1
|
Goitom E, Ariano S, Gilbride K, Yang MI, Edwards EA, Peng H, Dannah N, Farahbakhsh F, Hataley E, Sarvi H, Sun J, Waseem H, Oswald C. Identification of environmental and methodological factors driving variability of Pepper Mild Mottle Virus (PMMoV) across three wastewater treatment plants in the City of Toronto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172917. [PMID: 38701931 DOI: 10.1016/j.scitotenv.2024.172917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.
Collapse
Affiliation(s)
- Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Sarah Ariano
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada; Department of Earth and Planetary Sciences, McGill University, Canada
| | - Kim Gilbride
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Nora Dannah
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Farnaz Farahbakhsh
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Eden Hataley
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Hooman Sarvi
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Canada
| | - Hassan Waseem
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Claire Oswald
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada.
| |
Collapse
|
2
|
Miyani B, Li Y, Guzman HP, Briceno RK, Vieyra S, Hinojosa R, Xagoraraki I. Bioinformatics-based screening tool identifies a wide variety of human and zoonotic viruses in Trujillo-Peru wastewater. One Health 2024; 18:100756. [PMID: 38798735 PMCID: PMC11127556 DOI: 10.1016/j.onehlt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and rising. According to Peru's Ministry of Health, various health facilities in the country were reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other diseases. Many viral diseases in the area are under-reported and not recognized. The One Health approach, in addition to clinical testing, incorporates environmental surveillance for detection of infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on molecular methods, high throughput sequencing and bioinformatics analysis of wastewater samples to identify virus-related diseases circulating in Trujillo-Peru. To demonstrate the effectiveness of the tool, we collected nine untreated wastewater samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the viral diversity of the samples. Our results revealed the presence of sequences associated with multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for the presence of selective viruses belonging to the genera detected above. PCR based molecular methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected viruses confirm our findings. Wastewater or other environmental media surveillance, combined with bioinformatics methods, has the potential to serve as a systematic screening tool for the identification of human or zoonotic viruses that may cause disease. The results of this method can guide further clinical surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based screening tool by public health officials in Peru and other Latin American countries will help manage endemic and emerging diseases that could save human lives and resources.
Collapse
Affiliation(s)
- Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Ruben Kenny Briceno
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Sabrina Vieyra
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Rene Hinojosa
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
3
|
Owliaee I, Khaledian M, Mahmoudvand S, Amini R, Abney SE, Beikpour F, Jalilian FA. Global investigation of the presence of adenovirus in different types of water resources: a systematic review. Virusdisease 2024; 35:55-65. [PMID: 38817402 PMCID: PMC11133282 DOI: 10.1007/s13337-023-00857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/18/2023] [Indexed: 06/01/2024] Open
Abstract
Waterborne viruses such as adenoviruses cause major health problems in the world. Human adenoviruses are the second leading cause of childhood gastroenteritis worldwide. In recent years, the presence of the virus in aquatic resources has been shown in several studies. In this paper, the global presence of adenovirus in different types of water resources are reviewed through studying several surveys conducted in different countries worldwide. We designed one search study to collect the maximum number of related articles to this subject in international databases search engine via relevant keywords. After reviewing the articles, the most relevant ones were selected, and after classification and extracting the required information, they were reported in the tables presented in this study. In general, it was found that the highest rate of the presence of adenoviruses has been reported in sewage water, inlet, and outlet of the treatment plant while the lowest rate of the presence of adenovirus in the dam water. These findings demonstrate that treatment plant system has weakness in removing the adenovirus and are strongly recommended for treatment plants to use new and better protocols to remove this virus. In addition, appropriate diagnostic methods that combines molecular biological technique with infectivity assay should be implemented for detection of adenoviruses in water resources.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sarah E. Abney
- Garcias Robles Fulbright Postdoctoral Scholar at El Centro de Investigacion Cientifica de Yucatan, Mérida, Mexico
| | - Farzad Beikpour
- Department of Food Safety, Nutrition, and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Farid Azizi Jalilian
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Zamora-Figueroa A, Rosales RE, Fernández R, Ramírez V, Bastardo M, Farías A, Vizzi E. Detection and diversity of gastrointestinal viruses in wastewater from Caracas, Venezuela, 2021-2022. Virology 2024; 589:109913. [PMID: 37924728 DOI: 10.1016/j.virol.2023.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Gastrointestinal viruses (GIV) are an important cause of childhood morbidity and mortality, particularly in developing countries. Their epidemiological impact in Venezuela during the COVID-19 pandemic remains unclear. GIV can also be detected in domestic sewage. Ninety-one wastewater samples from urban areas of Caracas collected over 12 months and concentrated by polyethylene-glycol-precipitation, were analyzed by multiplex reverse-transcription-PCR for rotavirus/calicivirus/astrovirus and enterovirus/klassevirus/cosavirus, and monoplex-PCR for adenovirus and Aichi virus. The overall frequency of virus detection was 46.2%, fluctuating over months, and peaking in the rainy season. Adenoviruses circulated throughout the year, especially type F41, and predominated (52.7%) over caliciviruses (29.1%) that peaked in the rainy months, rotaviruses (9.1%), cosaviruses (5.5%), astroviruses and enteroviruses (1.8%). Aichi-virus and klassevirus were absent. Rotavirus G9/G12, and P[4]/P[8]/P[14] predominated. The occurrence of GIV in wastewater reflects transmission within the population of Caracas and the persistence of a potential public health risk that needs to be adequately monitored.
Collapse
Affiliation(s)
- Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Rita E Rosales
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Viviana Ramírez
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Marjorie Bastardo
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Alba Farías
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
5
|
Schaeffer J, Desdouits M, Besnard A, Le Guyader FS. Looking into sewage: how far can metagenomics help to detect human enteric viruses? Front Microbiol 2023; 14:1161674. [PMID: 37180249 PMCID: PMC10166864 DOI: 10.3389/fmicb.2023.1161674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Laboratoire de Microbiologie, U. Microbiologie Aliment Santé et Environnement, Nantes, France
| |
Collapse
|
6
|
Maina MM, Faneye AO, Motayo BO, Nseabasi-Maina N, Adeniji AJ. Human rotavirus VP4 and VP7 genetic diversity and detection of GII norovirus in Ibadan as Nigeria introduces rotavirus vaccine. J Int Med Res 2022; 50:3000605221121956. [PMID: 36138570 PMCID: PMC9511342 DOI: 10.1177/03000605221121956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective This cross-sectional study investigated the circulating strains of rotavirus and screened for noravirus in Ibadan, Nigeria as the country introduces the rotavirus vaccine into its national immunization program. Methods Sixty-five stool samples were collected from children younger than 5 years with clinically diagnosed diarrhea and screened for the presence of rotavirus and norovirus using RT-PCR. Rotavirus-positive samples were further analyzed to determine the G and P genotypes using semi-nested multiplex PCR. Results The rates of rotavirus and norovirus positivity were 30.8% and 10.8%, respectively, whereas the rate of rotavirus and norovirus mixed infection was 4.6%. G1 was the predominant VP7 genotype, followed by G2, G9, and G1G2G9, whereas the predominant VP4 genotype was P[4], followed by P[6], P[8], and P[9]. The mixed P types P[4]P[8] and P[4]P[6] were also detected. G1P[4] was the most common VP4 and VP7 combination, followed by G2P[4], G1[P6], G1P[8], G2P[6], G2P[9], G9P[6], G2G9P[4], G2P[4]P[6], G1P[4]P[8], G2G9P[8], G1G2G9P[8], and G1[non-typable] P[non-typable], which were detected in at least 5% of the samples. Four samples had a combination of non-typable G and P types. Conclusions It is essential to monitor the circulation of virus strains prior to and during the implementation of the immunization program.
Collapse
Affiliation(s)
- Meshach Maunta Maina
- Department of Veterinary Microbiology, University of Maiduguri, Nigeria.,Department of Virology, College of Medicine, University of Ibadan, Nigeria
| | | | | | | | - Adekunle Johnson Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Nigeria.,WHO National Poliovirus laboratory, Department of Virology, University of Ibadan, Nigeria
| |
Collapse
|
7
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|
8
|
Robinson CA, Hsieh HY, Hsu SY, Wang Y, Salcedo BT, Belenchia A, Klutts J, Zemmer S, Reynolds M, Semkiw E, Foley T, Wan X, Wieberg CG, Wenzel J, Lin CH, Johnson MC. Defining biological and biophysical properties of SARS-CoV-2 genetic material in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150786. [PMID: 34619200 PMCID: PMC8490134 DOI: 10.1016/j.scitotenv.2021.150786] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 05/06/2023]
Abstract
SARS-CoV-2 genetic material has been detected in raw wastewater around the world throughout the COVID-19 pandemic and has served as a useful tool for monitoring community levels of SARS-CoV-2 infections. SARS-CoV-2 genetic material is highly detectable in a patient's feces and the household wastewater for several days before and after a positive COVID-19 qPCR test from throat or sputum samples. Here, we characterize genetic material collected from raw wastewater samples and determine recovery efficiency during a concentration process. We find that pasteurization of raw wastewater samples did not reduce SARS-CoV-2 signal if RNA is extracted immediately after pasteurization. On the contrary, we find that signal decreased by approximately half when RNA was extracted 24-36 h post-pasteurization and ~90% when freeze-thawed prior to concentration. As a matrix control, we use an engineered enveloped RNA virus. Surprisingly, after concentration, the recovery of SARS-CoV-2 signal is consistently higher than the recovery of the control virus leading us to question the nature of the SARS-CoV-2 genetic material detected in wastewater. We see no significant difference in signal after different 24-hour temperature changes; however, treatment with detergent decreases signal ~100-fold. Furthermore, the density of the samples is comparable to enveloped retrovirus particles, yet, interestingly, when raw wastewater samples were used to inoculate cells, no cytopathic effects were seen indicating that wastewater samples do not contain infectious SARS-CoV-2. Together, this suggests that wastewater contains fully intact enveloped particles.
Collapse
Affiliation(s)
- Carolyn A Robinson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO, USA; Center of Agroforestry, University of Missouri, Columbia, MO, USA
| | - Yang Wang
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Braxton T Salcedo
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Jessica Klutts
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Sally Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Trevor Foley
- Missouri Department of Corrections, Jefferson City, MO, USA
| | - XiuFeng Wan
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, MO, USA; Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO, USA; Center of Agroforestry, University of Missouri, Columbia, MO, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Truchado P, Garre A, Gil MI, Simón-Andreu PJ, Sánchez G, Allende A. Monitoring of human enteric virus and coliphages throughout water reuse system of wastewater treatment plants to irrigation endpoint of leafy greens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146837. [PMID: 33839667 DOI: 10.1016/j.scitotenv.2021.146837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
One solution to current water scarcity is the reuse of treated wastewater. Water reuse systems have to be examined as a whole, including the efficacy of water-reclamation treatments and the operation steps from the wastewater inlet into the WWTP to the irrigation endpoint, including the irrigated crop. In this study, the monitoring of human enteric viruses and coliphages were assessed in two water reused systems. The presence of hepatitis A virus (HAV) and human noroviruses genogroups I and II (GI and GII) were analyzed by real-time RT-PCR (RT-qPCR) in water (n = 475) and leafy green samples (n = 95). Total coliphages were analyzed by the double-layer agar plaque technique. The prevalence of HAV in water samples was very low (c.a. 2%), mostly linked to raw sewage, while for leafy green samples, none was positive for HAV. In leafy greens, prevalence of norovirus was low (less than 5-6%). The highest reductions for norovirus were observed in samples taken from the water reservoirs used by the growers near the growing field. The virus die-off during water storage due to solar radiation could be considered as an additional improvement. Reclamation treatments significantly reduced the prevalence and the counts of noroviruses GI and GII and coliphages in reclaimed water. However, the coliphage reductions (c.a. 5 log) do not comply with the specifications included in the new European regulation on reclaimed water (≥6.0 log). Correlations between noroviruses GI and GII and coliphages were found only in positive samples with high concentrations (>4.5 log PFU/100 mL). A high percentage of samples (20-25%) negative for total coliphages showed moderate norovirus counts (1-3 logs), indicating that coliphages are not the most suitable indicator for the possible presence of human enteric viruses.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
| | - Alberto Garre
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Maria I Gil
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Pedro J Simón-Andreu
- Entidad Regional de Saneamiento y Depuración de Murcia (ESAMUR), Avda. Juan Carlos I, s/n. Ed. Torre Jemeca, 30009 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| |
Collapse
|
10
|
Kiulia NM, Gonzalez R, Thompson H, Aw TG, Rose JB. Quantification and Trends of Rotavirus and Enterovirus in Untreated Sewage Using Reverse Transcription Droplet Digital PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:154-169. [PMID: 33591485 DOI: 10.1007/s12560-020-09455-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The quantification and trends in concentrations for naturally occurring rotaviruses (RV) and enteroviruses (EV) in untreated sewage in various wastewater systems have not often been compared. There is now greater interest in monitoring the infections in the community including live vaccine efficacy by evaluating untreated sewage. The goals of this study were to 1) survey the concentrations of naturally occurring RV and EV in untreated sewage using a reverse transcription-droplet digital polymerase chain reaction (RT-ddPCR) and 2) investigate the use of a new adsorption elution (bag-mediated filtration system (BMFS) using ViroCap filters) against more traditional polyethylene glycol (PEG) precipitation for virus concentration. Sewage samples were collected from lagoons in Kenya and Michigan (MI), the United States (USA) and from wastewater treatment plants (WWTPs) in the USA. RVs were detected at geometric mean concentrations in various locations, California (CA) 1.31 × 105 genome copies/L (gc/L), Kenya (KE) 2.71 × 104 gc/L and Virginia (VA) 1.48 × 105 gc/L, and EVs geometric means were 3.72 × 106 gc/L (CA), 1.18 × 104 gc/L (Kenya), and 6.18 × 103 gc/L (VA). The mean RV concentrations using BMFS-ViroCap in split samples compared to PEG precipitation methods demonstrated that the levels were only 9% (#s BMFS/PEG) in the Michigan lagoons which was significantly different (p < 0.01). This suggests that RV concentrations in Kenya are around 1.69 × 106 gc/L. Overall, there was no difference in concentrations for the other sampling locations across the methods of virus recovery (i.e., PEG precipitation and HA filters) using one-way ANOVA (F = 1.7, p = 0.2739) or Tukey-Kramer pairwise comparisons (p > 0.05). This study provides useful data on RV and EV concentrations in untreated sewage in Kenya and the USA. It also highlights on the usefulness of the RT-ddPCR for absolute quantification of RV and EV in sewage samples. The BMFS using ViroCap filters while less efficient compared to the more traditional PEG precipitation method was able to recover RVs and EVs in untreated sewage and may be useful in poor resource settings while underestimating viruses by 1 to 1.5 logs.
Collapse
Affiliation(s)
- Nicholas M Kiulia
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
- Enteric Pathogens and Water Research Laboratory, Institute of Primate Research, P.O. Box 24481-00502, Karen, Nairobi, Kenya.
| | - Raul Gonzalez
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Hannah Thompson
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Joan B Rose
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
11
|
Kittigul L, Pombubpa K. Rotavirus Surveillance in Tap Water, Recycled Water, and Sewage Sludge in Thailand: A Longitudinal Study, 2007-2018. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:53-63. [PMID: 33128701 DOI: 10.1007/s12560-020-09450-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/25/2020] [Indexed: 05/21/2023]
Abstract
The objective of this study was to describe the epidemiological and molecular surveillance of rotaviruses in tap water, recycled water, and sewage sludge in Thailand from 2007 to 2018. Three hundred and seventy tap water, 202 recycled water, and 72 sewage sludge samples were collected and processed to detect the rotavirus VP7 gene using RT-nested PCR. Rotavirus G genotypes were identified by DNA sequencing and phylogenetic analysis. The frequency of rotavirus detection was 0.54% of the tap water samples, 30.2% of the recycled water samples, and 50.0% of the sewage sludge samples. During the 12-year surveillance, G1 was prevalent most years and constantly predominant in recycled water and sewage sludge. G2 was identified in a tap water sample and in recycled water samples. G3 and G9 were observed in both recycled water and sewage sludge samples. The uncommon G6 rotavirus strain was identified in one recycled water sample. The rotavirus VP4 gene was detected in rotavirus strains with an identified G genotype using RT-multiplex nested PCR. The unusual P[6] genotype was the most frequently detected, followed by mixed P[6]/[4] and P[4] genotypes. Phylogenetic analysis of both G and P genotypes showed a close genetic relationship with sequences of human rotavirus strains. The high nucleotide identity of the rotavirus strains found in this study to human rotavirus strains suggests that the rotaviruses are derived from human source. These results represent useful epidemiological and molecular information for evaluating rotavirus distribution in water for consumption and irrigation, and in biosolids for agricultural application.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
12
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 DOI: 10.1016/j.envre.2020.110309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/24/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
13
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 PMCID: PMC7546968 DOI: 10.1016/j.envres.2020.110309] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/05/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
14
|
Tavakoli Nick S, Mohebbi SR, Hosseini SM, Mirjalali H, Alebouyeh M. Monitoring of rotavirus in treated wastewater in Tehran with a monthly interval, in 2017-2018. JOURNAL OF WATER AND HEALTH 2020; 18:1065-1072. [PMID: 33328375 DOI: 10.2166/wh.2020.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rotaviruses are among the major causes of viral acute gastroenteritis in newborns and children younger than 5 years worldwide. The ability of rotaviruses to remain infectious in harsh environments as well as in the wastewater treatment process makes them one of the most prevalent enteric viruses. The current study aimed to determine the presence of rotavirus genomes and to analyze them phylogenetically in secondary treated wastewater (TW) samples. In total, 13 TW samples were collected from September 2017 to August 2018. Viral concentration was carried out using the absorption-elution method, and after RNA extraction and cDNA synthesis, real-time and conventional polymerase chain reaction (PCR) were performed. A phylogenetic tree was drawn using Maximum Likelihood and Tamura 3-parameter using MEGA v.6 software. Rotavirus genomes were detected in 7/13 (53.8%) and 3/13 (23.07%) samples using reverse transcription (RT)-PCR and conventional PCR, respectively. Accordingly, phylogenetic analysis revealed G4P[8], G9P[4], and G9P[8] genotypes among the samples. The presence of rotavirus in secondary TW samples discharged into surface water emphasizes the importance of monitoring and assessing viral contamination in the water sources used for agricultural and recreational purposes.
Collapse
Affiliation(s)
- Shadi Tavakoli Nick
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Epidemiological Surveillance of Norovirus and Rotavirus in Sewage (2016-2017) in Valencia (Spain). Microorganisms 2020; 8:microorganisms8030458. [PMID: 32213877 PMCID: PMC7144017 DOI: 10.3390/microorganisms8030458] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to perform the molecular epidemiology of rotaviruses and noroviruses detected in sewage samples from a large wastewater facility from the city of Valencia, Spain. A total of 46 sewage samples were collected over a one-year period (September 2016 to September 2017). Norovirus and rotavirus were detected and quantified by RT-qPCR, genotyped by semi-nested RT-PCR and further characterized by sequencing and phylogenetic analyses. Noroviruses and rotaviruses were widely distributed in sewage samples (69.6% for norovirus GI, 76.0% norovirus GII, and 71.7% rotaviruses) and viral loads varied from 4.33 to 5.75 log PCRU/L for norovirus GI, 4.69 to 6.95 log PCRU/L for norovirus GII, and 4.08 to 6.92 log PCRU/L for rotavirus. Overall, 87.5% (28/32) of GI noroviruses could not be genotyped, 6.25% (2/32) of the samples contained GI.2 genotype, and another 6.25% (2/32) were positive for GI.4 genotype. The most common genotype of GII noroviruses was GII.2 (40%, 14/35), followed by GII.6 (8.6%, 3/35) and GII.17 (5.7%, 2/35) while the remaining GII strains could not be typed (45.7%, 16/35). Rotavirus VP4 genotype P[8] was the only one found in 19 out of 33 rotavirus-positive samples (57.7%). G2 was the most prevalent rotavirus VP7 genotype (15.2%, 5/33) followed by G3, G9, and G12, with two positive samples for each genotype (6.1%, 2/33). In one sample both G1 and G2 genotypes were detected simultaneously (3%). The results presented here show that the surveillance of noroviruses and rotaviruses in sewage is useful for the study of their transmission in the population and their molecular epidemiology.
Collapse
|
16
|
Ibrahim C, Hammami S, Pothier P, Khelifi N, Hassen A. The performance of biological and tertiary wastewater treatment procedures for rotaviruses A removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5718-5729. [PMID: 31177419 PMCID: PMC7223008 DOI: 10.1007/s11356-019-05487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/14/2019] [Indexed: 05/19/2023]
Abstract
Enteric viruses, generally found in sewage, are recognized as the main cause of waterborne and foodborne public health outbreaks. Among leading enteric viruses, the Rotavirus A (RVA) detection in wastewater appeared to be a novel approach to monitor the emergence of these viruses in some countries where the viral gastroenteritis surveillance is almost absent such as in Tunisia. The RVA detection and quantification in an industrial sewage purification plant of Charguia I (Tunis, Tunisia) were achieved to evaluate the performance of activated sludge procedures coupled to a macrofiltration monolamp ultraviolet irradiation type C (UV-C254) disinfection reactor. This UV-C254 system was preceded by a fiberglass cartridge filter system with an average porosity of 45 μm to clarify the water and thus increase its UV transmittance. A total of 140 composite sewage samples was collected from this line of treatment and analyzed for RVA detection. The detection and the viral load quantification of RVA were performed using real-time reverse transcription polymerase chain reaction (RT-PCR). The virological results showed in general that RVA were detected at high frequency of 98% (137/140). In fact, the RVA detection rates at the exit of the two studied wastewater treatment were about 100% at the exit of the activated sludge procedure. It means that all wastewater sampled at this last step of treatment was positive for RVA detection. On the other hand, 92.5% of the wastewater samples taken at the exit of the monolamp UV-C254 reactor were positive for the RVA. However, the RVA quantification results expressed as viral load showed a significant reduction in the means of RVA viral loads at the exit of the biological activated sludge procedure and the tertiary UV-C254 treatment, showing in general an improved treated wastewater virological quality. Therefore, the RVA load removal rates recorded at the two successive stages of treatment, the activated sludge and the UV-C254 treatment, were around 85% and 73%, respectively, as compared to the one with 100% registered for the raw wastewater. In addition, good physical-chemical and bacteriological qualities of the treated sewage were found at the exit of the two considered wastewater treatment procedures. The present investigation represents the first Tunisian environmental report showing the good effectiveness and performance of the biological and the tertiary treatments for RVA removal. Therefore, an improved and an optimized tertiary disinfection treatment was needed since it could be a good means for getting better viral water quality and for minimizing the transmission and dissemination of human infectious viral diseases.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Centre of Research and Water Technologies (CERTE), 8020 Techno Park of Borj Cédria, Borj Cédria, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine at Sidi-Thabet, IRESA, University of Manouba, 2020 Tunis, Tunisia
| | - Pierre Pothier
- National Reference Centre for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, 21070 Dijon, France
| | - Nesserine Khelifi
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Centre of Research and Water Technologies (CERTE), 8020 Techno Park of Borj Cédria, Borj Cédria, Tunisia
| | - Abdennaceur Hassen
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Centre of Research and Water Technologies (CERTE), 8020 Techno Park of Borj Cédria, Borj Cédria, Tunisia
| |
Collapse
|
17
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Sánchez G. HEV Occurrence in Waste and Drinking Water Treatment Plants. Front Microbiol 2020; 10:2937. [PMID: 31993027 PMCID: PMC6971180 DOI: 10.3389/fmicb.2019.02937] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV), particularly zoonotic genotype 3, is present in environmental waters worldwide, especially in industrialized countries. Thus, monitoring the presence of HEV in wastewater treatment plants (WWTPs) is an emerging topic due to the importance of reusing water on a global level. Given the limited data, this study aimed to monitor the occurrence of HEV in influent and effluent water in waste- and drinking-water treatment plants (WWTPs and DWTPs). To this end, different procedures to concentrate HEV in influent and effluent water from WWTPs and DWTPs were initially evaluated. The evaluated procedures resulted in average HEV recoveries of 15.2, 19.9, and 16.9% in influent, effluent, and drinking water samples, respectively, with detection limits ranging from 103 to 104 international units (IU)/L. Then, a one-year pilot study was performed to evaluate the performance of the selected concentration method coupled with three RT-qPCR assays in influent and effluent water samples from four different WWTPs. HEV prevalence in influent water varied based on both the RT-qPCR assay and WWTP, while HEV was not detected in effluent water samples. In addition, HEV prevalence using only RT-qPCR3 was evaluated in influent (n = 62) and effluent samples (n = 52) from four WWTPs as well as influent (n = 28) and effluent (n = 28) waters from two DWTPs. The present study demonstrated that HEV circulated in the Valencian region at around 30.65% with average concentrations of 6.3 × 103 IU/L. HEV was only detected in influent wastewater samples, effluent samples from WWTPs and influent and effluent samples from DWTPs were negative. However, given that the infective dose in waterborne epidemics settings is not yet known and the low sensibility of the assay, unfortunately, no direct conclusion could be achieved on the risk assessment of environmental contamination.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
18
|
Randazzo W, Piqueras J, Evtoski Z, Sastre G, Sancho R, Gonzalez C, Sánchez G. Interlaboratory Comparative Study to Detect Potentially Infectious Human Enteric Viruses in Influent and Effluent Waters. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:350-363. [PMID: 31154654 DOI: 10.1007/s12560-019-09392-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/27/2019] [Indexed: 05/18/2023]
Abstract
Wastewater represents the main reusable water source after being adequately sanitized by wastewater treatment plants (WWTPs). In this sense, only bacterial quality indicators are usually checked to this end, and human pathogenic viruses usually escape from both sanitization procedures and controls, posing a health risk on the use of effluent waters. In this study, we evaluated a protocol based on aluminum adsorption-precipitation to concentrate several human enteric viruses, including norovirus genogroup I (NoV GI), NoV GII, hepatitis A virus (HAV), astrovirus (HAstV), and rotavirus (RV), with limits of detection of 4.08, 4.64, 5.46 log genomic copies (gc)/L, 3.31, and 5.41 log PCR units (PCRU)/L, respectively. Furthermore, the method was applied in two independent laboratories to monitor the presence of NoV GI, NoV GII, and HAV in effluent and influent waters collected from five WWTPs at two different sampling dates. Concomitantly, a viability PMAxx-RT-qPCR was applied to all the samples to get information on the potential infectivity of both influent and effluent waters. The ranges of the titers in influent waters for NoV GI, NoV GII, RV, and HAstV were 4.80-7.56, 5.19-7.31 log gc/L, 5.41-6.52, and 4.59-7.33 log PCRU/L, respectively. In effluent waters, the titers ranged between 4.08 and 6.27, 4.64 and 6.08 log gc/L, < 5.51, and between 3.31 and 5.58 log PCRU/L. Moreover, the viral titers detected by viability RT-qPCR showed statistical differences with RT-qPCR alone, suggesting the potential viral infectivity of the samples despite some observed reductions. The proposed method could be applied in ill-equipped laboratories, due to the lack of a requirement for a specific apparatus (i.e., ultracentrifuge).
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain.
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| | | | - Zoran Evtoski
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
- Department of Life, Health and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi, 1, 67100, L'Aquila, Italy
| | | | - Raquel Sancho
- GAMASER, Isaac Peral, 4, Paterna, 46980, Valencia, Spain
| | | | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
19
|
Zeng Y, Li T, Zhao B, Lai F, Tang X, Qiao Y, Chen W, Yu F, Zhang S, Wang Y, Ge S, Xu H, Xia N. Molecular epidemiology of group A rotavirus in outpatient diarrhea infants and children in Chongqing, China, 2011-2015. J Med Virol 2019; 91:1788-1796. [PMID: 31241179 DOI: 10.1002/jmv.25530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Human group A rotavirus (RVA) is the leading cause of acute viral gastroenteritis in children under 5 years old worldwide. The aim of this study was to investigate the genotype distribution of RVA in the Midwest of China. Sentinel-based surveillance of acute diarrhea was conducted at Children's Hospital of Chongqing Medical University from 2011 to 2015. RVA was tested by using enzyme-linked immunosorbent assays. The partial VP4 genes and VP7 genes of rotavirus were amplified and sequenced, and genotyping and phylogenetic analyses were performed. Among the 2236 stool specimens collected from children with acute gastroenteritis, 681 (30.46%) were positive for RVA. The majority of children (89.28%) who tested positive for RVA were children aged ≤2 years. The seasonal peak of RVA was in the winter. As for genotype, four strain combinations, G9P[8], G3P[8], G1P[8], and G2P[4] contributed to 75.62% (515/681) of the RVA-associated diarrhea cases. After a marked increase in G9P[8] (30.77%) in 2013, G9P[8] became the predominant genotype in 2014 and 2015, whilst the prevalence of G1P[8] was decreased to 2.72% in 2015. Unusual G-P combinations (eg, G1P[4], G9P[4], G4P[6], G3P[4], G2P[8]) were also detected sporadically over the study period. Phylogenetic tree analysis results showed that the VP7 sequences of G9 strains were clustered into two main lineages, and 77.34% of them were clustered into lineage VI, with the highest nucleotide similarity to the strain JS12-17(China). VP4 gene sequences of P[8] strains were almost P[8]-lineage 3. Substantial temporal variation in the circulation of various genotypes of rotavirus in Chongqing was observed during 2011-2015, and highlights the need for continuous surveillance of RVA infection for better understanding and control of RVA infection.
Collapse
Affiliation(s)
- Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, China
| | - Biyan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, China
| | - Fangfang Lai
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xiang Tang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yingqin Qiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Wanbin Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Feng Yu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, China
| | - Hongmei Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Hoque SA, Thongprachum A, Takanashi S, Mostafa SM, Saito H, Anwar KS, Nomura A, Hoque SA, Begum R, Sultana UN, Hossain T, Khamrin P, Okitsu S, Hayakawa S, Ushijima H. Alarming Situation of Spreading Enteric Viruses Through Sewage Water in Dhaka City: Molecular Epidemiological Evidences. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:65-75. [PMID: 30607905 DOI: 10.1007/s12560-018-09363-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Global burden of acute viral gastroenteritis remains high, particularly in developing countries including Bangladesh. Sewage water (SW) is an important node to monitor enteric pathogens both in the environment and among the population. Analysis of SW in Dhaka city deems crucially important because a large number of urban-city dwellers live in Dhaka city, the capital of Bangladesh, under a constant threat of precarious sewerage system. In this study, we collected raw SW from five locations of Dhaka city every month from June 2016 to May 2017. It was concentrated with polyethylene glycol (PEG) and investigated for three major enteric viruses, rotavirus A (RVA), norovirus GII (NoV GII) and adenovirus (AdV) using polymerase chain reaction (PCR). Most of these SW samples collected from both hospitals and non-hospital areas yielded enteric viruses: 76% samples were positive for AdV, followed by 53% NoV GII and 38% RVA. Viral load was determined as much as 1 × 107 copies/ml for RVA and 3.5 × 103 copies/ml for NoV GII. Importantly, NoV GII and AdV that can affect people of all ages were predominated during monsoon also when SW overflows and spreads over a wide and crowded area. Genotypes G1, G2, G3, G8, and G9 for RVA, GII.4 for NoV, and type 41 for AdV were detected representing the current profile of circulating genotypes in the population. This study provides the first evidence of distribution of major diarrheal viruses in SW in Dhaka city which is alarming showing grave risk of impending outbreaks through exposure.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh.
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | - Aksara Thongprachum
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Salwa Mohd Mostafa
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Hiroyuki Saito
- Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Kazi Selim Anwar
- Department of Infectious Diseases, International University of Health and Welfare (IUHW), Narita Campus, Narita, Chiba, Japan
| | - Akiko Nomura
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sk Azimul Hoque
- National Institute Neuroscience and Hospital, Agargaon, Dhaka, Bangladesh
| | - Rokeya Begum
- Genetic Engineering and Biotechnology Research Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Ummay Nasrin Sultana
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Tania Hossain
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Pattara Khamrin
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Hata A, Kitajima M, Haramoto E, Lee S, Ihara M, Gerba CP, Tanaka H. Next-generation amplicon sequencing identifies genetically diverse human astroviruses, including recombinant strains, in environmental waters. Sci Rep 2018; 8:11837. [PMID: 30087387 PMCID: PMC6081416 DOI: 10.1038/s41598-018-30217-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023] Open
Abstract
Human astroviruses are associated with gastroenteritis and known to contaminate water environments. Three different genetic clades of astroviruses are known to infect humans and each clade consists of diverse strains. This study aimed to determine the occurrence and genetic diversity of astrovirus strains in water samples in different geographical locations, i.e., influent and effluent wastewater samples (n = 24 each) in Arizona, U.S., and groundwater (n = 37) and river water (n = 14) samples collected in the Kathmandu Valley, Nepal, using next-generation amplicon sequencing. Astrovirus strains including rare types (types 6 and 7 classical human astroviruses), emerging type (type 5 VA-astroviruses), and putative recombinants were identified. Feline astrovirus strains were collaterally identified and recombination between human and feline astroviruses was suggested. Classical- and VA-astroviruses seemed to be prevalent during cooler months, while MLB-astroviruses were identified only during warmer months. This study demonstrated the effectiveness of next-generation amplicon sequencing for identification and characterization of genetically diverse astrovirus strains in environmental water.
Collapse
Affiliation(s)
- Akihiko Hata
- Research Center for Environmental Quality Management, Kyoto University, Shiga, Japan. .,Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Suntae Lee
- Research Center for Environmental Quality Management, Kyoto University, Shiga, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, Shiga, Japan
| | - Charles P Gerba
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, Shiga, Japan
| |
Collapse
|
22
|
Randazzo W, Vásquez-García A, Bracho MA, Alcaraz MJ, Aznar R, Sánchez G. Hepatitis E virus in lettuce and water samples: A method-comparison study. Int J Food Microbiol 2018; 277:34-40. [PMID: 29680694 DOI: 10.1016/j.ijfoodmicro.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
Abstract
The hepatitis E virus (HEV), which is an increasing cause of acute viral hepatitis in Europe, is a zoonotic virus that is mainly transmitted through contaminated water, consumption of raw or undercooked meat from pigs or wild boar, blood transfusion, and organ transplantation. Although the role of HEV transmission through contaminated produce has not been confirmed, the presence of HEV has been reported in irrigation waters and in vegetables. The present study used a World Health Organization (WHO) international standard and clinical samples to evaluate the performance characteristics of three RT-qPCR assays for detection and quantification of HEV. Two of the evaluated assays provided good analytical sensitivity, as 250 international units (IU) per ml could be detected. Then, experiments focused on evaluating the elution conditions suitable for HEV release from vegetables, with the method proposed by the ISO 15216:2017 selected for evaluation in three types of fresh vegetables. The concentration method proposed by the ISO 15216:2017 combined with the RT-qPCR described by Schlosser et al. (2014) resulted in average HEV recoveries of 1.29%, 0.46%, and 3.95% in lettuce, spinach, and pepper, respectively, with an average detection limit of 1.47 × 105 IU/25 g. In naturally contaminated samples, HEV was detected in sewage only (10/14), while no detection was reported in lettuce (0/36) or in irrigation water samples (0/24).
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Andrea Vásquez-García
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Maria A Bracho
- Joint Research Unit in Infection and Public Health, FISABIO-Public Health - University of Valencia, Av. Catalunya, 21, 46020, Valencia, Spain; CIBER Epidemiología y Salud Pública, Valencia, Spain
| | - María Jesús Alcaraz
- Microbiology Service, Hospital Clínico Universitario, Av. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
23
|
Berendes DM, Kirby AE, Clennon JA, Agbemabiese C, Ampofo JA, Armah GE, Baker KK, Liu P, Reese HE, Robb KA, Wellington N, Yakubu H, Moe CL. Urban sanitation coverage and environmental fecal contamination: Links between the household and public environments of Accra, Ghana. PLoS One 2018; 13:e0199304. [PMID: 29969466 PMCID: PMC6029754 DOI: 10.1371/journal.pone.0199304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Exposure to fecal contamination in public areas, especially in dense, urban environments, may significantly contribute to enteric infection risk. This study examined associations between sanitation and fecal contamination in public environments in four low-income neighborhoods in Accra, Ghana. Soil (n = 72) and open drain (n = 90) samples were tested for E. coli, adenovirus, and norovirus. Sanitation facilities in surveyed households (n = 793) were categorized by onsite fecal sludge containment ("contained" vs. "uncontained") using previous Joint Monitoring Program infrastructure guidelines. Most sanitation facilities were shared by multiple households. Associations between spatial clustering of household sanitation coverage and fecal contamination were examined, controlling for neighborhood and population density (measured as enumeration areas in the 2010 census and spatially matched to sample locations). E. coli concentrations in drains within 50m of clusters of contained household sanitation were more than 3 log-units lower than those outside of clusters. Further, although results were not always statistically significant, E. coli concentrations in drains showed consistent trends with household sanitation coverage clusters: concentrations were lower in or near clusters of high coverage of household sanitation facilities-especially contained facilities-and vice versa. Virus detection in drains and E. coli concentrations in soil were not significantly associated with clustering of any type of household sanitation and did not exhibit consistent trends. Population density alone was not significantly associated with any of the fecal contamination outcomes by itself and was a significant, yet inconsistent, effect modifier of the association between sanitation clusters and E. coli concentrations. These findings suggest clustering of contained household sanitation, even when shared, may be associated with lower levels of fecal contamination within drains in the immediate public domain. Further research is needed to better quantify these relationships and examine impacts on health.
Collapse
Affiliation(s)
- David M. Berendes
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | - Amy E. Kirby
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | - Julie A. Clennon
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Chantal Agbemabiese
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joseph A. Ampofo
- Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - George E. Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Kelly K. Baker
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | - Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | - Heather E. Reese
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | - Katharine A. Robb
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | | | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| | - Christine L. Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
24
|
Randazzo W, Piqueras J, Rodríguez-Díaz J, Aznar R, Sánchez G. Improving efficiency of viability-qPCR for selective detection of infectious HAV in food and water samples. J Appl Microbiol 2018; 124:958-964. [PMID: 28649706 DOI: 10.1111/jam.13519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 11/27/2022]
Abstract
AIM To improve the efficacy of intercalating dyes to distinguishing between infectious and inactivated hepatitis A virus (HAV) in food. METHODS AND RESULTS Different intercalating dyes were evaluated for the discrimination between infectious and thermally inactivated HAV suspensions combining with the RT-qPCR proposed in the ISO 15216. Among them, PMAxx was the best dye in removing the RT-qPCR signal from inactivated HAV. Applied to lettuce and spinach, PMAxx-Triton pretreatment resulted in complete removal of the RT-qPCR signal from inactivated HAV. Likewise, this study demonstrates that this pretreatment is suitable for the discrimination of inactivated HAV in shellfish without further sample dilution. In mussels and oysters, the developed viability RT-qPCR method reduced the signal of inactivated HAV between 1·7 and 2·2 logs at high inoculation level, and signal was completely removed at low inoculation level. CONCLUSIONS This study showed that the use of PMAxx is an important improvement to assess HAV infectivity by RT-qPCR. It was shown that PMAxx-Triton pretreatment is suitable for the analysis of infectious HAV in complex food samples such as vegetables and shellfish. SIGNIFICANCE AND IMPACT OF THE STUDY The PMAxx-Triton pretreatment can be easily incorporated to the ISO norm for infectious virus detection.
Collapse
Affiliation(s)
- W Randazzo
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Valencia, Spain
- Department of Preservation and Food Safety Technologies (IATA-CSIC), Paterna, Valencia, Spain
| | - J Piqueras
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Valencia, Spain
- Department of Preservation and Food Safety Technologies (IATA-CSIC), Paterna, Valencia, Spain
| | - J Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Valencia, Spain
- Institute for Clinical Research of the Hospital Clínico Universitario (INCLIVA), Valencia, Spain
| | - R Aznar
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Valencia, Spain
- Department of Preservation and Food Safety Technologies (IATA-CSIC), Paterna, Valencia, Spain
| | - G Sánchez
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Valencia, Spain
- Department of Preservation and Food Safety Technologies (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
25
|
Randazzo W, Khezri M, Ollivier J, Le Guyader FS, Rodríguez-Díaz J, Aznar R, Sánchez G. Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. Int J Food Microbiol 2017; 266:1-7. [PMID: 29156242 DOI: 10.1016/j.ijfoodmicro.2017.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
Shellfish contamination by human noroviruses (HuNoVs) is a serious health and economic problem. Recently an ISO procedure based on RT-qPCR for the quantitative detection of HuNoVs in shellfish has been issued, but these procedures cannot discriminate between inactivated and potentially infectious viruses. The aim of the present study was to optimize a pretreatment using PMAxx to better discriminate between intact and heat-treated HuNoVs in shellfish and sewage. To this end, the optimal conditions (30min incubation with 100μM of PMAxx and 0.5% of Triton, and double photoactivation) were applied to mussels, oysters and cockles artificially inoculated with thermally-inactivated (99°C for 5min) HuNoV GI and GII. This pretreatment reduced the signal of thermally-inactivated HuNoV GI in cockles and HuNoV GII in mussels by >3 log. Additionally, this pretreatment reduced the signal of thermally-inactivated HuNoV GI and GII between 1 and 1.5 log in oysters. Thermal inactivation of HuNoV GI and GII in PBS, sewage and bioaccumulated oysters was also evaluated by the PMAxx-Triton pretreatment. Results showed significant differences between reductions observed in the control and PMAxx-treated samples in PBS following treatment at 72 and 95°C for 15min. In sewage, the RT-qPCR signal of HuNoV GI was completely removed by the PMAxx pretreatment after heating at 72 and 95°C, while the RT-qPCR signal for HuNoV GII was completely eliminated only at 95°C. Finally, the PMAxx-Triton pretreatment was applied to naturally contaminated sewage and oysters, resulting in most of the HuNoV genomes quantified in sewage and oyster samples (12 out of 17) corresponding to undamaged capsids. Although this procedure may still overestimate infectivity, the PMAxx-Triton pretreatment represents a step forward to better interpret the quantification of intact HuNoVs in complex matrices, such as sewage and shellfish, and it could certainly be included in the procedures based on RT-qPCR.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Mohammad Khezri
- Department of Seafood Processing, Faculty of Marine Science, Tarbiat Modares University, Noor, Iran
| | - Joanna Ollivier
- Laboratoire de Microbiologie, LSEM-SG2M, IFREMER, BP 21105, 44311 Nantes Cedex 03, France
| | - Françoise S Le Guyader
- Laboratoire de Microbiologie, LSEM-SG2M, IFREMER, BP 21105, 44311 Nantes Cedex 03, France
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; Institute for Clinical Research of the Hospital Clínico Universitario (INCLIVA), Valencia, Spain
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
26
|
Marie V, Lin J. Viruses in the environment - presence and diversity of bacteriophage and enteric virus populations in the Umhlangane River, Durban, South Africa. JOURNAL OF WATER AND HEALTH 2017; 15:966-981. [PMID: 29215360 DOI: 10.2166/wh.2017.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to the continued persistence of waterborne viral-associated infections, the presence of enteric viruses is a concern. Notwithstanding the health implications, viral diversity and abundance is an indicator of water quality declination in the environment. The aim of this study was to evaluate the presence of viruses (bacteriophage and enteric viruses) in a highly polluted, anthropogenic-influenced river system over a 6-month period at five sampling points. Cytopathic-based tissue culture assays revealed that the isolated viruses were infectious when tested on Hep-G2, HEK293 and Vero cells. While transmission electron microscopy (TEM) revealed that the majority of the viruses were bacteriophages, a number of presumptive enteric virus families were visualized, some of which include Picornaviridae, Adenoviridae, Polyomaviridae and Reoviridae. Finally, primer specific nested polymerase chain reaction (nested-PCR)/reverse transcription-polymerase chain reaction (RT-PCR) coupled with BLAST analysis identified human adenovirus, polyomavirus and hepatitis A and C virus genomes in river water samples. Taken together, the complexity of both bacteriophage and enteric virus populations in the river has potential health implications. Finally, a systematic integrated risk assessment and management plan to identify and minimize sources of faecal contamination is the most effective way of ensuring water safety and should be established in all future guidelines.
Collapse
Affiliation(s)
- Veronna Marie
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| | - Johnson Lin
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| |
Collapse
|
27
|
Staggemeier R, Heck TMS, Demoliner M, Ritzel RGF, Röhnelt NMS, Girardi V, Venker CA, Spilki FR. Enteric viruses and adenovirus diversity in waters from 2016 Olympic venues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:304-312. [PMID: 28185736 DOI: 10.1016/j.scitotenv.2017.01.223] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 05/27/2023]
Abstract
Rio de Janeiro's inner and coastal waters are heavily impacted by human sewage pollution for decades. Enteric viruses, including human adenoviruses (HAdV), human enterovirus (EV), group A rotavirus (RV) and hepatitis A virus (HAV) are more likely to be found in contaminated surface waters. The present work aimed to assess the frequency and loads of EV, HAdV-C and -F species, RV and HAV in sand and water samples from venues used during the 2016 Summer Olympics and by tourists attending the event. Sixteen monthly collections were carried out from March 2015 to July 2016 in 12 different sites from Rio de Janeiro, Brazil. Total and thermotolerant coliform counting was performed along molecular detection of virus was performed using quantitative polymerase chain reaction (qPCR). Analyses of all samples were further investigated by integrated cell culture PCR to check about the presence of HAdV infectious virus particles. The results show that 95.9% of water samples showed contamination with at least one type of virus. Regarding the viruses individually (% for water and sand respectively): HAdV-C (93.1%-57.8%), HAdV-F (25.3%-0%), RV (12.3%-4.4%), EV (26.7%-8.8%) and HAV (0%). The viral loads ranged from 103gc/L up to 109gc/L (water), and 103gc/g to 106gc/g (sand). In the phylogenetic tree, were classified into four main clusters, referring to species C, D, F and BAdV. And up to 90% of sites studied presented at least once presence of infectious HAdV-C. The most contaminated points were the Rodrigo de Freitas Lagoon, where Olympic rowing took place, and the Marina da Glória, the starting point for the sailing races, demonstrating serious problem of fecal contamination of water resources and threatens the health of Olympic athletes, tourists and residents.
Collapse
Affiliation(s)
- Rodrigo Staggemeier
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Tatiana M S Heck
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Rute G F Ritzel
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Nicole M S Röhnelt
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Viviane Girardi
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Carolina A Venker
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Fernando R Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil.
| |
Collapse
|
28
|
Prevalence of Rotavirus Genogroup A and Norovirus Genogroup II in Bassaseachic Falls National Park Surface Waters in Chihuahua, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050482. [PMID: 28475152 PMCID: PMC5451933 DOI: 10.3390/ijerph14050482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022]
Abstract
In areas lacking potable water treatment, drinking contaminated water may represent a public health threat. In addition to enteropathogenic bacteria and parasites, fecal contamination in water environments is associated with the transmission of enteric viruses and other causal agents of infectious disease. Rotavirus and norovirus are the main enteric viral agents responsible for diarrheic outbreaks. The aim of the present study was to detect seasonal variation of rotavirus and norovirus in the surface water at Bassaseachic Falls National Park during 2013. Rivers and streams within and nearby this park were sampled once in each season during 2013. Viral concentration was carried out by a handmade filtration equipment, using a commercial electropositive membrane coupled with the virus absortion elution technique (VIRADEL©). Detection of rotavirus and norovirus was performed by SYBR Green reverse transcription-real time polymerase chain reaction (SYBR GREEN© RT-qPCR) analyses. Norovirus genogroup II was detected in samples collected in June and October 2013. In the case of rotavirus, genogroup A was detected in March and June. The presence of rotavirus and norovirus was related to viral acute diarrhea in children less than five years of age, who were inhabiting the sampled areas. This may indicates that the contaminated water was potentially a risk factor for regional diarrheic outbreaks.
Collapse
|
29
|
Motayo BO, Adeniji AJ, Faneye AO. FIRST MOLECULAR DETECTION AND VP7 (G) GENOTYPING OF GROUP A ROTAVIRUS BY SEMI-NESTED RT-PCR FROM SEWAGE IN NIGERIA. Rev Inst Med Trop Sao Paulo 2016; 58:74. [PMID: 27828615 PMCID: PMC5096628 DOI: 10.1590/s1678-9946201658074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
Rotavirus is the leading cause of viral gastroenteritis worldwide, and sewage is a
major source of the virus dissemination in the environment. Our aim was to detect and
genotype rotaviruses from sewages in Nigeria. One hundred and ninety sewage samples
were collected between June 2014 and January 2015. The two phase concentration method
using PEG 6000 and dextran was used to concentrate sewage samples following WHO
protocols. Molecular detection was performed by RT-PCR, and VP7 genotyping by
semi-nested multiplex PCR. A total of 14.2% (n = 27) samples tested positive. Monthly
distribution showed that June to September had a lower rate (3.7% to 7.4%), while
October to January recorded 11% to 26%. Genotype G1 predominated followed by G8, G9,
G4 and lastly G2, 7.4% (n = 2) of isolates were nontypeable. This is the first report
of rotavirus detection in sewages from Nigeria. Genotype G1 remains the most
prevalent genotype. This observation calls for an effort by the governmental
authorities to implement a molecular surveillance, both clinical and environmental,
in order to provide vital information for the control and the vaccine efficacy not
only in Nigeria, but globally.
Collapse
Affiliation(s)
| | - Adekunle Johnson Adeniji
- University of Ibadan, College of Medicine, Department of Virology. Nigeria. E-mail: ; ; .,University of Ibadan, National Poliovirus laboratory, Department of Virology. Nigeria. E-mail:
| | | |
Collapse
|
30
|
Elmahdy M, Fongaro G, Magri M, Petruccio M, Barardi C. Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil. Int J Hyg Environ Health 2016; 219:617-625. [DOI: 10.1016/j.ijheh.2016.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022]
|
31
|
Continuous detection and genetic diversity of human rotavirus A in sewage in eastern China, 2013-2014. Virol J 2016; 13:153. [PMID: 27623961 PMCID: PMC5022235 DOI: 10.1186/s12985-016-0609-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rotavirus is the leading viral agent for pediatric gastroenteritis. However, the case-based surveillance for rotavirus is limited in China, and its circulation in the environment is not well investigated. METHODS From 2013 to 2014, rotavirus was detected in raw sewage samples of Jinan and Linyi by quantitative PCR (qPCR) and conventional reverse transcription PCR (RT-PCR). After sequenced and genotyped, sequences analysis was conducted. RESULTS A total of 46 sewage samples were collected monthly for the detection of rotavirus, and rotavirus was positive in 43 samples (93.5 %, 43/46). By quantitative assessment, the concentrations of rotavirus in raw sewage ranged from 4.1 × 10(3) to 1.3 × 10(6) genome copies (GC)/L in Jinan, and from 1.5 × 10(3) to 3.0 × 10(5) GC/L in Linyi. A total of 318 sequences of 5 G-genotypes and 318 sequences of 5 P-genotypes were obtained. G9 (91.8 %, 292/318) and P[8] (56.0 %, 178/318) were the most common G- and P-genotype, respectively. Multiple transmission lineages were recognized in these genotypes. Interestingly, an intragenic recombination event between two G9 lineages was observed. CONCLUSIONS This study provided the first report of comprehensive environmental surveillance for rotavirus in China. The results suggest that the concentration of rotavirus in raw sewage was high, and multiple rotavirus transmission lineages continuously co-circulated in Shandong.
Collapse
|
32
|
Parada-Fabián JC, Juárez-García P, Natividad-Bonifacio I, Vázquez-Salinas C, Quiñones-Ramírez EI. Identification of Enteric Viruses in Foods from Mexico City. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:215-220. [PMID: 27221088 DOI: 10.1007/s12560-016-9244-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Foodborne viruses are a common and, probably, the most under-recognized cause of outbreaks of gastroenteritis. Among the main foods involved in the transmission of human enteric viruses are mollusks, and fruits and vegetables irrigated with wastewater and/or washed with non-potable water or contaminated by contact with surfaces or hands of the infected personnel during its preparation. In this study, 134 food samples were analyzed for the detection of Norovirus, Rotavirus, and Hepatitis A virus (HAV) by amplification of conserved regions of these viruses. From the 134 analyzed samples, 14 were positive for HAV, 6 for Norovirus, and 11 for Rotavirus. This is the first report in Mexico where emphasis is given to the presence of HAV and Norovirus on perishable foods and food from fisheries, as well as Rotavirus on frozen vegetables, confirming the role of vegetables and bivalve mollusks as transmitting vehicles of enteric viruses.
Collapse
Affiliation(s)
- José Carlos Parada-Fabián
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico
| | - Patricia Juárez-García
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico
| | - Iván Natividad-Bonifacio
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico
| | - Carlos Vázquez-Salinas
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, C.P. 09340, Mexico City, Mexico
| | - Elsa Irma Quiñones-Ramírez
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Carpio y Plan de Ayala s/n, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
33
|
Ahmed W, Gyawali P, Toze S. Evaluation of Glass Wool Filters and Hollow-Fiber Ultrafiltration Concentration Methods for qPCR Detection of Human Adenoviruses and Polyomaviruses in River Water. WATER, AIR, AND SOIL POLLUTION 2016; 227:327. [PMID: 32214527 PMCID: PMC7089043 DOI: 10.1007/s11270-016-3026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/28/2016] [Indexed: 05/24/2023]
Abstract
Pathogenic human viruses cause over half of gastroenteritis cases associated with recreational water use worldwide. They are difficult to concentrate from environmental waters due to low numbers and small sizes. Rapid enumeration of viruses by quantitative polymerase chain reaction (qPCR) has the potential to improve water quality analysis and risk assessment. However, capturing and recovering these viruses from environmental water remain formidable barriers to routine use. Here, we compared the recovery efficiencies of human adenoviruses (HAdVs) and human polyomaviruses (HPyVs) from 10-L river water samples seeded with raw human wastewater (100 and 10 mL) using hollow-fiber ultrafiltration (HFUF) and glass wool filter (GWF) methods. The mean recovery efficiencies of HAdVs in river water samples through HFUF were 36 and 86 % for 100 and 10 mL of seeded human wastewater, respectively. In contrast, the estimated mean recovery efficiencies of HAdVs in river water samples through GWF were 1.3 and 3 % for 100 and 10 mL seeded raw human wastewater, respectively. Similar trends were also observed for HPyVs. Recovery efficiencies of HFUF method were significantly higher (P < 0.05) than GWF for both HAdVs and HPyVs. Our results clearly suggest that HFUF would be a preferred method for concentrating HAdVs and HPyVs from river water followed by subsequent detection and quantification with PCR/qPCR assays.
Collapse
Affiliation(s)
- W. Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, Qld 4102 Australia
| | - P. Gyawali
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, Qld 4102 Australia
- School of Public Health, University of Queensland, Herston Road, Brisbane, Qld 4006 Australia
| | - S. Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, Qld 4102 Australia
- School of Public Health, University of Queensland, Herston Road, Brisbane, Qld 4006 Australia
| |
Collapse
|
34
|
Vieira CB, de Abreu Corrêa A, de Jesus MS, Luz SLB, Wyn-Jones P, Kay D, Vargha M, Miagostovich MP. Viruses Surveillance Under Different Season Scenarios of the Negro River Basin, Amazonia, Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:57-69. [PMID: 26783031 DOI: 10.1007/s12560-016-9226-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
The Negro River is located in the Amazon basin, the largest hydrological catchment in the world. Its water is used for drinking, domestic activities, recreation and transportation and water quality is significantly affected by anthropogenic impacts. The goals of this study were to determine the presence and concentrations of the main viral etiological agents of acute gastroenteritis, such as group A rotavirus (RVA) and genogroup II norovirus (NoV GII), and to assess the use of human adenovirus (HAdV) and JC polyomavirus (JCPyV) as viral indicators of human faecal contamination in the aquatic environment of Manaus under different hydrological scenarios. Water samples were collected along Negro River and in small streams known as igarapés. Viruses were concentrated by an organic flocculation method and detected by quantitative PCR. From 272 samples analysed, HAdV was detected in 91.9%, followed by JCPyV (69.5%), RVA (23.9%) and NoV GII (7.4%). Viral concentrations ranged from 10(2) to 10(6) GC L(-1) and viruses were more likely to be detected during the flood season, with the exception of NoV GII, which was detected only during the dry season. Statistically significant differences on virus concentrations between dry and flood seasons were observed only for RVA. The HAdV data provides a useful complement to faecal indicator bacteria in the monitoring of aquatic environments. Overall results demonstrated that the hydrological cycle of the Negro River in the Amazon Basin affects the dynamics of viruses in aquatic environments and, consequently, the exposure of citizens to these waterborne pathogens.
Collapse
Affiliation(s)
- Carmen Baur Vieira
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Pavilhão Helio e Peggy Pereira, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Adriana de Abreu Corrêa
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Pavilhão Helio e Peggy Pereira, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Michele Silva de Jesus
- Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Rua Terezina, 476, Adrianópolis, Manaus, AM, 69057-070, Brazil
| | - Sérgio Luiz Bessa Luz
- Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Rua Terezina, 476, Adrianópolis, Manaus, AM, 69057-070, Brazil
| | - Peter Wyn-Jones
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DB, UK
| | - David Kay
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DB, UK
| | - Marta Vargha
- Department of Water Hygiene, National Institute for Environmental Health, Gyáli út 2-6, Budapest, 1097, Hungary
| | - Marize Pereira Miagostovich
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Pavilhão Helio e Peggy Pereira, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
35
|
Moresco V, Damazo N, Barardi C. Rotavirus vaccine stability in the aquatic environment. J Appl Microbiol 2016; 120:321-8. [DOI: 10.1111/jam.13021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 02/02/2023]
Affiliation(s)
- V. Moresco
- Laboratório de Virologia Aplicada; Departamento de Microbiologia, Imunologia e Parasitologia; Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina State Brazil
| | - N.A. Damazo
- Laboratório de Virologia Aplicada; Departamento de Microbiologia, Imunologia e Parasitologia; Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina State Brazil
| | - C.R.M. Barardi
- Laboratório de Virologia Aplicada; Departamento de Microbiologia, Imunologia e Parasitologia; Centro de Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina State Brazil
| |
Collapse
|
36
|
Prez VE, Gil PI, Temprana CF, Cuadrado PR, Martínez LC, Giordano MO, Masachessi G, Isa MB, Ré VE, Paván JV, Nates SV, Barril PA. Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:220-9. [PMID: 26311578 DOI: 10.1016/j.scitotenv.2015.08.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 05/27/2023]
Abstract
Fecal contamination of water is a worrying problem because it is associated with the transmission of enteric pathogenic microorganisms that can cause many infectious diseases. In this study, an environmental survey was conducted to assess the level of viral contamination by viable enterovirus and rotavirus genome in two recreational rivers (Suquía and Xanaes) of Córdoba, Argentina. Quantitative microbial risk assessment (QMRA) was calculated to estimate the risk of rotavirus infection. Water sampling was carried out during a one-year period, the presence of total and fecal coliforms was determined and water samples were then concentrated for viral determination. Cell culture and indirect immunofluorescence were applied for enterovirus detection and RT-qPCR for rotavirus quantification. Coliform bacteria levels found in Suquía River often far exceeded the guideline limits for recreational waters. The Xanaes exhibited a lower level of bacterial contamination, frequently within the guideline limits. Enterovirus and rotavirus were frequently detected in the monitoring rivers (percentage of positive samples in Suquía: 78.6% enterovirus, 100% rotavirus; in Xanaes: 87.5% enterovirus, 18.7% rotavirus). Rotavirus was detected at a media concentration of 5.7×10(5) genome copies/L (gc/L) in the Suquía and 8.5×10(0)gc/L in the Xanaes. QMRA revealed high risk of rotavirus infection in the Suquía, at sampling points with acceptable and non-acceptable bacteria numbers. The Xanaes showed significantly lower health risk of rotavirus infection but it proved to be a public health hazard. The viral occurrence was not readily explained by the levels of bacteria indicators, thus viral monitoring should be included to determine microbiological water quality. These findings provide the first data of QMRA for recreational waters in Argentina and reveal the need for public awareness of the health implications of the use of the river waters.
Collapse
Affiliation(s)
- V E Prez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - P I Gil
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - C F Temprana
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
| | - P R Cuadrado
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - L C Martínez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - M O Giordano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - G Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - M B Isa
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - V E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - J V Paván
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - S V Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - P A Barril
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
37
|
Tort LFL, Victoria M, Lizasoain A, García M, Berois M, Cristina J, Leite JPG, Gómez MM, Miagostovich MP, Colina R. Detection of Common, Emerging and Uncommon VP4, and VP7 Human Group A Rotavirus Genotypes from Urban Sewage Samples in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:342-353. [PMID: 26267835 DOI: 10.1007/s12560-015-9213-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Environmental approach has proven to be a useful tool for epidemiological studies demonstrating through environmental studies the diversity of viruses circulating in a given population. The aim of this study was to perform a phylogenetic characterization of the group A rotavirus (RVA) glycoprotein (G)- and protease-sensitive (P)-genotypes obtained from sewage samples (n = 116) collected in six cities of Uruguay during March 2011 to April 2013. A worldwide standardized semi-nested multiplex RT-PCR (SNM RT-PCR) protocol directed against VP4 and VP7 genes were conducted for RVA detection and consensual DNA fragments were submitted to nucleotide sequencing. P and/or G genotype was successfully determined by phylogenetic analysis in 61% (n = 37) of the positive samples obtained by SNM RT-PCR (n = 61). The RVA genotypes were as follow: G1 (n = 2), G2 (n = 14), G3 (n = 5), G12 (n = 2), P[4] (n = 4), P[8] (n = 16), and P[3] (n = 2). Interestingly, through phylogenetic analysis, emerging, and uncommon human genotypes could be detected. Results obtained from the comparison of RVA genotypes detected in the current study and Uruguayan RVA strains previously described for contemporary clinical pediatric cases showed that monitoring sewage may be a good screening option for a rapid and economical overview of the circulating genotypes in the surrounding human population and a useful approximation to study RVA epidemiology in a future vaccine monitoring program. The present study represents the first report in Uruguay that describes the phylogenetic diversity of RVA from urban sewage samples.
Collapse
Affiliation(s)
- Luis Fernando Lopez Tort
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Mariana García
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Mabel Berois
- Sección Virología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - José Paulo Gagliardi Leite
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Mariela Martínez Gómez
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
38
|
Hassine-Zaafrane M, Kaplon J, Ben Salem I, Sdiri-Loulizi K, Sakly N, Pothier P, Aouni M, Ambert-Balay K. Detection and genotyping of group A rotaviruses isolated from sewage samples in Monastir, Tunisia between April 2007 and April 2010. J Appl Microbiol 2015; 119:1443-53. [PMID: 26248601 DOI: 10.1111/jam.12920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/10/2015] [Accepted: 07/25/2015] [Indexed: 12/11/2022]
Abstract
AIMS To ascertain the viral load, the distribution of G and P types of group A rotaviruses (RV-A) in sewage samples and to compare strains in clinical, animal and environmental samples. METHODS AND RESULTS During our study from April 2007 to April 2010, 518 samples of raw and treated sewage were collected from two biological sewage treatment plants (STPs) located in the Monastir region, Tunisia. RV-A was detected by real-time RT-PCR in 375 (72·4%) sewage samples. According to the quantification results of RV-A, it appears that the viral load in raw and treated sewage of the two STPs was quite similar (P = 0·735). The genotyping of RV-A strains detected in sewage samples showed a great diversity with 10 G types and 8 P types. Most of them were described as common in humans, but we also detected genotypes commonly found in animals. All the genotypes detected in two previous studies performed in our laboratory on clinical and bovine samples were also found in environmental samples. However, some genotypes commonly found in animal were only found in sewage samples. CONCLUSION The comparison of environmental, clinical and animal data suggests that STPs may convey not only human sewage but also animal wastes, both of them contaminated with numerous RV-A strains which are not efficiently eliminated by the sewage treatment process and may spread to surface waters. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates the potential release of human and animal RV-A into water sources, representing a public health risk, by inducing gastroenteritis in population, but also by increasing the risk of zoonotic transmission and formation of reassortant viruses which could get a higher infectious potential. Our findings also suggest that monitoring of sewage may provide an additional tool to determine the epidemiology of RV-A circulating in a given community.
Collapse
Affiliation(s)
- M Hassine-Zaafrane
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,National Reference Center for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - J Kaplon
- National Reference Center for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - I Ben Salem
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - K Sdiri-Loulizi
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,National Reference Center for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - N Sakly
- Laboratory of Immunology, University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - P Pothier
- National Reference Center for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - M Aouni
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - K Ambert-Balay
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
39
|
Wastewater Analysis Indicates that Genetically Diverse Astroviruses, Including Strains Belonging to Novel Clades MLB and VA, Are Circulating within Japanese Populations. Appl Environ Microbiol 2015; 81:4932-9. [PMID: 25979884 DOI: 10.1128/aem.00563-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022] Open
Abstract
Human astroviruses (HAstVs) are a common etiological agent of infantile gastroenteritis. Recent studies revealed that novel astrovirus (AstV) strains of the MLB clade (MLB-AstVs) and VA clade (VA-AstVs), which are genetically distinct from the classic HAstVs, are circulating in the human population. In the present study, we quantified classic HAstVs as well as carried out a genetic analysis of classic and novel HAstVs in wastewater in Japan. The concentration of classic HAstVs in the influent water samples ranged from 10(4) to 10(5) copies per liter, and the amount removed by wastewater treatment was determined to be 2.4 ± 0.3 log10. Four types of classic HAstV strains (HAstV types 1, 2, 5, and 4/8) as well as novel AstV strains belonging to the MLB-2, VA-1, and VA-2 clades were identified using reverse transcription-PCR (RT-PCR) assays, including assays newly developed for the detection of strains of the MLB and VA clades, followed by cloning and nucleotide sequencing. Our results suggest that genetically diverse AstV strains are circulating among the human population in Japan. The newly developed (semi)nested RT-PCR assays for these novel AstV clades are useful to identify and characterize the novel AstVs in environmental waters.
Collapse
|
40
|
Kiulia NM, Hofstra N, Vermeulen LC, Obara MA, Medema G, Rose JB. Global occurrence and emission of rotaviruses to surface waters. Pathogens 2015; 4:229-55. [PMID: 25984911 PMCID: PMC4493472 DOI: 10.3390/pathogens4020229] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/03/2023] Open
Abstract
Group A rotaviruses (RV) are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model) to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.
Collapse
Affiliation(s)
- Nicholas M Kiulia
- Department of Fisheries and Wildlife, Michigan State University East Lansing, MI 48824, USA.
- Enteric Viruses Research Group, Institute of Primate Research, P.O Box 24481, 00502 Karen, Nairobi, Kenya.
| | - Nynke Hofstra
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Lucie C Vermeulen
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Maureen A Obara
- Department of Fisheries and Wildlife, Michigan State University East Lansing, MI 48824, USA.
| | - Gertjan Medema
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, the Netherlands.
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands.
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Lizasoain A, Tort LFL, García M, Gómez MM, Cristina J, Leite JPG, Miagostovich MP, Victoria M, Colina R. Environmental Assessment of Classical Human Astrovirus in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:142-148. [PMID: 25680829 DOI: 10.1007/s12560-015-9186-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to determine the molecular epidemiology of classical human astrovirus (HAstV) strains in sewage samples from four Uruguayan cities: Bella Unión, Salto, Paysandú, and Fray Bentos, located in the Northwestern region of the country. Overall, 96 sewage samples were collected biweekly between March 2011 and February 2012 and were subject to ultracentrifugation methodology in order to concentrate the viruses. RT-PCR directed to the ORF2 genome region was performed followed by sequencing and phylogenetic analysis. Forty-three (45 %) out of 96 analyzed samples were positive for HAstV (Mamastrovirus 1) and 31 of them were successfully sequenced being 21 (49 %) of them classified as HAstV-1 genotype (1a lineage) and 10 (23 %) as HAstV-2 genotype (eight strains belonging to the 2d lineage and two strains to the 2c lineage). The 1a lineage circulated throughout the year, while the 2d lineage only in the coldest months (June to October). Strikingly, the 2c lineage was detected only in Salto city during March 2011. In this city it was observed the highest frequency of HAstV and the greatest genetic diversity, probably due to its role as high touristic spot with an important influx of visitants from others regions of Uruguay and also from other countries. This study constitutes the first report in Uruguay that describes the phylogenetic diversity and genotype distribution of HAstV strains circulating in the Northwestern region evidencing a high frequency and also the presence of several different lineages.
Collapse
Affiliation(s)
- A Lizasoain
- Laboratorio de Virología Molecular. Regional Norte - CENUR Noroeste, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters. Appl Environ Microbiol 2015; 81:2042-9. [PMID: 25576614 DOI: 10.1128/aem.03851-14] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic human viruses cause over half of gastroenteritis cases associated with recreational water use worldwide. They are relatively difficult to concentrate from environmental waters due to typically low concentrations and their small size. Although rapid enumeration of viruses by quantitative PCR (qPCR) has the potential to greatly improve water quality analysis and risk assessment, the upstream steps of capturing and recovering viruses from environmental water sources along with removing PCR inhibitors from extracted nucleic acids remain formidable barriers to routine use. Here, we compared the efficiency of virus recovery for three rapid methods of concentrating two microbial source tracking (MST) viral markers human adenoviruses (HAdVs) and polyomaviruses (HPyVs) from one liter tap water and river water samples on HA membranes (90 mm in diameter). Samples were spiked with raw sewage, and viral adsorption to membranes was promoted by acidification (method A) or addition of MgCl2 (methods B and C). Viral nucleic acid was extracted directly from membranes (method A), or viruses were eluted with NaOH and concentrated by centrifugal ultrafiltration (methods B and C). No inhibition of qPCR was observed for samples processed by method A, but inhibition occurred in river samples processed by B and C. Recovery efficiencies of HAdVs and HPyVs were ∼10-fold greater for method A (31 to 78%) than for methods B and C (2.4 to 12%). Further analysis of membranes from method B revealed that the majority of viruses were not eluted from the membrane, resulting in poor recovery. The modification of the originally published method A to include a larger diameter membrane and a nucleic acid extraction kit that could accommodate the membrane resulted in a rapid virus concentration method with good recovery and lack of inhibitory compounds. The frequently used strategy of viral absorption with added cations (Mg(2+)) and elution with acid were inefficient and more prone to inhibition, and will result in underestimation of the prevalence and concentrations of HAdVs and HPyVs markers in environmental waters.
Collapse
|
43
|
Benmessaoud R, Jroundi I, Nezha M, Moraleda C, Tligui H, Seffar M, Alvarez-Martínez MJ, Pons MJ, Chaacho S, Hayes EB, Vila J, Alonso PL, Bassat Q, Ruiz J. Aetiology, epidemiology and clinical characteristics of acute moderate-to-severe diarrhoea in children under 5 years of age hospitalized in a referral paediatric hospital in Rabat, Morocco. J Med Microbiol 2014; 64:84-92. [PMID: 25432162 DOI: 10.1099/jmm.0.079830-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The objective of the study was to describe the aetiology, epidemiology and clinical characteristics of the principal causes of acute infectious diarrhoea requiring hospitalization among children under 5 years of age in Rabat, Morocco. A prospective study was conducted from March 2011 to March 2012, designed to describe the main pathogens causing diarrhoea in hospitalized children >2 months and less than 5 years of age. Among the 122 children included in the study, enteroaggregative Escherichia coli (EAEC) and rotavirus were the main aetiological causes of diarrhoea detected. Twelve (9.8 %) children were referred to an intensive care unit, while two, presenting infection by EAEC, and EAEC plus Shigella sonnei, developed a haemolytic uraemic syndrome. Additionally, six (4.9 %) deaths occurred, with EAEC being isolated in four of these cases. Diarrhoeagenic E. coli and rotavirus play a significant role as the two main causes of severe diarrhoea, while other pathogens, such as norovirus and parasites, seem to have a minimal contribution. Surveillance and prevention programmes to facilitate early recognition and improved management of potentially life-threatening diarrhoea episodes are needed.
Collapse
Affiliation(s)
- Rachid Benmessaoud
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Imane Jroundi
- École Nationale de Santé Publique (ENSP), Ministère de la Santé, Rabat, Morocco.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mouane Nezha
- Hôpital d'Enfants de Rabat (HER), Centre Hôspitalier Universitaire Ibn Sina, Rabat, Morocco
| | - Cinta Moraleda
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Houssain Tligui
- Hôpital d'Enfants de Rabat (HER), Centre Hôspitalier Universitaire Ibn Sina, Rabat, Morocco
| | - Myriam Seffar
- Hôpital d'Enfants de Rabat (HER), Centre Hôspitalier Universitaire Ibn Sina, Rabat, Morocco
| | - Miriam J Alvarez-Martínez
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maria J Pons
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Saad Chaacho
- Centre Hôspitalier Universitaire (CHU) Ibn Sina, Rabat, Morocco.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Edward B Hayes
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pedro L Alonso
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Joaquim Ruiz
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Hamza IA, Jurzik L, Wilhelm M. Development of a Luminex assay for the simultaneous detection of human enteric viruses in sewage and river water. J Virol Methods 2014; 204:65-72. [DOI: 10.1016/j.jviromet.2014.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/06/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022]
|
45
|
Abstract
The acquisition of intestinal microbiota is essential for infants who are also in close contact with intestinal viruses. We assayed the presence of human enteric viruses in the faeces of 44 healthy breast-fed 6-month-old infants from rural Malawi. Half of the infants tested harboured enteroviruses, although the infants had no gastric symptoms, suggesting a viral community mainly composed of human asymptomatic enteroviruses.
Collapse
|
46
|
Kargar M, Javdani N, Najafi A, Tahamtan Y. First molecular detection of group A rotavirus in urban and hospital sewage systems by nested-RT PCR in Shiraz, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2013; 11:4. [PMID: 24499551 PMCID: PMC4176302 DOI: 10.1186/2052-336x-11-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/17/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Group A rotaviruses are the most significant cause of acute gastroenteritis in children worldwide. Rotaviruses are shed in high numbers and dispersed widely throughout bodies of water in the environment. This represents a significant health hazard for humans, mainly due to the stability of the viruses during wastewater treatment processes. This study was conducted to evaluate the prevalence of rotaviruses, to determine G genotypes of circulating rotaviruses and to assess the efficiency of rotavirus removal in urban and hospital sewage treatment plants in Shiraz, Iran. MATERIALS AND METHODS During the period from October 2010 to June 2011, a total of sixty sewage samples from urban and hospital sewage disposal systems were collected by Grab Sampling in Shiraz, Iran. All the samples were concentrated in pellet form and two-phase methods and then group A rotaviruses were investigated with enzyme immunoassays (EIA). Rotavirus-positive specimens were genotyped by the nested RT-PCR and by using different types of specific primers. RESULTS In total, rotaviruses were identified in 25% (15 cases) of sewage samples, representing 73.33% (11 cases) of influent and 26.67% (4 cases) of effluent systems. The frequency of rotavirus detection in autumn, winter and spring was 46.67%, 33.33% and 20%, respectively (P= 0.004). The most common circulating genotype was G1 (73.33%), followed by G1G4 (20%) and non-typeable (6.67%), respectively. CONCLUSIONS The high prevalence of rotaviruses in urban and hospital sewage systems highlights the importance of environmental surveillance as a tool to detect new genotypes and to investigate the epidemiology of rotaviruses circulating in the community.
Collapse
Affiliation(s)
- Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Negin Javdani
- Department of Nursing and Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
| | - Akram Najafi
- Department of Biology, Payame Noor University, Tehran, Iran
- Department of Virology, The Persian Gulf Tropical Medicine Research Center. Bushehr University of Medical Sciences, Bushehr, Iran
| | | |
Collapse
|
47
|
Luoto R, Rodriguez-Diaz J, Collado MC, Salminen S, Isolauri E, Lehtonen L. Gross blood in stools of premature neonates, a clinical and microbiological follow-up study. Acta Paediatr 2013; 102:486-91. [PMID: 23397940 DOI: 10.1111/apa.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/16/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
AIM To characterize the clinical course and the gut microecology of premature infants with macroscopic gross blood in stools. METHODS We studied 14 premature infants receiving breast milk supplemented with probiotics, according to our units practice, with macroscopic blood in stools without signs of ileus or systemic infection upon occurrence of the symptom and 14 days later. Controls were matched prospectively by gestational and postnatal age and type of feeding. Gut microbiota composition was analysed by quantitative real-time polymerase chain reaction (qPCR), and the presence of enteric viruses in the stools was assayed by PCR and by reverse transcription reaction followed by PCR (RT-PCR). RESULTS The symptom was transient, benign and self-limiting and none of the background factors explained it. No enteric viruses were detected, and the bacterial analyses showed no statistically significant differences between the infants with or without gross blood in stools. The characterization of the gut microbiota revealed low bacterial diversity. CONCLUSION Gross blood in the stools of premature infants without other clinical signs of infection can be an innocuous and self-limiting symptom. This cohort of preterm infants receiving breast milk supplemented with probiotics showed no alterations in gut microecology to be associated with the symptom.
Collapse
Affiliation(s)
| | - Jesus Rodriguez-Diaz
- Institute of Agrochemistry and Food Technology; Spanish National Research Council (IATA-CSIC); Valencia; Spain
| | - Maria C Collado
- Institute of Agrochemistry and Food Technology; Spanish National Research Council (IATA-CSIC); Valencia; Spain
| | - Seppo Salminen
- Functional Foods Forum; University of Turku; Turku; Finland
| | | | | |
Collapse
|
48
|
Sidhu JP, Ahmed W, Toze S. Sensitive detection of human adenovirus from small volume of primary wastewater samples by quantitative PCR. J Virol Methods 2013. [DOI: 10.1016/j.jviromet.2012.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Gensberger ET, Kostić T. Novel tools for environmental virology. Curr Opin Virol 2012; 3:61-8. [PMID: 23246441 DOI: 10.1016/j.coviro.2012.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/07/2012] [Accepted: 11/16/2012] [Indexed: 02/01/2023]
Abstract
Routine monitoring of relevant environmental viruses is of great importance for public health and quality assessment. Even though cell culture (i.e., viral infectivity assay) is still regarded as the golden standard, use of new strategies based on the molecular techniques significantly increased in the past years. Specific and rapid detection are main advantages of this alternative approach. Furthermore, integration of cell culture or propidium monoazide treatment with nucleic acid amplification allows for the differentiation of infectious particles. Additional recently reported approaches for the detection of viruses include, among others, whole transcriptome amplification and cell culture combined with Fourier transform infrared spectroscopy. Noteworthy is also the fact, that regardless of the selected detection method, sample preparation still remains the major bottleneck.
Collapse
Affiliation(s)
- Eva Theres Gensberger
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Konrad-Lorenz Strasse 24, A-3430 Tulln, Austria
| | | |
Collapse
|
50
|
Hata A, Kitajima M, Katayama H. Occurrence and reduction of human viruses, F-specific RNA coliphage genogroups and microbial indicators at a full-scale wastewater treatment plant in Japan. J Appl Microbiol 2012; 114:545-54. [PMID: 23170920 DOI: 10.1111/jam.12051] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/24/2012] [Accepted: 10/18/2012] [Indexed: 02/04/2023]
Abstract
AIMS To evaluate and compare the reductions of human viruses and F-specific coliphages in a full-scale wastewater treatment plant based on the quantitative PCR (qPCR) and plate count assays. METHODS AND RESULTS A total of 24 water samples were collected from four locations at the plant, and the relative abundance of human viruses and F-RNA phage genogroups were determined by qPCR. Of the 10 types of viruses tested, enteric adenoviruses were the most prevalent in both influent and effluent wastewater samples. Of the different treatment steps, the activated sludge process was most effective in reducing the microbial loads. Viruses and F-RNA phages showed variable reduction; among them, GI and GIII F-RNA phages showed the lowest and the highest reduction, respectively. CONCLUSIONS Ten types of viruses were present in wastewater that is discharged into public water bodies after treatment. The variability in reduction for the different virus types demonstrates that selection of adequate viral indicators is important for evaluating the efficacy of wastewater treatment and ensuring the water safety. SIGNIFICANCE AND IMPACT OF THE STUDY Our comprehensive analyses of the occurrence and reduction of viruses and indicators can contribute to the future establishment of appropriate viral indicators to evaluate the efficacy of wastewater treatment.
Collapse
Affiliation(s)
- A Hata
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|