1
|
Chang CY, Armstrong D, Knight JM, Gale TV, Hawley S, Wang M, Chang N, Corry DB, Kheradmand F. Sialidase fusion protein protects against influenza infection in a cigarette smoke-induced model of COPD. Mucosal Immunol 2025:S1933-0219(25)00004-2. [PMID: 39837384 DOI: 10.1016/j.mucimm.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
First- and secondhand smokers are at an increased risk for influenza virus (IFV)-related respiratory failure and death. Despite approved influenza antiviral treatments, there is an unmet need for treatments that can improve outcomes in populations at risk for respiratory failure, including tobacco users with Chronic Obstructive Pulmonary Disease (COPD). Here we show that the sialidase fusion protein, DAS181, reduced viral burden, mitigated inflammation, and attenuated lung function loss, consistent with broad-spectrum anti-influenza responses in a mouse model of COPD and IFV-A infection. Treatment with DAS181 reprogramed the sialic acid-binding immunoglobulin-like lectins (Siglecs) in alveolar macrophages, increased expression of phagocytic marker CD169, and downregulated inhibitory Siglec-F and Siglec-H molecules. Upon reinfection, mice treated with DAS181 showed activated and protective memory response in the lungs. Collectively, we show that this sialidase fusion protein promotes a beneficial immunomodulatory reaction in the lungs, supporting a new IFV-A therapeutic option for at-risk smokers.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - John M Knight
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Max Wang
- Ansun Biopharma, San Diego, CA 92121, USA
| | | | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Kim M, Park CS, Moon C, Kim J, Yang S, Jang L, Jang JY, Jeong CM, Lee HS, Kim K, Byeon H, Kim HH. Structural and quantitative comparison of viral infection-associated N-glycans in plasma from humans, pigs, and chickens: Greater similarity between humans and chickens than pigs. Antiviral Res 2024; 231:106009. [PMID: 39326504 DOI: 10.1016/j.antiviral.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Host N-glycans play an essential role in the attachment, invasion, and infection processes of viruses, including zoonotic infectious diseases. The similarity of N-glycans in the trachea and lungs of humans and pigs facilitates the cross-species transmission of influenza viruses through respiratory tracts. In this study, the structure and quantity of N-glycans in the plasma of humans, pigs, and chickens were analyzed using liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry. N-glycans in humans (35), pigs (28), and chickens (53) were identified, including the most abundant, species-common, and species-specific N-glycans. Among the N-glycans (relative quantity >0.5%), the sialic acid derivative of N-acetylneuraminic acid was identified in humans (the sum of the relative quantities of each; 64.3%), pigs (45.5%), and chickens (64.4%), whereas N-glycolylneuraminic acid was only identified in pigs (18.1%). Sialylated N-glycan linkage isomers are the influenza virus receptors (α2-6 in humans, α2-3 and α2-6 in pigs, and α2-3 in chickens). Only α2-6 linkages (human, 58.2%; pig, 44.8%; and chicken, 60.6%) were more abundant than α2-3/α2-6 linkages (human, 4.6%; pig, 0.6%; and chicken, 3.4%) and only α2-3 linkages (human, 1.5%; pig, 0.1%; and chicken, 0.4%). Fucosylation, which can promote viral infection through immune modulation, was more abundant in pigs (76.1%) than in humans (36.4%) and chickens (16.7%). Bisecting N-acetylglucosamine, which can suppress viral infection by inhibiting sialylation, was identified in humans (10.3%) and chickens (16.9%), but not in pigs. These results indicate that plasma N-glycans are similar in humans and chickens. This is the first study to compare plasma N-glycans in humans, pigs, and chickens.
Collapse
Affiliation(s)
- Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Potter JA, Aitken A, Yang L, Hill J, Tortajada A, Hurwitz JL, Jones BG, Alias N, Zhou M, Connaris H. HEX17(Neumifil): An intranasal respiratory biotherapeutic with broad-acting antiviral activity. Antiviral Res 2024; 228:105945. [PMID: 38914284 DOI: 10.1016/j.antiviral.2024.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats. HEX17 (aka Neumifil), is a first-in-class protein-based antiviral prophylactic for respiratory viral infections. HEX17 consists of a hexavalent carbohydrate-binding module (CBM) with high affinity to sialic acids, which are typically present on terminating branches of glycans on viral cellular receptors. This allows HEX17 to block virus engagement of host receptors and inhibit infection of a wide range of viral pathogens and their variants with reduced risk of antiviral resistance. As described herein, HEX17 has demonstrated broad-spectrum efficacy against respiratory viral pathogens including IFV, RSV, CoV and HRV in multiple in vivo and in vitro studies. In addition, HEX17 can be easily administered via an intranasal spray and is currently undergoing clinical trials.
Collapse
Affiliation(s)
- Jane A Potter
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK.
| | - Angus Aitken
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Lei Yang
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Jennifer Hill
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Antoni Tortajada
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Julia L Hurwitz
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bart G Jones
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nadiawati Alias
- University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Mingkui Zhou
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife, KY16 9DR, UK
| | - Helen Connaris
- University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
5
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Huang Y, Zhu Q, Wang Y, Zhu K. Bacterial-derived sialidases inhibit porcine rotavirus OSU replication by interfering with the early steps of infection. Microb Pathog 2024; 190:106628. [PMID: 38508422 DOI: 10.1016/j.micpath.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 μU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.
Collapse
Affiliation(s)
- Yucheng Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qian Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Dedola S, Ahmadipour S, de Andrade P, Baker AN, Boshra AN, Chessa S, Gibson MI, Hernando PJ, Ivanova IM, Lloyd JE, Marín MJ, Munro-Clark AJ, Pergolizzi G, Richards SJ, Ttofi I, Wagstaff BA, Field RA. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chem Biol 2024; 5:167-188. [PMID: 38456038 PMCID: PMC10915975 DOI: 10.1039/d3cb00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
In structural terms, the sialic acids are a large family of nine carbon sugars based around an alpha-keto acid core. They are widely spread in nature, where they are often found to be involved in molecular recognition processes, including in development, immunology, health and disease. The prominence of sialic acids in infection is a result of their exposure at the non-reducing terminus of glycans in diverse glycolipids and glycoproteins. Herein, we survey representative aspects of sialic acid structure, recognition and exploitation in relation to infectious diseases, their diagnosis and prevention or treatment. Examples covered span influenza virus and Covid-19, Leishmania and Trypanosoma, algal viruses, Campylobacter, Streptococci and Helicobacter, and commensal Ruminococci.
Collapse
Affiliation(s)
- Simone Dedola
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alexander N Baker
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew N Boshra
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Simona Chessa
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew I Gibson
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School Coventry CV4 7AL UK
| | - Pedro J Hernando
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Irina M Ivanova
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Jessica E Lloyd
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK
| | - Alexandra J Munro-Clark
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Sarah-Jane Richards
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Iakovia Ttofi
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
9
|
Ortigoza MB, Mobini CL, Rocha HL, Bartlett S, Loomis CA, Weiser JN. Inhibiting influenza virus transmission using a broadly acting neuraminidase that targets host sialic acids in the upper respiratory tract. mBio 2024; 15:e0220323. [PMID: 38206008 PMCID: PMC10865980 DOI: 10.1128/mbio.02203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
The ongoing transmission of influenza A viruses (IAV) for the past century continues to be a burden to humans. IAV binds terminal sialic acids (SA) of sugar molecules present within the upper respiratory tract (URT) in order to successfully infect hosts. The two most common SA structures that are important for IAV infection are those with α2,3- and α2,6-linkages. While mice were once considered to be an unsuitable system for studying IAV transmission due to their lack of α2,6-SA in the trachea, we have successfully demonstrated that IAV transmission in infant mice is remarkably efficient. This finding led us to re-evaluate the SA composition of the URT of mice using in situ immunofluorescence and examine its in vivo contribution to transmission for the first time. We demonstrate that mice express both α2,3- and α2,6-SA in the URT and that the difference in expression between infants and adults contributes to the variable transmission efficiencies observed. Furthermore, selectively blocking α2,3-SA or α2,6-SA within the URT of infant mice using lectins was necessary but insufficient at inhibiting transmission, and simultaneous blockade of both receptors was crucial in achieving the desired inhibitory effect. By employing a broadly acting neuraminidase to indiscriminately remove both SA moieties in vivo, we effectively suppressed viral shedding and halted the transmission of different strains of influenza viruses. These results emphasize the utility of the infant mouse model for studying IAV transmission and strongly indicate that broadly targeting host SA is an effective approach that inhibits IAV contagion.IMPORTANCEInfluenza virus transmission studies have historically focused on viral mutations that alter hemagglutinin binding to sialic acid (SA) receptors in vitro. However, SA binding preference does not fully account for the complexities of influenza A virus transmission in humans. Our previous findings reveal that viruses that are known to bind α2,6-SA in vitro have different transmission kinetics in vivo, suggesting that diverse SA interactions may occur during their life cycle. In this study, we examine the role of host SA on viral replication, shedding, and transmission in vivo. We highlight the critical role of SA presence during virus shedding, such that attachment to SA during virion egress is equally important as detachment from SA during virion release. These insights support the potential of broadly acting neuraminidases as therapeutic agents capable of restraining viral transmission in vivo. Our study unveils intricate virus-host interactions during shedding, highlighting the necessity to develop innovative strategies to effectively target transmission.
Collapse
Affiliation(s)
- Mila B. Ortigoza
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Catherina L. Mobini
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Hedy L. Rocha
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Stacey Bartlett
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Cynthia A. Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
11
|
Kurnia RS, Soebandrio A, Harun VH, Nugroho CMH, Krisnamurti DGB, Poetri ON, Indrawati A, Tarigan S, Natih KKN, Ibrahim F, Sudarmono PP, Silaen OSM. Clostridium perfringens sialidase interaction with Neu5Ac α-Gal sialic acid receptors by in-silico observation and its impact on monolayers cellular behavior structure. J Adv Vet Anim Res 2023; 10:667-676. [PMID: 38370892 PMCID: PMC10868698 DOI: 10.5455/javar.2023.j722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 02/20/2024] Open
Abstract
Objective This study aims to evaluate the effect of Clostridium perfringens sialidase treatment on monolayer cell behavior using computational screening and an in vitro approach to demonstrate interaction between enzyme-based drugs and ligands in host cells. Materials and Methods The in silico study was carried out by molecular docking analysis used to predict the interactions between atoms that occur, followed by genetic characterization of sialidase from a wild isolate. Sialidase, which has undergone further production and purification processes exposed to chicken embryonic fibroblast cell culture, and observations-based structural morphology of cells compared between treated cells and normal cells without treatment. Results Based on an in silico study, C. perfringens sialidase has an excellent binding affinity with Neu5Acα (2.3) Gal ligand receptor with Gibbs energy value (∆G)-7.35 kcal/mol and Ki value of 4.11 µM. Wild C. perfringens isolates in this study have 99.1%-100% similarity to the plc gene, NanH, and NanI genes, while NanJ shows 93.18% similarity compared to the reference isolate from GenBank. Sialidase at 750 and 150 mU may impact the viability, cell count, and cell behavior structure of fibroblast cells by significantly increasing the empty area and perimeter of chicken embryo fibroblast (CEF) cells, while at 30 mU sialidase shows no significant difference compared with mock control. Conclusion Sialidase-derived C. perfringens has the capacity to compete with viral molecules for attachment to host sialic acid based on in silico analysis. However, sialidase treatment has an impact on monolayer cell fibroblasts given exposure to high doses.
Collapse
Affiliation(s)
- Ryan Septa Kurnia
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivi Hardianty Harun
- Biotechnology/Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Indonesia
| | | | | | - Okti Nadia Poetri
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Simson Tarigan
- National Research and Innovation Agency, Cibinong, West Java, Indonesia
| | | | - Fera Ibrahim
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Zhu M, Anirudhan V, Du R, Rong L, Cui Q. Influenza virus cell entry and targeted antiviral development. J Med Virol 2023; 95:e29181. [PMID: 37930075 DOI: 10.1002/jmv.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Influenza virus infection is currently one of the most prevalent and transmissible diseases in the world causing local outbreaks every year. It has the potential to cause devastating global pandemics as well. The development of anti-influenza drugs possessing novel mechanisms of action is urgently needed to control the spread of influenza infections; thus, drugs that inhibit influenza virus entry into target cells are emerging as a hot research topic. In addition to discussing the biological significance of hemagglutinin in viral replication, this article provides recent updates on the natural products, small molecules, proteins, peptides, and neutralizing antibody-like proteins that have anti-influenza potency.
Collapse
Affiliation(s)
- Murong Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
14
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Haas KM, McGregor MJ, Bouhaddou M, Polacco BJ, Kim EY, Nguyen TT, Newton BW, Urbanowski M, Kim H, Williams MAP, Rezelj VV, Hardy A, Fossati A, Stevenson EJ, Sukerman E, Kim T, Penugonda S, Moreno E, Braberg H, Zhou Y, Metreveli G, Harjai B, Tummino TA, Melnyk JE, Soucheray M, Batra J, Pache L, Martin-Sancho L, Carlson-Stevermer J, Jureka AS, Basler CF, Shokat KM, Shoichet BK, Shriver LP, Johnson JR, Shaw ML, Chanda SK, Roden DM, Carter TC, Kottyan LC, Chisholm RL, Pacheco JA, Smith ME, Schrodi SJ, Albrecht RA, Vignuzzi M, Zuliani-Alvarez L, Swaney DL, Eckhardt M, Wolinsky SM, White KM, Hultquist JF, Kaake RM, García-Sastre A, Krogan NJ. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets. Nat Commun 2023; 14:6030. [PMID: 37758692 PMCID: PMC10533562 DOI: 10.1038/s41467-023-41442-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.
Collapse
Affiliation(s)
- Kelsey M Haas
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Michael J McGregor
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Thong T Nguyen
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Matthew Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Heejin Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael A P Williams
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Alexandra Hardy
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Andrea Fossati
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Erica J Stevenson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Ellie Sukerman
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tiffany Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sudhir Penugonda
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Yuan Zhou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavya Harjai
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Tia A Tummino
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - James E Melnyk
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Laura Martin-Sancho
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Infectious Disease, Imperial College London, London, SW7 2BX, UK
| | - Jared Carlson-Stevermer
- Synthego Corporation, Redwood City, CA, 94063, USA
- Serotiny Inc., South San Francisco, CA, 94080, USA
| | - Alexander S Jureka
- Molecular Virology and Vaccine Team, Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, 30333, USA
- General Dynamics Information Technology, Federal Civilian Division, Atlanta, GA, 30329, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Brian K Shoichet
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Western Cape, South Africa
| | - Sumit K Chanda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tonia C Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Leah C Kottyan
- Center of Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Rex L Chisholm
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Maureen E Smith
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Vignuzzi
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Lorena Zuliani-Alvarez
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kris M White
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Judd F Hultquist
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| | - Robyn M Kaake
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| | - Adolfo García-Sastre
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| |
Collapse
|
16
|
Ortigoza MB, Mobini CL, Rocha HL, Bartlett S, Loomis CA, Weiser JN. Targeting host sialic acids in the upper respiratory tract with a broadly-acting neuraminidase to inhibit influenza virus transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543524. [PMID: 37398388 PMCID: PMC10312619 DOI: 10.1101/2023.06.02.543524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The ongoing transmission of influenza A viruses (IAV) for the past century continues to be a burden to humans. IAV binds terminal sialic acids (SA) of sugar molecules present within the upper respiratory tract (URT) in order to successfully infect hosts. The two most common SA structures that are important for IAV infection are those with α2,3- and α2,6-linkages. While mice were once considered to be an unsuitable system for studying IAV transmission due to their lack of α2,6-SA in the trachea, we have successfully demonstrated that IAV transmission in infant mice is remarkably efficient. This finding led us to reevaluate the SA composition of the URT of mice using in situ immunofluorescence and examine its in vivo contribution to transmission for the first time. We demonstrate that mice express both α2,3- and α2,6-SA in the URT and that the difference in expression between infants and adults contribute to the variable transmission efficiencies observed. Furthermore, selectively blocking α2,3-SA or α2,6-SA within the URT of infant mice using lectins was necessary but insufficient at inhibiting transmission, and simultaneous blockade of both receptors was crucial in achieving the desired inhibitory effect. By employing a broadly-acting neuraminidase (ba-NA) to indiscriminately remove both SA moieties in vivo, we effectively suppressed viral shedding and halted the transmission of different strains of influenza viruses. These results emphasize the utility of the infant mouse model for studying IAV transmission, and strongly indicate that broadly targeting host SA is an effective approach that inhibits IAV contagion.
Collapse
Affiliation(s)
- Mila B. Ortigoza
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Catherina L. Mobini
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Hedy L. Rocha
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Stacey Bartlett
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Cynthia A. Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Slough MM, Li R, Herbert AS, Lasso G, Kuehne AI, Monticelli SR, Bakken RR, Liu Y, Ghosh A, Moreau AM, Zeng X, Rey FA, Guardado-Calvo P, Almo SC, Dye JM, Jangra RK, Wang Z, Chandran K. Two point mutations in protocadherin-1 disrupt hantavirus recognition and afford protection against lethal infection. Nat Commun 2023; 14:4454. [PMID: 37488123 PMCID: PMC10366084 DOI: 10.1038/s41467-023-40126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Andes virus (ANDV) and Sin Nombre virus (SNV) are the etiologic agents of severe hantavirus cardiopulmonary syndrome (HCPS) in the Americas for which no FDA-approved countermeasures are available. Protocadherin-1 (PCDH1), a cadherin-superfamily protein recently identified as a critical host factor for ANDV and SNV, represents a new antiviral target; however, its precise role remains to be elucidated. Here, we use computational and experimental approaches to delineate the binding surface of the hantavirus glycoprotein complex on PCDH1's first extracellular cadherin repeat domain. Strikingly, a single amino acid residue in this PCDH1 surface influences the host species-specificity of SNV glycoprotein-PCDH1 interaction and cell entry. Mutation of this and a neighboring residue substantially protects Syrian hamsters from pulmonary disease and death caused by ANDV. We conclude that PCDH1 is a bona fide entry receptor for ANDV and SNV whose direct interaction with hantavirus glycoproteins could be targeted to develop new interventions against HCPS.
Collapse
Affiliation(s)
- Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rong Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Stephanie R Monticelli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - Russell R Bakken
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Yanan Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alicia M Moreau
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015, Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Structural Biology of Infectious Diseases Unit, F-75015, Paris, France
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Kumar N, Taily IM, Singh C, Kumar S, Rajmani RS, Chakraborty D, Sharma A, Singh P, Thakur KG, Varadarajan R, Ringe RP, Banerjee P, Banerjee I. Identification of diphenylurea derivatives as novel endocytosis inhibitors that demonstrate broad-spectrum activity against SARS-CoV-2 and influenza A virus both in vitro and in vivo. PLoS Pathog 2023; 19:e1011358. [PMID: 37126530 PMCID: PMC10174524 DOI: 10.1371/journal.ppat.1011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) poses enormous challenge in the development of broad-spectrum antivirals that are effective against the existing and emerging viral strains. Virus entry through endocytosis represents an attractive target for drug development, as inhibition of this early infection step should block downstream infection processes, and potentially inhibit viruses sharing the same entry route. In this study, we report the identification of 1,3-diphenylurea (DPU) derivatives (DPUDs) as a new class of endocytosis inhibitors, which broadly restricted entry and replication of several SARS-CoV-2 and IAV strains. Importantly, the DPUDs did not induce any significant cytotoxicity at concentrations effective against the viral infections. Examining the uptake of cargoes specific to different endocytic pathways, we found that DPUDs majorly affected clathrin-mediated endocytosis, which both SARS-CoV-2 and IAV utilize for cellular entry. In the DPUD-treated cells, although virus binding on the cell surface was unaffected, internalization of both the viruses was drastically reduced. Since compounds similar to the DPUDs were previously reported to transport anions including chloride (Cl-) across lipid membrane and since intracellular Cl- concentration plays a critical role in regulating vesicular trafficking, we hypothesized that the observed defect in endocytosis by the DPUDs could be due to altered Cl- gradient across the cell membrane. Using in vitro assays we demonstrated that the DPUDs transported Cl- into the cell and led to intracellular Cl- accumulation, which possibly affected the endocytic machinery by perturbing intracellular Cl- homeostasis. Finally, we tested the DPUDs in mice challenged with IAV and mouse-adapted SARS-CoV-2 (MA 10). Treatment of the infected mice with the DPUDs led to remarkable body weight recovery, improved survival and significantly reduced lung viral load, highlighting their potential for development as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nirmal Kumar
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Charandeep Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Sahil Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Anshul Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Priyanka Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Krishan Gopal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Rajesh P. Ringe
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| |
Collapse
|
19
|
Escuret V, Terrier O. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Front Microbiol 2023; 14:1137336. [PMID: 37213507 PMCID: PMC10192862 DOI: 10.3389/fmicb.2023.1137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
The activity of sialic acids, known to play critical roles in biology and many pathological processes, is finely regulated by a class of enzymes called sialidases, also known as neuraminidases. These are present in mammals and many other biological systems, such as viruses and bacteria. This review focuses on the very particular situation of co-infections of the respiratory epithelium, the scene of complex functional interactions between viral, bacterial, and human neuraminidases. This intrinsically multidisciplinary topic combining structural biology, biochemistry, physiology, and the study of host-pathogen interactions, opens up exciting research perspectives that could lead to a better understanding of the mechanisms underlying virus-bacteria co-infections and their contribution to the aggravation of respiratory pathology, notably in the context of pre-existing pathological contexts. Strategies that mimic or inhibit the activity of the neuraminidases could constitute interesting treatment options for viral and bacterial infections.
Collapse
|
20
|
Nainwal N. Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities. Pulm Pharmacol Ther 2022; 77:102170. [PMID: 36240985 PMCID: PMC9554202 DOI: 10.1016/j.pupt.2022.102170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Respiratory viral infections are the leading cause of death worldwide. The current pandemic of coronavirus infection (COVID-19) challenged human beings for the treatment and prevention of this respiratory viral infection since its outbreak in 2019. Despite advancements in the medical field, scientists were helpless to give timely treatment and protection against this viral infection. Several drugs, whether antiviral or not, were given to the patients to reduce mortality and morbidity rate. Vaccines from various pharmaceutical manufacturers are now available to give immunization against covid-19. Still, coronavirus is continuously affecting people in the form of variants after mutation. Each new variant increases the infection risk and forces scientists to develop some innovative and effective treatments for this infection. The virus uses the host's cell machinery to grow and multiply in numbers. Therefore, scientists are facing challenges to develop antivirals that stop the virus without damaging the host cells too. The production of suitable antivirals or vaccines for the new virus would take several months, allowing the strain to cause severe damage to life. Inhalable formulation facilitates the delivery of medicinal products directly to the respiratory system without causing unwanted side effects associated with systemic absorption. Scientists are focusing on developing an inhaled version of the existing antivirals for the treatment of respiratory infections. This review focused on the inhalable formulations of antiviral agents in various respiratory viral infections including the ongoing covid-19 pandemic and important findings of the clinical studies. We also reviewed repurposed drugs that have been given through inhalation in covid-19 infection.
Collapse
|
21
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|
22
|
Eichberg J, Maiworm E, Oberpaul M, Czudai-Matwich V, Lüddecke T, Vilcinskas A, Hardes K. Antiviral Potential of Natural Resources against Influenza Virus Infections. Viruses 2022; 14:v14112452. [PMID: 36366550 PMCID: PMC9693975 DOI: 10.3390/v14112452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Influenza is a severe contagious disease caused by influenza A and B viruses. The WHO estimates that annual outbreaks lead to 3-5 million severe infections of which approximately 10% lead to the death of the patient. While vaccination is the cornerstone of prevention, antiviral drugs represent the most important treatment option of acute infections. Only two classes of drugs are currently approved for the treatment of influenza in numerous countries: M2 channel blockers and neuraminidase inhibitors. In some countries, additional compounds such as the recently developed cap-dependent endonuclease inhibitor baloxavir marboxil or the polymerase inhibitor favipiravir are available. However, many of these compounds suffer from poor efficacy, if not applied early after infection. Furthermore, many influenza strains have developed resistances and lost susceptibility to these compounds. As a result, there is an urgent need to develop new anti-influenza drugs against a broad spectrum of subtypes. Natural products have made an important contribution to the development of new lead structures, particularly in the field of infectious diseases. Therefore, this article aims to review the research on the identification of novel lead structures isolated from natural resources suitable to treat influenza infections.
Collapse
Affiliation(s)
- Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Elena Maiworm
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Markus Oberpaul
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Volker Czudai-Matwich
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute of Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
23
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res 2022; 207:105405. [PMID: 36084851 DOI: 10.1016/j.antiviral.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Human metapneumoviruses have emerged in the past decades as an important global pathogen that causes severe upper and lower respiratory tract infections. Children under the age of 2, the elderly and immunocompromised individuals are more susceptible to HMPV infection than the general population due to their suboptimal immune system. Despite the recent discovery of HMPV as a novel important respiratory virus, reports have rapidly described its epidemiology, biology, and pathogenesis. However, progress is still to be made in the development of vaccines and drugs against HMPV infection as none are currently available. Herein, we discuss the importance of HMPV and review the reported strategies for anti-HMPV drug candidates. We also present the fusion protein as a promising antiviral drug target due to its multiple roles in the HMPV lifecycle. This key viral protein has previously been targeted by a range of inhibitors, which will be discussed as they represent opportunities for future drug design.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
24
|
Kurnia RS, Tarigan S, Nugroho CMH, Silaen OSM, Natalia L, Ibrahim F, Sudarmono PP. Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model. Vet World 2022; 15:1896-1905. [DOI: 10.14202/vetworld.2022.1896-1905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Clostridium toxins are widely used as medicinal agents. Many active metabolic enzymes, including sialidase (neuraminidase), hyaluronidase, and collagenase, contribute to the mechanism of action of these toxins. Sialidase from Clostridium perfringens recognizes and degrades sialic acid receptors in the host cell glycoprotein, glycolipid, and polysaccharide complexes. Sialic acid promotes the adhesion of various pathogens, including viruses, under pathological conditions. This study aimed to investigate the potential of C. perfringens sialidase protein to inhibit Newcastle disease virus (NDV) infection in ovo model.
Materials and Methods: C. perfringens was characterized by molecular identification through polymerase chain reaction (PCR) and is cultured in a broth medium to produce sialidase. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis was conducted to characterize the sialidase protein. In contrast, enzymatic activity and protein concentration were carried out using a neuraminidase assay kit and Bradford to obtain suitable active substances. Furthermore, embryonated chicken egg models were used to observe the toxicity of several sialidase doses. Then, the hemagglutination (HA) titer was obtained, and absolute quantitative reverse transcription–PCR assay was performed to measure the viral replication inhibitory activity of sialidase against NDV.
Results: Each isolate had a specific sialidase gene and its product. The sialidase derived from C. perfringens could hydrolyze the sialic acid receptor Neu5Ac (2,6)-Gal higher than Neu5Ac (2,3)Gal in chicken erythrocytes, as observed by enzyme-linked lectin assay. A significant difference (p = 0.05) in the HA titer in the pre-challenge administration group at dosages of 375 mU, 187.5 mU, and 93.75 mU in the competitive inhibition experiment suggests that sialidase inhibits NDV reproduction. Quantification of infective viral copy confirmed the interference of viral replication in the pre-challenge administration group, with a significant difference (p = 0.05) at the treatment doses of 750 mU, 375 mU, and 46.87 mU.
Conclusion: The potency of sialidase obtained from C. perfringens was shown in this study, given its ability to reduce the viral titer and copy number in allantoic fluids without adversely impacting the toxicity of the chicken embryo at different concentrations.
Collapse
Affiliation(s)
- Ryan Septa Kurnia
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Simson Tarigan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | | | - Otto Sahat Martua Silaen
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Lily Natalia
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Fera Ibrahim
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pratiwi Pudjilestari Sudarmono
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
25
|
Nugroho CMH, Kurnia RS, Tarigan S, Silaen OSM, Triwidyaningtyas S, Wibawan IWT, Natalia L, Takdir AK, Soebandrio A. Screening and purification of NanB sialidase from Pasteurella multocida with activity in hydrolyzing sialic acid Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. Sci Rep 2022; 12:9425. [PMID: 35676312 PMCID: PMC9177577 DOI: 10.1038/s41598-022-13635-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Study on sialidases as antiviral agents has been widely performed, but many types of sialidase have not been tested for their antiviral activity. Pasteurella multocida NanB sialidase is one such sialidase that has never been isolated for further research. In this study, the activity of NanB sialidase was investigated in silico by docking the NanB sialidase of Pasteurella multocida to the Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal ligands. Additionally, some local isolates of Pasteurella multocida, which had the NanB gene were screened, and the proteins were isolated for further testing regarding their activity in hydrolyzing Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. Silico studies showed that the NanB sialidase possesses an exceptional affinity towards forming a protein–ligand complex with Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. NanB sialidase of Pasteurella multocida B018 at 0.129 U/mL and 0.258 U/mL doses can hydrolyze Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal better than other doses. In addition, those doses can inhibit effectively H9N2 viral binding to red blood cells. This study suggested that the NanB sialidase of Pasteurella multocida B018 has a potent antiviral activity because can hydrolyze sialic acid on red blood cells surface and inhibit the H9N2 viral binding to the cells.
Collapse
|
26
|
Rafael TS, Rotman J, Brouwer OR, van der Poel HG, Mom CH, Kenter GG, de Gruijl TD, Jordanova ES. Immunotherapeutic Approaches for the Treatment of HPV-Associated (Pre-)Cancer of the Cervix, Vulva and Penis. J Clin Med 2022; 11:1101. [PMID: 35207374 PMCID: PMC8876514 DOI: 10.3390/jcm11041101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infection drives tumorigenesis in almost all cervical cancers and a fraction of vulvar and penile cancers. Due to increasing incidence and low vaccination rates, many will still have to face HPV-related morbidity and mortality in the upcoming years. Current treatment options (i.e., surgery and/or chemoradiation) for urogenital (pre-)malignancies can have profound psychosocial and psychosexual effects on patients. Moreover, in the setting of advanced disease, responses to current therapies remain poor and nondurable, highlighting the unmet need for novel therapies that prevent recurrent disease and improve clinical outcome. Immunotherapy can be a useful addition to the current therapeutic strategies in various settings of disease, offering relatively fewer adverse effects and potential improvement in survival. This review discusses immune evasion mechanisms accompanying HPV infection and HPV-related tumorigenesis and summarizes current immunotherapeutic approaches for the treatment of HPV-related (pre-)malignant lesions of the uterine cervix, vulva, and penis.
Collapse
Affiliation(s)
- Tynisha S. Rafael
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Jossie Rotman
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Oscar R. Brouwer
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Henk G. van der Poel
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Constantijne H. Mom
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Gemma G. Kenter
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Ekaterina S. Jordanova
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| |
Collapse
|
27
|
Glycomic Analysis Reveals That Sialyltransferase Inhibition Is Involved in the Antiviral Effects of Arbidol. J Virol 2022; 96:e0214121. [PMID: 35044216 PMCID: PMC8941891 DOI: 10.1128/jvi.02141-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.
Collapse
|
28
|
Chemaly RF, Marty FM, Wolfe CR, Lawrence SJ, Dadwal S, Soave R, Farthing J, Hawley S, Montanez P, Hwang J, Ho JHC, Lewis S, Wang G, Boeckh M. DAS181 Treatment of Severe Lower Respiratory Tract Parainfluenza Virus Infection in Immunocompromised Patients: A Phase 2 Randomized, Placebo-Controlled Study. Clin Infect Dis 2021; 73:e773-e781. [PMID: 33569576 PMCID: PMC8326557 DOI: 10.1093/cid/ciab113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There are no antiviral therapies for parainfluenza virus (PIV) infections. DAS181, a sialidase fusion protein, has demonstrated activity in in vitro and in animal models of PIV. METHODS Adult immunocompromised patients diagnosed with PIV lower respiratory tract infection (LRTI) who required oxygen supplementation were randomized 2:1 to nebulized DAS181 (4.5 mg/day) or matching placebo for up to 10 days. Randomization was stratified by need for mechanical ventilation (MV) or supplemental oxygen (SO). The primary endpoint was the proportion of patients reaching clinical stability survival (CSS) defined as returning to room air (RTRA), normalization of vital signs for at least 24 hours, and survival up to day 45 from enrollment. RESULTS A total of 111 patients were randomized to DAS181 (n = 74) or placebo (n = 37). CSS was achieved by 45.0% DAS181-treated patients in the SO stratum compared with 31.0% for placebo (P = .15), whereas patients on MV had no benefit from DAS181. The proportion of patients achieving RTRA was numerically higher for SO stratum DAS181 patients (51.7%) compared with placebo (34.5%) at day 28 (P = .17). In a post hoc analysis of solid organ transplant, hematopoietic cell transplantation within 1 year, or chemotherapy within 1 year, more SO stratum patients achieved RTRA on DAS181 (51.8%) compared with placebo (15.8%) by day 28 (P = .012). CONCLUSIONS The primary endpoint was not met, but post hoc analysis of the RTRA component suggests DAS181 may have clinical activity in improving oxygenation in select severely immunocompromised patients with PIV LRTI who are not on mechanical ventilation. Clinical Trials Registration. NCT01644877.
Collapse
Affiliation(s)
- Roy F Chemaly
- Department of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Francisco M Marty
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven J Lawrence
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanjeet Dadwal
- Department of Infectious Disease, City of Hope, Duarte, California, USA
| | - Rosemary Soave
- New York-Presbyterian Hospital and Weill Cornell Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | - Michael Boeckh
- Vaccine and Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
29
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
30
|
Mathez G, Cagno V. Viruses Like Sugars: How to Assess Glycan Involvement in Viral Attachment. Microorganisms 2021; 9:1238. [PMID: 34200288 PMCID: PMC8230229 DOI: 10.3390/microorganisms9061238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The first step of viral infection requires interaction with the host cell. Before finding the specific receptor that triggers entry, the majority of viruses interact with the glycocalyx. Identifying the carbohydrates that are specifically recognized by different viruses is important both for assessing the cellular tropism and for identifying new antiviral targets. Advances in the tools available for studying glycan-protein interactions have made it possible to identify them more rapidly; however, it is important to recognize the limitations of these methods in order to draw relevant conclusions. Here, we review different techniques: genetic screening, glycan arrays, enzymatic and pharmacological approaches, and surface plasmon resonance. We then detail the glycan interactions of enterovirus D68 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting the aspects that need further clarification.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
31
|
Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:643326. [PMID: 33828999 PMCID: PMC8019817 DOI: 10.3389/fcimb.2021.643326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karina Hentrich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
32
|
Mohan M, Bhattacharya D. Host-directed Therapy: A New Arsenal to Come. Comb Chem High Throughput Screen 2021; 24:59-70. [PMID: 32723230 DOI: 10.2174/1386207323999200728115857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today's scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host's cell machinery for their survival. They alter the gene expression of several host's pathways and endorse to shut down the cell's innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host's factors. They also mimic the host molecules and secrete them to prevent the host's proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host's factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host's factors, which favors the pathogen survival inside the cell.
Collapse
Affiliation(s)
- Mradul Mohan
- National Institute of Malaria Research, New Delhi, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed University, Bhubaneswar, Odisha, India
| |
Collapse
|
33
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
34
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhang Q, Liang T, Nandakumar KS, Liu S. Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opin Pharmacother 2020; 22:715-728. [PMID: 33327812 DOI: 10.1080/14656566.2020.1856814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Seasonal influenza vaccination, together with FDA-approved neuraminidase (NA) and polymerase acidic (PA) inhibitors, is the most effective way for prophylaxis and treatment of influenza infections. However, the low efficacy of prevailing vaccines to newly emerging influenza strains and increasing resistance to available drugs drives intense research to explore more effective inhibitors. Hemagglutinin (HA), one of the major surface proteins of influenza strains, represents an attractive therapeutic target to develop such new inhibitors.Areas covered: This review summarizes the current progress of HA-based influenza virus inhibitors and their mechanisms of action, which may facilitate further research in developing novel antiviral inhibitors for controlling influenza infections.Expert opinion: HA-mediated entry of influenza virus is an essential step for successful infection of the host, which makes HA a promising target for the development of antiviral drugs. Recent progress in delineating the crystal structures of HA, especially HA-inhibitors complexes, has revealed a number of key residues and conserved binding pockets within HA. This has opened up important insights for developing HA-based antiviral inhibitors that have a high resistance barrier and broad-spectrum activities.
Collapse
Affiliation(s)
- Qiao Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China.,State Key Laboratory of Organ Failure Research, Institute of Kidney Disease of Guangdong, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
36
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
37
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide since its first incidence in Wuhan, China, in December 2019. Although the case fatality rate of COVID-19 appears to be lower than that of SARS and Middle East respiratory syndrome (MERS), the higher transmissibility of SARS-CoV-2 has caused the total fatality to surpass other viral diseases, reaching more than 1 million globally as of October 6, 2020. The rate at which the disease is spreading calls for a therapy that is useful for treating a large population. Multiple intersecting viral and host factor targets involved in the life cycle of the virus are being explored. Because of the frequent mutations, many coronaviruses gain zoonotic potential, which is dependent on the presence of cell receptors and proteases, and therefore the targeting of the viral proteins has some drawbacks, as strain-specific drug resistance can occur. Moreover, the limited number of proteins in a virus makes the number of available targets small. Although SARS-CoV and SARS-CoV-2 share common mechanisms of entry and replication, there are substantial differences in viral proteins such as the spike (S) protein. In contrast, targeting cellular factors may result in a broader range of therapies, reducing the chances of developing drug resistance. In this Review, we discuss the role of primary host factors such as the cell receptor angiotensin-converting enzyme 2 (ACE2), cellular proteases of S protein priming, post-translational modifiers, kinases, inflammatory cells, and their pharmacological intervention in the infection of SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
38
|
Heida R, Bhide YC, Gasbarri M, Kocabiyik Ö, Stellacci F, Huckriede ALW, Hinrichs WLJ, Frijlink HW. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov Today 2020; 26:122-137. [PMID: 33099021 PMCID: PMC7577316 DOI: 10.1016/j.drudis.2020.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Over the past decades, several antiviral drugs have been developed to treat a range of infections. Yet the number of treatable viral infections is still limited, and resistance to current drug regimens is an ever-growing problem. Therefore, additional strategies are needed to provide a rapid cure for infected individuals. An interesting target for antiviral drugs is the process of viral attachment and entry into the cell. Although most viruses use distinct host receptors for attachment to the target cell, some viruses share receptors, of which sialic acids are a common example. This review aims to give an update on entry inhibitors for a range of sialic-acid-targeting viruses and provides insight into the prospects for those with broad-spectrum potential.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Yoshita C Bhide
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Özgün Kocabiyik
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| |
Collapse
|
39
|
Al-Horani RA, Kar S, Aliter KF. Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. Int J Mol Sci 2020; 21:E5224. [PMID: 32718020 PMCID: PMC7432953 DOI: 10.3390/ijms21155224] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The ongoing pandemic of coronavirus disease-2019 (COVID-19) is being caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The disease continues to present significant challenges to the health care systems around the world. This is primarily because of the lack of vaccines to protect against the infection and the lack of highly effective therapeutics to prevent and/or treat the illness. Nevertheless, researchers have swiftly responded to the pandemic by advancing old and new potential therapeutics into clinical trials. In this review, we summarize potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle. The review presents the structures, mechanisms, and reported results of clinical trials of potential therapeutics that have been listed in clinicaltrials.gov. Given the fact that some of these therapeutics are multi-acting molecules, other relevant mechanisms will also be described. The reviewed therapeutics include small molecules and macromolecules of sulfated polysaccharides, polypeptides, and monoclonal antibodies. The potential therapeutics target viral and/or host proteins or processes that facilitate the early stage of the viral infection. Frequent targets are the viral spike protein, the host angiotensin converting enzyme 2, the host transmembrane protease serine 2, and clathrin-mediated endocytosis process. Overall, the review aims at presenting update-to-date details, so as to enhance awareness of potential therapeutics, and thus, to catalyze their appropriate use in combating the pandemic.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Kholoud F. Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans, LA 70122, USA;
| |
Collapse
|
40
|
LeMessurier KS, Tiwary M, Morin NP, Samarasinghe AE. Respiratory Barrier as a Safeguard and Regulator of Defense Against Influenza A Virus and Streptococcus pneumoniae. Front Immunol 2020; 11:3. [PMID: 32117216 PMCID: PMC7011736 DOI: 10.3389/fimmu.2020.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
The primary function of the respiratory system of gas exchange renders it vulnerable to environmental pathogens that circulate in the air. Physical and cellular barriers of the respiratory tract mucosal surface utilize a variety of strategies to obstruct microbe entry. Physical barrier defenses including the surface fluid replete with antimicrobials, neutralizing immunoglobulins, mucus, and the epithelial cell layer with rapidly beating cilia form a near impenetrable wall that separates the external environment from the internal soft tissue of the host. Resident leukocytes, primarily of the innate immune branch, also maintain airway integrity by constant surveillance and the maintenance of homeostasis through the release of cytokines and growth factors. Unfortunately, pathogens such as influenza virus and Streptococcus pneumoniae require hosts for their replication and dissemination, and prey on the respiratory tract as an ideal environment causing severe damage to the host during their invasion. In this review, we outline the host-pathogen interactions during influenza and post-influenza bacterial pneumonia with a focus on inter- and intra-cellular crosstalk important in pulmonary immune responses.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Meenakshi Tiwary
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Nicholas P Morin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Critical Care Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| |
Collapse
|
41
|
O’Hanlon R, Leyva-Grado VH, Sourisseau M, Evans MJ, Shaw ML. An Influenza Virus Entry Inhibitor Targets Class II PI3 Kinase and Synergizes with Oseltamivir. ACS Infect Dis 2019; 5:1779-1793. [PMID: 31448902 DOI: 10.1021/acsinfecdis.9b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two classes of antivirals targeting the viral neuraminidase (NA) and endonuclease are currently the only clinically useful drugs for the treatment of influenza. However, resistance to both antivirals has been observed in clinical isolates, and there was widespread resistance to oseltamivir (an NA inhibitor) among H1N1 viruses prior to 2009. This potential for resistance and lack of diversity for antiviral targets highlights the need for new influenza antivirals with a higher barrier to resistance. In this study, we identified an antiviral compound, M85, that targets host kinases, epidermal growth factor receptor (EGFR), and phosphoinositide 3 class II β (PIK3C2β) and is not susceptible to resistance by viral mutations. M85 blocks endocytosis of influenza viruses and inhibits a broad-spectrum of viruses with minimal cytotoxicity. In vitro, we found that combinations of M85 and oseltamivir have strong synergism. In the mouse model for influenza, treatment with the combination therapy was more protective against a lethal viral challenge than oseltamivir alone, indicating that development of M85 could lead to combination therapies for influenza. Finally, through this discovery of M85 and its antiviral mechanism, we present the first description of PIK3C2β as a necessary host factor for influenza virus entry.
Collapse
|
42
|
Abstract
The process of entry into a host cell is a key step in the life cycle of most viruses. In recent years, there has been a significant increase in our understanding of the routes and mechanisms of entry for a number of these viruses. This has led to the development of novel broad-spectrum antiviral approaches that target host cell proteins and pathways, in addition to strategies focused on individual viruses or virus families. Here we consider a number of these approaches and their broad-spectrum potential.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
43
|
Szollosi D, Bill A. Potential Role of Endonuclease Inhibition and Other Targets in the Treatment of Influenza. Curr Drug Targets 2019; 21:202-211. [PMID: 31368872 DOI: 10.2174/1389450120666190801115130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza is a single-stranded RNA virus that is highly contagious and infects millions of people in the U.S. annually. Due to complications, approximately 959,000 people were hospitalized and another 79,400 people died during the 2017-2018 flu season. While the best methods of prevention continue to be vaccination and hygiene, antiviral treatments may help reduce symptoms for those who are infected. Until recently, the only antiviral drugs in use have been the neuraminidase inhibitors: oseltamivir, zanamivir, and peramivir. OBJECTIVE We reviewed novel drug targets that can be used in the treatment of influenza, particularly in the case of neuraminidase inhibitor-resistant strains that may emerge. RESULTS More recently, a drug with a new mechanism of action has been approved. Baloxavir marboxil inhibits the influenza cap-dependent endonuclease that is needed for the virus to initiate replication within the host cell. This endonuclease target is within the polymerase acid (PA) subunit of RNA polymerase. Since the RNA-dependent RNA polymerase consists of two other subunits, polymerase basic 1 and 2, RNA polymerase has several targets that prevent viral replication. Other targets still under investigation include viral kinases, endocytosis, and viral fusion. CONCLUSION Due to the possibility of viral mutations and resistance, it is important to have antivirals with different mechanisms available, especially in the case of a new pandemic strain. Several novel antivirals are within various stages of development and may represent new classes of treatments that can reduce symptoms and complications in those patients who may be at higher risk.
Collapse
Affiliation(s)
- Doreen Szollosi
- University of Saint Joseph, School of Pharmacy & Physician Assistant Studies 229 Trumbull Street, Hartford, CT 06103, United States
| | - Ashley Bill
- University of Saint Joseph, School of Pharmacy & Physician Assistant Studies 229 Trumbull Street, Hartford, CT 06103, United States
| |
Collapse
|
44
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
45
|
Chibanga VP, Dirr L, Guillon P, El-Deeb IM, Bailly B, Thomson RJ, von Itzstein M. New antiviral approaches for human parainfluenza: Inhibiting the haemagglutinin-neuraminidase. Antiviral Res 2019; 167:89-97. [DOI: 10.1016/j.antiviral.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
46
|
Behzadi MA, Leyva-Grado VH. Overview of Current Therapeutics and Novel Candidates Against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front Microbiol 2019; 10:1327. [PMID: 31275265 PMCID: PMC6594388 DOI: 10.3389/fmicb.2019.01327] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Emergence and re-emergence of respiratory virus infections represent a significant threat to global public health, as they occur seasonally and less frequently (such as in the case of influenza virus) as pandemic infections. Some of these viruses have been in the human population for centuries and others had recently emerged as a public health problem. Influenza viruses have been affecting the human population for a long time now; however, their ability to rapidly evolve through antigenic drift and antigenic shift causes the emergence of new strains. A recent example of these events is the avian-origin H7N9 influenza virus outbreak currently undergoing in China. Human H7N9 influenza viruses are resistant to amantadines and some strains are also resistant to neuraminidase inhibitors greatly limiting the options for treatment. Respiratory syncytial virus (RSV) may cause a lower respiratory tract infection characterized by bronchiolitis and pneumonia mainly in children and the elderly. Infection with RSV can cause severe disease and even death, imposing a severe burden for pediatric and geriatric health systems worldwide. Treatment for RSV is mainly supportive since the only approved therapy, a monoclonal antibody, is recommended for prophylactic use in high-risk patients. The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging respiratory virus. The virus was first recognized in 2012 and it is associated with a lower respiratory tract disease that is more severe in patients with comorbidities. No licensed vaccines or antivirals have been yet approved for the treatment of MERS-CoV in humans. It is clear that the discovery and development of novel antivirals that can be used alone or in combination with existing therapies to treat these important respiratory viral infections are critical. In this review, we will describe some of the novel therapeutics currently under development for the treatment of these infections.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
47
|
Current and Novel Approaches in Influenza Management. Vaccines (Basel) 2019; 7:vaccines7020053. [PMID: 31216759 PMCID: PMC6630949 DOI: 10.3390/vaccines7020053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised. This warrants for diverse efficacious vaccine developmental approaches, involving both active and passive immunization. As opposed to active immunization platforms (requiring the use of whole or portions of pathogens as vaccines), the rapidly developing passive immunization involves administration of either pathogen-specific or broadly acting antibodies against a kind or class of pathogens as a treatment to corresponding acute infection. Several antibodies with broadly acting capacities have been discovered that may serve as means to suppress influenza viral infection and allow the process of natural immunity to engage opsonized pathogens whilst boosting immune system by antibody-dependent mechanisms that bridge the innate and adaptive arms. By that; passive immunotherapeutics approach assumes a robust tool that could aid control of influenza viruses. In this review, we comment on some improvements in influenza management and promising vaccine development platforms with an emphasis on the protective capacity of passive immunotherapeutics especially when coupled with the use of antivirals in the management of influenza infection.
Collapse
|
48
|
Ortigoza MB, Blaser SB, Zafar MA, Hammond AJ, Weiser JN. An Infant Mouse Model of Influenza Virus Transmission Demonstrates the Role of Virus-Specific Shedding, Humoral Immunity, and Sialidase Expression by Colonizing Streptococcus pneumoniae. mBio 2018; 9:e02359-18. [PMID: 30563897 PMCID: PMC6299224 DOI: 10.1128/mbio.02359-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023] Open
Abstract
The pandemic potential of influenza A viruses (IAV) depends on the infectivity of the host, transmissibility of the virus, and susceptibility of the recipient. While virus traits supporting IAV transmission have been studied in detail using ferret and guinea pig models, there is limited understanding of host traits determining transmissibility and susceptibility because current animal models of transmission are not sufficiently tractable. Although mice remain the primary model to study IAV immunity and pathogenesis, the efficiency of IAV transmission in adult mice has been inconsistent. Here we describe an infant mouse model that supports efficient transmission of IAV. We demonstrate that transmission in this model requires young age, close contact, shedding of virus particles from the upper respiratory tract (URT) of infected pups, the use of a transmissible virus strain, and a susceptible recipient. We characterize shedding as a marker of infectiousness that predicts the efficiency of transmission among different influenza virus strains. We also demonstrate that transmissibility and susceptibility to IAV can be inhibited by humoral immunity via maternal-infant transfer of IAV-specific immunoglobulins and modifications to the URT milieu, via sialidase activity of colonizing Streptococcus pneumoniae Due to its simplicity and efficiency, this model can be used to dissect the host's contribution to IAV transmission and explore new methods to limit contagion.IMPORTANCE This study provides insight into the role of the virus strain, age, immunity, and URT flora on IAV shedding and transmission efficiency. Using the infant mouse model, we found that (i) differences in viral shedding of various IAV strains are dependent on specific hemagglutinin (HA) and/or neuraminidase (NA) proteins, (ii) host age plays a key role in the efficiency of IAV transmission, (iii) levels of IAV-specific immunoglobulins are necessary to limit infectiousness, transmission, and susceptibility to IAV, and (iv) expression of sialidases by colonizing S. pneumoniae antagonizes transmission by limiting the acquisition of IAV in recipient hosts. Our findings highlight the need for strategies that limit IAV shedding and the importance of understanding the function of the URT bacterial composition in IAV transmission. This work reinforces the significance of a tractable animal model to study both viral and host traits affecting IAV contagion and its potential for optimizing vaccines and therapeutics that target disease spread.
Collapse
Affiliation(s)
- Mila Brum Ortigoza
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Simone B Blaser
- New York University School of Medicine, New York, New York, USA
| | - M Ammar Zafar
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Alexandria J Hammond
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
49
|
Davidson S. Treating Influenza Infection, From Now and Into the Future. Front Immunol 2018; 9:1946. [PMID: 30250466 PMCID: PMC6139312 DOI: 10.3389/fimmu.2018.01946] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza viruses (IVs) are a continual threat to global health. The high mutation rate of the IV genome makes this virus incredibly successful, genetic drift allows for annual epidemics which result in thousands of deaths and millions of hospitalizations. Moreover, the emergence of new strains through genetic shift (e.g., swine-origin influenza A) can cause devastating global outbreaks of infection. Neuraminidase inhibitors (NAIs) are currently used to treat IV infection and act directly on viral proteins to halt IV spread. However, effectivity is limited late in infection and drug resistance can develop. New therapies which target highly conserved features of IV such as antibodies to the stem region of hemagglutinin or the IV RNA polymerase inhibitor: Favipiravir are currently in clinical trials. Compared to NAIs, these treatments have a higher tolerance for resistance and a longer therapeutic window and therefore, may prove more effective. However, clinical and experimental evidence has demonstrated that it is not just viral spread, but also the host inflammatory response and damage to the lung epithelium which dictate the outcome of IV infection. Therapeutic regimens for IV infection should therefore also regulate the host inflammatory response and protect epithelial cells from unnecessary cell death. Anti-inflammatory drugs such as etanercept, statins or cyclooxygenase enzyme 2 inhibitors may temper IV induced inflammation, demonstrating the possibility of repurposing these drugs as single or adjunct therapies for IV infection. IV binds to sialic acid receptors on the host cell surface to initiate infection and productive IV replication is primarily restricted to airway epithelial cells. Accordingly, targeting therapies to the epithelium will directly inhibit IV spread while minimizing off target consequences, such as over activation of immune cells. The neuraminidase mimic Fludase cleaves sialic acid receptors from the epithelium to inhibit IV entry to cells. While type III interferons activate an antiviral gene program in epithelial cells with minimal perturbation to the IV specific immune response. This review discusses the above-mentioned candidate anti-IV therapeutics and others at the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|
50
|
Mantero M, Rogliani P, Cazzola M, Blasi F, Di Pasquale M. Emerging antibacterial and antiviral drugs for treating respiratory tract infections. Expert Opin Emerg Drugs 2018; 23:185-199. [DOI: 10.1080/14728214.2018.1504020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Mantero
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rogliani
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Di Pasquale
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|