup analyses showed that the negative association between statin use and active tuberculosis infection was consistent in men (RR: 0.63, p = 0.01) and women (RR: 0.58, p < 0.001), in participants with (RR: 0.63, p = 0.02) and without diabetes (RR: 0.50, p < 0.001), in retrospective cohort studies (RR: 0.56, p = 0.02), prospective cohort studies (RR: 0.76, p = 0.03), nested case-controls studies (RR: 0.57, p < 0.001), and case-control studies (RR: 0.60, p < 0.001), and in studies with statin used defined as any use within 1 year (RR: 0.59, p < 0.001) or during follow-up (RR: 0.61, p < 0.001). Significant publication bias was detected (p for Egger's regression test = 0.046). Subsequent “trim and fill” analyses retrieved an unpublished study to generate symmetrical funnel plots, and meta-analysis incorporating this study did not significantly affect the results (RR: 0.72, 95% CI: 0.68 to 0.76, p < 0.001). Conclusions: Statin use may be associated with reduced active tuberculosis infection. Randomized controlled trials (RCTs) are needed to confirm the potential preventative role of statin use on tuberculosis infection.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Infectious Diseases, Yiwu Central Hospital, Yiwu, China
| | - Lina Sheng
- Department of Infectious Diseases, Yiwu Central Hospital, Yiwu, China
| | - Lanqing Lou
- Department of Infectious Diseases, Yiwu Central Hospital, Yiwu, China
| |
Collapse
|
38
|
Host-Directed Therapies and Anti-Virulence Compounds to Address Anti-Microbial Resistant Tuberculosis Infection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite global efforts to contain tuberculosis (TB), the disease remains a leading cause of morbidity and mortality worldwide, further exacerbated by the increased resistance to antibiotics displayed by the tubercle bacillus Mycobacterium tuberculosis. In order to treat drug-resistant TB, alternative or complementary approaches to standard anti-TB regimens are being explored. An area of active research is represented by host-directed therapies which aim to modulate the host immune response by mitigating inflammation and by promoting the antimicrobial activity of immune cells. Additionally, compounds that reduce the virulence of M. tuberculosis, for instance by targeting the major virulence factor ESX-1, are being given increased attention by the TB research community. This review article summarizes the current state of the art in the development of these emerging therapies against TB.
Collapse
|
39
|
Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous Effects of Statin Therapy: A Review of Literature. Cureus 2020; 12:e7404. [PMID: 32337130 PMCID: PMC7182050 DOI: 10.7759/cureus.7404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a chronic infection caused by Mycobacterium tuberculosis (M. TB). It is transmitted through respiratory droplets. Increased cholesterol level is a predisposing factor for TB. M. TB uses cholesterol in the host macrophage membranes to bind and enter the macrophages. Statins are the drugs that are prescribed to hyperlipidemic patients to maintain their lipid levels in the normal range, thereby reducing the risk of stroke and cardiovascular events. Moreover, statins aid in reducing the levels of cholesterol in human macrophages. Therefore, a reduction in the membrane cholesterol minimizes the entry of TB pathogen inside macrophages. Furthermore, acting as vitamin D3 analogs and positively influencing pancreatic beta-cell function in a chronic diabetic state, statins minimize the occurrence of M. TB infection among diabetic population as well. This review aims to provide a comprehensive detail of all in vitro, in vivo, and retrospective studies that investigated the effects of statins in relation to the prevention or treatment of TB infection.
Collapse
Affiliation(s)
- Faryal Tahir
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Taha Bin Arif
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Jawad Ahmed
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Syed Raza Shah
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Muhammad Khalid
- Cardiology, Kansas City University of Medicine and Biosciences, Joplin, USA.,Cardiology, Ascension Via Christi Hospital, Pittsburg, USA
| |
Collapse
|
40
|
Dutta NK, Bruiners N, Zimmerman MD, Tan S, Dartois V, Gennaro ML, Karakousis PC. Adjunctive Host-Directed Therapy With Statins Improves Tuberculosis-Related Outcomes in Mice. J Infect Dis 2020; 221:1079-1087. [PMID: 31605489 PMCID: PMC7325721 DOI: 10.1093/infdis/jiz517] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) treatment is lengthy and complicated and patients often develop chronic lung disease. Recent attention has focused on host-directed therapies aimed at optimizing immune responses to Mycobacterium tuberculosis (Mtb), as adjunctive treatment given with antitubercular drugs. In addition to their cholesterol-lowering properties, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have broad anti-inflammatory and immunomodulatory activities. METHODS In the current study, we screened 8 commercially available statins for cytotoxic effect, anti-TB activity, synergy with first-line drugs in macrophages, pharmacokinetics and adjunctive bactericidal activity, and, in 2 different mouse models, as adjunctive therapy to first-line TB drugs. RESULTS Pravastatin showed the least toxicity in THP-1 and Vero cells. At nontoxic doses, atorvastatin and mevastatin were unable to inhibit Mtb growth in THP-1 cells. Simvastatin, fluvastatin, and pravastatin showed the most favorable therapeutic index and enhanced the antitubercular activity of the first-line drugs isoniazid, rifampin, and pyrazinamide in THP-1 cells. Pravastatin modulated phagosomal maturation characteristics in macrophages, phenocopying macrophage activation, and exhibited potent adjunctive activity in the standard mouse model of TB chemotherapy and in a mouse model of human-like necrotic TB lung granulomas. CONCLUSIONS These data provide compelling evidence for clinical evaluation of pravastatin as adjunctive, host-directed therapy for TB.
Collapse
Affiliation(s)
- Noton K Dutta
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalie Bruiners
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Shumin Tan
- Tufts University School of Medicine, Department of Molecular Biology and Microbiology, Boston, Massachusetts, USA
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Maria L Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Petros C Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Lemes RMR, Silva CADME, Marques MÂDM, Atella GC, Nery JADC, Nogueira MRS, Rosa PS, Soares CT, De P, Chatterjee D, Pessolani MCV, de Macedo CS. Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Negl Trop Dis 2020; 14:e0008138. [PMID: 32226013 PMCID: PMC7145193 DOI: 10.1371/journal.pntd.0008138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/09/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.
Collapse
Affiliation(s)
- Robertha Mariana R. Lemes
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adriano de M. e Silva
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Ângela de M. Marques
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Georgia C. Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto da C. Nery
- Ambulatório Souza Araújo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Cristina V. Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiana S. de Macedo
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol 2020; 13:190-204. [PMID: 31772320 PMCID: PMC7039813 DOI: 10.1038/s41385-019-0226-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023]
Abstract
Bacille Calmette-Guérin (BCG) is the only licenced tuberculosis (TB) vaccine, but has limited efficacy against pulmonary TB disease development and modest protection against extrapulmonary TB. Preventative antibiotic treatment for Mycobacterium tuberculosis (Mtb) infections in high-prevalence settings is unfeasible due to unclear treatment durability, drug toxicity, logistical constraints related to directly observed treatment strategy (DOTS) and the lengthy treatment protocols. Together, these factors promote non-adherence, contributing to relapse and establishment of drug-resistant Mtb strains. Although antibiotic treatment of drug-susceptible Mtb is generally effective, drug-resistant TB has a treatment efficacy below 50% and can, in a proportion, develop into progressive, untreatable disease. Other immune compromising co-infections and/or co-morbidities require more complex prevention/treatment approaches, posing huge financial burdens to national health services. Novel TB treatment strategies, such as host-directed therapeutics, are required to complement pathogen-targeted approaches. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. This review discusses promising pre-clinical candidates and forerunning compounds at advanced stages of clinical investigation in TB host-directed therapeutic (HDT) efficacy trials. Such approaches are rationalized to improve outcome in TB and shorten treatment strategies.
Collapse
Affiliation(s)
- C Young
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Walzl
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - N Du Plessis
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
43
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Buhadily AK. Rosuvastatin as forthcoming antibiotic or as adjuvant additive agent: In vitro novel antibacterial study. J Lab Physicians 2020; 10:271-275. [PMID: 30078961 PMCID: PMC6052819 DOI: 10.4103/jlp.jlp_170_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION: Rosuvastatin is a lipid-lowering agent that inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase leading to a reduction of cholesterol biosynthesis. Many studies have shown an association between statins use and the reduction of sepsis. The aim of the present study was to evaluate the in vitro combined antibacterial activity of rosuvastatin and cefixime. MATERIALS AND METHODS: Five pathogenic bacteria isolates (Gram positive and Gram negative) were used for testing the antibacterial activity of rosuvastatin alone and in combination with cefixime. RESULTS: Rosuvastatin mainly inhibited Klebsiella pneumoniae and Escherichia coli where it caused zones of inhibition of (17.9 ± 0.6 mm) and (16.9 ± 0.3 mm), respectively; however, it moderately inhibited the growth of Staphylococcus epidermidis (12.9 ± 0.2 mm) and Staphylococcus aureus (12.76 ± 0.2) and produced less inhibition for Pseudomonas aeruginosa growth where it led to a zone of inhibition equal to (9.1 ± 0.5 mm). Minimal inhibitory concentration (μg/mL) of rosuvastatin was high compared to cefixime. Fractional inhibitory concentration (FIC) of rosuvastatin was low for E. coli and K. pneumoniae compared to the other types of bacterial strains. Rosuvastatin exhibited additive effects with cefixime against E. coli and K. pneumoniae. ΣFIC index was 0.536 and 0.734 for E. coli and K. pneumoniae, respectively. CONCLUSION: Rosuvastatin has a significant antibacterial activity against both Gram-negative and Gram-positive bacteria with a potential additive effect when used in combination with cefixime.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali K Al-Buhadily
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|
44
|
Potential role of adjuvant drugs on efficacy of first line oral antitubercular therapy: Drug repurposing. Tuberculosis (Edinb) 2020; 120:101902. [DOI: 10.1016/j.tube.2020.101902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
|
45
|
Abstract
Leprosy remains a major problem in the world today, particularly affecting the poorest and most disadvantaged sections of society in the least developed countries of the world. The long-term aim of research is to develop new treatments and vaccines, and these aims are currently hampered by our inability to grow the pathogen in axenic culture. In this study, we probed the metabolism of M. leprae while it is surviving and replicating inside its primary host cell, the Schwann cell, and compared it to a related pathogen, M. tuberculosis, replicating in macrophages. Our analysis revealed that unlike M. tuberculosis, M. leprae utilized host glucose as a carbon source and that it biosynthesized its own amino acids, rather than importing them from its host cell. We demonstrated that the enzyme phosphoenolpyruvate carboxylase plays a crucial role in glucose catabolism in M. leprae. Our findings provide the first metabolic signature of M. leprae in the host Schwann cell and identify novel avenues for the development of antileprosy drugs. New approaches are needed to control leprosy, but understanding of the biology of the causative agent Mycobacterium leprae remains rudimentary, principally because the pathogen cannot be grown in axenic culture. Here, we applied 13C isotopomer analysis to measure carbon metabolism of M. leprae in its primary host cell, the Schwann cell. We compared the results of this analysis with those of a related pathogen, Mycobacterium tuberculosis, growing in its primary host cell, the macrophage. Using 13C isotopomer analysis with glucose as the tracer, we show that whereas M. tuberculosis imports most of its amino acids directly from the host macrophage, M. leprae utilizes host glucose pools as the carbon source to biosynthesize the majority of its amino acids. Our analysis highlights the anaplerotic enzyme phosphoenolpyruvate carboxylase required for this intracellular diet of M. leprae, identifying this enzyme as a potential antileprosy drug target.
Collapse
|
46
|
Parihar SP, Guler R, Brombacher F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat Rev Immunol 2019; 19:104-117. [PMID: 30487528 DOI: 10.1038/s41577-018-0094-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Statins were first identified over 40 years ago as lipid-lowering drugs and have been remarkably effective in treating cardiovascular diseases. As research advanced, the protective effects of statins were additionally attributed to their anti-inflammatory, antioxidative, anti-thrombotic and immunomodulatory functions rather than lipid-lowering abilities alone. By promoting host defence mechanisms and inhibiting pathological inflammation, statins increase survival in human infectious diseases. At the cellular level, statins inhibit the intermediates of the host mevalonate pathway, thus compromising the immune evasion strategies of pathogens and their survival. Here, we discuss the potential use of statins as an inexpensive and practical alternative or adjunctive host-directed therapy for infectious diseases caused by intracellular pathogens, such as viruses, protozoa, fungi and bacteria.
Collapse
Affiliation(s)
- Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa. .,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa. .,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
47
|
Guerra-De-Blas PDC, Bobadilla-Del-Valle M, Sada-Ovalle I, Estrada-García I, Torres-González P, López-Saavedra A, Guzmán-Beltrán S, Ponce-de-León A, Sifuentes-Osornio J. Simvastatin Enhances the Immune Response Against Mycobacterium tuberculosis. Front Microbiol 2019; 10:2097. [PMID: 31616387 PMCID: PMC6764081 DOI: 10.3389/fmicb.2019.02097] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis remains a serious threat worldwide. For this reason, it is necessary to identify agents that shorten the duration of treatment, strengthen the host immune system, and/or decrease the damage caused by the infection. Statins are drugs that reduce plasma cholesterol levels and have immunomodulatory, anti-inflammatory and antimicrobial effects. Although there is evidence that statins may contribute to the containment of Mycobacterium tuberculosis infection, their effects on peripheral blood mononuclear cells (PBMCs) involved in the immune response have not been previously described. Using PBMCs from 10 healthy subjects infected with M. tuberculosis H37Rv, we analyzed the effects of simvastatin on the treatment of the infections in an in vitro experimental model. Direct quantification of M. tuberculosis growth (in CFU/mL) was performed. Phenotypes and cell activation were assessed via multi-color flow cytometry. Culture supernatant cytokine levels were determined via cytokine bead arrays. The induction of apoptosis and autophagy was evaluated via flow cytometry and confocal microscopy. Simvastatin decreased the growth of M. tuberculosis in PBMCs, increased the proportion of NKT cells in culture, increased the expression of co-stimulatory molecules in monocytes, promoted the secretion of the cytokines IL-1β and IL-12p70, and activated apoptosis and autophagy in monocytes, resulting in a significant reduction in bacterial load. We also observed an increase in IL-10 production. We did not observe any direct antimycobacterial activity. This study provides new insight into the mechanism through which simvastatin reduces the mycobacterial load in infected PBMCs. These results demonstrate that simvastatin activates several immune mechanisms that favor the containment of M. tuberculosis infection, providing relevant evidence to consider statins as candidates for host-directed therapy. They also suggest that future studies are needed to define the roles of statin-induced anti-inflammatory mechanisms in tuberculosis treatment.
Collapse
Affiliation(s)
- Paola Del Carmen Guerra-De-Blas
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabel Sada-Ovalle
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pedro Torres-González
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad Biomédica de Investigación en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Silvia Guzmán-Beltrán
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
48
|
Thirunavukkarasu S, Khader SA. Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis. Front Cell Infect Microbiol 2019; 9:116. [PMID: 31058102 PMCID: PMC6482252 DOI: 10.3389/fcimb.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in industrialized nations and an emerging health problem in the developing world. Systemic inflammatory processes associated with alterations in lipid metabolism are a major contributing factor that mediates the development of CVDs, especially atherosclerosis. Therefore, the pathways promoting alterations in lipid metabolism and the interplay between varying cellular types, signaling agents, and effector molecules have been well-studied. Mycobacterial species are the causative agents of various infectious diseases in both humans and animals. Modulation of host lipid metabolism by mycobacteria plays a prominent role in its survival strategy within the host as well as in disease pathogenesis. However, there are still several knowledge gaps in the mechanistic understanding of how mycobacteria can alter host lipid metabolism. Considering the in-depth research available in the area of cardiovascular research, this review presents an overview of the parallel areas of research in host lipid-mediated immunological changes that might be extrapolated and explored to understand the underlying basis of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
49
|
Vrieling F, Wilson L, Rensen PCN, Walzl G, Ottenhoff THM, Joosten SA. Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathog 2019; 15:e1007724. [PMID: 30998773 PMCID: PMC6490946 DOI: 10.1371/journal.ppat.1007724] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/30/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (DM) is a major risk factor for developing tuberculosis (TB). TB-DM comorbidity is expected to pose a serious future health problem due to the alarming rise in global DM incidence. At present, the causal underlying mechanisms linking DM and TB remain unclear. DM is associated with elevated levels of oxidized low-density lipoprotein (oxLDL), a pathologically modified lipoprotein which plays a key role during atherosclerosis development through the formation of lipid-loaded foamy macrophages, an event which also occurs during progression of the TB granuloma. We therefore hypothesized that oxLDL could be a common factor connecting DM to TB. To study this, we measured oxLDL levels in plasma samples of healthy controls, TB, DM and TB-DM patients, and subsequently investigated the effect of oxLDL treatment on human macrophage infection with Mycobacterium tuberculosis (Mtb). Plasma oxLDL levels were significantly elevated in DM patients and associated with high triglyceride levels in TB-DM. Strikingly, incubation with oxLDL strongly increased macrophage Mtb load compared to native or acetylated LDL (acLDL). Mechanistically, oxLDL -but not acLDL- treatment induced macrophage lysosomal cholesterol accumulation and increased protein levels of lysosomal and autophagy markers, while reducing Mtb colocalization with lysosomes. Importantly, combined treatment of acLDL and intracellular cholesterol transport inhibitor (U18666A) mimicked the oxLDL-induced lysosomal phenotype and impaired macrophage Mtb control, illustrating that the localization of lipid accumulation is critical. Collectively, these results demonstrate that oxLDL could be an important DM-associated TB-risk factor by causing lysosomal dysfunction and impaired control of Mtb infection in human macrophages. Tuberculosis (TB) is an infectious disease of the lungs caused by a bacterium, Mycobacterium tuberculosis (Mtb), and is responsible for over a million deaths per year worldwide. Population studies have demonstrated that type 2 diabetes mellitus (DM) is a risk factor for TB as it triples the risk of developing the disease. DM is a metabolic disorder which is generally associated with obesity, and is characterized by resistance to the pancreatic hormone insulin and high blood glucose and lipid levels. As the global incidence of DM is rising at an alarming rate, especially in regions where TB is common, it is important to understand precisely how DM increases the risk of developing TB. Both TB and DM are associated with the development of foamy macrophages, lipid-loaded white blood cells, which can be the result of a specific lipoprotein particle called oxidized low-density lipoprotein (oxLDL). Here, we demonstrated that DM patients have high blood levels of oxLDL, and generating foamy macrophages with oxLDL supported Mtb survival after infection as a result of faulty intracellular cholesterol accumulation. Our results propose a proof of concept for oxLDL as a risk factor for TB development, encouraging future studies on lipid-lowering therapies for TB-DM.
Collapse
Affiliation(s)
- Frank Vrieling
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Louis Wilson
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Gerhard Walzl
- DST/NRF Center of Excellence for Biomedical Tuberculosis Research, SA MRC Center for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front Microbiol 2019; 10:41. [PMID: 30745898 PMCID: PMC6360151 DOI: 10.3389/fmicb.2019.00041] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a well-recognized global health threat that demands effective solutions; the situation is deemed a global priority by the World Health Organization and the European Centre for Disease Prevention and Control. Therefore, the development of new antimicrobial therapeutic strategies requires immediate attention to avoid the ten million deaths predicted to occur by 2050 as a result of MDR bacteria. The repurposing of drugs as therapeutic alternatives for infections has recently gained renewed interest. As drugs approved by the United States Food and Drug Administration, information about their pharmacological characteristics in preclinical and clinical trials is available. Therefore, the time and economic costs required to evaluate these drugs for other therapeutic applications, such as the treatment of bacterial and fungal infections, are mitigated. The goal of this review is to provide an overview of the scientific evidence on potential non-antimicrobial drugs targeting bacteria and fungi. In particular, we aim to: (i) list the approved drugs identified in drug screens as potential alternative treatments for infections caused by MDR pathogens; (ii) review their mechanisms of action against bacteria and fungi; and (iii) summarize the outcome of preclinical and clinical trials investigating approved drugs that target these pathogens.
Collapse
Affiliation(s)
- Andrea Miró-Canturri
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Rafael Ayerbe-Algaba
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| |
Collapse
|