1
|
Rosso F, Ferrari G, Weil T, Tagliapietra V, Marini G, Dagostin F, Arnoldi D, Girardi M, Rizzoli A. Temporal Changes in Tick-Borne Pathogen Prevalence in Questing Ixodes ricinus Across Different Habitats in the North-Eastern Italian Alps. Microbiologyopen 2024; 13:e010. [PMID: 39659165 PMCID: PMC11632159 DOI: 10.1002/mbo3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Changes in land use, climate, and host community are leading to increased complexity in eco-epidemiological relationships and the emergence of zoonoses. This study investigates the changes in the prevalence of several Ixodes ricinus-transmitted pathogens in questing ticks over a 10-year interval (2011-2013, 2020) in natural and agricultural habitats of the Autonomous Province of Trento (North-eastern Alps), finding an average prevalence of infection of 27.1%. Analysis of 2652 ticks, investigating four infectious agents (Borrelia burgdorferi sensu lato, Anaplasma spp., Rickettsia spp., and Babesia spp.), revealed the circulation of 11 different zoonotic pathogens, with varying infection rates across different years and habitats. In 2020, we found a decrease in Anaplasma phagocytophilum, associated with agricultural habitats, and Rickettsia spp., found in all habitats. In the same year, Babesia spp. increased in both habitats, similar to Borrelia burgdorferi sensu stricto, which was related to natural habitats. Co-infections were identified in 8% of positive-tested ticks with different spatiotemporal associations, primarily in natural settings. Our results provide new evidence that the risk of infection with tick-borne pathogens in the Alpine region varies over time and in different environments, broadening the current information on co-infection rates and the circulation of zoonotic pathogens, previously not reported in this area.
Collapse
Grants
- This study has received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)-Mission 4 Component 2, Investment 1.4-D.D. 1034 17/06/2022, CN00000033, CUPD43C22001280006). The authors acknowledge the support of NBFC to Fondazione Edmund Mach, funded by the Italian Ministry of University and Research, PNRR, Mission 4 Component 2, "Dalla ricerca all'impresa," Investment 1.4, Project CN00000033, CUPD43C22001280006.
Collapse
Affiliation(s)
- Fausta Rosso
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Giulia Ferrari
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Tobias Weil
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Valentina Tagliapietra
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Giovanni Marini
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | | | - Daniele Arnoldi
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Matteo Girardi
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
2
|
Joly-Kukla C, Stachurski F, Duhayon M, Galon C, Moutailler S, Pollet T. Temporal dynamics of the Hyalomma marginatum-borne pathogens in southern France. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100213. [PMID: 39399650 PMCID: PMC11470478 DOI: 10.1016/j.crpvbd.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Spatio-temporal scales have a clear influence on microbial community distribution and diversity and should thus be applied to study the dynamics of microorganisms. The invasive tick species Hyalomma marginatum has recently become established in southern France. It may carry pathogens of medical and veterinary interest including the Crimean-Congo haemorrhagic fever virus, Rickettsia aeschlimannii, Theileria equi and Anaplasma phagocytophilum. Pathogenic communities of H. marginatum have been identified and their spatial distribution characterized, but their temporal dynamics remain unknown. Hyalomma marginatum ticks were collected from hosts at monthly intervals from February to September 2022 in a site in southern France to study their presence and temporal dynamics. Of the 281 ticks analysed, we detected pathogens including R. aeschlimannii, Anaplasma spp. and T. equi with infection rates reaching 47.0%, 4.6% and 11.0%, respectively. A total of 14.6% of ticks were infected with at least Theileria or Anaplasma, with monthly fluctuations ranging from 2.9% to 28.6%. Strong temporal patterns were observed for each pathogen detected, particularly for R. aeschlimannii, whose infection rates increased dramatically at the beginning of summer, correlated with monthly mean temperatures at the site. Based on these results, we hypothesise that R. aeschlimannii may be a secondary symbiont of H. marginatum and could be involved in the stress response to temperature increase and mediate thermal tolerance of H. marginatum. Analysis of monthly and seasonal fluctuations in pathogens transmitted by H. marginatum led us to conclude that the risk of infection is low but persists throughout the period of H. marginatum activity, with a notable increase in summer.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Frédéric Stachurski
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
| | - Maxime Duhayon
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700, Maisons-Alfort, France
| | - Thomas Pollet
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
3
|
Joly-Kukla C, Bernard C, Bru D, Galon C, Giupponi C, Huber K, Jourdan-Pineau H, Malandrin L, Rakotoarivony I, Riggi C, Vial L, Moutailler S, Pollet T. Spatial patterns of Hyalomma marginatum-borne pathogens in the Occitanie region (France), a focus on the intriguing dynamics of Rickettsia aeschlimannii. Microbiol Spectr 2024; 12:e0125624. [PMID: 39012114 DOI: 10.1128/spectrum.01256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Hyalomma marginatum is an invasive tick species recently established in mainland southern France. This tick is known to host a diverse range of human and animal pathogens. While information about the dynamics of these pathogens is crucial to assess disease risk and develop effective monitoring strategies, few data on the spatial dynamics of these pathogens are currently available. We collected ticks in 27 sites in the Occitanie region to characterize spatial patterns of H. marginatum-borne pathogens. Several pathogens have been detected: Theileria equi (9.2%), Theileria orientalis (0.2%), Anaplasma phagocytophilum (1.6%), Anaplasma marginale (0.8%), and Rickettsia aeschlimannii (87.3%). Interestingly, we found a spatial clustered distribution for the pathogen R. aeschlimannii between two geographically isolated areas with infection rates and bacterial loads significantly lower in Hérault/Gard departments (infection rate 78.6% in average) compared to Aude/Pyrénées-Orientales departments (infection rate 92.3% in average). At a smaller scale, R. aeschlimannii infection rates varied from one site to another, ranging from 29% to 100%. Overall, such high infection rates (87.3% on average) and the effective maternal transmission of R. aeschlimannii might suggest a role as a tick symbiont in H. marginatum. Further studies are thus needed to understand both the status and the role of R. aeschlimannii in H. marginatum ticks.IMPORTANCETicks are obligatory hematophagous arthropods that transmit pathogens of medical and veterinary importance. Pathogen infections cause serious health issues in humans and considerable economic loss in domestic animals. Information about the presence of pathogens in ticks and their dynamics is crucial to assess disease risk for public and animal health. Analyzing tick-borne pathogens in ticks collected in 27 sites in the Occitanie region, our results highlight clear spatial patterns in the Hyalomma marginatum-borne pathogen distribution and strengthen the postulate that it is essential to develop effective monitoring strategies and consider the spatial scale to better characterize the circulation of tick-borne pathogens.
Collapse
Affiliation(s)
- Charlotte Joly-Kukla
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Célia Bernard
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
- French Establishment for Fighting Zoonoses (ELIZ), Malzéville, France
| | - David Bru
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Carla Giupponi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Karine Huber
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hélène Jourdan-Pineau
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | | | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Camille Riggi
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Laurence Vial
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Thomas Pollet
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
4
|
Dyczko D, Błażej P, Kiewra D. The influence of forest habitat type on Ixodes ricinus infections with Rickettsia spp. in south-western Poland. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100200. [PMID: 39148674 PMCID: PMC11324835 DOI: 10.1016/j.crpvbd.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
This study investigates the prevalence of Rickettsia spp. in Ixodes ricinus tick populations in different forest habitat types (broadleaf forest, mixed broadleaf and coniferous forest, and coniferous forest) in south-western Poland. During the survey periods from April to June 2018 and 2019 a total of 494 I. ricinus ticks, including 374 nymphs, 60 females and 60 males, were tested for Rickettsia infections by nested PCR targeting the gltA gene. The overall infection rate was 42.3%; however, we observed statistically significant year-to-year variation. Infection rates varied between tick developmental stages and were significantly influenced by forest habitat type. As assessed by a generalized linear mixed model (GLMM), the highest infection rates were observed in mixed broadleaf and coniferous forests, while coniferous forests had a significant negative effect on infection prevalence. DNA sequencing of selected samples confirmed the predominance of Rickettsia helvetica (91.2%) and less frequent Rickettsia monacensis (8.8%). This study suggests that the forest habitat types can influence Rickettsia spp. infection in tick populations; however, a comprehensive understanding of all factors influencing the level of infection requires future study.
Collapse
Affiliation(s)
- Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| | - Paweł Błażej
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| |
Collapse
|
5
|
Koutantou M, Drancourt M, Angelakis E. Prevalence of Lyme Disease and Relapsing Fever Borrelia spp. in Vectors, Animals, and Humans within a One Health Approach in Mediterranean Countries. Pathogens 2024; 13:512. [PMID: 38921809 PMCID: PMC11206712 DOI: 10.3390/pathogens13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Borrelia has been divided into Borreliella spp., which can cause Lyme Disease (LD), and Borrelia spp., which can cause Relapsing Fever (RF). The distribution of genus Borrelia has broadened due to factors such as climate change, alterations in land use, and enhanced human and animal mobility. Consequently, there is an increasing necessity for a One Health strategy to identify the key components in the Borrelia transmission cycle by monitoring the human-animal-environment interactions. The aim of this study is to summarize all accessible data to increase our understanding and provide a comprehensive overview of Borrelia distribution in the Mediterranean region. Databases including PubMed, Google Scholar, and Google were searched to determine the presence of Borreliella and Borrelia spp. in vectors, animals, and humans in countries around the Mediterranean Sea. A total of 3026 were identified and screened and after exclusion of papers that did not fulfill the including criteria, 429 were used. After examination of the available literature, it was revealed that various species associated with LD and RF are prevalent in vectors, animals, and humans in Mediterranean countries and should be monitored in order to effectively manage and prevent potential infections.
Collapse
Affiliation(s)
- Myrto Koutantou
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
6
|
Giesen C, Cifo D, Gomez-Barroso D, Estévez-Reboredo RM, Figuerola J, Herrador Z. The Role of Environmental Factors in Lyme Disease Transmission in the European Union: A Systematic Review. Trop Med Infect Dis 2024; 9:113. [PMID: 38787046 PMCID: PMC11125681 DOI: 10.3390/tropicalmed9050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Lyme disease (LD) is an emergent vector-borne disease caused by Borrelia spp. and transmitted through infected ticks, mainly Ixodes spp. Our objective was to determine meteorological and environmental factors associated with LD transmission in Europe and the effect of climate change on LD. MATERIALS AND METHODS A systematic review following the PRISMA guidelines was performed. We selected studies on LD transmission in the European Union (EU) and the European Economic Area (EEA) published between 2000 and 2022. The protocol was registered in the PROSPERO database. RESULTS We included 81 studies. The impact of environmental, meteorological or climate change factors on tick vectors was studied in 65 papers (80%), and the impact on human LD cases was studied in 16 papers (19%), whereas animal hosts were only addressed in one study (1%). A significant positive relationship was observed between temperature and precipitation and the epidemiology of LD, although contrasting results were found among studies. Other positive factors were humidity and the expansion of anthropized habitats. CONCLUSIONS The epidemiology of LD seems to be related to climatic factors that are changing globally due to ongoing climate change. Unfortunately, the complete zoonotic cycle was not systematically analyzed. It is important to adopt a One Health approach to understand LD epidemiology.
Collapse
Affiliation(s)
- Christine Giesen
- Centro de Salud Internacional Madrid Salud, Ayuntamiento de Madrid, 28006 Madrid, Spain;
| | - Daniel Cifo
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Diana Gomez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| | - Rosa M. Estévez-Reboredo
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
| | - Jordi Figuerola
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Zaida Herrador
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| |
Collapse
|
7
|
Habib J, Zenner L, Garel M, Mercier A, Poirel MT, Itty C, Appolinaire J, Amblard T, Benedetti P, Sanchis F, Benabed S, Abi Rizk G, Gibert P, Bourgoin G. Prevalence of tick-borne pathogens in ticks collected from the wild mountain ungulates mouflon and chamois in 4 regions of France. Parasite 2024; 31:21. [PMID: 38602373 PMCID: PMC11008225 DOI: 10.1051/parasite/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
Ticks are major vectors of various pathogens of health importance, such as bacteria, viruses and parasites. The problems associated with ticks and vector-borne pathogens are increasing in mountain areas, particularly in connection with global climate change. We collected ticks (n = 2,081) from chamois and mouflon in 4 mountainous areas of France. We identified 6 tick species: Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata and Dermacentor marginatus. We observed a strong variation in tick species composition among the study sites, linked in particular to the climate of the sites. We then analysed 791 ticks for DNA of vector-borne pathogens: Babesia/Theileria spp., Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, and Rickettsia of the spotted fever group (SFG). Theileria ovis was detected only in Corsica in Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) and Anaplasma phagocytophilum (3 sites) were detected in I. ricinus. Anaplasma ovis was detected at one site in I. ricinus and Rh. sanguineus s.l. SFG Rickettsia were detected at all the study sites: R. monacensis and R. helvetica in I. ricinus at the 3 sites where this tick is present; R. massiliae in Rh. sanguineus s.l. (1 site); and R. hoogstraalii and Candidatus R. barbariae in Rh. bursa in Corsica. These results show that there is a risk of tick-borne diseases for humans and domestic and wild animals frequenting these mountain areas.
Collapse
Affiliation(s)
- Jad Habib
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Lionel Zenner
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Mathieu Garel
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Antoine Mercier
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Christian Itty
- Office Français de la Biodiversité, Service Appui aux Acteurs et Mobilisation des Territoires, Direction Régionale Occitanie 7 rue du Four, Fagairolles 34610 Castanet-le-Haut France
| | - Joël Appolinaire
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Thibaut Amblard
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Pierre Benedetti
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Frédéric Sanchis
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Slimania Benabed
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Georges Abi Rizk
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Philippe Gibert
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Gilles Bourgoin
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| |
Collapse
|
8
|
Zając Z, Kulisz J, Woźniak A, Bartosik K, Foucault-Simonin A, Moutailler S, Cabezas-Cruz A. Tick Activity, Host Range, and Tick-Borne Pathogen Prevalence in Mountain Habitats of the Western Carpathians, Poland. Pathogens 2023; 12:1186. [PMID: 37764994 PMCID: PMC10534405 DOI: 10.3390/pathogens12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
In mountainous regions, diverse ecosystems provide a habitat for numerous species of organisms. In this study, we focused on ixodid ticks and their presence in the Western Carpathians, Poland. Our objectives were to investigate the impact of environmental factors on tick occurrence and activity, the prevalence of vectored pathogens, and tick hosts, and their role as reservoir organisms for tick-borne pathogens (TBPs). To this end, we collected ticks from the vegetation and from animals (Apodemus agrarius, A. flavicollis, Capreolus capreolus, Microtus spp., Myodes glareolus, Ovis aries). In addition, we collected blood samples from rodents. The collected material underwent molecular analysis, utilizing the high-throughput microfluidic real-time PCR technique, to detect the presence of TBPs. Our findings confirmed the occurrence of only two species of ixodid ticks in the study area: the dominant Ixodes ricinus, and Dermacentor reticulatus with very limited abundance. Temperature significantly influenced tick activity, and the number of I. ricinus nymphs varied with altitude. We also observed a circadian pattern of questing activity in I. ricinus ticks. The main hosts for juvenile tick stages were M. glareolus and A. agrarius, while adult stages were frequently found on C. capreolus. I. ricinus ticks collected from the vegetation were often infected with Rickettsia helvetica (up to 35.71%), Borrelia afzelii (up to 28.57%), and Ehrlichia spp. (up to 9.52%). In contrast, juvenile stages frequently carried Bartonella spp. (up to 10.00%), Mycoplasma spp. (up to 16.67%) and R. helvetica (up to 16.67%). Moreover, we detected genetic material of Mycoplasma spp. (up to 100.00%), Ehrlichia spp. (up to 35.71%), Bartonella spp. (up to 25.00%), and Borrelia spp. (up to 6.25%) in rodent blood samples. The obtained results indicate A. agrarius and M. glareolus as reservoir animals for TBPs in the studied region.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.F.-S.); (S.M.)
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.F.-S.); (S.M.)
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.F.-S.); (S.M.)
| |
Collapse
|
9
|
Zając Z, Obregon D, Foucault-Simonin A, Wu-Chuang A, Moutailler S, Galon C, Kulisz J, Woźniak A, Bartosik K, Cabezas-Cruz A. Disparate dynamics of pathogen prevalence in Ixodes ricinus and Dermacentor reticulatus ticks occurring sympatrically in diverse habitats. Sci Rep 2023; 13:10645. [PMID: 37391552 PMCID: PMC10313804 DOI: 10.1038/s41598-023-37748-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Ixodes ricinus and Dermacentor reticulatus ticks are important reservoirs and vectors of pathogens. The aim of the present study was to investigate the dynamic of the prevalence and genetic diversity of microorganisms detected in these tick species collected from two ecologically diverse biotopes undergoing disparate long-term climate condition. High-throughput real time PCR confirmed high prevalence of microorganisms detected in sympatrically occurring ticks species. D. reticulatus specimens were the most often infected with Francisella-like endosymbiont (FLE) (up to 100.0%) and Rickettsia spp. (up to 91.7%), while in case of I. ricinus the prevalence of Borreliaceae spirochetes reached up to 25.0%. Moreover, pathogens belonging to genera of Bartonella, Anaplasma, Ehrlichia and Babesia were detected in both tick species regardless the biotope. On the other hand, Neoehrlichia mikurensis was conformed only in I. ricinus in the forest biotope, while genetic material of Theileria spp. was found only in D. reticulatus collected from the meadow. Our study confirmed significant impact of biotope type on prevalence of representatives of Borreliaceae and Rickettsiaceae families. The most common co-infection detected in D. reticulatus was Rickettsia spp. + FLE, while Borreliaceae + R. helvetica was the most common in I. ricinus. Additionally, we found significant genetic diversity of R. raoultii gltA gene across studied years, however such relationship was not observed in ticks from studied biotopes. Our results suggest that ecological type of biotope undergoing disparate long-term climate conditions have an impact on prevalence of tick-borne pathogens in adult D. reticulatus and I. ricinus.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland.
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Clemence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
10
|
Köhler CF, Holding ML, Sprong H, Jansen PA, Esser HJ. Biodiversity in the Lyme-light: ecological restoration and tick-borne diseases in Europe. Trends Parasitol 2023; 39:373-385. [PMID: 36890021 DOI: 10.1016/j.pt.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Biodiversity loss and the emergence of zoonotic diseases are two major global challenges. An urgent question is how ecosystems and wildlife communities can be restored whilst minimizing the risk of zoonotic diseases carried by wildlife. Here, we evaluate how current ambitions to restore Europe's natural ecosystems may affect the hazard of diseases vectored by the tick Ixodes ricinus at different scales. We find that effects of restoration efforts on tick abundance are relatively straightforward but that the interacting effects of vertebrate diversity and abundance on pathogen transmission are insufficiently known. Long-term integrated surveillance of wildlife communities, ticks, and their pathogens is needed to understand their interactions and to prevent nature restoration from increasing tick-borne disease (TBD) hazard.
Collapse
Affiliation(s)
- Clara Florentine Köhler
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Maya Louise Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Hu H, Liu Z, Fu R, Liu Y, Ma H, Zheng W. Detection and phylogenetic analysis of tick-borne bacterial and protozoan pathogens in a forest province of eastern China. Acta Trop 2022; 235:106634. [PMID: 35932842 DOI: 10.1016/j.actatropica.2022.106634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
Ticks, as obligate blood-sucking ectoparasites, feed on a broad range of vertebrates and transmit a great diversity of pathogenic microorganisms. Some tick-borne pathogens (TBPs) are endemic in China, whereas epidemiological studies are limited in Jiangxi, a forest province located in eastern China. Here, we have determined the positivity rates of TBPs in humans, rodents, dogs, goats and ticks, and performed the molecular characterization of TBPs in Jiangxi province. We found a high positivity rate of TBPs in the collected samples, demonstrating 23 (12.92%) samples positive for more than one TBPs. Of those, 11 (6.18%) samples were positive for Rickettsia spp., six (3.37%) Ehrlichia spp./Anaplasma spp., one (0.56%) Bartonella spp., two (1.12%) Borrelia spp., and five (2.81%) Babesia spp. The positivity rates of TBPs varied among ticks, animals, and humans as follow: goats (14/37, 37.84%), ticks (8/35, 22.86%), and dogs (1/11, 9.09%). Humans and rodents were negative for TBP presence. Phylogenetic analyses of these TBP sequences revealed the presence of Rickettsia japonica, Ehrlichia minasensis, and an unclassified Babesia spp. in goats, and Anaplasma phagocytophilum, Borrelia valaisiana, and an unclassified Bartonella spp. in ticks. Furthermore, R. japonica infection was exclusively found in goats with the positivity rate of 29.73%. Our study is the first report of R. japonica in goats around the world. These findings suggest high TBP positivity rates among goats, ticks, and dogs, and diverse TBPs in goats and ticks in the studied sites. Therefore, our results underscore the urgent need to assess TBP-tick-vertebrate-environment interactions and the risk of tick borne disease exposure in humans in the future.
Collapse
Affiliation(s)
- Haijun Hu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Zhanbin Liu
- Nanchang Police Dog Base of the Ministry of Public Security, Xinjian Dsitrict, Nanchang, Jiangxi 330100, China
| | - Renlong Fu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Yangqing Liu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Hongmei Ma
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Weiqing Zheng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China.
| |
Collapse
|
12
|
Wongnak P, Bord S, Jacquot M, Agoulon A, Beugnet F, Bournez L, Cèbe N, Chevalier A, Cosson JF, Dambrine N, Hoch T, Huard F, Korboulewsky N, Lebert I, Madouasse A, Mårell A, Moutailler S, Plantard O, Pollet T, Poux V, René-Martellet M, Vayssier-Taussat M, Verheyden H, Vourc'h G, Chalvet-Monfray K. Meteorological and climatic variables predict the phenology of Ixodes ricinus nymph activity in France, accounting for habitat heterogeneity. Sci Rep 2022; 12:7833. [PMID: 35552424 PMCID: PMC9098447 DOI: 10.1038/s41598-022-11479-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Ixodes ricinus ticks (Acari: Ixodidae) are the most important vector for Lyme borreliosis in Europe. As climate change might affect their distributions and activities, this study aimed to determine the effects of environmental factors, i.e., meteorological, bioclimatic, and habitat characteristics on host-seeking (questing) activity of I. ricinus nymphs, an important stage in disease transmissions, across diverse climatic types in France over 8 years. Questing activity was observed using a repeated removal sampling with a cloth-dragging technique in 11 sampling sites from 7 tick observatories from 2014 to 2021 at approximately 1-month intervals, involving 631 sampling campaigns. Three phenological patterns were observed, potentially following a climatic gradient. The mixed-effects negative binomial regression revealed that observed nymph counts were driven by different interval-average meteorological variables, including 1-month moving average temperature, previous 3-to-6-month moving average temperature, and 6-month moving average minimum relative humidity. The interaction effects indicated that the phenology in colder climates peaked differently from that of warmer climates. Also, land cover characteristics that support the highest baseline abundance were moderate forest fragmentation with transition borders with agricultural areas. Finally, our model could potentially be used to predict seasonal human-tick exposure risks in France that could contribute to mitigating Lyme borreliosis risk.
Collapse
Affiliation(s)
- Phrutsamon Wongnak
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Séverine Bord
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - Maude Jacquot
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
- Ifremer, RBE-SGMM-LGPMM, 17390, La Tremblade, France
| | | | - Frédéric Beugnet
- Global Technical Services, Boehringer-Ingelheim Animal Health, 69007, Lyon, France
| | - Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 54220, Malzéville, France
| | - Nicolas Cèbe
- Université de Toulouse, INRAE, UR CEFS, 31326, Castanet-Tolosan, France
- LTSER ZA PYRénées GARonne, 31326, Auzeville-Tolosane, France
| | | | | | - Naïma Dambrine
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Thierry Hoch
- INRAE, Oniris, UMR BIOEPAR, 44300, Nantes, France
| | | | | | - Isabelle Lebert
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | | | | | - Sara Moutailler
- ANSES, ENVA, INRAE, UMR 956 BIPAR, 94701, Maisons-Alfort, France
| | | | - Thomas Pollet
- ANSES, ENVA, INRAE, UMR 956 BIPAR, 94701, Maisons-Alfort, France
- INRAE, CIRAD, UMR ASTRE, 34398, Montpellier, France
| | - Valérie Poux
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Magalie René-Martellet
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | | | - Hélène Verheyden
- Université de Toulouse, INRAE, UR CEFS, 31326, Castanet-Tolosan, France
- LTSER ZA PYRénées GARonne, 31326, Auzeville-Tolosane, France
| | - Gwenaël Vourc'h
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Karine Chalvet-Monfray
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France.
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France.
| |
Collapse
|
13
|
Ackleh AS, Veprauskas A. Modeling the invasion and establishment of a tick-borne pathogen. Ecol Modell 2022; 467. [PMID: 35663375 PMCID: PMC9161809 DOI: 10.1016/j.ecolmodel.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We develop a discrete-time tick–host–pathogen model to describe the spread of a disease in a hard-bodied tick species. This model incorporates the developmental stages for a tick, the dependence of the tick life-cycle and disease transmission on host availability, and three sources of pathogen transmission. We first establish the global dynamics of the disease-free system. We then apply the model to two pathogens, Borellia burgdorferi and Anaplasma phagocytophila, using Ixodes ricinus as the tick species to study properties of the invasion and establishment of a disease numerically. In particular, we consider the basic reproduction number, which determines whether a disease can invade the tick-host system, as well as disease prevalence and time to establishment in the case of successful disease invasion. Using Monte Carlo simulations, we calculate the means of each of these disease metrics and their elasticities with respect to various model parameters. We find that increased tick survival may help enable disease invasion, decrease the time to disease establishment, and increase disease prevalence once established. In contrast, though disease invasion is sensitive to tick-to-host transmission and tick searching efficiencies, neither disease prevalence nor time to disease establishment is sensitive to these parameters. These differences emphasize the importance of developing approaches, such as the one highlighted here, that can be used to study disease dynamics beyond just pathogen invasion, including transitional and long-term dynamics.
Collapse
|
14
|
Saegerman C, Grégoire F, Delooz L. Diagnosis of Coxiella burnetii Cattle Abortion: A One-Year Observational Study. Pathogens 2022; 11:pathogens11040429. [PMID: 35456104 PMCID: PMC9032501 DOI: 10.3390/pathogens11040429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Q fever is a zoonosis occurring worldwide in livestock. Often neglected in differential diagnoses, Q fever can persist in herds causing financial losses. In ruminants, well-known manifestations of Q fever are metritis, infertility, abortion, stillbirth and delivery of a weak or premature calf. In cattle, Q fever is frequently asymptomatic and/or under-reported. Few studies are available on the diagnosis of Coxiella burnetii as a cause of abortion in cattle using polymerase chain reaction (PCR) for pathogen detection while enzyme-linked immunosorbent assay (ELISA) is used to assess exposure. Moreover, existing studies include a relatively small number of abortions. The aim of this study is to assess, in the southern part of Belgium, during a year, the performance of diagnosis of C. burnetii as a cause of abortion and the putative benefit of enhanced serology using anamnesis (animal patient data, and present, past and environmental history). A one-year random selection of 1212 abortions was analysed both with the PCR method (tissues from fetuses) and two commercialised ELISAs (sera from the mothers). Relative sensitivity and specificity of the ELISA tests were assessed using PCR as the reference test. The prevalence of C. burnetii PCR positive was 8.5% (95% CI: 6.99–10.21). The diagnostic value of the ELISA tests was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The sensitivity, specificity and AUC-ROC were similar for both ELISA tests. The diagnostic capacity of the ELISA was confirmed and slightly enhanced if anamnestic information was integrated with a unique scoring index system. A high negative predictive value was demonstrated and a significant reverse association between Ct values and a percentage of the ratio of the optical density between the sample and the positive control (ELISA A or ELISA B) enabling the use of ELISA as an exclusion diagnostic. This study is original by integrating the serological result and the anamnesis in a single index. It opens a new window in enhanced veterinary clinical decision-making.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, B-4000 Liege, Belgium;
- Correspondence:
| | - Fabien Grégoire
- Regional Association for Animal Registration and Health, B-5530 Ciney, Belgium;
| | - Laurent Delooz
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, B-4000 Liege, Belgium;
- Regional Association for Animal Registration and Health, B-5530 Ciney, Belgium;
| |
Collapse
|
15
|
Host contributions to the force of Borrelia burgdorferi and Babesia microti transmission differ at edges of and within a small habitat patch. Appl Environ Microbiol 2022; 88:e0239121. [PMID: 34985986 DOI: 10.1128/aem.02391-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the northeastern United States, the emergence of Lyme disease has been associated, in part, with the increase of small forest patches. Such disturbed habitat is exploited by generalist species, such as white-footed mice, which are considered the host with the greatest reservoir capacity for the agents of Lyme disease (Borrelia burgdorferi sensu stricto) and human babesiosis (Babesia microti). Spatial risk analyses have identified edge habitat as particularly risky. Using a retrotransposon-based quantitative PCR assay for host bloodmeal remnant identification, we directly measured whether the hosts upon which vector ticks fed differed at the edge or within the contiguous small habitat patch. Questing nymphal deer ticks, Ixodes dammini, the northern clade of Ixodes scapularis, were collected from either the edge or within a thicket on Nantucket Island over 3 transmission seasons and tested for evidence of infection as well as bloodmeal hosts. Tick bloodmeal hosts significantly differed by site as well as by year. Mice and deer were identified most often (49.9%), but shrews, rabbits and birds were also common. Ticks from the edge fed on a greater diversity of hosts than those from the thicket. Surprisingly, mice were not strongly associated with either infection at either sampling site (OR<2 for all). Although shrews were not the most common host utilized by ticks, they were highly associated with both infections at both sites (OR= 4.5 and 7.9 B. burgdorferi and 7.9 and 19.0 B. microti, edge and thicket). We conclude that reservoir hosts may differ in their contributions to infecting ticks between edge and contiguous vegetated patches. Importance Habitat fragmentation is thought to be a main factor in the emergence of Lyme disease and other of the deer tick-transmitted infections. The patchwork of forest and edges promotes altered biodiversity, favoring the abundance of generalist rodents such as white footed mice, heretofore considered a key tick and reservoir host in the northeastern U.S. We used tick bloodmeal analyses to directly identify the hosts from which nymphal deer ticks became infected. We demonstrate that there is considerable microfocality in host contributions to the cohort of infected ticks and that shrews, although they fed fewer ticks than mice, disproportionately influenced the force of pathogen transmission in our site. The venue of transmission of certain deer tick-transmitted agents may comprise a habitat scale of 10 meters or fewer and depend on alternative small mammal hosts such as shrews.
Collapse
|
16
|
Takhampunya R, Sakolvaree J, Chanarat N, Youngdech N, Phonjatturas K, Promsathaporn S, Tippayachai B, Tachavarong W, Srinoppawan K, Poole-Smith BK, McCardle PW, Chaorattanakawee S. The Bacterial Community in Questing Ticks From Khao Yai National Park in Thailand. Front Vet Sci 2021; 8:764763. [PMID: 34881320 PMCID: PMC8645651 DOI: 10.3389/fvets.2021.764763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
Ticks are known vectors for a variety of pathogens including bacteria, viruses, fungi, and parasites. In this study, bacterial communities were investigated in active life stages of three tick genera (Haemaphysalis, Dermacentor, and Amblyomma) collected from Khao Yai National Park in Thailand. Four hundred and thirty-three questing ticks were selected for pathogen detection individually using real-time PCR assays, and 58 of these were subjected to further metagenomics analysis. A total of 62 ticks were found to be infected with pathogenic bacteria, for a 14.3% prevalence rate, with Amblyomma spp. exhibiting the highest infection rate (20.5%), followed by Haemaphysalis spp. (14.5%) and Dermacentor spp. (8.6%). Rickettsia spp. were the most prevalent bacteria (7.9%) found, followed by Ehrlichia spp. (3.2%), and Anaplasma spp. and Borrelia spp. each with a similar prevalence of 1.6%. Co-infection between pathogenic bacteria was only detected in three Haemaphysalis females, and all co-infections were between Rickettsia spp. and Anaplasmataceae (Ehrlichia spp. or Anaplasma spp.), accounting for 4.6% of infected ticks or 0.7% of all examined questing ticks. The prevalence of the Coxiella-like endosymbiont was also investigated. Of ticks tested, 65.8% were positive for the Coxiella-like endosymbiont, with the highest infection rate in nymphs (86.7%), followed by females (83.4%). Among tick genera, Haemaphysalis exhibited the highest prevalence of infection with the Coxiella-like endosymbiont. Ticks harboring the Coxiella-like endosymbiont were more likely to be infected with Ehrlichia spp. or Rickettsia spp. than those without, with statistical significance for Ehrlichia spp. infection in particular (p-values = 0.003 and 0.917 for Ehrlichia spp. and Rickettsia spp., respectively). Profiling the bacterial community in ticks using metagenomics revealed distinct, predominant bacterial taxa in tick genera. Alpha and beta diversities analyses showed that the bacterial community diversity and composition in Haemaphysalis spp. was significantly different from Amblyomma spp. However, when examining bacterial diversity among tick life stages (larva, nymph, and adult) in Haemaphysalis spp., no significant difference among life stages was detected. These results provide valuable information on the bacterial community composition and co-infection rates in questing ticks in Thailand, with implications for animal and human health.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nittayaphon Youngdech
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Kritsawan Phonjatturas
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Sommai Promsathaporn
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Bousaraporn Tippayachai
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Wirunya Tachavarong
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Kanchit Srinoppawan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Betty K Poole-Smith
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - P Wesley McCardle
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
O’Connor C, Prusinski MA, Jiang S, Russell A, White J, Falco R, Kokas J, Vinci V, Gall W, Tober K, Haight J, Oliver J, Meehan L, Sporn LA, Brisson D, Backenson PB. A Comparative Spatial and Climate Analysis of Human Granulocytic Anaplasmosis and Human Babesiosis in New York State (2013-2018). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2453-2466. [PMID: 34289040 PMCID: PMC8824452 DOI: 10.1093/jme/tjab107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 05/25/2023]
Abstract
Human granulocytic anaplasmosis (HGA) and human babesiosis are tick-borne diseases spread by the blacklegged tick (Ixodes scapularis Say, Acari: Ixodidae) and are the result of infection with Anaplasma phagocytophilum and Babesia microti, respectively. In New York State (NYS), incidence rates of these diseases increased concordantly until around 2013, when rates of HGA began to increase more rapidly than human babesiosis, and the spatial extent of the diseases diverged. Surveillance data of tick-borne pathogens (2007 to 2018) and reported human cases of HGA (n = 4,297) and human babesiosis (n = 2,986) (2013-2018) from the New York State Department of Health (NYSDOH) showed a positive association between the presence/temporal emergence of each pathogen and rates of disease in surrounding areas. Incidence rates of HGA were higher than human babesiosis among White and non-Hispanic/non-Latino individuals, as well as all age and sex groups. Human babesiosis exhibited higher rates among non-White individuals. Climate, weather, and landscape data were used to build a spatially weighted zero-inflated negative binomial (ZINB) model to examine and compare associations between the environment and rates of HGA and human babesiosis. HGA and human babesiosis ZINB models indicated similar associations with forest cover, forest land cover change, and winter minimum temperature; and differing associations with elevation, urban land cover change, and winter precipitation. These results indicate that tick-borne disease ecology varies between pathogens spread by I. scapularis.
Collapse
Affiliation(s)
- Collin O’Connor
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Melissa A Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Shiguo Jiang
- State University of New York, University at Albany, Department of Geography and Planning, Albany, NY, USA
| | - Alexis Russell
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
- Wadsworth Center, Division of Infectious Disease, Albany, NY, USA
| | - Jennifer White
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Richard Falco
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
| | - John Kokas
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
- Retired
| | - Vanessa Vinci
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
| | - Wayne Gall
- New York State Deparment of Health, Bureau of Communicable Disease Control, Buffalo, NY, USA
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Buffalo, NY, USA
| | - Keith Tober
- New York State Deparment of Health, Bureau of Communicable Disease Control, Buffalo, NY, USA
- Retired
| | - Jamie Haight
- New York State Department of Health, Bureau of Communicable Disease Control, Falconer, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
| | - Lisa Meehan
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
- Wadsworth Center, Division of Environmental Health Sciences, Albany, NY, USA
| | - Lee Ann Sporn
- Paul Smith’s College, Department of Natural Science, Paul Smiths, NY, USA
| | - Dustin Brisson
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| |
Collapse
|
18
|
Environmental determinants of Anaplasma phagocytophilum infection in cattle using a kernel density function. Ticks Tick Borne Dis 2021; 12:101814. [PMID: 34416566 DOI: 10.1016/j.ttbdis.2021.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022]
Abstract
The study of vector-borne zoonotic diseases often relies on partial data, because of the constraints associated with observing various elements of the transmission cycle: the pathogen, the vector, the host - wild or domestic. Each angle comes with its own practical challenges, leading to data reflecting poorly either on spatial or temporal dynamics, or both. In this study, we investigated the effect of landscape on the presence of bovine ehrlichiosis infection in Walloon cattle. This disease is transmitted to cattle through the bite of a tick infected by the bacterium Anaplasma phagocytophilum. The first case of bovine ehrlichiosis in the southern region of Belgium (Wallonia) was detected in 2005 and the high seroprevalence found in herds suggests that the disease is endemic. The presence of antibodies of A. phagocytophilum in one cow selected in each of 1445 herds in 2010 and 2011 was detected using indirect immunofluorescence. Samples were geolocated at the farm. However, the precise location of infection remains uncertain. To account for the data sparsity, we elaborated a spatial index for the intensity of the presence of seropositive animals, based on a non-parametric kernel density estimation. We examined this index with the landscape surrounding the pastures, using multiple regressions. Landscape factors were selected using a conceptual framework based on the ecological resources needed for the transmission cycle of A. phagocytophilum. Results suggest that our spatial index adequately reflected infection presence in cattle in Wallonia, which was highest in central regions, corresponding to more forested and fragmented landscapes. We noticed that the presence of large hosts, wild or domestic, as well as the composition and configuration of the landscape of the pasture, influenced the capacity of the pasture to support the presence of bovine ehrlichiosis in Walloon herds. This is consistent with the ecology of A. phagocytophilum and current knowledge about risk factors of tick-borne diseases in cattle at the regional scale. The nature of the kernel density index, based on uncertainties over the location of cases positive to A. phagocytophilum, reflected the infectiousness profile at the landscape and not at the pasture level. Results also highlighted that the effects of some environmental variables remain, even when considering the different agro-geographic regions of Wallonia, which present contrasted landscapes and different levels of intensity of A. phagocytophilum infection. The kernel density index is a useful tool to help veterinary practitioner to quickly target areas where A. phagocytophilum infection is likely.
Collapse
|
19
|
Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland. Sci Rep 2021; 11:15472. [PMID: 34326447 PMCID: PMC8322139 DOI: 10.1038/s41598-021-95079-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Ixodes ricinus is the most widely distributed tick species in Europe. Mainly deciduous and mixed forests, pastures, and urban parks are habitats preferred by this species. I. ricinus ticks are also one of the most important reservoirs and vectors of human and animal infectious diseases on the continent. Borrelia burgdorferi s.l. spirochetes causing Lyme borreliosis (LB) in humans and tick borne encephalitis virus (TBEV), which is a causative agent of tick-borne encephalitis (TBE), are pathogens with the highest medical importance transmitted by this species. Investigations of the environmental determinants of the occurrence and activity of I. ricinus are crucial for elucidation of the environmental background of tick-borne diseases. In eastern Poland, I. ricinus is a common species with peak activity recorded in May in the entire region. During this period, 49 females, 32 males, and 55 I. ricinus nymphs were collected from an area of 900 m2. The results of the present study show that the occurrence and seasonal activity of this tick species are mainly influenced by microhabitat conditions, and saturation deficit has a significant effect on the activity of the species. Eastern Poland is characterized by a high incidence of LB and TBE. We have shown a correlation between the forest cover and the number of reported cases of tick-borne diseases.
Collapse
|
20
|
Răileanu C, Silaghi C, Fingerle V, Margos G, Thiel C, Pfister K, Overzier E. Borrelia burgdorferi Sensu Lato in Questing and Engorged Ticks from Different Habitat Types in Southern Germany. Microorganisms 2021; 9:microorganisms9061266. [PMID: 34200876 PMCID: PMC8230558 DOI: 10.3390/microorganisms9061266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Borrelia burgdorferi sensu lato (s.l.) causes the most common tick-borne infection in Europe, with Germany being amongst the countries with the highest incidences in humans. This study aimed at (1) comparing infection rates of B. burgdorferi s.l. in questing Ixodes ricinus ticks from different habitat types in Southern Germany, (2) analysing genospecies distribution by habitat type, and (3) testing tissue and ticks from hosts for B. burgdorferi s.l. Questing ticks from urban, pasture, and natural habitats together with feeding ticks from cattle (pasture) and ticks and tissue samples from wild boars and roe deer (natural site) were tested by PCR and RFLP for species differentiation. B. burgdorferi s.l. was found in 29.8% questing adults and 15% nymphs. Prevalence was lower at the urban sites with occurrence of roe deer than where these were absent. Borrelia burgdorferi s.l. DNA was found in 4.8% ticks from roe deer, 6.3% from wild boar, and 7.8% from cattle. Six genospecies were identified in unfed ticks: Borrelia afzelii (48.6%), Borrelia burgdorferi sensu stricto (16%), Borrelia garinii (13.2%), Borrelia valaisiana (7.5%), Borrelia spielmanii (6.2%), and Borrelia bavariensis (0.9%). This study shows high infection levels and a great diversity of Borrelia in questing ticks. The presence of roe deer seems to reduce B. burgdorferi s.l. infection rates in tick populations.
Collapse
Affiliation(s)
- Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
- Correspondence:
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleißheim, Germany; (V.F.); (G.M.)
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleißheim, Germany; (V.F.); (G.M.)
| | - Claudia Thiel
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| | - Kurt Pfister
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| | - Evelyn Overzier
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| |
Collapse
|
21
|
Brown JG. Ticks, Hair Loss, and Non-Clinging Babies: A Novel Tick-Based Hypothesis for the Evolutionary Divergence of Humans and Chimpanzees. Life (Basel) 2021; 11:435. [PMID: 34066043 PMCID: PMC8150933 DOI: 10.3390/life11050435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human straight-legged bipedalism represents one of the earliest events in the evolutionary split between humans (Homo spp.) and chimpanzees (Pan spp.), although its selective basis is a mystery. A carrying-related hypothesis has recently been proposed in which hair loss within the hominin lineage resulted in the inability of babies to cling to their mothers, requiring mothers to walk upright to carry their babies. However, a question remains for this model: what drove the hair loss that resulted in upright walking? Observers since Darwin have suggested that hair loss in humans may represent an evolutionary strategy for defence against ticks. The aim of this review is to propose and evaluate a novel tick-based evolutionary hypothesis wherein forest fragmentation in hominin paleoenvironments created conditions that were favourable for tick proliferation, selecting for hair loss in hominins and grooming behaviour in chimpanzees as divergent anti-tick strategies. It is argued that these divergent anti-tick strategies resulted in different methods for carrying babies, driving the locomotor divergence of humans and chimpanzees.
Collapse
|
22
|
O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021; 79:ftab022. [PMID: 33792663 PMCID: PMC8062235 DOI: 10.1093/femspd/ftab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tick-borne illnesses pose a serious concern to human and veterinary health and their prevalence is on the rise. The interactions between ticks and the pathogens they carry are largely undefined. However, the genus Anaplasma, a group of tick-borne bacteria, has been instrumental in uncovering novel paradigms in tick biology. The emergence of sophisticated technologies and the convergence of entomology with microbiology, immunology, metabolism and systems biology has brought tick-Anaplasma interactions to the forefront of vector biology with broader implications for the infectious disease community. Here, we discuss the use of Anaplasma as an instrument for the elucidation of novel principles in arthropod-microbe interactions. We offer an outlook of the primary areas of study, outstanding questions and future research directions.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Anoopkumar AN, Aneesh EM. Assessing the importance of Molecular and Genetic perspectives in Prophesying the KFD transmission risk provinces in the Western Ghats, Kerala, INDIA in context with spatial distribution, Extensive genetic Diversity, and phylogeography. Comp Immunol Microbiol Infect Dis 2021; 76:101652. [PMID: 33910066 DOI: 10.1016/j.cimid.2021.101652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The deadly effects of KFD have been pointed in southern India; however, the infecting regions have been getting larger in recent epochs. People who live or work in regions where KFDV infected tick vectors are present are severely prone to procuring the infection. Being aware of tick vectors and infectious agents' geospatial location is vital to direct sustenance approaches to prevent and manage such infectious diseases as KFD. The present investigation has focussed on the spatial distribution, Extensive genetic Diversity, and phylogeography to forecast the probable KFD disease risk provinces in the Western Ghats. The statistical analysis for diversity indices and community comparison has been performed by using SPSS version 24.0.0 and R software version 3.4.2. The nucleotide sequences of the respective ticks and KFDV were retrieved from NCBI. The first strand of this investigation revealed that, around the world, the Indian province was found to exhibit a maximum range of diversity for tick vectors. The next strands prophesied the KFD transmission risk areas in the Western Ghats region, India, with computational spatial analysis and phylogeography. The final strand exposed the genetic diversity of the KFD virus and the tick vectors in terms of their spatial distribution worldwide.
Collapse
Affiliation(s)
- A N Anoopkumar
- Communicable Disease Research Laboratory (CDRL), Department of Zoology, St. Joseph's College, Irinjalakuda, University of Calicut, Kerala, India.
| | - Embalil Mathachan Aneesh
- Communicable Disease Research Laboratory (CDRL), Department of Zoology, St. Joseph's College, Irinjalakuda, University of Calicut, Kerala, India.
| |
Collapse
|
24
|
Rochat E, Vuilleumier S, Aeby S, Greub G, Joost S. Nested Species Distribution Models of Chlamydiales in Ixodes ricinus (Tick) Hosts in Switzerland. Appl Environ Microbiol 2020; 87:e01237-20. [PMID: 33067199 PMCID: PMC7755253 DOI: 10.1128/aem.01237-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, which potentially cause respiratory infections. In this study, we modeled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collaborative smartphone application, and a prospective campaign. For each tick location, we retrieved from Swiss federal data sets the environmental factors reflecting the topography, climate, and land cover. We then used the Maxent modeling technique to estimate the suitability of particular areas for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus habitat suitability is determined by higher temperature and normalized difference vegetation index (NDVI) values, lower temperature during the driest months, and a higher percentage of artificial and forest areas. The performance of the model was improved when extracting the environmental variables for a 100-m radius buffer around the sampling points and when considering the climatic conditions of the 2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower percentage of artificial surfaces, drier conditions, high precipitation during the coldest months, and short distances to wetlands. From 2009 to 2018, we observed an extension of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude. The importance of considering spatiotemporal variations in the environmental conditions for obtaining better prediction was also demonstrated.IMPORTANCEIxodes ricinus is the vector of pathogens including the agent of Lyme disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bacteria, which are responsible for certain respiratory infections. In this study, we identified the environmental factors influencing the presence of I. ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 2018. We found an important expansion of suitable areas for both the tick and the bacteria during the last decade. Results also provided the environmental factors that determine the presence of Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable information for decision makers in controlling tick-borne diseases in Switzerland and establishing prevention campaigns. The methodological framework presented could be used to predict the distribution and spread of other host-pathogen pairs to identify environmental factors driving their distribution and to develop control or prevention strategies accordingly.
Collapse
Affiliation(s)
- Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Séverine Vuilleumier
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Sébastien Aeby
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
- Group of Geographic Information Research and Analysis in Population Health (GIRAPH), Switzerland
| |
Collapse
|
25
|
Kjær LJ, Klitgaard K, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Jensen LM, Bødker R. Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016. Sci Rep 2020; 10:19376. [PMID: 33168841 PMCID: PMC7652892 DOI: 10.1038/s41598-020-76334-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Katrine M Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Research Unit, Sørlandet Hospital Health Enterprise, Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Madeleine Christensson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Malin Teräväinen
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Laura Mark Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Spatial variability in prevalence and genospecies distributions of Borrelia burgdorferi sensu lato from ixodid ticks collected in southern Germany. Ticks Tick Borne Dis 2020; 12:101589. [PMID: 33096511 DOI: 10.1016/j.ttbdis.2020.101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022]
Abstract
Lyme borreliosis (LB) is the most common arthropod-borne disease in Europe and North America and is caused by members of the Borrelia burgdorferi sensu lato (Bbsl) species complex. These bacteria are transmitted by ixodid tick vectors and therefore human LB risk is influenced by the prevalence and distribution of Bbsl genospecies within tick vectors throughout the wild. These distributions can easily change over spatiotemporal scales and, to understand LB risk fully, up to date information on prevalence and distribution of Bbsl is required. The last survey of Bbsl in southern Germany, including parts of the Munich metropolitan area, was completed in 2006 and new data is needed. Ixodid ticks were collected in seven plots located in and around Munich, Germany, from March to July 2019 and were screened for Bbsl. Borrelia burgdorferi s. l. positive ticks (52 adults, 158 nymphs) were found in all plots and adults (0-61.5 % Bbsl positive/plot) and nymphs (17.4-59.5 % Bbsl positive/plot) did not differ significantly in their overall Bbsl prevalence. The number of Bbsl positive nymphs did vary significantly between plots but the number of positive adults did not. In total, six Bbsl genospecies were located with B. afzelii and B. garinii dominating. Additionally, the relapsing-fever species B. miyamotoi was found in two sampling plots. Our results highlight the variability in Bbsl prevalence and genospecies distribution over short geographic distances and aid in understanding LB risk in and around the Munich metropolitan area.
Collapse
|
27
|
Boorgula GDY, Peterson AT, Foley DH, Ganta RR, Raghavan RK. Assessing the current and future potential geographic distribution of the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) in North America. PLoS One 2020; 15:e0237191. [PMID: 32776959 PMCID: PMC7416948 DOI: 10.1371/journal.pone.0237191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
The American dog tick, Dermacentor variabilis, is a veterinary- and medically- significant tick species that is known to transmit several diseases to animal and human hosts. The spatial distribution of this species in North America is not well understood, however; and knowledge of likely changes to its future geographic distribution owing to ongoing climate change is needed for proper public health planning and messaging. Two recent studies have evaluated these topics for D. variabilis; however, less-rigorous modeling approaches in those studies may have led to erroneous predictions. We evaluated the present and future distribution of this species using a correlative maximum entropy approach, using publicly available occurrence information. Future potential distributions were predicted under two representative concentration pathway (RCP) scenarios; RCP 4.5 for low-emissions and RCP 8.5 for high-emissions. Our results indicated a broader current distribution of this species in all directions relative to its currently known extent, and dramatic potential for westward and northward expansion of suitable areas under both climate change scenarios. Implications for disease ecology and public health are discussed.
Collapse
Affiliation(s)
- Gunavanthi D. Y. Boorgula
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary Biology, College of Liberal Arts and Sciences, The University of Kansas, Lawrence, Kansas, United States of America
| | - Desmond H. Foley
- Walter Reed Biosystematics Unit, Department of Entomology, National Museum of History, Washington, District of Columbia, United States of America
| | - Roman R. Ganta
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Ram K. Raghavan
- Center for Vector-borne and Emerging Infectious Diseases, Departments of Veterinary Pathobiology and Public Health, College of Veterinary Medicine and School of Health Professions, University of Missouri, Columbia, South Carolina, United States of America
| |
Collapse
|
28
|
Okeyo M, Hepner S, Rollins RE, Hartberger C, Straubinger RK, Marosevic D, Bannister SA, Bormane A, Donaghy M, Sing A, Fingerle V, Margos G. Longitudinal study of prevalence and spatio-temporal distribution of Borrelia burgdorferi sensu lato in ticks from three defined habitats in Latvia, 1999-2010. Environ Microbiol 2020; 22:5033-5047. [PMID: 32452153 DOI: 10.1111/1462-2920.15100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Members of the Borrelia burgdorferi sensu lato (s.l.) species complex are known to cause human Lyme borreliosis. Because of longevity of some reservoir hosts and the Ixodes tick vectors' life cycle, long-term studies are required to better understand species and population dynamics of these bacteria in their natural habitats. Ticks were collected between 1999 and 2010 in three ecologically different habitats in Latvia. We used multilocus sequence typing utilizing eight chromosomally located housekeeping genes to obtain information about species and population fluctuations and/or stability of B. burgdorferi s.l. in these habitats. The average prevalence over all years was 18.9%. From initial high-infection prevalences of 25.5%, 33.1% and 31.8%, from 2002 onwards the infection rates steadily decreased to 7.3%. Borrelia afzelii and Borrelia garinii were the most commonly found genospecies but striking local differences were obvious. In one habitat, a significant shift from rodent-associated to bird-associated Borrelia species was noted whilst in the other habitats, Borrelia species composition was relatively stable over time. Sequence types (STs) showed a random spatial and temporal distribution. These results demonstrated that there are temporal regional changes and extrapolations from one habitat to the next are not possible.
Collapse
Affiliation(s)
- Mercy Okeyo
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Robert E Rollins
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Christina Hartberger
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Reinhard K Straubinger
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, LMU Munich, Veterinärstraße 13, 80539, Munich, Germany
| | - Durdica Marosevic
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | | | - Antra Bormane
- Center for Disease Prevention and Control, Infectious Diseases Surveillance and Immunization Unit, Duntes iela 22-4, Riga, LV-1005, Latvia
| | - Michael Donaghy
- Department of Clinical Neurology, Green Templeton College, The University of Oxford, Oxford, UK
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
29
|
Gilbert L, Brülisauer F, Willoughby K, Cousens C. Identifying Environmental Risk Factors for Louping Ill Virus Seroprevalence in Sheep and the Potential to Inform Wildlife Management Policy. Front Vet Sci 2020; 7:377. [PMID: 32695800 PMCID: PMC7339109 DOI: 10.3389/fvets.2020.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/28/2020] [Indexed: 11/18/2022] Open
Abstract
Identifying the risk factors for disease is crucial for developing policy and strategies for controlling exposure to pathogens. However, this is often challenging, especially in complex disease systems, such as vector-borne diseases with multiple hosts and other environmental drivers. Here we combine seroprevalence data with GIS-based environmental variables to identify the environmental risk factors associated with an endemic tick-borne pathogen—louping ill virus—in sheep in Scotland. Higher seroprevalences were associated with (i) upland/moorland habitats, in accordance with what we predicted from the habitat preferences of alternative LIV transmission hosts (such as red grouse), (ii) areas of higher deer density, which supports predictions from previous theoretical models, since deer are the key Ixodes ricinus tick reproduction host in this system, and (iii) a warmer climate, concurring with our current knowledge of how temperature affects tick activity and development rates. The implications for policy include adopting increased disease management and awareness in high risk habitats and in the presence of alternative LIV hosts (e.g., grouse) and tick hosts (especially deer). These results can also inform deer management policy, especially where there may be conflict between contrasting upland management objectives, for example, revenue from deer hunting vs. sheep farmers.
Collapse
Affiliation(s)
- Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Kim Willoughby
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| |
Collapse
|
30
|
Pollet T, Sprong H, Lejal E, Krawczyk AI, Moutailler S, Cosson JF, Vayssier-Taussat M, Estrada-Peña A. The scale affects our view on the identification and distribution of microbial communities in ticks. Parasit Vectors 2020; 13:36. [PMID: 31964404 PMCID: PMC6975024 DOI: 10.1186/s13071-020-3908-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023] Open
Abstract
Ticks transmit the highest variety of pathogens impacting human and animal health worldwide. It is now well established that ticks also harbour a microbial complex of coexisting symbionts, commensals and pathogens. With the development of high throughput sequencing technologies, studies dealing with such diverse bacterial composition in tick considerably increased in the past years and revealed an unexpected microbial diversity. These data on diversity and composition of the tick microbes are increasingly available, giving crucial details on microbial communities in ticks and improving our knowledge on the tick microbial community. However, consensus is currently lacking as to which scales (tick organs, individual specimens or species, communities of ticks, populations adapted to particular environmental conditions, spatial and temporal scales) best facilitate characterizing microbial community composition of ticks and understanding the diverse relationships among tick-borne bacteria. Temporal or spatial scales have a clear influence on how we conduct ecological studies, interpret results, and understand interactions between organisms that build the microbiome. We consider that patterns apparent at one scale can collapse into noise when viewed from other scales, indicating that processes shaping tick microbiome have a continuum of variability that has not yet been captured. Based on available reports, this review demonstrates how much the concept of scale is crucial to be considered in tick microbial community studies to improve our knowledge on tick microbe ecology and pathogen/microbiota interactions.
Collapse
Affiliation(s)
- Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Aleksandra I Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Jean-Francois Cosson
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | |
Collapse
|
31
|
Aivelo T, Norberg A, Tschirren B. Bacterial microbiota composition of Ixodes ricinus ticks: the role of environmental variation, tick characteristics and microbial interactions. PeerJ 2019; 7:e8217. [PMID: 31875152 PMCID: PMC6925955 DOI: 10.7717/peerj.8217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023] Open
Abstract
Ecological factors, host characteristics and/or interactions among microbes may all shape the occurrence of microbes and the structure of microbial communities within organisms. In the past, disentangling these factors and determining their relative importance in shaping within-host microbiota communities has been hampered by analytical limitations to account for (dis)similar environmental preferences ('environmental filtering'). Here we used a joint species distribution modelling (JSDM) approach to characterize the bacterial microbiota of one of the most important disease vectors in Europe, the sheep tick Ixodes ricinus, along ecological gradients in the Swiss Alps. Although our study captured extensive environmental variation along elevational clines, the explanatory power of such large-scale ecological factors was comparably weak, suggesting that tick-specific traits and behaviours, microhabitat and -climate experienced by ticks, and interactions among microbes play an important role in shaping tick microbial communities. Indeed, when accounting for shared environmental preferences, evidence for significant patterns of positive or negative co-occurrence among microbes was found, which is indicative of competition or facilitation processes. Signals of facilitation were observed primarily among human pathogens, leading to co-infection within ticks, whereas signals of competition were observed between the tick endosymbiont Spiroplasma and human pathogens. These findings highlight the important role of small-scale ecological variation and microbe-microbe interactions in shaping tick microbial communities and the dynamics of tick-borne disease.
Collapse
Affiliation(s)
- Tuomas Aivelo
- Organismal and Evolutionary Biology research program, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anna Norberg
- Organismal and Evolutionary Biology research program, University of Helsinki, Helsinki, Finland
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
32
|
Ledger KJ, Keenan RM, Sayler KA, Wisely SM. Multi-scale patterns of tick occupancy and abundance across an agricultural landscape in southern Africa. PLoS One 2019; 14:e0222879. [PMID: 31539412 PMCID: PMC6754170 DOI: 10.1371/journal.pone.0222879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
Land use influences the prevalence and distribution of ticks due to the intimate relationship of ticks with their environment. This relationship occurs because land use alters two essential tick requirements: vertebrate hosts for blood meals and a suitable microclimate when off-host. Given the risks to human and animal health associated with pathogens transmitted by ticks, there is an ongoing need to understand the impact of environmental drivers on tick distributions. Here, we assessed how landscape features, neighborhood effects, and edges influenced tick occupancy and abundance across an agricultural landscape in southern Africa. We found that Rhipicephalus appendiculatus and Rhipicephalus simus increased in abundance closer to protected savanna, while Haemaphysalis elliptica increased in abundance closer to human habitation. The composition of the landscape surrounding savanna patches also differentially influenced the occupancy of each tick species; H. elliptica was more likely to be found in savanna patches surrounded by subsistence agriculture while R. appendiculatus and R. simus were more likely to be found in savanna surrounded by sugarcane monocultures. At the local scale we found that R. appendiculatus and R. simus avoided savanna edges. The availability of hosts and variation in vegetation structure between commercial agriculture, subsistence agriculture, and savanna likely drove the distribution of ticks at the landscape scale. Understanding how anthropogenic land use influences where ticks occur is useful for land use planning and for assessing public and animal health risks associated with ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Kimberly J. Ledger
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Ryan M. Keenan
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Katherine A. Sayler
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zanzani SA, Rimoldi SG, Manfredi M, Grande R, Gazzonis AL, Merli S, Olivieri E, Giacomet V, Antinori S, Cislaghi G, Bestetti G, Nan K, Sala V, Gismondo MR, Atzori C, De Faveri E. Lyme borreliosis incidence in Lombardy, Italy (2000-2015): Spatiotemporal analysis and environmental risk factors. Ticks Tick Borne Dis 2019; 10:101257. [PMID: 31285164 DOI: 10.1016/j.ttbdis.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
Lyme borreliosis cases have been reported from Lombardy in northern Italy, where Ixodes ricinus is the main vector of Borrelia burgdorferi sensu lato. However, spatial and temporal variation in the incidence of Lyme borreliosis is not well understood. In the present study, based on new notified cases of Lyme borreliosis from 2000 to 2015, an average of 1.24 new cases per million residents per year was documented. New cases, georeferenced at the municipal level, were analyzed by retrospective space-time analysis (using SaTScan v. 9.3.1); and land cover, extrapolated from a Corine Land Cover dataset (using QGIS 2.8.1), was used to implement an environmental risk factor analysis. Firstly, a temporal high-risk cluster was detected in Lombardy: the relative risk of Lyme borreliosis was 3.73 times higher during 2008-2015 compared with the entire study period. Moreover, in a spatiotemporal high-risk cluster with a circular base, land cover consisting of wildland-urban interface, meadow, forest and meadow-forest transition were significantly higher compared to low-risk areas. Results of the present study demonstrate that the incidence of Lyme borreliosis is increasing in Lombardy and that environmental conditions are suitable for I. ricinus ticks infected with B. burgdorferi s.l.: citizens and health systems should be aware of Lyme borreliosis to reduce tick bites with personal protective behaviors and to avoid misdiagnosis, particularly within the area including the observed high-risk cluster. Economic resources should be invested to inform about methods to prevent tick bites, how to check people and pets after frequenting risk areas, and ways of removing the biting ticks when they are found.
Collapse
Affiliation(s)
- Sergio A Zanzani
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133, Milano, Italy.
| | - Sara G Rimoldi
- Diagnostic Services, Clinical Microbiology, Virology and Bioemergence Diagnostics, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - MariaTeresa Manfredi
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133, Milano, Italy.
| | - Romualdo Grande
- Diagnostic Services, Clinical Microbiology, Virology and Bioemergence Diagnostics, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - Alessia L Gazzonis
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133, Milano, Italy.
| | - Stefania Merli
- I Division of Infectious Diseases, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milan, Italy.
| | - Emanuela Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", Università degli Studi di Pavia, 27100, Pavia, Italy.
| | - Vania Giacomet
- Unit of Pediatrics Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - Spinello Antinori
- III Division of Infectious Diseases, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - Giuliana Cislaghi
- Unit of Neurology, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - Giovanna Bestetti
- III Division of Infectious Diseases, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - Katiuscia Nan
- Unit of Dermatology and Venearology Ospedale Maggiore di Trieste, 34125, Trieste, Italy.
| | - Vittorio Sala
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133, Milano, Italy.
| | - Maria R Gismondo
- Diagnostic Services, Clinical Microbiology, Virology and Bioemergence Diagnostics, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milano, Italy.
| | - Chiara Atzori
- I Division of Infectious Diseases, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, 20157, Milan, Italy.
| | | |
Collapse
|
34
|
Akl T, Bourgoin G, Souq ML, Appolinaire J, Poirel MT, Gibert P, Abi Rizk G, Garel M, Zenner L. Detection of tick-borne pathogens in questing Ixodes ricinus in the French Pyrenees and first identification of Rickettsia monacensis in France. ACTA ACUST UNITED AC 2019; 26:20. [PMID: 30943150 PMCID: PMC6447091 DOI: 10.1051/parasite/2019019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/15/2019] [Indexed: 01/08/2023]
Abstract
Ticks are important vectors of several human and animal pathogens. In this study, we estimated the prevalence of important tick-borne infections in questing ticks from an area in Southwestern France (Hautes-Pyrénées) inhabited by Pyrenean chamois (Rupicapra pyrenaica pyrenaica) experiencing high tick burden. We examined adult and nymph ticks collected by the flag dragging method from 8 to 15 sites in the Pic de Bazès during the years 2009, 2011, 2013 and 2015. PCR assays were conducted on selected ticks for the detection of Borrelia burgdorferi s.l., Babesia spp., Rickettsia spp., spotted fever group (SFG) Rickettsia and Anaplasma phagocytophilum. Randomly selected positive samples were submitted for sequence analysis. A total of 1971 questing ticks were collected including 95 males, 101 females and 1775 nymphs. All collected ticks were identified as Ixodes ricinus. Among them, 696 ticks were selected for pathogen detection and overall prevalence was 8.4% for B. burgdorferi s.l.; 0.4% for Babesia spp.; 6.1% for A. phagocytophilum; 17.6% for Rickettsia spp.; and 8.1% for SFG Rickettsia. Among the sequenced pathogens, we detected in this population of ticks the presence of Babesia sp. EU1 and Rickettsia helvetica, as well as Rickettsia monacensis for the first time in France. The detection of these pathogens in the Pic de Bazès highlights the potential infection risks for visitors to this area and the Pyrenean chamois population.
Collapse
Affiliation(s)
- Toufic Akl
- Université Libanaise, Faculté d'Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire, 6573 Beyrouth, Liban
| | - Gilles Bourgoin
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France - Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
| | - Marie-Line Souq
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France
| | - Joël Appolinaire
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, 9 Z.I. Mayencin, 38610 Gières, France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France - Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
| | - Philippe Gibert
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, 9 Z.I. Mayencin, 38610 Gières, France
| | - Georges Abi Rizk
- Université Libanaise, Faculté d'Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire, 6573 Beyrouth, Liban
| | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, 9 Z.I. Mayencin, 38610 Gières, France
| | - Lionel Zenner
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France - Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
| |
Collapse
|
35
|
Lejal E, Moutailler S, Šimo L, Vayssier-Taussat M, Pollet T. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasit Vectors 2019; 12:152. [PMID: 30940200 PMCID: PMC6444572 DOI: 10.1186/s13071-019-3418-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tick midgut and salivary glands represent the primary organs for pathogen acquisition and transmission, respectively. Specifically, the midgut is the first organ to have contact with pathogens during the blood meal uptake, while salivary glands along with their secretions play a crucial role in pathogen transmission to the host. Currently there is little data about pathogen composition and prevalence in Ixodes ricinus midgut and salivary glands. The present study investigated the presence of 32 pathogen species in the midgut and salivary glands of unfed I. ricinus males and females using high-throughput microfluidic real-time PCR. Such an approach is important for enriching the knowledge about pathogen distribution in distinct tick organs which should lead to a better understanding I. ricinus-borne disease epidemiology. RESULTS Borrelia lusitaniae, Borrelia spielmanii and Borrelia garinii, were detected in both midgut and salivary glands suggesting that the migration of these pathogens between these two organs might not be triggered by the blood meal. In contrast, Borrelia afzelii was detected only in the tick midgut. Anaplasma phagocytophilum and Rickettsia helvetica were the most frequently detected in ticks and were found in both males and females in the midgut and salivary glands. In contrast, Rickettsia felis was only detected in salivary glands. Finally, Borrelia miyamotoi and Babesia venatorum were detected only in males in both midguts and salivary glands. Among all collected ticks, between 10-21% of organs were co-infected. The most common bacterial co-infections in male and female midgut and salivary glands were Rickettsia helvetica + Anaplasma phagocytophilum and Rickettsia helvetica + Borrelia lusitaniae, respectively. CONCLUSIONS Analysing tick-borne pathogen (TBP) presence in specific tick organs enabled us to (i) highlight contrasting results with well-established transmission mechanism postulates; (ii) venture new hypotheses concerning pathogen location and migration from midgut to salivary glands; and (iii) suggest other potential associations between pathogens not previously detected at the scale of the whole tick. This work highlights the importance of considering all tick scales (i.e. whole ticks vs organs) to study TBP ecology and represents another step towards improved understanding of TBP transmission.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Ladislav Šimo
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
36
|
Tick Bite Risk as a Socio-Spatial Representation—An Exploratory Study in Massif Central, France. LAND 2019. [DOI: 10.3390/land8030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ticks are responsible for the largest number of transmissions of vector-borne diseases in the northern hemisphere, which makes the risk from tick bites a serious public health problem. Biological scientific research and prevention studies are important, but they have not focused on the population’s perception of tick bite risk, especially at a spatial level. This exploratory article sets out to study this point through an innovative methodology involving the collection of 133 mental maps associated with a semi-structured interview and a socio-demographic questionnaire collected in the Massif Central region, France. The results show a strong link between the representation of the tick bite risk and the representation of particular landscapes. Forests appear as dangerous for the population, especially in the traditional activities of family walking or hiking. This calls into question overly anxiogenic prevention approaches that neglect the impact on practices in risk-prone spaces. It accentuates the need for localized education measure to improve knowledge about tick biology and avoid stereotypical and unnecessary negative representations associated with the environment.
Collapse
|
37
|
Millins C, Dickinson ER, Isakovic P, Gilbert L, Wojciechowska A, Paterson V, Tao F, Jahn M, Kilbride E, Birtles R, Johnson P, Biek R. Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen. Parasit Vectors 2018; 11:621. [PMID: 30514350 PMCID: PMC6278045 DOI: 10.1186/s13071-018-3200-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Landscape structure can affect pathogen prevalence and persistence with consequences for human and animal health. Few studies have examined how reservoir host species traits may interact with landscape structure to alter pathogen communities and dynamics. Using a landscape of islands and mainland sites we investigated how natural landscape fragmentation affects the prevalence and persistence of the zoonotic tick-borne pathogen complex Borrelia burgdorferi (sensu lato), which causes Lyme borreliosis. We hypothesized that the prevalence of B. burgdorferi (s.l.) would be lower on islands compared to the mainland and B. afzelii, a small mammal specialist genospecies, would be more affected by isolation than bird-associated B. garinii and B. valaisiana and the generalist B. burgdorferi (sensu stricto). Methods Questing (host-seeking) nymphal I. ricinus ticks (n = 6567) were collected from 12 island and 6 mainland sites in 2011, 2013 and 2015 and tested for B. burgdorferi (s.l.). Deer abundance was estimated using dung transects. Results The prevalence of B. burgdorferi (s.l.) was significantly higher on the mainland (2.5%, 47/1891) compared to island sites (0.9%, 44/4673) (P < 0.01). While all four genospecies of B. burgdorferi (s.l.) were detected on the mainland, bird-associated species B. garinii and B. valaisiana and the generalist genospecies B. burgdorferi (s.s.) predominated on islands. Conclusion We found that landscape structure influenced the prevalence of a zoonotic pathogen, with a lower prevalence detected among island sites compared to the mainland. This was mainly due to the significantly lower prevalence of small mammal-associated B. afzelii. Deer abundance was not related to pathogen prevalence, suggesting that the structure and dynamics of the reservoir host community underpins the observed prevalence patterns, with the higher mobility of bird hosts compared to small mammal hosts leading to a relative predominance of the bird-associated genospecies B. garinii and generalist genospecies B. burgdorferi (s.s.) on islands. In contrast, the lower prevalence of B. afzelii on islands may be due to small mammal populations there exhibiting lower densities, less immigration and stronger population fluctuations. This study suggests that landscape fragmentation can influence the prevalence of a zoonotic pathogen, dependent on the biology of the reservoir host. Electronic supplementary material The online version of this article (10.1186/s13071-018-3200-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK. .,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, Scotland, UK. .,School of Veterinary Medicine, University of Glasgow, Glasgow, Scotland, UK.
| | - Eleanor R Dickinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Petra Isakovic
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,, Present address: Zakot 43, 8250, Brezice, Slovenia
| | - Lucy Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, UK
| | - Agnieszka Wojciechowska
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,Present address: Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Victoria Paterson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Feng Tao
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,Present address: Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Martin Jahn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,Present address: GEOMAR - Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Birtles
- School of Environment and Life Sciences, University of Salford, Salford, England, UK
| | - Paul Johnson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, Scotland, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
38
|
Kiewra D, Szymanowski M, Zalewska G, Dobracka B, Dobracki W, Klakočar J, Czułowska A, Plewa-Tutaj K. Seroprevalence of Borrelia burgdorferi in forest workers from inspectorates with different forest types in Lower Silesia, SW Poland: preliminary study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:502-510. [PMID: 29963907 DOI: 10.1080/09603123.2018.1489954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To estimate the Lyme borreliosis (LB) risk for forest workers, totally 646 blood samples were tested for IgG and IgM anti-Borrelia burgdorferi s.l. (anti-B.b.) antibody occurrence using ELISA tests confirmed with western blot. To clarify the varied LB risk, additionally, the data from the Forest Data Bank determining the detailed forest habitat type in particular forest inspectorates were used. The occurrence of the anti-B.b. antibody was confirmed in 22% (8.7% IgM, 17.8% IgG) of forest workers. Analysis of the influence of the habitat type (forest types) indicated the significant positive impact of the occurrence of the deciduous and mixed-deciduous forests on the seroprevalence of anti-B.b. IgG level among forestry workers. However, the share of forest type cannot be the only factor taken into account when assessing risk.
Collapse
Affiliation(s)
- Dorota Kiewra
- a Department of Microbial Ecology and Environmental Protection , Institute of Genetics and Microbiology, University of Wrocław , Wrocław , Poland
| | - Mariusz Szymanowski
- b Department of Geoinformatics and Cartography , Institute of Geography and Regional Development, University of Wrocław , Wrocław , Poland
| | - Grażyna Zalewska
- c Provincial Sanitary and Epidemiological Station in Wroclaw , Wrocław , Poland
| | - Beata Dobracka
- d Infectious Diseases Outpatient Clinic MED-FIX Medical Center in Wrocław , Wrocław , Poland
| | - Witold Dobracki
- e Faculty of Health Sciences , Medical University of Wrocław , Wrocław , Poland
| | - Jacek Klakočar
- f Provincial Sanitary and Epidemiological Station in Wroclaw , Wrocław , Poland
| | - Aleksandra Czułowska
- a Department of Microbial Ecology and Environmental Protection , Institute of Genetics and Microbiology, University of Wrocław , Wrocław , Poland
| | - Kinga Plewa-Tutaj
- a Department of Microbial Ecology and Environmental Protection , Institute of Genetics and Microbiology, University of Wrocław , Wrocław , Poland
| |
Collapse
|
39
|
Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP, Plowright RK. Pathogen spillover during land conversion. Ecol Lett 2018; 21:471-483. [DOI: 10.1111/ele.12904] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina L. Faust
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
- Institute of Biodiversity, Animal Health and Comparative Medicine; Universtiy of Glasgow; Glasgow UK
| | - Hamish I. McCallum
- Environmental Futures Research Institute and Griffith School of Environment; Griffith University; Griffith Qld. Australia
| | - Laura S. P. Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources; Stanford University; Stanford CA USA
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology; College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Thomas R. Gillespie
- Department of Environmental Sciences; Department of Environmental Health; Rollins School of Public Health; Program In Population; Biology, Ecology and Evolution; Emory University; Athens GA USA
| | - Colin J. Torney
- School of Mathematics and Statistics; University of Glasgow; Glasgow UK
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
| |
Collapse
|
40
|
Millins C, Gilbert L, Medlock J, Hansford K, Thompson DB, Biek R. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0123. [PMID: 28438912 PMCID: PMC5413871 DOI: 10.1098/rstb.2016.0123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 02/01/2023] Open
Abstract
Landscape change and altered host abundance are major drivers of zoonotic pathogen emergence. Conservation and biodiversity management of landscapes and vertebrate communities can have secondary effects on vector-borne pathogen transmission that are important to assess. Here we review the potential implications of these activities on the risk of Lyme borreliosis in the United Kingdom. Conservation management activities include woodland expansion, management and restoration, deer management, urban greening and the release and culling of non-native species. Available evidence suggests that increasing woodland extent, implementing biodiversity policies that encourage ecotonal habitat and urban greening can increase the risk of Lyme borreliosis by increasing suitable habitat for hosts and the tick vectors. However, this can depend on whether deer population management is carried out as part of these conservation activities. Exclusion fencing or culling deer to low densities can decrease tick abundance and Lyme borreliosis risk. As management actions often constitute large-scale perturbation experiments, these hold great potential to understand underlying drivers of tick and pathogen dynamics. We recommend integrating monitoring of ticks and the risk of tick-borne pathogens with conservation management activities. This would help fill knowledge gaps and the production of best practice guidelines to reduce risks. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’.
Collapse
Affiliation(s)
- Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK .,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK.,School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Lucy Gilbert
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jolyon Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK.,Health Protection Research Unit in Environment and Health, Porton Down, Salisbury SP4 0JG, UK
| | - Kayleigh Hansford
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK
| | - Des Ba Thompson
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh, EH12 7AT, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
41
|
Ehrmann S, Ruyts SC, Scherer-Lorenzen M, Bauhus J, Brunet J, Cousins SAO, Deconchat M, Decocq G, De Frenne P, De Smedt P, Diekmann M, Gallet-Moron E, Gärtner S, Hansen K, Kolb A, Lenoir J, Lindgren J, Naaf T, Paal T, Panning M, Prinz M, Valdés A, Verheyen K, Wulf M, Liira J. Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments. Parasit Vectors 2018; 11:23. [PMID: 29310722 PMCID: PMC5759830 DOI: 10.1186/s13071-017-2590-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/13/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. METHODS We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. RESULTS During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood. CONCLUSIONS Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.
Collapse
Affiliation(s)
- Steffen Ehrmann
- Geobotany, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sanne C. Ruyts
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, B-9090 Melle-Gontrode, Belgium
| | | | - Jürgen Bauhus
- Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, SE-230 53 Alnarp, Sweden
| | - Sara A. O. Cousins
- Landscape Ecology, Department of Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc Deconchat
- DYNAFOR, Université de Toulouse, INRA, INPT, Chemin de Borde Rouge, CS 52627, F-31326 Castanet, France
| | - Guillaume Decocq
- UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Jules Verne University of Picardie, 1 rue des Louvels, F-80037 Amiens Cedex 1, France
- UF PRiMAX, Clinical Pharmacology Department, CHU Amiens-Picardie, Amiens, France
| | - Pieter De Frenne
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, B-9090 Melle-Gontrode, Belgium
- Department of Plant Production, Ghent University, Proefhoevestraat 22, BE-9090 Melle, Belgium
| | - Pallieter De Smedt
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, B-9090 Melle-Gontrode, Belgium
| | - Martin Diekmann
- Faculty of Biology/Chemistry (FB 02), Institute of Ecology, Vegetation Ecology and Conservation Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Emilie Gallet-Moron
- UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Jules Verne University of Picardie, 1 rue des Louvels, F-80037 Amiens Cedex 1, France
| | - Stefanie Gärtner
- Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacherstr. 4, 79106 Freiburg, Germany
- Black Forest National Park, Kniebisstraße 67, 77740 Bad Peterstal-Griesbach, Germany
| | - Karin Hansen
- Natural Resources & Environmental Effects, IVL Swedish Environmental Research Institute, Box 210 60, SE-100 31 Stockholm, Sweden
| | - Annette Kolb
- Faculty of Biology/Chemistry (FB 02), Institute of Ecology, Vegetation Ecology and Conservation Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Jonathan Lenoir
- UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Jules Verne University of Picardie, 1 rue des Louvels, F-80037 Amiens Cedex 1, France
| | - Jessica Lindgren
- Landscape Ecology, Department of Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tobias Naaf
- Institute of Land Use Systems, Leibniz-ZALF (e.V.), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Taavi Paal
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | - Marcus Panning
- Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Maren Prinz
- Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Alicia Valdés
- UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Jules Verne University of Picardie, 1 rue des Louvels, F-80037 Amiens Cedex 1, France
| | - Kris Verheyen
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, B-9090 Melle-Gontrode, Belgium
| | - Monika Wulf
- Institute of Land Use Systems, Leibniz-ZALF (e.V.), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Jaan Liira
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| |
Collapse
|
42
|
Panetta JL, Šíma R, Calvani NED, Hajdušek O, Chandra S, Panuccio J, Šlapeta J. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasit Vectors 2017; 10:616. [PMID: 29262840 PMCID: PMC5738880 DOI: 10.1186/s13071-017-2579-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge on the capacity of Australian ticks to carry Borrelia species is currently limited or missing. To evaluate the potential of ticks to carry bacterial pathogens and their DNA, it is imperative to have a robust workflow that maximises recovery of bacterial DNA within ticks in order to enable accurate identification. By exploiting the bilateral anatomical symmetry of ticks, we were able to directly compare two DNA extraction methods for 16S rRNA gene diversity profiling and pathogen detection. We aimed to assess which combination of DNA extraction and 16S rRNA hypervariable region enables identification of the greatest bacterial diversity, whilst minimising bias, and providing the greatest capacity for the identification of Borrelia spp. RESULTS We collected Australian endemic ticks (Bothriocroton undatum), isolated DNA from equal tick halves using two commercial DNA extraction methods and sequenced samples using V1-V3 and V3-V4 16S rRNA gene diversity profiling assays. Two distinct Borrelia spp. operational taxonomic units (OTUs) were detected using the V1-V3 16S rRNA hypervariable region and matching Borrelia spp. sequences were obtained using a conventional nested-PCR. The tick 16S rRNA gene diversity profile was dominated by Rickettsia spp. (98-99%), while the remaining OTUs belonged to Proteobacteria (51-81%), Actinobacteria (6-30%) and Firmicutes (2-7%). Multiple comparisons tests demonstrated biases in each of the DNA extraction kits towards different bacterial taxa. CONCLUSIONS Two distinct Borrelia species belonging to the reptile-associated Borrelia group were identified. Our results show that the method of DNA extraction can promote bias in the final microbiota identified. We determined an optimal DNA extraction method and 16S rRNA gene diversity profile assay that maximises detection of Borrelia species.
Collapse
Affiliation(s)
- Jessica L. Panetta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Nichola E. D. Calvani
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Shona Chandra
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Jessica Panuccio
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
43
|
Gall CA, Scoles GA, Magori K, Mason KL, Brayton KA. Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks. MICROBIOME 2017; 5:133. [PMID: 28978338 PMCID: PMC5628422 DOI: 10.1186/s40168-017-0352-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/24/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species. METHODS The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level. FINDINGS In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level. CONCLUSIONS We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks, and that the microbiome of lab colonies may not allow for comparative analyses with field populations. A broader understanding of microbiome variation will be required if we are to employ manipulation of the microbiome as a method for interfering with acquisition and transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Cory A Gall
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164-7040, USA
| | - Glen A Scoles
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164-6630, USA
| | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2445, USA
| | - Kathleen L Mason
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164-6630, USA
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA.
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
44
|
Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl Environ Microbiol 2017; 83:AEM.00609-17. [PMID: 28550059 DOI: 10.1128/aem.00609-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferisensu lato, is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii, despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR.IMPORTANCEBorrelia burgdorferisensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection.
Collapse
|
45
|
Bonnet SI, Paul REL, Bischoff E, Cote M, Le Naour E. First identification of Rickettsia helvetica in questing ticks from a French Northern Brittany Forest. PLoS Negl Trop Dis 2017; 11:e0005416. [PMID: 28248955 PMCID: PMC5348082 DOI: 10.1371/journal.pntd.0005416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/13/2017] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
Tick-borne rickettsiae are considered to be emerging, but data about their presence in western Europe are scarce. Ixodes ricinus ticks, the most abundant and widespread tick species in western Europe, were collected and tested for the presence of several tick-borne pathogens in western France, a region never previously explored in this context. There was a high tick abundance with a mean of 4 females, 4.5 males, and 23.3 nymphs collected per hour per collector. Out of 622 tested ticks, specific PCR amplification showed the presence of tick symbionts as well as low prevalence of Borrelia burgdorferi (0.8%), Bartonella spp. (0.17%), and Anaplasma phagocytophilum (0.09%). The most prevalent pathogen was Rickettsia helvetica (4.17%). This is the first time that this bacteria has been detected in ticks in this region, and this result raises the possibility that bacteria other than those classically implicated may be involved in rickettsial diseases in western France.
Collapse
Affiliation(s)
| | - Richard E. L. Paul
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- CNRS URA3012, Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Unité de Génétique et génomique des insectes vecteurs, Paris, France
| | - Martine Cote
- UMR BIPAR INRA-ANSES-ENVA, Maisons-Alfort cedex, France
| | | |
Collapse
|
46
|
Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci U S A 2017; 114:E781-E790. [PMID: 28096373 DOI: 10.1073/pnas.1613422114] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.
Collapse
|
47
|
Takken W, van Vliet AJH, Verhulst NO, Jacobs FHH, Gassner F, Hartemink N, Mulder S, Sprong H. Acarological Risk of Borrelia burgdorferi Sensu Lato Infections Across Space and Time in The Netherlands. Vector Borne Zoonotic Dis 2016; 17:99-107. [PMID: 27893309 DOI: 10.1089/vbz.2015.1933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A longitudinal investigation on tick populations and their Borrelia infections in the Netherlands was undertaken between 2006 and 2011 with the aim to assess spatial and temporal patterns of the acarological risk in forested sites across the country and to assess variations in Borrelia genospecies diversity. Ticks were collected monthly in 11 sites and nymphs were examined for Borrelia infections. Tick populations expressed strong seasonal variations, with consistent and significant differences in mean tick densities between sites. Borrelia infections were present in all study sites, with a site-specific mean prevalence per month ranging from 7% to 26%. Prevalence was location-dependent and was not associated with tick densities. Mean Borrelia prevalence was lowest in January (4%), gradually increasing to reach a maximum (24%) in August. Borrelia afzelii represented 70% of all infections, with Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia valaisiana represented with 4%, 8%, and 10%, respectively. The density of infected nymphs and the proportional distribution of the four Borrelia genospecies, were significantly different between sites. The results show a consistent and significant spatial and temporal difference in acarological risk across the Netherlands.
Collapse
Affiliation(s)
- Willem Takken
- 1 Laboratory of Entomology, Wageningen University and Research , Wageningen, the Netherlands
| | - Arnold J H van Vliet
- 2 Environmental Systems Analysis Group, Wageningen University , Wageningen, the Netherlands .,3 Foundation for Sustainable Development , Wageningen, the Netherlands
| | - Niels O Verhulst
- 1 Laboratory of Entomology, Wageningen University and Research , Wageningen, the Netherlands
| | - Frans H H Jacobs
- 1 Laboratory of Entomology, Wageningen University and Research , Wageningen, the Netherlands .,4 nVWA Centre for Vector Surveillance , Wageningen, the Netherlands
| | - Fedor Gassner
- 1 Laboratory of Entomology, Wageningen University and Research , Wageningen, the Netherlands .,5 Gassner Biological Risk Consultancy , Houten, the Netherlands
| | - Nienke Hartemink
- 6 Theoretical Ecology Group, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , Amsterdam, the Netherlands
| | - Sara Mulder
- 2 Environmental Systems Analysis Group, Wageningen University , Wageningen, the Netherlands .,3 Foundation for Sustainable Development , Wageningen, the Netherlands
| | - Hein Sprong
- 1 Laboratory of Entomology, Wageningen University and Research , Wageningen, the Netherlands .,7 Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment , Bilthoven, the Netherlands
| |
Collapse
|
48
|
Gall CA, Reif KE, Scoles GA, Mason KL, Mousel M, Noh SM, Brayton KA. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. THE ISME JOURNAL 2016; 10:1846-55. [PMID: 26882265 PMCID: PMC5029153 DOI: 10.1038/ismej.2015.266] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/27/2023]
Abstract
Ticks are of medical importance owing to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Although ticks host pathogenic bacteria, they also harbor bacterial endosymbionts that have a role in tick physiology, survival, as well as pathogen acquisition and transmission. The goal of this study was to characterize the bacterial microbiome and examine the impact of microbiome disruption on pathogen susceptibility. The bacterial microbiome of two populations of D. andersoni with historically different susceptibilities to A. marginale was characterized. In this study, the microbiome was disrupted and then ticks were exposed to A. marginale or Francisella novicida to determine whether the microbiome correlated with pathogen susceptibility. Our study showed that an increase in proportion and quantity of Rickettsia bellii in the microbiome was negatively correlated to A. marginale levels in ticks. Furthermore, a decrease in Francisella endosymbionts was associated with lower F. novicida infection levels, demonstrating a positive pathogen-endosymbiont relationship. We demonstrate that endosymbionts and pathogens have varying interactions, and suggest that microbiome manipulation may provide a possible method for biocontrol by decreasing pathogen susceptibility of ticks.
Collapse
Affiliation(s)
- Cory A Gall
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kathryn E Reif
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, WA, USA
| | - Glen A Scoles
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, WA, USA
| | - Kathleen L Mason
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, WA, USA
| | - Michelle Mousel
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, WA, USA
| | - Susan M Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- Animal Disease Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, WA, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| |
Collapse
|
49
|
Raghavan RK, Goodin DG, Dryden MW, Hroobi A, Gordon DM, Cheng C, Nair AD, Jakkula LUMR, Hanzlicek GA, Anderson GA, Ganta RR. Heterogeneous Associations of Ecological Attributes with Tick-Borne Rickettsial Pathogens in a Periurban Landscape. Vector Borne Zoonotic Dis 2016; 16:569-76. [PMID: 27454144 DOI: 10.1089/vbz.2016.1975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The variations in prevalence levels of two tick-borne rickettsial pathogens, Ehrlichia chaffeensis and Ehrlichia Ewingii, in a periurban environment were evaluated along with their ecological determinants. Tick life stage and sex, month of tick collection, landscape fragmentation, and ecological covariates specific to pasture and woodland sites were considered as explanatory covariates. Questing lone star ticks (Amblyomma americanum) were collected by flagging for an hour once every week during mid-April through mid-August in years 2013 and 2014. A total of 4357 adult and nymphal ticks (woodland = 2720 and pasture = 1637) were collected and assessed for pathogen prevalence by molecular methods. Female A. americanum ticks were more infected with E. chaffeensis than males or nymphs in woodland areas [♂ = 6.05%; ♀ = 12.0%; nymphs = 2.09%] and pastures [♂ = 8.05%; ♀ = 12.03%; nymphs = 3.33%], and the prevalence was influenced by edge density in the landscape. Higher E. ewingii infection was noted among female A. americanum ticks within woodland areas [♂ = 1.89%; ♀ = 2.14%; nymphs = 1.57%], but no such difference was evident in pastures [♂ = 1.03%; ♀ = 1.33%; nymphs = 1.12%]. Prevalence of E. ewingii was influenced by edge contrast index, and the percentage of pasture perimeter that was less than 20 meters from woodland areas. This study elucidates the complexity of tick-borne pathogen ecology and points to the need for further studies on the role of reservoir hosts, particularly that played by small vertebrates, which is not fully understood in the region.
Collapse
Affiliation(s)
- Ram K Raghavan
- 1 Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, Kansas State University , Manhattan, Kansas.,2 Center of Excellence for Vector Borne Diseases, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas
| | - Douglas G Goodin
- 3 Department of Geography, Kansas State University , Manhattan, Kansas
| | - Michael W Dryden
- 1 Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, Kansas State University , Manhattan, Kansas.,2 Center of Excellence for Vector Borne Diseases, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas
| | - Ali Hroobi
- 1 Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, Kansas State University , Manhattan, Kansas.,4 Department of Biology, Pittsburg State University , Pittsburg, Kansas
| | - David M Gordon
- 4 Department of Biology, Pittsburg State University , Pittsburg, Kansas
| | - Chuanmin Cheng
- 2 Center of Excellence for Vector Borne Diseases, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas
| | - Arathy D Nair
- 2 Center of Excellence for Vector Borne Diseases, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas
| | - Laxmi U M R Jakkula
- 2 Center of Excellence for Vector Borne Diseases, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas
| | - Gregg A Hanzlicek
- 1 Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, Kansas State University , Manhattan, Kansas
| | - Gary A Anderson
- 1 Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, Kansas State University , Manhattan, Kansas
| | - Roman R Ganta
- 2 Center of Excellence for Vector Borne Diseases, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
50
|
Paul REL, Cote M, Le Naour E, Bonnet SI. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit Vectors 2016; 9:309. [PMID: 27234215 PMCID: PMC4884405 DOI: 10.1186/s13071-016-1591-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/12/2016] [Indexed: 12/25/2022] Open
Abstract
Background Worldwide changes in socio-economic and environmental factors and the global climate are recognised causes of variation in tick distribution and density. Thus it is of great importance that new studies address the changing risk of infection for exposed populations. In Europe, Ixodes ricinus ticks are the most common vectors of several pathogens impacting veterinary and public health that have colonised suburban habitats. Methods This study aimed to evaluate longitudinal I. ricinus questing densities and infection rates over 7 years in a French suburban forested area with high human population density. Ticks were collected in spring yearly between 2008 and 2014 and, out of a total of 8594 collected I. ricinus, a representative subset of adult females (n = 259) were individually examined for the presence of several pathogens via PCR. Results Nymph densities peaked in 2009–2011, and then declined in 2012–2014. Changes in monthly temperature only had a modest impact on this variation. In contrast, analysis revealed a complex intra-annual relationship between mean nymph density and both concurrent and lagged mean monthly temperatures. The following pathogens were detected in the studied area: Anaplasma phagocytophilum, Rickettsia helvetica, Babesia venatorum and B. divergens, Francisella tularensis, Borrelia miyamotoi, B. afzelii/valaisiana, B. garinii/lusitaniae and Bartonella spp. Conclusion Our findings reinforce the conclusion that ticks are important vectors of pathogenic microorganisms in suburban forests and suggest that despite complex intra-annual relationships between tick densities and temperature, there is no evidence for a climate-associated increase in infection risk over the 7-year period. Rather, tick densities are likely to be strongly influenced by population density fluctuations in vertebrate host species and wildlife management. Further detailed studies on the impact of climate change on tick population densities are required. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1591-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard E L Paul
- Department of Genome and Genetics, Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, 28 rue du docteur Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, URA3012, 28 rue du docteur Roux, 75724, Paris, France
| | - Martine Cote
- UMR BIPAR INRA-ANSES-ENVA, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort cedex, France
| | - Evelyne Le Naour
- UMR BIPAR INRA-ANSES-ENVA, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort cedex, France
| | - Sarah I Bonnet
- UMR BIPAR INRA-ANSES-ENVA, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort cedex, France.
| |
Collapse
|