1
|
Xiao Y, Wang J, Sun P, Ding T, Li J, Deng Y. Formation and resuscitation of viable but non-culturable (VBNC) yeast in the food industry: A review. Int J Food Microbiol 2025; 426:110901. [PMID: 39243533 DOI: 10.1016/j.ijfoodmicro.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The viable but non-culturable (VBNC) state is a survival strategy adopted by microorganisms in response to unfavorable conditions in the environment. VBNC cells are unable to form colonies but still maintain a low level of activity, posing a potential threat to food safety and public health. Therefore, the development of effective strategies to prevent the formation and resuscitation of VBNC cells of microorganisms is a key challenge in food science and microbiology research. However, current research on VBNC cells has primarily focused on bacteria, with relatively limited reports on fungi. This paper provides a comprehensive and systematic review of yeast in the VBNC state, discussing various factors that induce and facilitate resuscitation, along with detection methods and formation and recovery mechanisms. A comprehensive understanding of the induction and resuscitation of yeast in the VBNC state and exploration of its molecular mechanism hold significant implications for food safety and public health. It is imperative to enhance our comprehension of the underlying mechanisms and contributory factors pertaining to VBNC yeast, thereby facilitating the efficient management of the food fermentation process and ensuring the integrity of food quality and safety.
Collapse
Affiliation(s)
- Yang Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; School of Food Engineering, Qingdao Institute of Technology, Qingdao 266300, China
| | - Jiayang Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Pengdong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ting Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jingyuan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
3
|
Ebright B, Yu Z, Dave P, Dikeman D, Hamm-Alvarez S, de Paiva CS, Louie S. Effects of age on lacrimal gland bioactive lipids. Ocul Surf 2024; 33:64-73. [PMID: 38705236 DOI: 10.1016/j.jtos.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Polyunsaturated fatty acids (PUFA) are a source of bioactive lipids regulating inflammation and its resolution. METHODS Changes in PUFA metabolism were compared between lacrimal glands (LGs) from young and aged C57BL/6 J mice using a targeted lipidomics assay, as was the gene expression of enzymes involved in the metabolism of these lipids. RESULTS Global reduction in PUFAs and their metabolites was observed in aged LGs compared to young controls, averaging between 25 and 66 % across all analytes. ꞷ-6 arachidonic acid (AA) metabolites were all reduced in aged LGs, where the changes in prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) were statistically significant. Several other 5-lipoxygenase (5-LOX) mediated metabolites were significantly reduced in the aged LGs, including D-series resolvins (e.g., RvD4, RvD5, and RvD6). Along with the RvDs, several ꞷ-3 docosahexaenoic acid (DHA) metabolites such as 14-HDHA, neuroprotectin D1 (NPD1), Maresin 2 (MaR2), and MaR 1 metabolite (22-COOH-MaR1) were significantly reduced in aged LGs. Similarly, ꞷ-3 eicosapentaenoic acid (EPA) and its metabolites were significantly reduced in aged LGs, where the most significantly reduced was 18-HEPE. Using metabolite ratios (product:precursor) for specific metabolic conversions as surrogate enzymatic measures, reduced 12-LOX activity was identified in aged LGs. CONCLUSION In this study, global reduction of PUFAs and their metabolites was found in the LGs of aged female C57BL/6 J compared to young controls. A consistent reduction was observed across all detected lipid analytes except for ꞷ-3 docosapentaenoic acid (DPA) and its special pro-resolving mediator (SPM) metabolites in aged mice, suggesting an increased risk for LG inflammation.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Priyal Dave
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Dante Dikeman
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Sarah Hamm-Alvarez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Pharmaceutical Sciences, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Stan Louie
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| |
Collapse
|
4
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhuang L, Gong J, Shen Q, Yang J, Song C, Liu Q, Zhao B, Zhang Y, Zhu M. Advances in detection methods for viable Salmonella spp.: current applications and challenges. ANAL SCI 2023; 39:1643-1660. [PMID: 37378821 DOI: 10.1007/s44211-023-00384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
6
|
Trinh TND, Lee NY. Colorimetric detection of viable antibiotic resistant Enterococcus mediated by cordless operation of reverse transcription loop-mediated isothermal amplification. J Biotechnol 2022; 357:92-99. [PMID: 35952900 DOI: 10.1016/j.jbiotec.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/12/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
In this study, we applied a tube-based reverse transcription loop-mediated isothermal amplification technique using preloaded amplification and detection reagents for simple screening of viable vancomycin-resistant Enterococcus in a cordless manner. We adopted an mRNA-based approach to detect live Enterococcus in vancomycin-treated cultures. We used agarose to preload and store all reagents for amplification and detection inside the tube, which could achieve on-site isothermal nucleic acid amplification and detection in less than 1 h without using sophisticated instruments. Moreover, the use of a portable insulated water tumbler eliminated the need for electricity, which is usually important in nucleic acid amplification-based assays. The water tumbler acted as a heat source to supply a stable heat required for the amplification reaction, which could last up to 45 min. In addition, colorimetric detection was realized using pH-based methods. The detection was triggered by shaking the tube so that the amplified solution was reacted with phenolphthalein embedded in the tube cap. The introduced one-pot strategy has many advantages such as easy and cordless operation, low cost, disposability, and less chance of contamination because the amplification and detection occur in a closed system. The system could have a great impact on nucleic acid analyses in instrument-free and low-resource areas.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, the Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, the Republic of Korea.
| |
Collapse
|
7
|
Emin Sahin M. Deep learning-based approach for detecting COVID-19 in chest X-rays. Biomed Signal Process Control 2022; 78:103977. [PMID: 35855833 PMCID: PMC9279305 DOI: 10.1016/j.bspc.2022.103977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
Today, 2019 Coronavirus (COVID-19) infections are a major health concern worldwide. Therefore, detecting COVID-19 in X-ray images is crucial for diagnosis, evaluation, and treatment. Furthermore, expressing diagnostic uncertainty in a report is a challenging duty but unavoidable task for radiologists. This study proposes a novel CNN (Convolutional Neural Network) model for automatic COVID-19 identification utilizing chest X-ray images. The proposed CNN model is designed to be a reliable diagnostic tool for two-class categorization (COVID and Normal). In addition to the proposed model, different architectures, including the pre-trained MobileNetv2 and ResNet50 models, are evaluated for this COVID-19 dataset (13,824 X-ray images) and our suggested model is compared to these existing COVID-19 detection algorithms in terms of accuracy. Experimental results show that our proposed model identifies patients with COVID-19 disease with 96.71 percent accuracy, 91.89 percent F1-score. Our proposed approach CNN’s experimental results show that it outperforms the most advanced algorithms currently available. This model can assist clinicians in making informed judgments on how to diagnose COVID-19, as well as make test kits more accessible.
Collapse
Affiliation(s)
- M Emin Sahin
- Department of Computer Engineering, Yozgat Bozok University, Turkey
| |
Collapse
|
8
|
Mohsin F, Suleman S, Anzar N, Narang J, Wadhwa S. A review on Japanese Encephalitis virus emergence, pathogenesis and detection: From conventional diagnostics to emerging rapid detection techniques. Int J Biol Macromol 2022; 217:435-448. [PMID: 35817236 DOI: 10.1016/j.ijbiomac.2022.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/29/2021] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
The virus known as Japanese Encephalitis (JEV) is among the common viral persisting Encephalitis caused by Flavivirus around the Globe, especially in Southeast Asian nations. JEV may be a leading reason for neurological illness in humans, with an estimated 70,000 human cases and 10,000 fatalities per annum. The conventional methods like PRNT (Plaque Reduction Neutralization Test), ELISA (Enzyme-linked immunosorbent assay) RT-PCR (reverse transcription-polymerase chain reaction), and virus isolation are few commercial tests being availed these days, but they have a variety of drawbacks, including being extremely expensive, time-consuming, and requiring expertise. Therefore, researches are being made in the development of improved inexpensive, shorter, sensitive, and time-saving strategies to diagnose the Japanese Encephalitis Virus. A number of these researches encompass the employment of immunosensors, electrochemical sensors and along with the applications of nanotechnology to create highly sensitive detecting device. This review article is based on contemporary breakthroughs in diagnosing Japanese Encephalitis Virus, which are crucial in severing the connection between the propagation of zoonotic disease into the current race, where humans function as dead-end hosts.
Collapse
Affiliation(s)
- Fatima Mohsin
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India.
| | - Shikha Wadhwa
- Department of Chemistry, School of Applied Sciences, University of Petroleum & Energy Studies, Bidholi Campus, Dehradun 248007, India
| |
Collapse
|
9
|
He Y, Zhao J, Yin H, Deng Y. Transcriptome Analysis of Viable but Non-Culturable Brettanomyces bruxellensis Induced by Hop Bitter Acids. Front Microbiol 2022; 13:902110. [PMID: 35707174 PMCID: PMC9189414 DOI: 10.3389/fmicb.2022.902110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The viable but non-culturable (VBNC) state has been studied in detail in bacteria. However, it has received much less attention in eukaryotic cells. The induction of a VBNC beer-spoilage yeast (Brettanomyces bruxellensis) by hop bitter acids with different concentrations and its recovery were studied in this work. B. bruxellensis cells were completely induced into the VBNC state by treatment of 250 mg/L hop bitter acids for 2 h. The addition of catalase at a concentration of 2,000 U/plate on YPD agars enabled these VBNC cells to recover their culturability within 2 days. Moreover, the transcriptome profiling revealed that 267 and 197 genes were significantly changed upon VBNC state entry and resuscitation, respectively. The differentially expressed genes involved in the peroxisome activities, ABC transporter, organic acid metabolism, and TCA cycle were mainly downregulated in the VBNC cells. In contrast, the amino acid and carbohydrate metabolism, cell division, and DNA replication were promoted. This study supplies a theoretical basis for microbial risk assessment in the brewing industry.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Junfeng Zhao
- College of Food Science and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Yuan Deng
- Animal Products Processing Laboratory, Hunan Institute of Animal Husbandry and Veterinary Science, Changsha, China
- *Correspondence: Yuan Deng
| |
Collapse
|
10
|
Xiao Y, Wang Z, Sun W, Luan Y, Piao M, Deng Y. Characterization and formation mechanisms of viable, but putatively non-culturable brewer's yeast induced by isomerized hop extract. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
The Effects of Polyphenol, Tannic Acid, or Tannic Acid in Combination with Pamidronate on Human Osteoblast Cell Line Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020451. [PMID: 35056766 PMCID: PMC8779126 DOI: 10.3390/molecules27020451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/04/2023]
Abstract
Background: This study investigates the effect of tannic acid (TA) combined with pamidronate (PAM) on a human osteoblast cell line. Methods: EC50 for TA, PAM, and different combination ratios of TA and PAM (25:75, 50:50, 75:25) were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The combination index value was utilized to analyze the degree of drug interaction, while trypan blue assay was applied to analyze the cells proliferation effect. The mineralization and detection of bone BSP and Osx genes were determined via histochemical staining and PCR test, respectively. Results: The EC50 of osteoblasts treated with TA and a 75:25 ratio of TA and PAM were more potent with lower EC50 at 0.56 µg/mL and 0.48 µg/mL, respectively. The combination of TA and PAM (75:25) was shown to have synergistic interaction. On Day 7, both TA and PAM groups showed significantly increased proliferation compared with control and combination groups. On Day 7, both the TA and combination-treated groups demonstrated a higher production of calcium deposits than the control and PAM-treated groups. Moreover, on Day 7, the combination-treated group showed a significantly higher expression of BSP and Osx genes than both the TA and PAM groups. Conclusion: Combination treatment of TA and PAM at 75:25 ameliorated the highest enhancement of osteoblast proliferation and mineralization as well as caused a high expression of BSP and Osx genes.
Collapse
|
12
|
Shimizu H, Arai K, Asahara T, Takahashi T, Tsuji H, Matsumoto S, Takeuchi I, Kyodo R, Yamashiro Y. Stool preparation under anaerobic conditions contributes to retention of obligate anaerobes: potential improvement for fecal microbiota transplantation. BMC Microbiol 2021; 21:275. [PMID: 34627158 PMCID: PMC8501685 DOI: 10.1186/s12866-021-02325-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) in patients with ulcerative colitis has shown variable efficacy depending on the protocol used. A previous randomized controlled trial reported that anaerobic preparation of donor stool contributes to improved efficacy. Despite the suggestion that viable obligate anaerobes would be decreased through aerobic handling, there have been only a limited number of reports on how these aerobic or anaerobic procedures affect the composition of viable microbiota in the fecal slurries used for FMT. METHODS We adopted 16S and 23S rRNA-targeted reverse transcription-quantitative polymerase chain reaction to quantify viable bacteria in fecal slurries. This study utilized specific primers designed to detect obligate anaerobes (including Clostridium coccoides group, C. leptum subgroup, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, and Prevotella) and facultative anaerobes (including total lactobacilli, Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus). We then calculated the ratio change (RC) between before and after mixing, and compared the resulting values between anaerobic-prep and aerobic-prep in samples fixed immediately after blending (RCAn0 vs. RCAe0) and in samples maintained (under anaerobic or aerobic conditions) for 1 h after blending (RCAn1 vs. RCAe1). RESULTS For most obligate anaerobes, the median RC tended to be less than 1, indicating that the number of obligate anaerobes was decreased by the blending procedure. However, in samples maintained for 1 h after blending, anaerobic-prep counteracted the decrease otherwise seen for the C. coccoides group and B. fragilis groups (P < 0.01 for both). The C. leptum subgroup also tended to show higher RC by anaerobic-prep than by aerobic-prep, although this effect was not statistically significant. Among facultative anaerobes, Enterobacteriaceae, Enterococcus, and Staphylococcus showed median RC values of more than 1, indicating that these organisms survived and even grew after mixing. Moreover, oxygen exposure had no significant influence on the survival of the facultative anaerobes. CONCLUSIONS The conditions under which the blending procedure was performed affected the proportion of live anaerobes in fecal slurries. The obligate anaerobes tended to be decreased by blending processes, but anaerobic-prep significantly mitigated this effect. Anaerobic-prep may improve the efficacy of FMT by permitting the efficient transfer of obligate anaerobes to patients with ulcerative colitis.
Collapse
Affiliation(s)
- Hirotaka Shimizu
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan. .,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Katsuhiro Arai
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Takahashi
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Matsumoto
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Reiko Kyodo
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Liu L, Wang Z, Wang Y, Luan J, Morrissey JJ, Naik RR, Singamaneni S. Plasmonically Enhanced CRISPR/Cas13a-Based Bioassay for Amplification-Free Detection of Cancer-Associated RNA. Adv Healthc Mater 2021; 10:e2100956. [PMID: 34369102 PMCID: PMC8542602 DOI: 10.1002/adhm.202100956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Novel methods that enable sensitive, accurate and rapid detection of RNA would not only benefit fundamental biological studies but also serve as diagnostic tools for various pathological conditions, including bacterial and viral infections and cancer. Although highly sensitive, existing methods for RNA detection involve long turn-around time and extensive capital equipment. Here, an ultrasensitive and amplification-free RNA quantification method is demonstrated by integrating CRISPR-Cas13a system with an ultrabright fluorescent nanolabel, plasmonic fluor. This plasmonically enhanced CRISPR-powered assay exhibits nearly 1000-fold lower limit-of-detection compared to conventional assay relying on enzymatic reporters. Using a xenograft tumor mouse model, it is demonstrated that this novel bioassay can be used for ultrasensitive and quantitative monitoring of cancer biomarker (lncRNA H19). The novel biodetection approach described here provides a rapid, ultrasensitive, and amplification-free strategy that can be broadly employed for detection of various RNA biomarkers, even in resource-limited settings.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Yixuan Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rajesh R. Naik
- 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
14
|
Cremonesi P, Garofalo C, Picozzi C, Castiglioni B, Mangieri N, Milanović V, Osimani A, Aquilanti L. Development of quantitative real-time PCR and digital droplet-PCR assays for rapid and early detection of the spoilage yeasts Saccharomycopsis fibuligera and Wickerhamomyces anomalus in bread. Food Microbiol 2021; 101:103894. [PMID: 34579854 DOI: 10.1016/j.fm.2021.103894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
In the present study, for the first time, high sensitive quantitative polymerase chain reaction (qPCR) and digital droplet polymerase chain reaction (ddPCR) assays were developed to detect and quantify total eumycetes with potential application in several food matrices and to specifically determine the level of contamination by Saccharomycopsis fibuligera and Wickerhamomyces anomalus cells directly in bread. Among the candidate target genes used to develop the assays, car1 gene was chosen to detect the two spoilage yeasts S. fibuligera and W. anomalus. The specificity of the PCR assays was tested using purified genomic DNA from 36 bacterial and fungal strains. The sensitivity of the assays was defined by using tenfold serial dilutions of genomic DNA starting from 106 cfu/mL to 1 cfu/mL of S. fibuligera and W. anomalus. Validation of the assays was achieved by enumeration of S. fibuligera and W. anomalus DNA copies from samples of artificially contaminated bread homogenates detecting up to 10 cfu/mL (0.06 ± 0.01 copies/μL) of W. anomalus by using ddPCR. In conclusion, the developed qPCR and ddPCR assays demonstrate strong performance in the early detection of S. fibuligera and W. anomalus in bread, representing promising tools for applying high-throughput approaches to regularly monitor bread quality.
Collapse
Affiliation(s)
- Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche, Via Einstein S/n, 26900, Lodi, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Claudia Picozzi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Sezione di Microbiologia degli Alimenti e Bioprocessi, Via Celoria 2, 20133, Milano, Italy.
| | - Bianca Castiglioni
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche, Via Einstein S/n, 26900, Lodi, Italy
| | - Nicola Mangieri
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Sezione di Microbiologia degli Alimenti e Bioprocessi, Via Celoria 2, 20133, Milano, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
15
|
Ijoma GN, Heri SM, Matambo TS, Tekere M. Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi. J Fungi (Basel) 2021; 7:700. [PMID: 34575737 PMCID: PMC8464691 DOI: 10.3390/jof7090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying and adopting industrial applications for proteins and enzymes derived from fungi strains have been at the focal point of several studies in recent times. To facilitate such studies, it is necessary that advancements and innovation in mycological and molecular characterisation are concomitant. This review aims to provide a detailed overview of the necessary steps employed in both qualitative and quantitative research using the omics technologies that are pertinent to fungi characterisation. This stems from the understanding that data provided from the functional characterisation of fungi and their metabolites is important towards the techno-economic feasibility of large-scale production of biological products. The review further describes how the functional gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and the various techniques and platforms utilised, including quantitive reverse transcription polymerase chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data provide on the effect of environmental changes on fungal enzyme production from an expressional standpoint. The review also offers information on the many available bioinformatics tools of analysis necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal characterisation.
Collapse
Affiliation(s)
- Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Sylvie M. Heri
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Memory Tekere
- Department of Environmental Science, College of Agricultural and Environmental Science, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa;
| |
Collapse
|
16
|
Elhalis H, Cox J, Frank D, Zhao J. Microbiological and Chemical Characteristics of Wet Coffee Fermentation Inoculated With Hansinaspora uvarum and Pichia kudriavzevii and Their Impact on Coffee Sensory Quality. Front Microbiol 2021; 12:713969. [PMID: 34421873 PMCID: PMC8371688 DOI: 10.3389/fmicb.2021.713969] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hansinaspora uvarum and Pichia kudriavzevii were used as starter cultures to conduct inoculated wet fermentations of coffee beans, and their growth, metabolic activities and impact on the flavor, aroma and overall sensory quality of coffee were compared with spontaneous fermentation (control). H. uvarum and P. kudriavzevii dominated the fermentations, growing to maximum populations of about 10.0 log CFU/ml compared with 8.0 log CFU/ml in the spontaneous fermentation. The dominance of the inoculated yeasts led to faster and more complete utilization of sugars in the mucilage, with resultant production of 2–3 fold higher concentrations of metabolites such as glycerol, alcohols, aldehydes, esters, and organic acids in the fermented green beans. Cup tests showed coffee produced from the inoculated fermentations, especially with P. kudriavzevii, received higher scores for flavor, aroma and acidity than the control. The findings of this study confirmed the crucial role of yeasts in the wet fermentation of coffee beans and their contribution to high quality coffee, and demonstrated the potential H. uvarum and P. kudriavzevii as starter cultures in the process.
Collapse
Affiliation(s)
- Hosam Elhalis
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Julian Cox
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Damian Frank
- Commonwealth Scientific Industry Research Organisation (CSIRO), North Ryde, NSW, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Nakai R, Wakana I, Niki H. Internal microbial zonation during the massive growth of marimo, a lake ball of Aegagropila linnaei in Lake Akan. iScience 2021; 24:102720. [PMID: 34258554 PMCID: PMC8253969 DOI: 10.1016/j.isci.2021.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Marimo (lake ball) is an uncommon ball-like aggregation of the green alga, Aegagropila linnaei. Although A. linnaei is distributed in fresh and brackish waters in the northern hemisphere, marimo colonies are found only in particular habitats. Here, we report the bacterial communities inside various sizes and aggregating structures of natural marimo collected from Lake Akan, Japan. We observed multi-layers composed of sediment particles only in the sizable radial-type marimo with >20 cm diameter and not in the tangled-type marimo. The deeper layers were enriched by Nitrospira, potential sulfur-oxidizing bacteria, and sulfate-reducing bacteria. Microorganisms of the multi-layers would form biofilms incorporating nearby sediment, which would function as microbial “seals” within large radial-type marimo. These findings provide clues to deciphering the growth of endangered marimo. The radial type of marimo (lake ball) can grow to over 20 cm in diameter The sizable radial-type marimo develops the internal multi-layers and hollow structure The layers provide different diverse microbiomes and structural strength The internal multi-layers support the massive growth of the radial-type marimo
Collapse
Affiliation(s)
- Ryosuke Nakai
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540 Japan
| | - Isamu Wakana
- Kushiro International Wetland Center, 7-5 Kuroganecho, Kushiro, Hokkaido 085-8505, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540 Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111, Yata, Mishima, Shizuoka 411-8540 Japan
| |
Collapse
|
18
|
Wang R, Lorantfy B, Fusco S, Olsson L, Franzén CJ. Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Sci Rep 2021; 11:11293. [PMID: 34050249 PMCID: PMC8163860 DOI: 10.1038/s41598-021-90703-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Cell mass and viability are tightly linked to the productivity of fermentation processes. In 2nd generation lignocellulose-based media quantitative measurement of cell concentration is challenging because of particles, auto-fluorescence, and intrinsic colour and turbidity of the media. We systematically evaluated several methods for quantifying total and viable yeast cell concentrations to validate their use in lignocellulosic media. Several automated cell counting systems and stain-based viability tests had very limited applicability in such samples. In contrast, manual cell enumeration in a hemocytometer, plating and enumeration of colony forming units, qPCR, and in situ dielectric spectroscopy were further investigated. Parameter optimization to measurements in synthetic lignocellulosic media, which mimicked typical lignocellulosic fermentation conditions, resulted in statistically significant calibration models with good predictive capacity for these four methods. Manual enumeration of cells in a hemocytometer and of CFU were further validated for quantitative assessment of cell numbers in simultaneous saccharification and fermentation experiments on steam-exploded wheat straw. Furthermore, quantitative correlations could be established between these variables and in situ permittivity. In contrast, qPCR quantification suffered from inconsistent DNA extraction from the lignocellulosic slurries. Development of reliable and validated cell quantification methods and understanding their strengths and limitations in lignocellulosic contexts, will enable further development, optimization, and control of lignocellulose-based fermentation processes.
Collapse
Affiliation(s)
- Ruifei Wang
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Nouryon, Hamnvägen 2, 444 85, Stenungsund, Sweden
| | - Bettina Lorantfy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioPhero ApS, Lersø Parkallé 42-44, 4. th., 2100, Copenhagen Ø, Denmark
| | - Salvatore Fusco
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
19
|
Comparison of three diagnostic methods in the diagnosis of cryptosporidiosis and gp60 subtyping of Cryptosporidium parvum in diarrheic calves in Central Anatolia Region of Turkey. THE EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
The aim of this study was to compare three diagnostic methods for the diagnosis of cryptosporidiosis and to detect subtypes ofCryptosporidium parvum by sequences analyses of gp60 gene in diarrheic calves in several herds in Konya province located in Central Anatolia Region of Turkey. Fecal samples were collected from a total of 194 pre-weaned calves (n=158, ≤15 days old, and n=36, 15 to 40 days old), with diarrhoea. For comparative diagnosis, all samples were examined by modified Ziehl-Neelsen staining of fecal smears for the presence of oocyst, nested PCR-RFLP of SSU rRNA and TaqMan qPCR for the detection of Cryptosporidium DNA. A total of 92 (47.4%) and 104 (53.6%) out of the examined samples were found positive by microscopic examination and molecular tools, respectively. The diagnostic sensitivity and specificity of microscopic identification were determined as 88.5% and 100.0%, respectively compared to molecular assays. Cryptosporidium parvum was the only detected species in all positive samples by species-specific qPCR and nested PCR-RFLP assays. Species identifications were further confirmed by sequence analyses of the SSU rRNA PCR products. There was no statistically significant difference in C. parvum prevalence between early pre-weaned calves and calves older than 15 days. The sequence analyses of the gp60 gene of C. parvum isolates revealed a one subtype IIaA13G2R1 belonging to zoonotic family IIa in diarrheic calves
Collapse
|
20
|
Qi X, Brown LG, Foran DJ, Nosher J, Hacihaliloglu I. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Int J Comput Assist Radiol Surg 2021; 16:197-206. [PMID: 33420641 PMCID: PMC7794081 DOI: 10.1007/s11548-020-02305-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Purpose: Recently, the outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic has seriously endangered human health and life. In fighting against COVID-19, effective diagnosis of infected patient is critical for preventing the spread of diseases. Due to limited availability of test kits, the need for auxiliary diagnostic approach has increased. Recent research has shown radiography of COVID-19 patient, such as CT and X-ray, contains salient information about the COVID-19 virus and could be used as an alternative diagnosis method. Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost, and portability gains much attention and becomes very promising. In order to reduce intra- and inter-observer variability, during radiological assessment, computer-aided diagnostic tools have been used in order to supplement medical decision making and subsequent management. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologist in the interpretation of the collected data.
Method: In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for multi-class improved classification of COVID-19 from CXR images. CXR images are enhanced using a local phase-based image enhancement method. The enhanced images, together with the original CXR data, are used as an input to our proposed CNN architecture. Using ablation studies, we show the effectiveness of the enhanced images in improving the diagnostic accuracy. We provide quantitative evaluation on two datasets and qualitative results for visual inspection. Quantitative evaluation is performed on data consisting of 8851 normal (healthy), 6045 pneumonia, and 3323 COVID-19 CXR scans.
Results: In Dataset-1, our model achieves 95.57% average accuracy for a three classes classification, 99% precision, recall, and F1-scores for COVID-19 cases. For Dataset-2, we have obtained 94.44% average accuracy, and 95% precision, recall, and F1-scores for detection of COVID-19. Conclusions: Our proposed multi-feature-guided CNN achieves improved results compared to single-feature CNN proving the importance of the local phase-based CXR image enhancement. Future work will involve further evaluation of the proposed method on a larger-size COVID-19 dataset as they become available.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA
| | - Lloyd G Brown
- Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - John Nosher
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Ilker Hacihaliloglu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA. .,Department of Radiology Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
21
|
Austrian Raw-Milk Hard-Cheese Ripening Involves Successional Dynamics of Non-Inoculated Bacteria and Fungi. Foods 2020; 9:foods9121851. [PMID: 33322552 PMCID: PMC7763656 DOI: 10.3390/foods9121851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cheese ripening involves successional changes of the rind microbial composition that harbors a key role on the quality and safety of the final products. In this study, we analyzed the evolution of the rind microbiota (bacteria and fungi) throughout the ripening of Austrian Vorarlberger Bergkäse (VB), an artisanal surface-ripened cheese, by using quantitative and qualitative approaches. The real-time quantitative PCR results revealed that bacteria were more abundant than fungi in VB rinds throughout ripening, although both kingdoms were abundant along the process. The qualitative investigation was performed by high-throughput gene-targeted (amplicon) sequencing. The results showed dynamic changes of the rind microbiota throughout ripening. In the fresh products, VB rinds were dominated by Staphylococcus equorum and Candida. At early ripening times (14–30 days) Psychrobacter and Debaryomyces flourished, although their high abundance was limited to these time points. At the latest ripening times (90–160 days), VB rinds were dominated by S. equorum, Brevibacterium, Corynebacterium, and Scopulariopsis. Strong correlations were shown for specific bacteria and fungi linked to specific ripening periods. This study deepens our understanding of VB ripening and highlights different bacteria and fungi associated to specific ripening periods which may influence the organoleptic properties of the final products.
Collapse
|
22
|
Sharma S, Suresh Ahire D, Prasad B. Utility of Quantitative Proteomics for Enhancing the Predictive Ability of Physiologically Based Pharmacokinetic Models Across Disease States. J Clin Pharmacol 2020; 60 Suppl 1:S17-S35. [DOI: 10.1002/jcph.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Sheena Sharma
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Deepak Suresh Ahire
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences Washington State University Spokane Washington USA
| |
Collapse
|
23
|
Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR. Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Crit Rev Food Sci Nutr 2020; 62:1317-1335. [DOI: 10.1080/10408398.2020.1841728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmin Quazi Bonny
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
O'Grady J, Cronin U, Tierney J, Piterina AV, O'Meara E, Wilkinson MG. Gaps in the assortment of rapid assays for microorganisms of interest to the dairy industry. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:1-56. [PMID: 32948264 PMCID: PMC7426214 DOI: 10.1016/bs.aambs.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review presents the results of a study into the offering of rapid microbial detection assays to the Irish dairy industry. At the outset, a consultation process was undertaken whereby key stakeholders were asked to compile a list of the key microorganisms of interest to the sector. The resultant list comprises 19 organisms/groups of organisms divided into five categories: single pathogenic species (Cronobacter sakazakii, Escherichia coli and Listeria monocytogenes); genera containing pathogenic species (Bacillus, Clostridium, Listeria, Salmonella; Staphylococcus); broad taxonomic groupings (Coliforms, Enterobacteriaceae, fecal Streptococci, sulfite reducing bacteria/sulfite reducing Clostridia [SRBs/SRCs], yeasts and molds); organisms displaying certain growth preferences or resistance as regards temperature (endospores, psychrotrophs, thermodurics, thermophiles); indicators of quality (total plate count, Pseudomonas spp.). A survey of the rapid assays commercially available for the 19 organisms/groups of organisms was conducted. A wide disparity between the number of rapid tests available was found. Four categories were used to summarize the availability of rapid assays per organism/group of organisms: high coverage (>15 assays available); medium coverage (5-15 assays available); low coverage (<5 assays available); no coverage (0 assays available). Generally, species or genera containing pathogens, whose presence is regulated-for, tend to have a good selection of commercially available rapid assays for their detection, whereas groups composed of heterogenous or even undefined genera of mainly spoilage organisms tend to be "low coverage" or "no coverage." Organisms/groups of organisms with "low coverage" by rapid assays include: Clostridium spp.; fecal Streptococci; and Pseudomonas spp. Those with "no coverage" by rapid assays include: endospores; psychrotrophs; SRB/SRCs; thermodurics; and thermophiles. An important question is: why have manufacturers of rapid microbiological assays failed to respond to the necessity for rapid methods for these organisms/groups of organisms? The review offers explanations, ranging from the technical difficulty involved in detecting as broad a group as the thermodurics, which covers the spores of multiple sporeforming genera as well at least six genera of mesophilic nonsporeformers, to the taxonomically controversial issue as to what constitutes a fecal Streptococcus or SRBs/SRCs. We review two problematic areas for assay developers: validation/certification and the nature of dairy food matrices. Development and implementation of rapid alternative test methods for the dairy industry is influenced by regulations relating to both the microbiological quality standards and the criteria alternative methods must meet to qualify as acceptable test methods. However, the gap between the certification of developer's test systems as valid alternative methods in only a handful of representative matrices, and the requirement of dairy industries to verify the performance of alternative test systems in an extensive and diverse range of dairy matrices needs to be bridged before alternative methods can be widely accepted and adopted in the dairy industry. This study concludes that many important dairy matrices have effectively been ignored by assay developers.
Collapse
Affiliation(s)
- John O'Grady
- Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland
| | - Ultan Cronin
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Joseph Tierney
- Glanbia Ingredients Ireland, Ballyragget, Co. Kilkenny, Ireland
| | - Anna V Piterina
- Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland
| | - Elaine O'Meara
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Martin G Wilkinson
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
25
|
Molecular assays to detect the presence and viability of Phytophthora ramorum and Grosmannia clavigera. PLoS One 2020; 15:e0221742. [PMID: 32023247 PMCID: PMC7001964 DOI: 10.1371/journal.pone.0221742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Wood and wood products can harbor microorganisms that can raise phytosanitary concerns in countries importing or exporting these products. To evaluate the efficacy of wood treatment on the survival of microorganisms of phytosanitary concern the method of choice is to grow microbes in petri dishes for subsequent identification. However, some plant pathogens are difficult or impossible to grow in axenic cultures. A molecular methodology capable of detecting living fungi and fungus-like organisms in situ can provide a solution. RNA represents the transcription of genes and can become rapidly unstable after cell death, providing a proxy measure of viability. We designed and used RNA-based molecular diagnostic assays targeting genes essential to vital processes and assessed their presence in wood colonized by fungi and oomycetes through reverse transcription and real-time polymerase chain reaction (PCR). A stability analysis was conducted by comparing the ratio of mRNA to gDNA over time following heat treatment of mycelial cultures of the Oomycete Phytophthora ramorum and the fungus Grosmannia clavigera. The real-time PCR results indicated that the DNA remained stable over a period of 10 days post treatment in heat-treated samples, whereas mRNA could not be detected after 24 hours for P. ramorum or 96 hours for G. clavigera. Therefore, this method provides a reliable way to evaluate the viability of these pathogens and offers a potential way to assess the effectiveness of existing and emerging wood treatments. This can have important phytosanitary impacts on assessing both timber and non-timber forest products of commercial value in international wood trade.
Collapse
|
26
|
Efficacy of Andrographis paniculata against AmpC producing multi drug resistant E. coli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Casagrande Pierantoni D, Corte L, Roscini L, Cardinali G. High-Throughput Rapid and Inexpensive Assay for Quantitative Determination of Low Cell-Density Yeast Cultures. Microorganisms 2019; 7:E32. [PMID: 30682881 PMCID: PMC6406537 DOI: 10.3390/microorganisms7020032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/12/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
A procedure for microbial cell density determination with a high-throughput densitometric assay was developed to allow a precise quantification of both free and sessile cells, such as those of a biofilm, with a large range from low to high cell densities. Densitometry was chosen because it allows fast, rapid and cost-effective measures; it is non-disruptive; and has an easy learning curve. The method setup, and the further validation, was carried out with strains of Candida albicans, C. tropicalis and C. parapsilosis. Equations were developed at the level of the single strains, of the three species and finally a general one applicable to all three species. In the cross validation, with strains absent from the training set, the method was shown to be robust and flexible. The best results were obtained with species specific equations, although the global equation performed almost as well in terms of correlation between real and estimated density values. In all cases, a correlation around 0.98 between effective and predicted density was obtained with figures ranging from 10² to 10⁸ cells mL-1. The entire analytical part of the procedure can be accomplished with a MS Excel macro provided free of charge.
Collapse
Affiliation(s)
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Luca Roscini
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
28
|
Warkad SD, Nimse SB, Song KS, Kim T. HCV Detection, Discrimination, and Genotyping Technologies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3423. [PMID: 30322029 PMCID: PMC6210034 DOI: 10.3390/s18103423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
According to the World Health Organization (WHO), 71 million people were living with Hepatitis C virus (HCV) infection worldwide in 2015. Each year, about 399,000 HCV-infected people succumb to cirrhosis, hepatocellular carcinoma, and liver failure. Therefore, screening of HCV infection with simple, rapid, but highly sensitive and specific methods can help to curb the global burden on HCV healthcare. Apart from the determination of viral load/viral clearance, the identification of specific HCV genotype is also critical for successful treatment of hepatitis C. This critical review focuses on the technologies used for the detection, discrimination, and genotyping of HCV in clinical samples. This article also focuses on advantages and disadvantages of the reported methods used for HCV detection, quantification, and genotyping.
Collapse
Affiliation(s)
- Shrikant Dashrath Warkad
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Keum-Soo Song
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
29
|
Niu B, Hong B, Zhang Z, Mu L, Malakar PK, Liu H, Pan Y, Zhao Y. A Novel qPCR Method for Simultaneous Detection and Quantification of Viable Pathogenic and Non-pathogenic Vibrio parahaemolyticus ( tlh+ , tdh+ , and ureR + ). Front Microbiol 2018; 9:1747. [PMID: 30116230 PMCID: PMC6083054 DOI: 10.3389/fmicb.2018.01747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogenic and non-pathogenic Vibrio parahaemolyticus strains were simultaneously detected and quantified using a novel viable multiplex real-time PCR (novel qPCR). We used a new PCR primer and probe, ureR, as a surrogate for detection of the toxin trh gene as the primer was better at identifying variant V. parahaemolyticus trh strains. The specificity of all primers and probes used in this study were validated on three standard strains of V. parahaemolyticus, 42 clinical strains, 12 wild strains, 4 strains of Vibrio spp., and 4 strains of other bacteria. Then, propidium monoazide (PMA) was applied to inhibit DNA of dead cell, and the results of PMA optimized treatments were 15 μM concentration, 5 min incubation periods, 15 min light exposure periods and 30 RPM rotational speed, which resulted in time and cost savings. Pathogenic and non-pathogenic strains were quantified using a two-reaction tube method where the tlh, tdh, and ureR genes were amplified. Additionally, standard curves with a 7-log dynamic range were generated for quantifying viable V. parahaemolyticus and the amplification efficiencies were 108.68, 105.17, and 115.61% for tlh+, tdh+, and ureR+. This novel qPCR accurately monitored V. parahaemolyticus contamination rates in shrimps (Penaeus vannamei) and clams (Ruditapes philippinarum) sampled from retail stores located in a major district in Shanghai. In conclusion, our assay can prioritize the detection and quantification of viable pathogenic V. parahaemolyticus and can prove to be a more effective tool for reducing infection risks from consumption of seafood in Shanghai.
Collapse
Affiliation(s)
- Ben Niu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Hong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lili Mu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
30
|
Casasola-Rodríguez B, Ruiz-Palacios GM, Pilar RC, Losano L, Ignacio MR, Orta de Velásquez MT. Detection of VBNC Vibrio cholerae by RT-Real Time PCR based on differential gene expression analysis. FEMS Microbiol Lett 2018; 365:5046420. [DOI: 10.1093/femsle/fny156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Beatriz Casasola-Rodríguez
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad universitaria, C.P. 04510 CDMX, México
| | - Guillermo M Ruiz-Palacios
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, 14080 Tlalpan, CDMX, México
| | - Ramos-Cervantes Pilar
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, 14080 Tlalpan, CDMX, México
| | - Luis Losano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Mor., México
| | - Monje-Ramírez Ignacio
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad universitaria, C.P. 04510 CDMX, México
| | - María Teresa Orta de Velásquez
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad universitaria, C.P. 04510 CDMX, México
| |
Collapse
|
31
|
Sunyer-Figueres M, Wang C, Mas A. Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR. Int J Food Microbiol 2018; 270:1-4. [PMID: 29427947 DOI: 10.1016/j.ijfoodmicro.2018.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested.
Collapse
Affiliation(s)
- Merce Sunyer-Figueres
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Chunxiao Wang
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain; School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
32
|
Rico-Munoz E, Samson RA, Houbraken J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol 2018; 81:51-62. [PMID: 30910088 DOI: 10.1016/j.fm.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
Fungal spoilage of products manufactured by the food and beverage industry imposes significant annual global revenue losses. Mould spoilage can also be a food safety issue due to the production of mycotoxins by these moulds. To prevent mould spoilage, it is essential that the associated mycobiota be adequately isolated and accurately identified. The main fungal groups associated with spoilage are the xerophilic, heat-resistant, preservative-resistant, anaerobic and psychrophilic fungi. To assess mould spoilage, the appropriate methodology and media must be used. While classic mycological detection methods can detect a broad range of fungi using well validated protocols, they are time consuming and results can take days or even weeks. New molecular detection methods are faster but require good DNA isolation techniques, expensive equipment and may detect viable and non-viable fungi that probably will not spoil a specific product. Although there is no complete and easy method for the detection of fungi in food it is important to be aware of the limitation of the methodology. More research is needed on the development of methods of detection and identification that are both faster and highly sensitive.
Collapse
Affiliation(s)
- Emilia Rico-Munoz
- BCN Research Laboratories, Inc., 2491 Stock Creek Blvd., Rockford, TN 37853, USA.
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| |
Collapse
|
33
|
Purevdorj-Gage L, Nixon B, Bodine K, Xu Q, Doerrler WT. Differential Effect of Food Sanitizers on Formation of Viable but Nonculturable Salmonella enterica in Poultry. J Food Prot 2018; 81:386-393. [PMID: 29419335 DOI: 10.4315/0362-028x.jfp-17-335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method for microscopic enumeration of viable Salmonella enterica in meat samples was developed by using the LIVE/DEAD BacLight kit technology. A two-step centrifugation and wash process was developed to clean the samples from food and chemical impurities that might otherwise interfere with the appropriate staining reactions. The accuracy of the BacLight kit-based viability assessments was confirmed with various validation tests that were conducted by following the manufacturer's instructions. For the biocide challenge tests, chicken parts each bearing around 8.5 log of S. enterica were sprayed with common food sanitizers such as 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), lactic acid (LA), and peracetic acid (PAA). The log reduction (LR) of S. enterica for each test biocide was evaluated by microscopic and conventional culture plate methods. The results show that both LA and PAA treatments generated a greater number of microscopic counts compared with the corresponding plate counts with differences being around half a log. This discrepancy is believed to occur when cells enter a so-called viable but nonculturable (VBNC) state, and to our knowledge, this is the first report documenting the presence of VBNC in PAA- and LA-treated food samples. In contrast, the BacLight-based viable counts were comparable to the culture-based enumerations of all DBDMH-treated samples. Therefore, we concluded that DBDMH-treated meat did not contain significant VBNC populations of S. enterica. A detailed description of our spray system, the dye validation, and the treatment reproducibility are also provided in this work.
Collapse
Affiliation(s)
- Laura Purevdorj-Gage
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Brian Nixon
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Kyle Bodine
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Qilong Xu
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820
| | - William T Doerrler
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820.,3 Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
34
|
Agrimonti C, Bottari B, Sardaro MLS, Marmiroli N. Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products. Crit Rev Food Sci Nutr 2017; 59:423-442. [DOI: 10.1080/10408398.2017.1375893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Caterina Agrimonti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Benedetta Bottari
- Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Maria Luisa Savo Sardaro
- Department of Food and Drug Science, University of Parma, Parma, Italy; Department of Nutrition and Gastronomy, University San Raffaele Roma Srl, Rome, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
35
|
Li R, Tun HM, Jahan M, Zhang Z, Kumar A, Dilantha Fernando WG, Farenhorst A, Khafipour E. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci Rep 2017; 7:5752. [PMID: 28720878 PMCID: PMC5515937 DOI: 10.1038/s41598-017-02516-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022] Open
Abstract
The limitation of 16S rRNA gene sequencing (DNA-based) for microbial community analyses in water is the inability to differentiate live (dormant cells as well as growing or non-growing metabolically active cells) and dead cells, which can lead to false positive results in the absence of live microbes. Propidium-monoazide (PMA) has been used to selectively remove DNA from dead cells during downstream sequencing process. In comparison, 16S rRNA sequencing (RNA-based) can target live microbial cells in water as both dormant and metabolically active cells produce rRNA. The objective of this study was to compare the efficiency and sensitivity of DNA-based, PMA-based and RNA-based 16S rRNA Illumina sequencing methodologies for live bacteria detection in water samples experimentally spiked with different combination of bacteria (2 gram-negative and 2 gram-positive/acid fast species either all live, all dead, or combinations of live and dead species) or obtained from different sources (First Nation community drinking water; city of Winnipeg tap water; water from Red River, Manitoba, Canada). The RNA-based method, while was superior for detection of live bacterial cells still identified a number of 16S rRNA targets in samples spiked with dead cells. In environmental water samples, the DNA- and PMA-based approaches perhaps overestimated the richness of microbial community compared to RNA-based method. Our results suggest that the RNA-based sequencing was superior to DNA- and PMA-based methods in detecting live bacterial cells in water.
Collapse
Affiliation(s)
- Ru Li
- Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of plant protection, Yunnan Agricultural University, Kunming, Yunnan province, 650201, China
| | - Hein Min Tun
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of Pediatrics, University of Alberta, AB, Canada
| | - Musarrat Jahan
- Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhengxiao Zhang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ayush Kumar
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
36
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
37
|
Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR. Int J Food Microbiol 2017; 242:24-36. [DOI: 10.1016/j.ijfoodmicro.2016.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/27/2022]
|
38
|
Qiu TA, Nguyen THT, Hudson-Smith NV, Clement PL, Forester DC, Frew H, Hang MN, Murphy CJ, Hamers RJ, Feng ZV, Haynes CL. Growth-Based Bacterial Viability Assay for Interference-Free and High-Throughput Toxicity Screening of Nanomaterials. Anal Chem 2017; 89:2057-2064. [PMID: 28208291 DOI: 10.1021/acs.analchem.6b04652] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Current high-throughput approaches evaluating toxicity of chemical agents toward bacteria typically rely on optical assays, such as luminescence and absorbance, to probe the viability of the bacteria. However, when applied to toxicity induced by nanomaterials, scattering and absorbance from the nanomaterials act as interferences that complicate quantitative analysis. Herein, we describe a bacterial viability assay that is free of optical interference from nanomaterials and can be performed in a high-throughput format on 96-well plates. In this assay, bacteria were exposed to various materials and then diluted by a large factor into fresh growth medium. The large dilution ensured minimal optical interference from the nanomaterial when reading optical density, and the residue left from the exposure mixture after dilution was confirmed not to impact the bacterial growth profile. The fractions of viable cells after exposure were allowed to grow in fresh medium to generate measurable growth curves. Bacterial viability was then quantitatively correlated to the delay of bacterial growth compared to a reference regarded as 100% viable cells; data analysis was inspired by that in quantitative polymerase chain reactions, where the delay in the amplification curve is correlated to the starting amount of the template nucleic acid. Fast and robust data analysis was achieved by developing computer algorithms carried out using R. This method was tested on four bacterial strains, including both Gram-negative and Gram-positive bacteria, showing great potential for application to all culturable bacterial strains. With the increasing diversity of engineered nanomaterials being considered for large-scale use, this high-throughput screening method will facilitate rapid screening of nanomaterial toxicity and thus inform the risk assessment of nanoparticles in a timely fashion.
Collapse
Affiliation(s)
- Tian A Qiu
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thu Ha Thi Nguyen
- Chemistry Department, Augsburg College , Minneapolis, Minnesota 55454, United States
| | - Natalie V Hudson-Smith
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter L Clement
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Dona-Carla Forester
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Hilena Frew
- Chemistry Department, Augsburg College , Minneapolis, Minnesota 55454, United States
| | - Mimi N Hang
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Z Vivian Feng
- Chemistry Department, Augsburg College , Minneapolis, Minnesota 55454, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Microbiota associated with the starter cultures and brewing process of traditional Hong Qu glutinous rice wine. Food Sci Biotechnol 2016; 25:649-658. [PMID: 30263319 DOI: 10.1007/s10068-016-0115-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
Hong Qu glutinous rice wine (produced mainly in Fujian province, China) is a traditional alcoholic beverage, which is prepared by fermenting cooked rice using a starter containing Monascus purpureus. In this review, the microbial diversity of fermentation starters from Fujian province, including fungi, bacteria, and yeast, is analyzed in comparison with those of "nuruk" (a traditional starter for making alcoholic beverages in Korea). The bacterial organization of Hong Qu starters was vastly variable in species composition and dominated by Bacillus sp. Lactic acid bacteria were also found in some starters. In case of fungi, Monascus sp. was dominant, whereas non-Saccharomyces yeast such as Saccharomycopsis fibuligera was detected. The microorganisms found in the nuruk starter are, in general, not significantly diverse compared with those found in the Hong Qu starter, with the exception of Monascus sp.; however, Hong Qu and nuruk both contain their own unique microbiota, which are quite diverse from each other.
Collapse
|
40
|
Vyhnánek T, Machálková Z, Trojan V, Hanáček P, Šafránková I, Havel L. Qualitative Detection of Fungal Contamination in Paprika Powder. J Food Saf 2016. [DOI: 10.1111/jfs.12296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomáš Vyhnánek
- Department of Plant Biology; Mendel University in Brno; Brno Czech Republic
| | - Zuzana Machálková
- Department of Plant Biology; Mendel University in Brno; Brno Czech Republic
| | - Václav Trojan
- Department of Plant Biology; Mendel University in Brno; Brno Czech Republic
| | - Pavel Hanáček
- Department of Plant Biology; Mendel University in Brno; Brno Czech Republic
| | - Ivana Šafránková
- Department of Crop Science, Breeding and Plant Medicine Faculty of AgriSciences; Mendel University in Brno; Brno Czech Republic
| | - Ladislav Havel
- Department of Plant Biology; Mendel University in Brno; Brno Czech Republic
| |
Collapse
|
41
|
Lv XC, Cai QQ, Ke XX, Chen F, Rao PF, Ni L. Characterization of fungal community and dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine by means of multiple culture-independent methods. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Wu ZF, Sun L, Zhang X, Shen XQ, Weng PF. Quantitative analysis of predominant yeasts and volatile compounds in the process of pickled wax gourd. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1052018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Kurakawa T, Ogata K, Matsuda K, Tsuji H, Kubota H, Takada T, Kado Y, Asahara T, Takahashi T, Nomoto K. Diversity of Intestinal Clostridium coccoides Group in the Japanese Population, as Demonstrated by Reverse Transcription-Quantitative PCR. PLoS One 2015; 10:e0126226. [PMID: 26000453 PMCID: PMC4441462 DOI: 10.1371/journal.pone.0126226] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/31/2015] [Indexed: 01/19/2023] Open
Abstract
We used sensitive rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) to quantify the Clostridium coccoides group, which is a major anaerobic population in the human intestine. For this purpose, the C. coccoides group was classified into 3 subgroups and 19 species for expediency in accordance with the existing database, and specific primers were newly developed to evaluate them. Population levels of the C. coccoides group in human feces determined by RT-qPCR were equivalent to those determined by fluorescence in situ hybridization. RT-qPCR analysis of fecal samples from 96 volunteers (32 young children, 32 adults and 32 elderly) by using the 22 new primer sets together with the C. coccoides group-specific primer setm revealed that (i) total counts obtained as the sum of the 3 subgroups and 19 species were equivalent to the results obtained by using the C. coccoides group-specific primer set; (ii) total C. coccoides-group counts in the elderly were significantly lower than those in young children and adults; (iii) genus Blautia was the most common subgroup in the human intestinal C. coccoides-group populations at all age populations tested; (iv) the prevalences of Fusicatenibacter saccharivorans and genus Dorea were significantly higher in adults than in young children and the elderly; and (v) the prevalences of C. scindens and C. hylemonae, both of which produce secondary bile acid in the human intestine, were significantly higher in the elderly than in young children and adults. Hierarchical clustering and principal component analysis showed clear separation of the bacterial components between adult and elderly populations. Taken together, these data suggest that aging plays an important role in the diversity of C. coccoides-group populations in human intestinal microbiota; changes in this diversity likely influence the health of the host.
Collapse
Affiliation(s)
- Takashi Kurakawa
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
- * E-mail:
| | - Kiyohito Ogata
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Kazunori Matsuda
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
- Yakult Honsha European Research Center for Microbiology, ESV, Technologiepark 4, Gent-Zwijnaarde, 9052, Belgium
| | - Hirokazu Tsuji
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Hiroyuki Kubota
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Toshihiko Takada
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Yukiko Kado
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Takashi Asahara
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Takuya Takahashi
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| | - Koji Nomoto
- Yakult Central Institute, 5–11 Izumi, Kunitachi, Tokyo, 186–8650, Japan
| |
Collapse
|
44
|
Payne MS, Bayatibojakhi S. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front Immunol 2014; 5:595. [PMID: 25505898 PMCID: PMC4245917 DOI: 10.3389/fimmu.2014.00595] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/06/2014] [Indexed: 02/04/2023] Open
Abstract
Infection is a leading cause of preterm birth (PTB). A focus of many studies over the past decade has been to characterize microorganisms present in the uterine cavity and document any association with negative pregnancy outcome. A range of techniques have been used to achieve this, including microbiological culture and targeted polymerase chain reaction assays, and more recently, microbiome-level analyses involving either conserved, phylogenetically informative genes such as the bacterial 16S rRNA gene or whole shotgun metagenomic sequencing. These studies have contributed vast amounts of data toward characterization of the uterine microbiome, specifically that present in the amniotic fluid, fetal membranes, and placenta. However, an overwhelming emphasis has been placed on the bacterial microbiome, with far less data produced on the viral and fungal/yeast microbiomes. With numerous studies now referring to PTB as a polymicrobial condition, there is the need to investigate the role of viruses and fungi/yeasts in more detail and in particular, look for associations between colonization with these microorganisms and bacteria in the same samples. Although the major pathway by which microorganisms are believed to colonize the uterine cavity is vertical ascension from the vagina, numerous studies are now emerging suggesting hematogenous transfer of oral microbiota to the uterine cavity. Evidence of this has been produced in mouse models and although DNA-based evidence in humans appears convincing in some aspects, use of methodologies that only detect viable cells as opposed to lysed cells and extracellular DNA are needed to clarify this. Such techniques as RNA analyses and viability polymerase chain reaction are likely to play key roles in the clinical translation of future microbiome-based data, particularly in confined environments such as the uterus, as detection of viable cells plays a key role in diagnosis and treatment of infection.
Collapse
Affiliation(s)
- Matthew S Payne
- School of Women's and Infants' Health, The University of Western Australia , Perth, WA , Australia
| | - Sara Bayatibojakhi
- School of Women's and Infants' Health, The University of Western Australia , Perth, WA , Australia
| |
Collapse
|
45
|
|
46
|
Postigo A, Bulacio L, Sortino M. Photodynamic inactivation of oropharyngeal Candida strains. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1424-1431. [PMID: 24950637 DOI: 10.1016/j.phymed.2014.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/05/2014] [Accepted: 04/18/2014] [Indexed: 06/03/2023]
Abstract
Oropharyngeal candidiasis (OPC) is an infection frequent in immunocompromised patients. Photodynamic therapy is an alternative to conventional treatments, based on the utilization of compounds that inhibit or kill microorganisms only under the effect of light, process known as Photodynamic Inactivation (PDI). In the present study, PDI of Candida spp. by the natural product α-terthienyl (α-T) was investigated following the guidelines of CLSI M27-A3, under UV-A light irradiation. The optimal values of two variables, exposure irradiation time (ET) and distance to the irradiation source (DIS) were established by employing Design Expert Software (DES). For this purpose, a panel of Candida strains isolated from OPC (C. albicans, C. tropicalis, C. parapsilosis and C. krusei) was employed and optimal values were 5 min (ET) and between 6.06 and 6.43 cm (DIS) with a desirability factor of 0.989. α-T plus UV-A light in the optimal conditions caused a complete reduction in viable cells in 5 min which was demonstrated by viable cells reduction assays and confocal microscopy after vital staining (propidium iodide/fluorescein diacetate). The germ tube formation of C. albicans was inhibited by α-T at sub-inhibitory concentrations. Results showed that α-T plus UV-A light could constitute an alternative for OPC treatments at the optimal conditions determined here.
Collapse
Affiliation(s)
- Agustina Postigo
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Lucía Bulacio
- Centro de Referencia en Micología - CEREMIC, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Maximiliano Sortino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina; Centro de Referencia en Micología - CEREMIC, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina.
| |
Collapse
|
47
|
Kasahara K, Ishikawa H, Sato S, Shimakawa Y, Watanabe K. Development of multiplex loop-mediated isothermal amplification assays to detect medically important yeasts in dairy products. FEMS Microbiol Lett 2014; 357:208-16. [PMID: 24965944 DOI: 10.1111/1574-6968.12512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/29/2022] Open
Abstract
Rapid detection of yeast contamination is important in the food industry. We have developed loop-mediated isothermal amplification (LAMP) assays to detect the emerging opportunistic pathogenic yeasts: Candida albicans, Candida glabrata, Candida tropicalis, the Candida parapsilosis group, Trichosporon asahii, and Trichosporon mucoides. These yeasts may cause deep-seated candidiasis or trichosporonosis. Four LAMP primer sets specific for Candida were designed to target the internal transcribed spacer 2 (ITS2) region between the 5.8S and 26S rRNA genes, and two LAMP primer sets specific for Trichosporon were designed to target the intergenic spacer 1 (IGS1) region between the 26S and 5S rRNA genes. The LAMP assays could detect these yeasts in a range between 10(0) and 10(3) cells mL(-1) in a contaminated dairy product within 1 h. We also developed multiplex LAMP assays to detect these Candida or Trichosporon species in a single reaction. Multiplex LAMP assays can detect contamination if at least one of the target species is present; they are more time- and cost-efficient than conventional methods and could detect target yeasts with sensitivity close to that of the LAMP assays. Multiplex LAMP assays established in this study can be used as a primary screening method for yeast contamination in food products.
Collapse
Affiliation(s)
- Kohei Kasahara
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Molecular identification of isolated fungi from unopened containers of greek yogurt by DNA sequencing of internal transcribed spacer region. Pathogens 2014; 3:499-509. [PMID: 25438008 PMCID: PMC4243425 DOI: 10.3390/pathogens3030499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022] Open
Abstract
In our previous study, we described the development of an internal transcribed spacer (ITS)1 sequencing method, and used this protocol in species-identification of isolated fungi collected from the manufacturing areas of a compounding company known to have caused the multistate fungal meningitis outbreak in the United States. In this follow-up study, we have analyzed the unopened vials of Greek yogurt from the recalled batch to determine the possible cause of microbial contamination in the product. A total of 15 unopened vials of Greek yogurt belonging to the recalled batch were examined for the detection of fungi in these samples known to cause foodborne illness following conventional microbiological protocols. Fungi were isolated from all of the 15 Greek yogurt samples analyzed. The isolated fungi were genetically typed by DNA sequencing of PCR-amplified ITS1 region of rRNA gene. Analysis of data confirmed all of the isolated fungal isolates from the Greek yogurt to be Rhizomucor variabilis. The generated ITS1 sequences matched 100% with the published sequences available in GenBank. In addition, these yogurt samples were also tested for the presence of five types of bacteria (Salmonella, Listeria, Staphylococcus, Bacillus and Escherichia coli) causing foodborne disease in humans, and found negative for all of them.
Collapse
|
49
|
Vendrame M, Manzano M, Comi G, Bertrand J, Iacumin L. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR. Food Microbiol 2014; 42:196-204. [PMID: 24929737 DOI: 10.1016/j.fm.2014.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/29/2014] [Accepted: 03/13/2014] [Indexed: 11/25/2022]
Abstract
Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials.
Collapse
Affiliation(s)
- Marco Vendrame
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Marisa Manzano
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Giuseppe Comi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Julien Bertrand
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Lucilla Iacumin
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
50
|
Fujisawa T. [Comparison of intestinal bacteria composition identified by various analytical methods]. Nihon Saikingaku Zasshi 2014; 69:331-48. [PMID: 24681991 DOI: 10.3412/jsb.69.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many different kinds of bacteria are normally found in the intestines of healthy humans and animals. To study the ecology and function of these intestinal bacteria, the culture method was fundamental until recent years, and suitable agar plates such as non-selective agar plates and several selective agar plates have been developed. Furthermore, the roll-tube, glove box, and plate-in-bottle methods have also been developed for the cultivation of fastidious anaerobes that predominantly colonize the intestine. Until recently, the evaluation of functional foods such as pre- and probiotics was mainly done using culture methods, and many valuable data were produced. On the other hand, genomic analysis such as the fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), clone-library, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), terminal-restriction fragment length polymorphism (T-RFLP) methods, and metagenome analysis have been used for the investigation of intestinal microbiota in recent years. The identification of bacteria is done by investigation of the phenotypic characteristics in culture methods, while rRNA genes are used as targets in genomic analysis. Here, I compare the fecal bacteria identified by various analytical methods.
Collapse
Affiliation(s)
- Tomohiko Fujisawa
- Laboratory of Food Hygiene, Faculty of Applied Life Science, Nippon Veterinary and Life Science University
| |
Collapse
|