1
|
Mayer L, Liedel C, Klose K, de Greeff A, Rieckmann K, Baums C. Immunogenicities of vaccines including the immunoglobulin M-degrading enzyme of Streptococcus suis, rIde Ssuis , and protective efficacy against serotype 14 in piglets. Vaccine X 2024; 21:100590. [PMID: 39659664 PMCID: PMC11629322 DOI: 10.1016/j.jvacx.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Streptococcus suis (S. suis) is a major porcine pathogen. Some strains have a substantial zoonotic potential such as serotype (cps) 14 as the second most important cps in human infections. To this date no licensed S. suis vaccine is available in Europe though subunit vaccines and bacterins have been examined by several scientific groups worldwide. Objectives of this study were to determine protective efficacy of rIde Ssuis vaccination against intranasal S. suis cps14 challenge in conventional weaned piglets and to investigate additionally immunogenicity of rIde Ssuis vaccination in cesarean-derived colostrum-deprived (CDCD) piglets. Immunization led to reduction of bacterial multiplicity in porcine blood and delayed onset of clinical signs of cps14 disease in conventional rIde Ssuis -vaccinated piglets. However, significant differences were not recorded which might be related to comparable low anti-Ide Ssuis antibody levels and insufficient neutralization of IgM protease activity in this animal experiment. In contrast, immunization of cesarean-derived colostrum-deprived piglets with rIde Ssuis resulted in high α-rIde Ssuis IgG antibody levels and a highly significant reduction of the survival factor of the cps14 challenge strain in porcine blood in vitro. In conclusion, the results of this study indicate bactericidal immunity against S. suis cps14 by Ide Ssuis specific immunity.
Collapse
Affiliation(s)
- L. Mayer
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Veterinary Faculty, Leipzig University, Germany
| | - C. Liedel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Veterinary Faculty, Leipzig University, Germany
| | - K. Klose
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - A. de Greeff
- Wageningen Bioveterinary Research, part of Wageningen University and Research, Lelystad,The Netherlands
| | - K. Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Veterinary Faculty, Leipzig University, Germany
| | - C.G. Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Veterinary Faculty, Leipzig University, Germany
| |
Collapse
|
2
|
Yan Z, Pan R, Zhang J, Sun J, Ma X, Dong N, Yao X, Wei J, Liu K, Qiu Y, Sealey K, Nichols H, Jarvis MA, Upton M, Li X, Ma Z, Liu J, Li B. Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice. Vaccines (Basel) 2024; 12:544. [PMID: 38793795 PMCID: PMC11126002 DOI: 10.3390/vaccines12050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Background:Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-γ and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis.
Collapse
Affiliation(s)
- Zujie Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Katie Sealey
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK;
| | | | - Michael A. Jarvis
- The Vaccine Group Ltd., Plymouth PL6 8BU, UK; (H.N.)
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
| | - Xiangdong Li
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| |
Collapse
|
3
|
Jeffery A, Gilbert M, Corsaut L, Gaudreau A, Obradovic MR, Cloutier S, Frenette MC, Surprenant C, Lacouture S, Arnal JL, Gottschalk M, Segura M. Immune response induced by a Streptococcus suis multi-serotype autogenous vaccine used in sows to protect post-weaned piglets. Vet Res 2024; 55:57. [PMID: 38715138 PMCID: PMC11076212 DOI: 10.1186/s13567-024-01313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Streptococcus suis is a bacterial pathogen that causes important economic losses to the swine industry worldwide. Since there are no current commercial vaccines, the use of autogenous vaccines applied to gilts/sows to enhance transfer of passive immunity is an attractive alternative to protect weaned piglets. However, there is no universal standardization in the production of autogenous vaccines and the vaccine formulation may be highly different among licenced manufacturing laboratories. In the present study, an autogenous vaccine that included S. suis serotypes 2, 1/2, 5, 7 and 14 was prepared by a licensed laboratory and administrated to gilts using a three-dose program prior to farrowing. The antibody response in gilts as well as the passive transfer of antibodies to piglets was then evaluated. In divergence with previously published data with an autogenous vaccine produced by a different company, the increased response seen in gilts was sufficient to improve maternal antibody transfer to piglets up to 5 weeks of age. However, piglets would still remain susceptible to S. suis disease which often appears during the second part of the nursery period. Vaccination did not affect the shedding of S. suis (as well as that of the specific S. suis serotypes included in the vaccine) by either gilts or piglets. Although all antibiotic treatments were absent during the trial, the clinical protective effect of the vaccination program with the autogenous vaccine could not be evaluated, since limited S. suis cases were present during the trial, confirming the need for a complete evaluation of the clinical protection that must include laboratory confirmation of the aetiological agent involved in the presence of S. suis-associated clinical signs. Further studies to evaluate the usefulness of gilt/sow vaccination with autogenous vaccines to protect nursery piglets should be done.
Collapse
Affiliation(s)
- Alison Jeffery
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Mélina Gilbert
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Lorelei Corsaut
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Annie Gaudreau
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Milan R Obradovic
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Jose Luis Arnal
- Exopol, Veterinary Diagnostic and Autogenous Vaccine Laboratory, Zaragoza, Spain
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada.
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Centre, and Research Group On Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
4
|
Fabà L, Aragon V, Litjens R, Galofré-Milà N, Segura M, Gottschalk M, Doelman J. Metabolic insights and background from naturally affected pigs during Streptococcus suis outbreaks. Transl Anim Sci 2023; 7:txad126. [PMID: 38023423 PMCID: PMC10660374 DOI: 10.1093/tas/txad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Streptococcus suis (S. suis) is an endemic zoonotic pathogen still lacking adequate prevention in pigs. The present case study looked back to the occurrence and consequences of S. suis outbreaks in our swine research facilities in search of new metabolic and physiological insight. From a series of outbreaks, a dataset was created including 56 pigs sampled during disease detection based on clinical signs. Pigs suspected with S. suis infection were defined as diseased (n = 28) and included pigs defined as neurologically diseased (n = 20) when severe neurological signs (central nervous system dysfunctions, i.e., opisthotonos, ataxia, and generalized tremor) were observed. Another set of 28 pigs included respective pen mates from each case and were defined as control. Representative deaths were confirmed to be caused by S. suis. Tonsillar swabs were collected and analyzed by quantitative polymerase chain reaction (qPCR) for total bacteria, total S. suis, and S. suis serotypes (SS) 2 (and/or 1/2) and 9. Blood and sera were analyzed to quantify blood gases, minerals, and S. suis reactive immunoglobulins against current isolates. Data collected included litter sibling associations, birth and weaning body weight (BW), and average daily gain (ADG) 7 d after the disease detection. In general, the disease increased pH, sO2 and the incidence of alkalosis, but reduced pCO2, glucose, Ca, P, Mg, K, and Na in blood/serum compared to control. The SS2 (and/or SS1/2) prevalence was significantly (P < 0.05) increased in neurologically diseased pigs and its relative abundance tended (P < 0.10) to increase in tonsils. In contrast, the relative abundance of total S. suis was lower (P > 0.05) in diseased pigs than control pigs. Levels of S. suis reactive IgG2 were lower, but IgM were higher (P < 0.03) in neurologically affected pigs compared to control. Furthermore, there was an increased proportion of sibling pigs that were diseased compared to control. In conclusion, our results evidence that naturally affected pigs were associated to average performing pigs without any predisease trait to highlight but a sow/litter effect. Besides, neurologically affected pigs had increased S. suis (SS2 and/or 1/2) prevalence and relative abundance, a respiratory alkalosis profile, and mineral loss.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| | - Virginia Aragon
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Ralph Litjens
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| | - Núria Galofré-Milà
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Mariela Segura
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - John Doelman
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| |
Collapse
|
5
|
Liedel C, Rieckmann K, Baums CG. A critical review on experimental Streptococcus suis infection in pigs with a focus on clinical monitoring and refinement strategies. BMC Vet Res 2023; 19:188. [PMID: 37798634 PMCID: PMC10552360 DOI: 10.1186/s12917-023-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Streptococcus suis (S. suis) is a major pig pathogen worldwide with zoonotic potential. Though different research groups have contributed to a better understanding of the pathogenesis of S. suis infections in recent years, there are still numerous neglected research topics requiring animal infection trials. Of note, animal experiments are crucial to develop a cross-protective vaccine which is highly needed in the field. Due to the severe clinical signs associated with S. suis pathologies such as meningitis and arthritis, implementation of refinement is very important to reduce pain and distress of experimentally infected pigs. This review highlights the great diversity of clinical signs and courses of disease after experimental S. suis pig infections. We review clinical read out parameters and refinement strategies in experimental S. suis pig infections published between 2000 and 2021. Currently, substantial differences exist in describing clinical monitoring and humane endpoints. Most of the reviewed studies set the body temperature threshold of fever as high as 40.5°C. Monitoring intervals vary mainly between daily, twice a day and three times a day. Only a few studies apply scoring systems. Published scoring systems are inconsistent in their inclusion of parameters such as body temperature, feeding behavior, and respiratory signs. Locomotion and central nervous system signs are more common clinical scoring parameters in different studies by various research groups. As the heterogenicity in clinical monitoring limits the comparability between studies we hope to initiate a discussion with this review leading to an agreement on clinical read out parameters and monitoring intervals among S. suis research groups.
Collapse
Affiliation(s)
- Carolin Liedel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Karoline Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Christoph G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany.
| |
Collapse
|
6
|
Lou F, Huang H, Li Y, Yang S, Shi Y. Investigation of the inhibitory effect and mechanism of epigallocatechin-3-gallate against Streptococcus suis sortase A. J Appl Microbiol 2023; 134:lxad191. [PMID: 37634082 DOI: 10.1093/jambio/lxad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
AIMS Streptococcus suis seriously harms people and animals, and importantly, causes great economic losses in the pig industry. Similar to most Gram-positive pathogenic bacteria, sortase A (SrtA) of S. suis can mediate the anchoring of a variety of virulence factors that contain specific sorting sequences to the surface of the bacterial cell wall envelope and participate in pathogenicity. The purpose of this study is to clarify the molecular mechanism of epigallocatechin-3-gallate (EGCG) inhibiting S. suis SrtA and provide more evidence for the development of novel anti-S. suis infections drugs. METHODS AND RESULTS Through the SrtA substrate cleavage experiment, we found that the main component of green tea, EGCG, can effectively inhibit the enzyme activity of S. suis SrtA. Further, molecular docking and molecular dynamics simulation were used to clarify the molecular mechanism of its inhibitory effect, demonstrating that EGCG mainly interacts with amino acids at 113 and 115 to exert its inhibitory function. It was previously found that EGCG can inhibit the growth of S. suis and reduce the activity of suilysin and inhibit its expression. Our research reveals a new function of EGCG in S. suis infection. CONCLUSIONS Our research proves that EGCG can effectively inhibit the transpeptidase activity of SrtA. We also clarify the accompanying molecular mechanism, providing more sufficient evidence for the use of EGCG as a potential lead compound against S. suis infection.
Collapse
Affiliation(s)
- Fei Lou
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hui Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yaping Li
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Shuo Yang
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Yangqian Shi
- School of Basic Medical Sciences, Beihua University, Jilin, China
| |
Collapse
|
7
|
Li Q, Zhou G, Fei X, Tian Y, Wang S, Shi H. Engineered Bacterial Outer Membrane Vesicles with Lipidated Heterologous Antigen as an Adjuvant-Free Vaccine Platform for Streptococcus suis. Appl Environ Microbiol 2023; 89:e0204722. [PMID: 36809058 PMCID: PMC10057044 DOI: 10.1128/aem.02047-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are considered a promising vaccine platform for their high built-in adjuvanticity and ability to efficiently induce immune responses. OMVs can be engineered with heterologous antigens based on genetic engineering strategies. However, several critical issues should still be validated, including optimal exposure to the OMV surface, increased production of foreign antigens, nontoxicity, and induction of powerful immune protection. In this study, engineered OMVs with the lipoprotein transport machinery (Lpp) were designed to present SaoA antigen as a vaccine platform against Streptococcus suis. The results suggest that Lpp-SaoA fusions can be delivered on the OMV surface and do not have significant toxicity. Moreover, they can be engineered as lipoprotein and significantly accumulated in OMVs at high levels, thus accounting for nearly 10% of total OMV proteins. Immunization with OMVs containing Lpp-SaoA fusion antigen induced strong specific antibody responses and high levels of cytokines, as well as a balanced Th1/Th2 immune response. Furthermore, the decorated OMV vaccination significantly enhanced microbial clearance in a mouse infection model. It was found that antiserum against lipidated OMVs significantly promoted the opsonophagocytic uptake of S. suis in RAW246.7 macrophages. Lastly, OMVs engineered with Lpp-SaoA induced 100% protection against a challenge with 8× the 50% lethal dose (LD50) of S. suis serotype 2 and 80% protection against a challenge with 16× the LD50 in mice. Altogether, the results of this study provide a promising versatile strategy for the engineering of OMVs and suggest that Lpp-based OMVs may be a universal adjuvant-free vaccine platform for important pathogens. IMPORTANCE Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized. In this study, we exploited the lipoprotein transport pathway to engineer OMVs with heterologous antigen. Not only did lapidated heterologous antigen accumulate in the engineered OMV compartment at high levels, but also it was engineered to be delivered on the OMV surface, thus leading to the optimal activation of antigen-specific B cells and T cells. Immunization with engineered OMVs induced a strong antigen-specific antibodies in mice and conferred 100% protection against S. suis challenge. In general, the data of this study provide a versatile strategy for the engineering of OMVs and suggest that OMVs engineered with lipidated heterologous antigens may be a vaccine platform for significant pathogens.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Yang P, Yang L, Cao K, Hu Q, Hu Y, Shi J, Zhao D, Yu X. Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Streptococcus suis Serotype 9 infection in a mouse model. Front Cell Infect Microbiol 2023; 13:1027419. [PMID: 36896190 PMCID: PMC9989217 DOI: 10.3389/fcimb.2023.1027419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that affects the health of humans and the development of the pig industry. The SS Cba protein is a collagen adhesin, and a few of its homologs are related to the enhancement of bacterial adhesion. We compared the phenotypes of SS9-P10, SS9-P10 cba knockout strains and its complementary strains in vitro and in vivo and found that knocking out the cba gene did not affect the growth characteristics of the strain, but it significantly reduced the ability of SS to form biofilms, adhesion to host cells, phagocytic resistance to macrophages and attenuated virulence in a mouse infection model. These results indicated that Cba was a virulence related factor of SS9. In addition, Mice immunized with the Cba protein had higher mortality and more serious organ lesions after challenge, and the same was observed in passive immunization experiments. This phenomenon is similar to the antibody-dependent enhancement of infection by bacteria such as Acinetobacter baumannii and Streptococcus pneumoniae. To our knowledge, this is the first demonstration of antibody-dependent enhancement of SS, and these observations highlight the complexity of antibody-based therapy for SS infection.
Collapse
|
9
|
Fredriksen S, Guan X, Boekhorst J, Molist F, van Baarlen P, Wells JM. Environmental and maternal factors shaping tonsillar microbiota development in piglets. BMC Microbiol 2022; 22:224. [PMID: 36163011 PMCID: PMC9513891 DOI: 10.1186/s12866-022-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background The palatine tonsils are part of the mucosal immune system and stimulate immune responses through M cell uptake sampling of antigens and bacteria in the tonsillar crypts. Little is known about the development of the tonsillar microbiota and the factors determining the establishment and proliferation of disease-associated bacteria such as Streptococcus suis. In this study, we assessed tonsillar microbiota development in piglets during the first 5 weeks of life and identified the relative importance of maternal and environmental farm parameters influencing the tonsillar microbiota at different ages. Additionally, we studied the effect sow vaccination with a bacterin against S. suis on microbiota development and S. suis colonisation in their offspring. Results Amplicon sequencing of the 16S rRNA gene V3-V4 region revealed that a diverse tonsillar microbiota is established shortly after birth, which then gradually changes during the first 5 weeks of life without a large impact of weaning on composition or diversity. We found a strong litter effect, with siblings sharing a more similar microbiota compared to non-sibling piglets. Co-housing in rooms, within which litters were housed in separate pens, also had a large impact on microbiota composition. Sow parity and prepartum S. suis bacterin vaccination of sows had weaker but significant associations with microbiota composition, impacting on the abundance of Streptococcus species before and after weaning. Sex and birthweight had limited impact on the tonsillar microbiota, and none of the measured factors had consistent associations with microbiota diversity. Conclusions The piglet tonsillar microbiota is established shortly after birth. While microbiota development is associated with both environmental and maternal parameters, weaning has limited impact on microbiota composition. Intramuscular vaccination of sows pre-partum had a significant effect on the tonsillar microbiota composition of their piglets. These findings provide new insights into the mechanisms shaping the tonsillar microbiota.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02625-8.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.
| | - Xiaonan Guan
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands.,Schothorst Feed Research B.V, Lelystad, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | | | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, U.K..
| |
Collapse
|
10
|
Wu MC, Doan TD, Lee JW, Lo YT, Wu HC, Chu CY. Recombinant suilysin of Streptococcus suis enhances the protective efficacy of an engineered Pasteurella multocida toxin protein. Res Vet Sci 2022; 151:175-183. [PMID: 36041311 DOI: 10.1016/j.rvsc.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Suilysin (Sly) from Streptococcus suis has been shown to elicit strong immune responses and may act as a vaccine adjuvant. In the present study, we tested the adjuvant effect of Sly using an engineered Pasteurella multocida toxin, rPMT-NC, as the antigen. The antigen was also formulated with other conventional adjuvants (aluminum hydroxide, water-in-oil-in-water) for comparison. The efficacy of these vaccine formulations were evaluated in mice. The optimal dosage of purified rSly for enhancing immune responses in mice was first determined to be 40 μg/ml based on significantly (p < 0.05) increased serum antibody titers, expression of cytokines, including interleukin (IL)-4, IL-12, and interferon (IFN)-γ and the survival rate after challenge with P. multocida. Mice immunized with rPMT-NC + rSly had augmented antibody production and cellular immunity compare to those immunized with rPMT-NC plus other adjuvants. In addition, the survival rate of mice immunized with rPMT-NC + rSly was the highest (70% v.s. 30% of mice immunized with rPMT-NC alone) among all groups. In conclusion, rSly has the potential to be used as a biological adjuvant to enhance immune responses and protective efficacy of protein-based vaccines.
Collapse
Affiliation(s)
- Min-Chia Wu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Thu-Dung Doan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Ting Lo
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsing-Chieh Wu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Yen Chu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
11
|
Li YA, Sun Y, Fu Y, Zhang Y, Li Q, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering a dual-antigen expression cassette provides mouse cross-protection against Streptococcus suis serotypes 2, 7, 9, and 1/2. Vet Res 2022; 53:46. [PMID: 35733156 PMCID: PMC9215036 DOI: 10.1186/s13567-022-01062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
A universal vaccine protecting against multiple serotypes of Streptococcus suis is urgently needed to improve animal welfare and reduce the consumption of antibiotics. In this study, a dual antigen expression cassette consisting of SS2-SaoA and SS9-Eno was delivered by a recombinant Salmonella Choleraesuis vector to form the vaccine candidate rSC0016(pS-SE). SaoA and Eno were simultaneously synthesized in rSC0016(pS-SE) without affecting the colonization of the recombinant vector in the lymphatic system. In addition, the antiserum of mice immunized with rSC0016(pS-SE) produced a broader and potent opsonophagocytic response against multiple serotypes of S. suis. Finally, rSC0016(pS-SE) provided mice with a 100% protection against a lethal dose of parent S. suis serotype 2 and serotype 9, and provided 90% and 80% protection against heterologous S. suis serotype 7 or 1/2. These values were significantly higher than those obtained with rSC0016(pS-SaoA) or rSC0016(pS-Eno). Together, this study serves as a foundation for developing a universal vaccine against multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
12
|
Neutrophils in Streptococcus suis Infection: From Host Defense to Pathology. Microorganisms 2021; 9:microorganisms9112392. [PMID: 34835517 PMCID: PMC8624082 DOI: 10.3390/microorganisms9112392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Streptococcus suis is a swine pathogen and zoonotic agent responsible for economic losses to the porcine industry. Infected animals may develop meningitis, arthritis, endocarditis, sepsis and/or sudden death. The pathogenesis of the infection implies that bacteria breach mucosal host barriers and reach the bloodstream, where they escape immune-surveillance mechanisms and spread throughout the organism. The clinical manifestations are mainly the consequence of an exacerbated inflammation, defined by an exaggerated production of cytokines and recruitment of immune cells. Among them, neutrophils arrive first in contact with the pathogens to combat the infection. Neutrophils initiate and maintain inflammation, by producing cytokines and deploying their arsenal of antimicrobial mechanisms. Furthermore, neutrophilic leukocytosis characterizes S. suis infection, and lesions of infected subjects contain a large number of neutrophils. Therefore, this cell type may play a role in host defense and/or in the exacerbated inflammation. Nevertheless, a limited number of studies addressed the role or functions of neutrophils in the context of S. suis infection. In this review, we will explore the literature about S. suis and neutrophils, from their interaction at a cellular level, to the roles and behaviors of neutrophils in the infected host in vivo.
Collapse
|
13
|
Obradovic MR, Corsaut L, Dolbec D, Gottschalk M, Segura M. Experimental evaluation of protection and immunogenicity of Streptococcus suis bacterin-based vaccines formulated with different commercial adjuvants in weaned piglets. Vet Res 2021; 52:133. [PMID: 34666827 PMCID: PMC8527783 DOI: 10.1186/s13567-021-01004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 12/04/2022] Open
Abstract
Streptococcus suis is an important swine pathogen responsible for economic losses to the swine industry worldwide. There is no effective commercial vaccine against S. suis. The use of autogenous (“bacterin”) vaccines to control S. suis outbreaks is a frequent preventive measure in the field, although scientific data on immunogenicity and reduction in mortality and morbidity are scarce. The goal of our study is to experimentally evaluate the immunogenicity and protective efficacy against homologous challenge in weaned piglets of a S. suis serotype 2 bacterin-based vaccine formulated with six different commercial adjuvants (Alhydrogel®, Emulsigen®-D, Quil-A®, Montanide™ ISA 206 VG, Montanide™ ISA 61 VG, and Montanide™ ISA 201 VG). The vaccine formulated with Montanide™ ISA 61 VG induced a significant increase in anti-S. suis antibodies, including both IgG1 and IgG2 subclasses, protected against mortality and significantly reduced morbidity and severity of clinical signs. Vaccines formulated with Montanide ISA 206 VG or Montanide ISA 201 VG also induced a significant increase in anti-S. suis antibodies and showed partial protection and reduction of clinical signs severity. Vaccines formulated with Alhydrogel®, Emulsigen®-D, or Quil-A® induced a low and IgG1-shifted antibody response and failed to protect vaccinated piglets against a homologous challenge. In conclusion, the type of adjuvant used in the vaccine formulation significantly influenced the immune response and efficacy of the vaccine against a homologous challenge.
Collapse
Affiliation(s)
- Milan R Obradovic
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Lorelei Corsaut
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Dominic Dolbec
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marcelo Gottschalk
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Mariela Segura
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
14
|
Weiße C, Dittmar D, Jakóbczak B, Florian V, Schütze N, Alber G, Klose K, Michalik S, Valentin-Weigand P, Völker U, Baums CG. Immunogenicity and protective efficacy of a Streptococcus suis vaccine composed of six conserved immunogens. Vet Res 2021; 52:112. [PMID: 34433500 PMCID: PMC8390293 DOI: 10.1186/s13567-021-00981-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023] Open
Abstract
A vaccine protecting against different Streptococcus suis serotypes is highly needed in porcine practice to improve animal welfare and reduce the use of antibiotics. We hypothesized that immunogens prominently recognized by convalescence sera but significantly less so by sera of susceptible piglets are putative protective antigens. Accordingly, we investigated immunogenicity and protective efficacy of a multicomponent vaccine including six main conserved immunogens, namely SSU0934, SSU1869, SSU0757, SSU1950, SSU1664 and SSU0187. Flow cytometry confirmed surface expression of all six immunogens in S. suis serotypes 2, 9 and 14. Although prime-booster vaccination after weaning resulted in significantly higher specific IgG levels against all six immunogens compared to the placebo-treated group, no significant differences between bacterial survival in blood from either vaccinated or control animals were recorded for serotype 2, 9 and 14 strains. Furthermore, vaccinated piglets were not protected against morbidity elicited through intranasal challenge with S. suis serotype 14. As ~50% of animals in both groups did not develop disease, we investigated putative other correlates of protection. Induction of reactive oxygen species (ROS) in blood granulocytes was not associated with vaccination but correlated with protection as all piglets with >5% ROS survived the challenge. Based on these findings we discuss that the main immunogens of S. suis might actually not be a priori good candidates for protective antigens. On the contrary, expression of immunogens that evoke antibodies that do not mediate killing of this pathogen might constitute an evolutionary advantage conserved in many different S. suis strains.
Collapse
Affiliation(s)
- Christine Weiße
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Denise Dittmar
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Stephan Michalik
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Valentin-Weigand
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
15
|
Chen T, Wang C, Hu L, Lu H, Song F, Zhang A, Wang X, Chen H, Tan C. Evaluation of the immunoprotective effects of IF-2 GTPase and SSU05-1022 as a candidate for a Streptococcus suis subunit vaccine. Future Microbiol 2021; 16:721-729. [PMID: 34223787 DOI: 10.2217/fmb-2020-0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aims to develop a subunit vaccine with high cross-protection for Streptococcus suis. Materials & methods: Four-week-old female BALB/c mice were first immunized with a single and mixed protein. Various indicators, such as antibody titers and various cytokine levels, were further analyzed. Results: The results showed that purified recombinant proteins IF-2 and 1022 had a good protective effect against lethal doses of S. suis serotype 2 and S. suis serotype 9. This study showed immunization with recombinant proteins. Conclusion: IF-2 and 1022 can enhance cross-protection against S. suis serotypes 2 and 9.
Collapse
Affiliation(s)
- Tumei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangyu Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei, 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei, 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei, 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei, 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei, 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei, 430070, China
| |
Collapse
|
16
|
Corsaut L, Martelet L, Goyette-Desjardins G, Beauchamp G, Denicourt M, Gottschalk M, Segura M. Immunogenicity study of a Streptococcus suis autogenous vaccine in preparturient sows and evaluation of passive maternal immunity in piglets. BMC Vet Res 2021; 17:72. [PMID: 33546699 PMCID: PMC7866767 DOI: 10.1186/s12917-021-02774-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background Streptococcus suis is an important pathogen that causes severe diseases mostly in weaned piglets. Only available vaccines in the field are those composed of killed bacteria (bacterins) but data about their effectiveness are missing. We report here a field study on the immunological response induced by an autogenous vaccine applied in pre-parturient sows. Using a farm with recurrent S. suis serotype 7 problems, the study was divided in three experiments: (I) Sows received the vaccine at 7 and 3 weeks pre-farrowing. (II) Replacement gilts introduced to the herd received the vaccine at 4 and 7 weeks after their entry in quarantine and a boost 3 weeks pre-farrowing. (III) Gilts from experiment II received another boost 3 weeks pre-farrowing at their 3rd/4th parity. Levels, isotype profile and opsonophagocytosis capacity of the serum antibodies induced by vaccination were evaluated in sows and maternal immunity in piglets. Results In sows (I), the vaccine induced a slight, albeit significant, increase in anti-S. suis total antibodies after 2 doses when compare to basal levels already present in the animals. These antibodies showed a high opsonic capacity in vitro, highlighting their potential protective capacity. A gilt vaccination program of 3 doses (II) resulted in a significant increase in anti-S. suis total antibodies. Levels of maternal immunity transferred to piglets were high at 7 days of age, but rapidly decreased by 18 days of age. A gilt vaccination program ensued a higher transfer of maternal immunity in piglets compared to control animals; nevertheless duration was not improved at 18 day-old piglets. The vaccine response in both gilts and sows was mainly composed of IgG1 subclass, which was also the main Ig transferred to piglets. IgG2 subclass was also found in piglets, but its level was not increased by vaccination. Finally, a recall IgG1 response was induced by another boost vaccination at 3rd/4th parity (III), indicating that the vaccine induced the establishment of a lasting memory response in the herd. Conclusions Overall, an optimal gilt/sow vaccination program might result in increased antibody responses; nevertheless duration of maternal immunity would not last long enough to protect post-weaned piglets. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02774-4.
Collapse
Affiliation(s)
- Lorelei Corsaut
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| | - Léa Martelet
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| | - Guillaume Goyette-Desjardins
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| | - Guy Beauchamp
- Biostatistics Office, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Martine Denicourt
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, Quebec, J2S 2M2, Canada.
| |
Collapse
|
17
|
Nicholson TL, Waack U, Anderson TK, Bayles DO, Zaia SR, Goertz I, Eppinger M, Hau SJ, Brockmeier SL, Shore SM. Comparative Virulence and Genomic Analysis of Streptococcus suis Isolates. Front Microbiol 2021; 11:620843. [PMID: 33574803 PMCID: PMC7870872 DOI: 10.3389/fmicb.2020.620843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis is a zoonotic bacterial swine pathogen causing substantial economic and health burdens to the pork industry. Mechanisms used by S. suis to colonize and cause disease remain unknown and vaccines and/or intervention strategies currently do not exist. Studies addressing virulence mechanisms used by S. suis have been complicated because different isolates can cause a spectrum of disease outcomes ranging from lethal systemic disease to asymptomatic carriage. The objectives of this study were to evaluate the virulence capacity of nine United States S. suis isolates following intranasal challenge in swine and then perform comparative genomic analyses to identify genomic attributes associated with swine-virulent phenotypes. No correlation was found between the capacity to cause disease in swine and the functional characteristics of genome size, serotype, sequence type (ST), or in vitro virulence-associated phenotypes. A search for orthologs found in highly virulent isolates and not found in non-virulent isolates revealed numerous predicted protein coding sequences specific to each category. While none of these predicted protein coding sequences have been previously characterized as potential virulence factors, this analysis does provide a reliable one-to-one assignment of specific genes of interest that could prove useful in future allelic replacement and/or functional genomic studies. Collectively, this report provides a framework for future allelic replacement and/or functional genomic studies investigating genetic characteristics underlying the spectrum of disease outcomes caused by S. suis isolates.
Collapse
Affiliation(s)
- Tracy L Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Ursula Waack
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Oak Ridge Institute for Science and Education, United States Department of Energy, Oak Ridge, TN, United States
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Darrell O Bayles
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Sam R Zaia
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Isaiah Goertz
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Samantha J Hau
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Oak Ridge Institute for Science and Education, United States Department of Energy, Oak Ridge, TN, United States
| | - Susan L Brockmeier
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Sarah M Shore
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
18
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
19
|
Comparative Study of Immunogenic Properties of Purified Capsular Polysaccharides from Streptococcus suis Serotypes 3, 7, 8, and 9: the Serotype 3 Polysaccharide Induces an Opsonizing IgG Response. Infect Immun 2020; 88:IAI.00377-20. [PMID: 32747605 PMCID: PMC7504959 DOI: 10.1128/iai.00377-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C–C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.
Collapse
|
20
|
Li Q, Lv Y, Li YA, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020; 38:6904-6913. [PMID: 32907758 DOI: 10.1016/j.vaccine.2020.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023]
Abstract
Streptococcus suis, a major zoonotic pathogen in swine, can be classified into 35 serotypes. However, no universal vaccine against the multiple serotypes of S. suis is available, though some studies have shown homologous protection. Hence, developing an effective universal vaccine to protect pigs against multiple S. suis serotypes is necessary, or at the very least, to protect pigs against diseases caused by the dominant pathogenic serotypes. Enolase, a highly conserved surface protein, is present in all of the described S. suis serotypes. rSC0016 is an improved recombinant attenuated S. Choleraesuis vaccine vector, combining a sopB mutation with regulated delayed systems, achieving an adequate balance between host safety and immunogenicity. In order to develop a universal vaccine against the multiple serotypes of S. suis, a novel recombinant vaccine strain rSC0016 that carries a heterologous antigen enolase was developed in this study. According, it was found that the recombinant vaccine strain rSC0016(pS-Enolase) exhibited better colonization compared to the vaccine control strain rSC0018(pYA3493). In addition, a mouse model immunized with the strain rSC0016(pS-Enolase) elicited significant IgG antibody responses against both enolase and Salmonella antigens, while inducing good mucosal, humoral, and cellular immune responses against enolase. Finally, immunization with rSC0016(pS-Enolase) was shown to confer 100%, 80%, and 100% protection against the serotypes of SS2, SS7, and SS9, respectively, and significantly reduced histopathological lesions in mice. Overall, this study provides a promising universal vaccine candidate for use against the multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yifan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yuanzhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China.
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
21
|
Field Study on the Immunological Response and Protective Effect of a Licensed Autogenous Vaccine to Control Streptococcus suis Infections in Post-Weaned Piglets. Vaccines (Basel) 2020; 8:vaccines8030384. [PMID: 32674276 PMCID: PMC7565864 DOI: 10.3390/vaccines8030384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Streptococcus suis is one of the most important bacterial pathogens in weaned piglets and responsible for serious economic losses to the swine industry. Currently, mostly autogenous vaccines composed of killed bacteria (bacterins) are available. However, immunological and protective data from field studies are missing. We report for the first time a comparative field study on the immunological response induced by an autogenous vaccine applied to either piglets or sows in a farm with recurrent S. suis problems. (I) Piglets from non-vaccinated sows received an autogenous bacterin during the first week and at three weeks of age. (II) Sows received the vaccine at five and three weeks pre-farrowing and piglets were non-vaccinated. Levels, isotype profile and opsonophagocytosis capacity of the serum antibodies induced by vaccination were evaluated. Vaccination of piglets failed to induce an active immune response. Vaccination of sows induced a significant increase in anti-S. suis antibodies, mainly composed of IgG1. However, isotype switching was modulated by the S. suis serotype included in the vaccine formulation. Despite this antibody increase in vaccinated sows, transfer of maternal immunity to piglets was not different from the control group (i.e., piglets from non-vaccinated sows). Notably, levels of maternal antibodies in piglets were already very high with marked opsonophagocytosis capacity at one week of age, independently of the vaccination program. However, their levels decreased by three weeks of age, indicating possible absence of antibodies in the post-weaning high-risk period. These observations correlated with lack of clinical protection in the farm. Overall, a piglet or a sow vaccination program herein mostly failed to induce lasting protection in nursery piglets. An improvement of vaccine formulation or an optimized program may be required.
Collapse
|
22
|
Li YA, Chen Y, Du YZ, Guo W, Chu D, Fan J, Wang X, Bellefleur M, Wang S, Shi H. Live-attenuated Salmonella enterica serotype Choleraesuis vaccine with regulated delayed fur mutation confer protection against Streptococcus suis in mice. BMC Vet Res 2020; 16:129. [PMID: 32381017 PMCID: PMC7203871 DOI: 10.1186/s12917-020-02340-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Recombinant Salmonella enterica serotype Choleraesuis (S. Choleraesuis) vaccine vector could be used to deliver heterologous antigens to prevent and control pig diseases. We have previously shown that a live-attenuated S. Choleraesuis vaccine candidate strain rSC0011 (ΔPcrp527::TT araC PBADcrp Δpmi-2426 ΔrelA199::araC PBADlacI TT ΔasdA33, Δ, deletion, TT, terminator) delivering SaoA, a conserved surface protein in most of S. suis serotypes, provided excellent protection against S. suis challenge, but occasionally lead to morbidity (enteritidis) in vaccinated mice (approximately 1 in every 10 mice). Thus, alternated attenuation method was sought to reduce the reactogenicity of strain rSC0011. Herein, we described another recombinant attenuated S. Choleraesuis vector, rSC0012 (ΔPfur88:: TT araC PBADfur Δpmi-2426 ΔrelA199:: araC PBADlacI TT ΔasdA33) with regulated delayed fur mutation to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Results The strain rSC0012 strain with the ΔPfur88::TT araC PBADfur mutation induced less production of inflammatory cytokines than strain rSC0011 with the ΔPcrp527::TT araC PBADcrp mutation in mice. When delivering the same pS-SaoA plasmid, the intraperitoneal LD50 of rSC0012 was 18.2 times higher than that of rSC0011 in 3-week-old BALB/C mice. rSC0012 with either pS-SaoA or pYA3493 was cleared from spleen and liver tissues 7 days earlier than rSC0011 with same vectors after oral inoculation. The strain rSC0012 synthesizing SaoA induced high titers of anti-SaoA antibodies in both systemic (IgG in serum) and mucosal (IgA in vaginal washes) sites, as well as increased level of IL-4, the facilitator of Th2-type T cell immune response in mice. The recombinant vaccine rSC0012(pS-SaoA) conferred high percentage of protection against S. suis or S. Choleraesuis challenge in BALB/C mice. Conclusions The live-attenuated Salmonella enterica serotype Choleraesuis vaccine rSC0012(pS-SaoA) with regulated delayed fur mutation provides a foundation for the development of a safe and effective vaccine against S. Choleraesuis and S. suis.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yunyun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Zhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China
| | - Juan Fan
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, 225000, Jiangsu, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Matthew Bellefleur
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
23
|
Proteomic and Bioinformatic Analysis of Streptococcus suis Human Isolates: Combined Prediction of Potential Vaccine Candidates. Vaccines (Basel) 2020; 8:vaccines8020188. [PMID: 32325736 PMCID: PMC7348792 DOI: 10.3390/vaccines8020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium responsible for major infections in pigs and economic losses in the livestock industry, but also an emerging zoonotic pathogen causing serious diseases in humans. No vaccine is available so far against this microorganism. Conserved surface proteins are among the most promising candidates for new and effective vaccines. Until now, research on this pathogen has focused on swine isolates, but there is a lack of studies to identify and characterize surface proteins from human clinical isolates. In this work, we performed a comparative proteomic analysis of six clinical isolates from human patients, all belonging to the major serotype 2, by “shaving” the live bacterial cells with trypsin, followed by LC-MS/MS analysis. We identified 131 predicted surface proteins and carried out a label-free semi-quantitative analysis of protein abundances within the six strains. Then, we combined our proteomics results with bioinformatic tools to help improving the selection of novel antigens that can enter the pipeline of vaccine candidate testing. Our work is then a complement to the reverse vaccinology concept.
Collapse
|
24
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
25
|
Dumesnil A, Martelet L, Grenier D, Auger JP, Harel J, Nadeau E, Gottschalk M. Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Vet Res 2019; 15:448. [PMID: 31823789 PMCID: PMC6905021 DOI: 10.1186/s12917-019-2196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
Background Streptococcus suis is a major swine pathogen causing arthritis, meningitis and sudden death in post-weaning piglets and is also a zoonotic agent. S. suis comprises 35 different serotypes of which the serotype 2 is the most prevalent in both pigs and humans. In the absence of commercial vaccines, bacterins (mostly autogenous), are used in the field, with controversial results. In the past years, the focus has turned towards the development of sub-unit vaccine candidates. However, published results are sometimes contradictory regarding the protective effect of a same candidate. Moreover, the adjuvant used may significantly influence the protective capacity of a given antigen. This study focused on two protective candidates, the dipeptidyl peptidase IV (DPPIV) and the enolase (SsEno). Both proteins are involved in S. suis pathogenesis, and while contradictory protection results have been obtained with SsEno in the past, no data on the protective capacity of DPPIV was available. Results Results showed that among all the field strains tested, 86 and 88% were positive for the expression of the SsEno and DPPIV proteins, respectively, suggesting that they are widely expressed by strains of different serotypes. However, no protection was obtained after two vaccine doses in a CD-1 mouse model of infection, regardless of the use of four different adjuvants. Even though no protection was obtained, significant amounts of antibodies were produced against both antigens, and this regardless of the adjuvant used. Conclusions Taken together, these results demonstrate that S. suis DPPIV and SsEno are probably not good vaccine candidates, at least not in the conditions evaluated in this study. Further studies in the natural host (pig) should still be carried out. Moreover, this work highlights the importance of confirming results obtained by different research groups.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Léa Martelet
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.,Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Jean-Philippe Auger
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Josée Harel
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Eric Nadeau
- Prevtec Microbia Inc. 3395 Casavant W. Blvd, Saint-Hyacinthe, QC, J2S 0B8, Canada
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada. .,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Rieckmann K, Seydel A, Klose K, Alber G, Baums CG, Schütze N. Vaccination with the immunoglobulin M-degrading enzyme of Streptococcus suis, Ide Ssuis, leads to protection against a highly virulent serotype 9 strain. Vaccine X 2019; 3:100046. [PMID: 31709420 PMCID: PMC6831886 DOI: 10.1016/j.jvacx.2019.100046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023] Open
Abstract
IdeSsuis vaccination of piglets significantly reduced survival of S. suis cps9 in blood. IdeSsuis reactive T helper cells producing TNF-α, IL-17A or IFN-ɣ were detectable. Vaccination resulted in protection against mortality induced by cps9 challenge.
Vaccination of weaning piglets with the recombinant IgM degrading enzyme of Streptococcus suis (S. suis), rIdeSsuis, elicits protection against disease caused by serotype (cps) 2 infection. In Europe, S. suis cps9 is at least as important as cps2 in causing severe herd problems associated with meningitis, septicemia and arthritis. The objective of this study was to determine humoral and cellular immunogenicities of rIdeSsuis suckling piglet vaccination and to investigate protection against a virulent cps9 strain. Vaccination in the 2nd and 4th week of life with rIdeSsuis and an oil-in-water adjuvant induced seroconversion against IdeSsuis in 13 of 20 vaccinated piglets. In the 5th week, survival of the S. suis cps9 strain was significantly reduced in the blood of prime-booster vaccinated piglets. After a 2nd booster vaccination IdeSsuis-reactive T helper (Th) cells partially producing TNF-α, IL-17A or IFN-ɣ were detectable in rIdeSsuis-vaccinated but not in placebo-treated piglets and frequencies of IdeSsuis-reactive Th cells correlated with α-IdeSsuis–IgG levels. An intravenous challenge, conducted with a cps9 strain of sequence type (ST) 94, led to 89% mortality in placebo-treated piglets due to septicemia and meningitis. In contrast, all rIdeSsuis prime-booster-booster vaccinated littermates survived the challenge despite signs of disease such as fever and lameness. In conclusion, the described rIdeSsuis vaccination induces humoral and detectable IdeSsuis-reactive Th cell responses and leads to protection against a highly virulent cps9 strain.
Collapse
Affiliation(s)
- Karoline Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Anna Seydel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Christoph G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
27
|
Tang B, Liang H, Gao X, Yan L, Deng M, Zhai P, Yang H, Wei Z. Identification of a surface protective antigen, MAP of Streptococcus equi subspecies zooepidemicus. Res Vet Sci 2019; 124:387-392. [DOI: 10.1016/j.rvsc.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/30/2022]
|
28
|
Jiang X, Yang Y, Zhou J, Liu H, Liao X, Luo J, Li X, Fang W. Peptidyl isomerase PrsA is surface-associated onStreptococcus suisand offers cross-protection against serotype 9 strain. FEMS Microbiol Lett 2019; 366:5281431. [DOI: 10.1093/femsle/fnz002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Xiaowu Jiang
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
- Ningbo International Travel Healthcare Center, 336 Liuting Road, Ningbo 315012, Zhejiang, China
| | - Yunkai Yang
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jingjing Zhou
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Hanze Liu
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xiayi Liao
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jie Luo
- Ningbo International Travel Healthcare Center, 336 Liuting Road, Ningbo 315012, Zhejiang, China
| | - Xiaoliang Li
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Weihuan Fang
- College of Animal Sciences of Zhejiang Unversity and Key Laboratory of Preventive Veterinary Medicine of Zhejiang Province, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
29
|
Charerntantanakul W, Pongjaroenkit S. Co-administration of saponin quil A and PRRSV-1 modified-live virus vaccine up-regulates gene expression of type I interferon-regulated gene, type I and II interferon, and inflammatory cytokines and reduces viremia in response to PRRSV-2 challenge. Vet Immunol Immunopathol 2018; 205:24-34. [PMID: 30458999 DOI: 10.1016/j.vetimm.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating virus which suppresses the expression of type I and II interferons (IFNs) as well as several pro-inflammatory cytokines. Our previous study reported that saponin quil A had a potential to up-regulate the expression of type I IFN-regulated genes and type I and II IFNs in porcine peripheral blood mononuclear cells (PBMC) inoculated with PRRSV. The present study evaluated the immunostimulatory effect of quil A on potentiating cross protective immunity of PRRSV-1 modified-live virus (MLV) vaccine against PRRSV-2 challenge. Twenty-four 4-week-old PRRSV-seronegative pigs were divided into four groups of six pigs. Group 1 and group 2 pigs were vaccinated with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination), and additionally group 2 pigs were injected intramuscularly with quil A at -1, 0, 1 dpv. Group 3 pigs were injected with PRRSV-1 MLV vaccine solvent at 0 dpv and served as challenge control, while group 4 pigs served as strict control. Group 1-3 pigs were challenged intranasally with PRRSV-2 at 28 dpv and immune and clinical parameters were observed from 0 until 49 dpv. Group 1 pigs showed significantly reduced PRRSV viremia, number of viremic pigs, and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3 pigs. Group 2 pigs showed significantly increased mRNA expressions of interferon regulatory factor 3, 2'-5'-oligoadenylatesynthetase 1, osteopontin, IFNα, IFNβ, IFNγ, interleukin-2 (IL-2), IL-13 and tumor necrosis factor alpha, compared to group 1 pigs. The animals demonstrated significantly reduced PRRSV viremia and number of viremic pigs, but did not demonstrate any further improved PRRSV-specific antibody levels, neutralizing antibody titers, rectal temperature, clinical scores, and ADWG as compared to group 1 pigs. Our findings suggest that quil A up-regulates type I IFN-regulated gene, type I and II IFNs, and inflammatory cytokine expressions which may contribute to further reducing PRRSV viremia and number of viremic pigs which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quil A may serve as an effective immunostimulator for potentiating cell-mediated immune defense to PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand.
| | | |
Collapse
|
30
|
Xu Z, Chen B, Zhang Q, Liu L, Zhang A, Yang Y, Huang K, Yan S, Yu J, Sun X, Jin M. Streptococcus suis 2 Transcriptional Regulator TstS Stimulates Cytokine Production and Bacteremia to Promote Streptococcal Toxic Shock-Like Syndrome. Front Microbiol 2018; 9:1309. [PMID: 29973920 PMCID: PMC6020791 DOI: 10.3389/fmicb.2018.01309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023] Open
Abstract
Two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS) have revealed Streptococcus suis 2 to be a severe and evolving human pathogen. We investigated the mechanism by which S. suis 2 causes STSLS. The transcript abundance of the transcriptional regulator gene tstS was found to be upregulated during experimental infection. Compared with the wild-type 05ZY strain, a tstS deletion mutant (ΔtstS) elicited reduced cytokine secretion in macrophages. In a murine infection model, tstS deletion resulted in decreased virulence and bacterial load, and affected cytokine production. Moreover, TstS expression in the P1/7 strain of S. suis led to the induction of STSLS in the infected mice. This is noteworthy because, although it is virulent, the P1/7 strain does not normally induce STSLS. Through a microarray-based comparative transcriptomics analysis, we found that TstS regulates multiple metabolism-related genes and several virulence-related genes associated with immune evasion.
Collapse
Affiliation(s)
- Zhongmin Xu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Chen
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liang Liu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yujie Yang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kaisong Huang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuxian Yan
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junping Yu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
31
|
Gómez-Gascón L, Luque I, Tarradas C, Olaya-Abril A, Astorga RJ, Huerta B, Rodríguez-Ortega MJ. Comparative immunosecretome analysis of prevalent Streptococcus suis serotypes. Comp Immunol Microbiol Infect Dis 2018; 57:55-61. [PMID: 30017079 DOI: 10.1016/j.cimid.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/13/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
Streptococcus suis is a major Gram-positive swine pathogen associated with a wide variety of diseases in pigs. The efforts made to develop vaccines against this pathogen have failed because of lack of common cross-reactive antigens against different serotypes. Nowadays the interest has moved to surface and secreted proteins, as they have the highest chances to raise an effective immune response because they are in direct contact with host cells and are really exposed and accessible to antibodies. In this work, we have performed a comparative immunosecretomic approach to identify a set of immunoreactive secreted proteins common to the most prevalent serotypes of S. suis. Among the 67 proteins identified, three (SSU0020, SSU0934, and SSU0215) were those predicted extracellular proteins most widely found within the studied serotypes. These immunoreactive proteins may be interesting targets for future vaccine development as they could provide possible cross-reactivity among different serotypes of this pathogen.
Collapse
Affiliation(s)
- Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Rafael J Astorga
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain.
| |
Collapse
|
32
|
Identification and characterization of a Streptococcus suis immunogenic ornithine carbamoytransferase involved in bacterial adherence. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:234-239. [PMID: 29934035 DOI: 10.1016/j.jmii.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/01/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Streptococcus suis (SS) is a major swine pathogen and a serious zoonotic pathogen causing septicemia and meningitis in piglets and humans. Using an immunoproteomic approach, we previously brought evidence that ornithine carbamoytransferase (OCT) may represent a vaccine candidate to protect against S. suis biofilm-related and acute infections. METHOD In this study, the gene encoding OCT was cloned into the expression vector pET-28a and the recombinant protein was expressed in Escherichia coli BL21. The immunogenicity and protective efficacy of the SS OCT was further investigated in a mouse model. RESULTS The protein was found to be expressed in vivo and elicited high antibody titers following SS infections in mice. An animal challenge experiment with SS showed that 62.5% of mice immunized with the OCT protein were protected. Using an in vitro competitive adherence inhibition assay of adherence, evidence was obtained that OCT could significantly reduce the number of SS cells adhered to porcine kidney PK-15 cells. The bacterial levels recovered in mice of the OCT immunized group were significantly decreased in some organs, compared with the control group. CONCLUSION In summary, our results suggest that the recombinant SS OCT protein, which is involved in bacterial adherence, may efficiently stimulate an immune response conferring protection against SS infections. It may therefore be considered as a potential vaccine candidate, although further studies are necessary to evaluate their use in swine.
Collapse
|
33
|
Feng L, Niu X, Mei W, Li W, Liu Y, Willias SP, Yuan C, Bei W, Wang X, Li J. Immunogenicity and protective capacity of EF-Tu and FtsZ of Streptococcus suis serotype 2 against lethal infection. Vaccine 2018; 36:2581-2588. [PMID: 29627237 DOI: 10.1016/j.vaccine.2018.03.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Vaccine development efforts against Streptococcus suis serotype 2 (S. suis 2) are often constrained by strain/serotype antigen variability. Bioinformatics analyses revealed two highly conserved S. suis 2 factors, EF-Tu and FtsZ. Murine immunization with recombinant proteins emulsified in white oil adjuvant or eukaryotic DNA vaccine vectors provided significant protection against lethal S. suis 2 challenge. Immune responses elicited by recombinant protein immunization revealed the robust generation of humoral immune responses, with a mixed induction of Th1-type and Th2-type responses. Furthermore, the antiserum from mice immunized with recombinant proteins significantly inhibited the growth of S. suis 2 in healthy pig whole blood, suggesting the triggering of a strong opsonizing response. Histological examination found that immunizing mice with purified recombinant proteins reduced neutrophil and macrophage accumulation in brain and lung tissues after challenge with virulent S. suis. Taken together, these findings reveal that EF-Tu and FtsZ may be promising targets for subunit and DNA vaccine candidates against S. suis 2 infection.
Collapse
Affiliation(s)
- Liping Feng
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Shanghai Laboratory Animal Research Center, Shanghai, People's Republic of China
| | - Xiaona Niu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wen Mei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weitian Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Stephan P Willias
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| | - Chao Yuan
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaohong Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Liang H, Tang B, Zhao P, Deng M, Yan L, Zhai P, Wei Z. Identification and characterization of a novel protective antigen, Sec_205 of Streptococcus equi ssp. Zooepidemicus. Vaccine 2018; 36:788-793. [PMID: 29306502 DOI: 10.1016/j.vaccine.2017.12.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Abstract
Streptococcus equi ssp. zooepidemicus (SEZ) is an important pathogen of swine streptococcal diseases and can infect a wide range of animals as well as human beings. The absence of effective vaccine confounds the control of SEZ infection. Sec_205, a novel protein identified in the previous study, was inducibly over-expressed in Escherichia coli in the present study. The purified recombinant protein could elicit a significant humoral antibody response and provide efficient protection against lethal challenge of SEZ C55138 in mouse model. The protection against SEZ infection was mediated by specific antibodies to Sec_205 to some extent and was identified by the passive protection assay. The Sec_205 was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the inhibition assay. These suggest that Sec_205 may play a vital role in pathogenicity and serve as a new vaccine candidate against SEZ infection.
Collapse
Affiliation(s)
- Huihuang Liang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China
| | - Bin Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China
| | - Pengpeng Zhao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China
| | - Mingyong Deng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China
| | - Lili Yan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China
| | - Pan Zhai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China
| | - Zigong Wei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, PR China; Hubei Tianzhong Stockbreeding Co. Ltd., Wuhan, Hubei 430344, PR China.
| |
Collapse
|
35
|
Li YA, Ji Z, Wang X, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs. Vet Res 2017; 48:89. [PMID: 29268787 PMCID: PMC5740921 DOI: 10.1186/s13567-017-0494-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is one of the major pathogens that cause economic losses in the swine industry worldwide. However, current bacterins only provide limited prophylactic protection in the field. An ideal vaccine against S. suis should protect pigs against the clinical diseases caused by multiple serotypes, or at least protect against the dominant serotype in a given geographic region. A new recombinant Salmonella enterica serotype Choleraesuis vaccine vector, rSC0011, that is based on the regulated delayed attenuation system and regulated delayed antigen synthesis system, was developed recently. In this study, an improved recombinant attenuated Salmonella Choleraesuis vector, rSC0016, was developed by incorporating a sopB mutation to ensure adequate safety and maximal immunogenicity. In the spleens of mice, rSC0016 colonized less than rSC0011. rSC0016 and rSC0011 colonized similarly in Peyer's patches of mice. The recombinant vaccine rSC0016(pS-SaoA) induced stronger cellular, humoral, and mucosal immune responses in mice and swine against SaoA, a conserved surface protein that is present in many S. suis serotypes, than did rSC0011(pS-SaoA) without sopB or rSC0018(pS-SaoA), which is an avirulent, chemically attenuated vaccine strain. rSC0016(pS-SaoA) provided 100% protection against S. suis serotype 2 in mice and pigs, and full cross-protection against SS7 in pigs. This new vaccine vector provides a foundation for the development of a universal vaccine against multiple serotypes of S. suis in pigs.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
36
|
Charerntantanakul W, Fabros D. Saponin Quil A up-regulates type I interferon-regulated gene and type I and II interferon expressions which are suppressed by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2017; 195:76-83. [PMID: 29249322 DOI: 10.1016/j.vetimm.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/25/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses innate immune response following infection of myeloid antigen-presenting cells. Poor innate immune response results in weak and delayed PRRSV-specific adaptive immunity, and facilitates PRRSV replication, pathogenesis, and persistent infection. Numerous efforts have been made to enhance the effective innate and adaptive immune defenses to PRRSV, however, only a few attempts have so far elicited satisfactory results. The present study aims to evaluate in vitro the potential of saponin quil A to enhance the expression of type I interferon (IFN)-regulated gene, type I and II IFNs, and pro-inflammatory cytokines in PRRSV-inoculated peripheral blood mononuclear cells (PBMC). Naïve PBMC from four PRRSV-seronegative pigs were inoculated with PRRSV and subsequently stimulated with quil A in the absence or presence of either polyinosinic:polycytidylic acid (poly IC) or lipopolysaccharide (LPS). The mRNA expression levels of myxovirus resistance 1 (Mx1), interferon regulatory factor 3 (IRF3), IRF7, 2'-5'-oligoadenylatesynthetase 1 (OAS1), stimulator of interferon genes (STING), osteopontin (OPN), IFNα, IFNβ, IFNγ, interleukin-2 (IL-2), IL-10, IL-13, tumor necrosis factor alpha (TNFα), and transforming growth factor beta (TGFβ) were evaluated by real-time PCR. Compared with uninoculated PBMC, PRRSV significantly suppressed expression of all immune parameters except IL-2, IL-10, IL-13, and TGFβ. When compared with PRRSV-inoculated PBMC, stimulation with quil A significantly enhanced Mx1, IRF3, IRF7, OAS1, STING, IFNβ, and IFNγ mRNA expressions, and significantly reduced TGFβ mRNA expression. Our findings thus suggest that quil A has a potential to up-regulate the expression of type I IFN-regulated gene and type I and II IFNs which are suppressed by PRRSV. Therefore, it may serve as an effective immunostimulator for potentiating the innate immune defense to PRRSV.
Collapse
Affiliation(s)
| | - Dante Fabros
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
37
|
Ebner F, Schwiertz P, Steinfelder S, Pieper R, Zentek J, Schütze N, Baums CG, Alber G, Geldhof P, Hartmann S. Pathogen-Reactive T Helper Cell Analysis in the Pig. Front Immunol 2017; 8:565. [PMID: 28567041 PMCID: PMC5434156 DOI: 10.3389/fimmu.2017.00565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/27/2017] [Indexed: 11/29/2022] Open
Abstract
There is growing interest in studying host–pathogen interactions in human-relevant large animal models such as the pig. Despite the progress in developing immunological reagents for porcine T cell research, there is an urgent need to directly assess pathogen-specific T cells—an extremely rare population of cells, but of upmost importance in orchestrating the host immune response to a given pathogen. Here, we established that the activation marker CD154 (CD40L), known from human and mouse studies, identifies also porcine antigen-reactive CD4+ T lymphocytes. CD154 expression was upregulated early after antigen encounter and CD4+CD154+ antigen-reactive T cells coexpressed cytokines. Antigen-induced expansion and autologous restimulation enabled a time- and dose-resolved analysis of CD154 regulation and a significantly increased resolution in phenotypic profiling of antigen-responsive cells. CD154 expression identified T cells responding to staphylococcal Enterotoxin B superantigen stimulation as well as T cells responding to the fungus Candida albicans and T cells specific for a highly prevalent intestinal parasite, the nematode Ascaris suum during acute and trickle infection. Antigen-reactive T cells were further detected after immunization of pigs with a single recombinant bacterial antigen of Streptococcus suis only. Thus, our study offers new ways to study antigen-specific T lymphocytes in the pig and their contribution to host–pathogen interactions.
Collapse
Affiliation(s)
- Friederike Ebner
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Patrycja Schwiertz
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert Pieper
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Nicole Schütze
- Faculty of Veterinary Medicine, Institute of Immunology, Centre for Infectious Diseases, University of Leipzig, Leipzig, Germany
| | - Christoph G Baums
- Faculty of Veterinary Medicine, Institute for Bacteriology and Mycology, Centre for Infectious Diseases, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Faculty of Veterinary Medicine, Institute of Immunology, Centre for Infectious Diseases, University of Leipzig, Leipzig, Germany
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
38
|
Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants. Pathogens 2017; 6:pathogens6010013. [PMID: 28327531 PMCID: PMC5371901 DOI: 10.3390/pathogens6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 01/03/2023] Open
Abstract
An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science.
Collapse
|
39
|
Hsueh KJ, Cheng LT, Lee JW, Chung YC, Chung WB, Chu CY. Immunization with Streptococcus suis bacterin plus recombinant Sao protein in sows conveys passive immunity to their piglets. BMC Vet Res 2017; 13:15. [PMID: 28061775 PMCID: PMC5219745 DOI: 10.1186/s12917-016-0937-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/22/2016] [Indexed: 11/24/2022] Open
Abstract
Background Streptococcus suis (S. suis) causes arthritis, meningitis, septicemia, and sudden death in pigs and is also an zoonotic agent for humans. The present study demonstrated that immunization with recombinant Sao-L (surface antigen one-L, rSao-L) protein from a strain of S. suis serotype 2 in pigs was able to increase cross-serotype protection against S. suis serotype 1 and 2 challenge. Since weaning piglets are more susceptible to S. suis infections due to the stresses associated with weaning, prepartum immunization in sows may convey passive immunity to piglets and provide protection. Results Pregnant sows were immunized with a vaccine containing inactivated S. suis serotype 2 plus rSao as the antigens. Blood samples were collected from their piglets after birth for analysis of antigen-specific antibody titers and levels of various cytokines. Results demonstrated that the titers of S. suis and rSao-specific antibodies were significantly (p < 0.05) higher in the vaccinated piglets in comparison with that of piglets in the control group. The serum levels of interferon (IFN)-γ, interleukin (IL)-4, IL-6, and IL-12 were significantly (p < 0.05) increased in piglets born from vaccinated sows when compared to piglets from unvaccinated sows. In addition, piglets were challenged by heterologous and homologous S. suis. All piglets from unvaccinated sows developed severe symptoms of bacteremia, fever, anorexia, depression, and arthritis. On the other hand, piglets from vaccinated sows had significantly (p < 0.05) reduced clinical symptoms and lesion score (by 75 and 81%). Conclusions Our results revealed that immunizing pregnant sows with the vaccine containing inactivated S. suis bacterin plus rSao as the antigens is able to enhance passive immunity against heterologous and homologous S. suis challenge in their piglets.
Collapse
Affiliation(s)
- Kai-Jen Hsueh
- Department of Veterinary medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.,Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
40
|
Hsueh KJ, Chen MC, Cheng LT, Lee JW, Chung WB, Chu CY. Transcutaneous immunization of Streptococcus suis bacterin using dissolving microneedles. Comp Immunol Microbiol Infect Dis 2016; 50:78-87. [PMID: 28131383 DOI: 10.1016/j.cimid.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 11/17/2022]
Abstract
Vaccine delivery using microneedle (MN) patches is an easy, safe and painless alternative to traditional needle injections. In this study, we examined whether MN patches can enhance the efficacy of a Streptococcus suis serotype 2 (S. suis 2) vaccine in a mouse model. Results showed that MNs can reach 200-250μm into the skin, a depth beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. Vaccination with prime-boost of MN induced higher levels of IgG2a antibody titer, T cell proliferation, and TH1 cytokines (IFN-γ and IL-12) as compared to intramuscular (IM) injection. In addition, single dose MN vaccination better protected mice against lethal challenge than IM vaccination. MN vaccination also conferred long-term IgG2a antibody against S. suis 2 bacteria presence for up to 7 months. Taken together, these data showed that vaccine delivery by MNs results in superior immune response and protection rate when compared to IM injections.
Collapse
Affiliation(s)
- Kai-Jen Hsueh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan.
| |
Collapse
|
41
|
Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria. Microbiol Res 2016; 196:17-25. [PMID: 28164787 DOI: 10.1016/j.micres.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/31/2016] [Accepted: 11/12/2016] [Indexed: 11/23/2022]
Abstract
Factor H (FH), a regulatory protein of the complement system, can bind specifically to factor H-binding proteins (FHBPs) of Streptococcus suis serotype 2 (SS2), which contribute to evasion of host innate immune defenses. In the present study, we aimed to identify novel FHBPs and characterize the biological functions of FH in SS2 pathogenesis. Here, a method that combined proteomics and Far-western blotting was developed to identify the surface FHBPs of SS2. With this method, fourteen potential novel FHBPs were identified among SS2 surface proteins. We selected eight newly identified proteins and further confirmed their binding activity to FH. The binding of SS2 to immobilized FH decreased dramatically after pre-incubation with anti-FHBPs polyclonal antibodies. We showed for the first time that SS2 also interact specifically with mouse FH. Furthermore, we found that FH play an important role in adherence and invasion of SS2 to HEp-2 cells. Additionally, using a mouse model of intraperitoneal challenge, we confirmed that SS2 pre-incubated with FH enhanced bacteremia and brain invasion, compared with SS2 not pretreated with FH. Taken together, this study provides a useful method to characterize the host-bacteria interactions. These results first indicated that binding of FH to the cell surface improved the adherence and invasion of SS2 to HEp-2 cells, promoting SS2 to resist killing and leading to enhance virulence.
Collapse
|
42
|
Xiao G, Wu Z, Zhang S, Tang H, Wang F, Lu C. Mac Protein is not an Essential Virulence Factor for the Virulent Reference Strain Streptococcus suis P1/7. Curr Microbiol 2016; 74:90-96. [PMID: 27847975 DOI: 10.1007/s00284-016-1160-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
Streptococcus suis is a major pathogen of pigs and also an important zoonotic agent for humans. A S. suis protein containing Mac-1 domain (designated Mac) is a protective antigen, exclusively cleaves porcine IgM, and contributes to complement evasion with the presence of high titers of specific porcine anti-S. suis IgM, but its role in S. suis virulence has not been investigated in natural healthy host without specific IgM. In this study, a mac deletion mutant was constructed by homologous recombination in S. suis serotype 2 virulent reference strain P1/7. Deletion of mac did not significantly influence phagocytosis or intracellular survival within murine macrophages RAW264.7, or the oxidative-burst induction of RAW264.7 and murine neutrophils. Furthermore, the mutant is as virulent as the wild-type strain in pig, mouse, and zebrafish infection models. Our data suggest that Mac is not essential for S. suis virulence in strain P1/7 in natural healthy host without specific IgM, and the immunogenicity of Mac does not appear to correlate with its significance for virulence.
Collapse
Affiliation(s)
- Genhui Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Shouming Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Huanyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Fengqiu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
43
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
44
|
Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine 2016; 34:6529-6538. [PMID: 27349838 DOI: 10.1016/j.vaccine.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
Abstract
Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yunkai Yang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lexin Zhu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanxing Gu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Hongxia Shen
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoliang Li
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiusheng Wu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
45
|
Yin S, Li M, Rao X, Yao X, Zhong Q, Wang M, Wang J, Peng Y, Tang J, Hu F, Zhao Y. Subtilisin-like protease-1 secreted through type IV secretion system contributes to high virulence of Streptococcus suis 2. Sci Rep 2016; 6:27369. [PMID: 27270879 PMCID: PMC4897608 DOI: 10.1038/srep27369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 is an emerging zoonotic pathogen that triggered two outbreaks of streptococcal toxic shock syndrome (STSS) in China. Our previous research demonstrated that a type IV secretion system (T4SS) harbored in the 89K pathogenicity island contributes to the pathogenicity of S. suis 2. In the present study, a shotgun proteomics approach was employed to identify the effectors secreted by T4SS in S. suis 2, and surface-associated subtilisin-like protease-1 (SspA-1) was identified as a potential virulence effector. Western blot analysis and pull-down assay revealed that SspA-1 secretion depends on T4SS. Knockout mutations affecting sspA-1 attenuated S. suis 2 and impaired the pathogen’s ability to trigger inflammatory response in mice. And purified SspA-1 induced the secretion of IL-6, TNF-α, and IL-12p70 in THP-1 cells directly. SspA-1 is the first T4SS virulence effector reported in Gram-positive bacteria. Overall, these findings allow us to gain further insights into the pathogenesis of T4SS and STSS.
Collapse
Affiliation(s)
- Supeng Yin
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xinyue Yao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Min Wang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing general hospital of Nanjing Military command, Nanjing 210002, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Gómez-Gascón L, Cardoso-Toset F, Tarradas C, Gómez-Laguna J, Maldonado A, Nielsen J, Olaya-Abril A, Rodríguez-Ortega MJ, Luque I. Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs. Comp Immunol Microbiol Infect Dis 2016; 47:52-9. [PMID: 27477507 DOI: 10.1016/j.cimid.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
The efforts made to develop vaccines against Streptococcus suis have failed because of lack of common antigens cross-reactive against different serotypes of this species. The cell wall-anchored proteins can be good vaccine candidates due to their high expression and accessibility to antibodies, among these, a cell-wall protein, DNA-nuclease (SsnA), present in most of the S. suis serotypes and clinical isolates collected from infected pigs, was selected. An experimental challenge against S. suis serotype 2 in a pig model was used to validate the efficacy of recombinant SsnA combined with aluminium hydroxide plus Quil A as adjuvants, previously tested in mice by our research group with good results. In our study, clinical characteristics, bacterial load and spread, haematological and immunological parameters and the antibody response, including the opsonophagocytosis analysis of the sera were evaluated. Moreover the composition of peripheral blood leukocyte populations was studied in infected animals. The results show that the immunization of piglets with rSsnA elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs that are challenged with a virulent strain in our conventional vaccination model. Further studies are necessary to evaluate the use of rSsnA as a vaccine candidate for swine.
Collapse
Affiliation(s)
- Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain.
| | - Fernando Cardoso-Toset
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; CICAP-Food Research Centre, Córdoba, Pozoblanco,14400, Spain
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | | | - Alfonso Maldonado
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Jens Nielsen
- Technical University of Denmark, National Veterinary Institute, Lindholm, Denmark
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| |
Collapse
|
47
|
Fu L, Zhao J, Lin L, Zhang Q, Xu Z, Han L, Xie C, Zhou R, Jin M, Zhang A. Characterization of IgA1 protease as a surface protective antigen of Streptococcus suis serotype 2. Microbes Infect 2016; 18:285-9. [PMID: 26774332 DOI: 10.1016/j.micinf.2015.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 12/23/2015] [Indexed: 11/29/2022]
Abstract
IgA1 protease of Streptococcus suis serotype 2 (SS2) has been proven to be relative with virulence and immunogenicity, however, its protective efficacy remained to be evaluated. The present study found evidence that immunization with purified recombinant IgA1 protease (600-1926aa) could induce high IgG antibody titers and could confer complete protection against a challenge with a lethal dose of SS2 in a mouse model. In addition, our findings confirmed that the IgA1 protease distributes on the surface of SS2. Therefore, the present study identified the virulence-associated protein, IgA1 protease, as a novel surface protective antigen of SS2.
Collapse
Affiliation(s)
- Lei Fu
- National Key Laboratory of Agricultural Microbiology, 1 Shizishan Street, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Jianqing Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, 430070, China
| | - Lan Lin
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qiang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Zhongmin Xu
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Li Han
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Caiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, 1 Shizishan Street, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, 430070, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, 1 Shizishan Street, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, 430070, China
| | - Anding Zhang
- National Key Laboratory of Agricultural Microbiology, 1 Shizishan Street, Wuhan, Hubei, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
48
|
Protective Efficacy of an Inactive Vaccine Based on the LY02 Isolate against Acute Haemophilus parasuis Infection in Piglets. BIOMED RESEARCH INTERNATIONAL 2015; 2015:649878. [PMID: 26688815 PMCID: PMC4672103 DOI: 10.1155/2015/649878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
Haemophilus parasuis can cause Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer's disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage of H. parasuis (LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acute H. parasuis infection in piglets after inactivation. Following challenging with H. parasuis, only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer's disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4(+) and CD8(+) T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γ in sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection against H. parasuis infection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain of H. parasuis could serve as a potential vaccine candidate to prevent the prevalence of H. parasuis in Fujian province, China.
Collapse
|
49
|
Zhang J, Yang F, Zhang X, Jing H, Ren C, Cai C, Dong Y, Zhang Y, Zou Q, Zeng H. Protective Efficacy and Mechanism of Passive Immunization with Polyclonal Antibodies in a Sepsis Model of Staphylococcus aureus Infection. Sci Rep 2015; 5:15553. [PMID: 26490505 PMCID: PMC4614693 DOI: 10.1038/srep15553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases, resulting in considerable yearly mortality rates. Due to its rapid acquisition of antibiotic resistance, it becomes increasingly difficult to cure S. aureus infections with conventional antibiotics. Immunotherapy represents a promising alternative strategy to prevent and/or treat the infection. In the present study, passive immunization with polyclonal antibodies targeting three possible S. aureus antigens, Hla, SEB and MntC (termed "SAvac-pcAb") after challenge with lethal dose of S. aureus resulted in reduced bacterial loads, inflammatory cell infiltration and decreased pathology, and was able to provide nearly complete protection in a murine sepsis model. In vitro studies confirmed the direct interaction of SAvac-pcAb with S. aureus bacteria. Additional studies validated that SAvac-pcAb contained both opsonic and neutralizing antibodies that contributed to its protective efficacy. The former mediated opsonophagocytosis in a neutrophil-dependent manner, while the later inhibited the biological functions of Hla and SEB, two major virulence factors secreted by S. aureus. Critically, we demonstrated that SAvac-pcAb was cross-reactive with different clinical strains of S. aureus. These results confirmed the efficacy for treatment of S. aureus infection by passive immunization as an important therapeutic option.
Collapse
Affiliation(s)
- Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Feng Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.,College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xiaoli Zhang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Chunyan Ren
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Changzhi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yandong Dong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yudong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| |
Collapse
|
50
|
Abstract
Streptococcus suis is a major swine pathogen and an emerging zoonotic agent of human meningitis and streptococcal toxic shock-like syndrome. S. suis is a well-encapsulated pathogen and multiple serotypes have been described based on the capsular polysaccharide antigenic diversity. In addition, high genotypic, phenotypic and geographic variability exits among strains within the same serotype. Besides, S. suis uses an arsenal of virulence factors to evade the host immune system. Together, these characteristics have challenged the development of efficacious vaccines to fight this important pathogen. In this careful and comprehensive review, clinical field information and experimental data have been compiled and compared for the first time to give a precise overview of the current status of vaccine development against S. suis. The candidate antigens and vaccine formulations under research are examined and the feasibility of reaching the goal of a "universal" cross-protective S. suis vaccine discussed.
Collapse
Affiliation(s)
- Mariela Segura
- a Laboratory of Immunology, Faculty of Veterinary Medicine , University of Montreal , Saint-Hyacinthe , Quebec , J2S 2M2 Canada
| |
Collapse
|