1
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
2
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Khaba T, Papadopoulos AO, Nkosi T, Nxele S, Ngubane T, Jajbhay I, Pansegrouw J, Ndhlovu ZM. Safety and practicality of an excisional lymph node study driving HIV cure research in South Africa. Front Immunol 2024; 15:1442556. [PMID: 39257587 PMCID: PMC11385604 DOI: 10.3389/fimmu.2024.1442556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Studying diseased human tissues offers better insights into the intricate interactions between pathogens and the human host. In conditions such as HIV and cancers, where diseases primarily manifest in tissues, peripheral blood studies are limited in providing a thorough understanding of disease processes and localized immune responses. Methods We describe a study designed to obtain excisional lymph nodes from volunteers for HIV reservoir studies. Since study commencement in 2015, 181 lymph node excisions have been performed, resulting in collection of 138 lymph node tissues. Lymph nodes were surgically excised from study volunteers using a minimally invasive procedure, performed in a minor theater under local anesthesia. Results The surgery takes less than 30 minutes to complete, minimizing risk and stress on the volunteer. The small incision made during the procedure typically heals within a week. The associated discomfort is generally manageable, and participants are often able to resume their regular activities within a day. Only 5.5% of the study participants experienced minor adverse events, such as swelling and prolonged wound healing, recovering within 2 weeks with no serious adverse events reported. Discussion Our study demonstrates that when done with outmost care, obtaining excised lymph nodes for research is relatively safe and practical.
Collapse
Affiliation(s)
- Trevor Khaba
- Human Immunodeficiency Virus (HIV) Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Andrea Olga Papadopoulos
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - Sifundo Nxele
- Human Immunodeficiency Virus (HIV) Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- Human Immunodeficiency Virus (HIV) Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Ismail Jajbhay
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Johan Pansegrouw
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Zaza M Ndhlovu
- Human Immunodeficiency Virus (HIV) Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Tincati C, Bono V, Cannizzo ES, Tosi D, Savi F, Falcinella C, Casabianca A, Orlandi C, Luigiano C, Augello M, Rusconi S, Muscatello A, Bandera A, Calcagno A, Gori A, Nozza S, Marchetti G. Primary HIV infection features colonic damage and neutrophil inflammation yet containment of microbial translocation. AIDS 2024; 38:623-632. [PMID: 38016163 PMCID: PMC10942218 DOI: 10.1097/qad.0000000000003799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Impairment of the gastrointestinal barrier leads to microbial translocation and peripheral immune activation, which are linked to disease progression. Data in the setting of primary HIV/SIV infection suggest that gut barrier damage is one of the first events of the pathogenic cascade, preceding mucosal immune dysfunction and microbial translocation. We assessed gut structure and immunity as well as microbial translocation in acutely and chronically-infected, combination antiretroviral therapy (cART)-naive individuals. METHODS Fifteen people with primary HIV infection (P-HIV) and 13 with chronic HIV infection (C-HIV) c-ART-naive participants were cross-sectionally studied. Gut biopsies were analysed in terms of gut reservoirs (total, integrated and unintegrated HIV DNA); tight junction proteins (E-cadherin, Zonula Occludens-1), CD4 + expression, neutrophil myeloperoxidase (histochemical staining); collagen deposition (Masson staining). Flow cytometry was used to assess γδ T-cell frequency (CD3 + panγδ+Vδ1+/Vδ2+). In plasma, we measured microbial translocation (LPS, sCD14, EndoCAb) and gut barrier function (I-FABP) markers (ELISA). RESULTS P-HIV displayed significantly higher tissue HIV DNA, yet neutrophil infiltration and collagen deposition in the gut were similar in the two groups. In contrast, microbial translocation markers were significantly lower in P-HIV compared with C-HIV. A trend to higher mucosal E-cadherin, and gut γδ T-cells was also observed in P-HIV. CONCLUSION Early HIV infection features higher HIV DNA in the gut, yet comparable mucosal alterations to those observed in chronic infection. In contrast, microbial translocation is contained in primary HIV infection, likely because of a partial preservation of E-cadherin and mucosal immune subsets, namely γδ T-cells.
Collapse
Affiliation(s)
- Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | | | - Delfina Tosi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Federica Savi
- Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Camilla Falcinella
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano
| | | | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| | - Stefano Rusconi
- UOC Malattie Infettive, Ospedale Civile di Legnano, Department of Biomedical and Clinical Biosciences, University of Milan
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan
| | - Andrea Calcagno
- Unit of Infectious Diseases Unit, Department of Medical Sciences, University of Turin, Turin
| | - Andrea Gori
- Clinic of Infectious Diseases, Department of Pathophysiology and Transplantation, ASST Fatebenefratelli Sacco University of Milan
| | - Silvia Nozza
- Infectious Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan
| |
Collapse
|
5
|
Casella V, Domenjo-Vila E, Esteve-Codina A, Pedragosa M, Cebollada Rica P, Vidal E, de la Rubia I, López-Rodríguez C, Bocharov G, Argilaguet J, Meyerhans A. Differential kinetics of splenic CD169+ macrophage death is one underlying cause of virus infection fate regulation. Cell Death Dis 2023; 14:838. [PMID: 38110339 PMCID: PMC10728219 DOI: 10.1038/s41419-023-06374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Acute infection and chronic infection are the two most common fates of pathogenic virus infections. While several factors that contribute to these fates are described, the critical control points and the mechanisms that underlie infection fate regulation are incompletely understood. Using the acute and chronic lymphocytic choriomeningitis virus (LCMV) infection model of mice, we find that the early dynamic pattern of the IFN-I response is a differentiating trait between both infection fates. Acute-infected mice generate a 2-wave IFN-I response while chronic-infected mice generate only a 1-wave response. The underlying cause is a temporal difference in CD8 T cell-mediated killing of splenic marginal zone CD169+ macrophages. It occurs later in acute infection and thus enables CD169+ marginal zone macrophages to produce the 2nd IFN-I wave. This is required for subsequent immune events including induction of inflammatory macrophages, generation of effector CD8+ T cells and virus clearance. Importantly, these benefits come at a cost for the host in the form of spleen fibrosis. Due to an earlier marginal zone destruction, these ordered immune events are deregulated in chronic infection. Our findings demonstrate the critical importance of kinetically well-coordinated sequential immune events for acute infection control and highlights that it may come at a cost for the host organism.
Collapse
Affiliation(s)
- Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Enric Vidal
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Ivan de la Rubia
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- EMBL Australia Partner Laboratory Network at the Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
- Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
6
|
Cossarini F, Aberg JA, Chen BK, Mehandru S. Viral Persistence in the Gut-Associated Lymphoid Tissue and Barriers to HIV Cure. AIDS Res Hum Retroviruses 2023; 40:54-65. [PMID: 37450338 PMCID: PMC10790554 DOI: 10.1089/aid.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
More than 40 years after the first reported cases of what then became known as acquired immunodeficiency syndrome (AIDS), tremendous progress has been achieved in transforming the disease from almost universally fatal to a chronic manageable condition. Nonetheless, the efforts to find a preventative vaccine or a cure for the underlying infection with Human Immunodeficiency Virus (HIV) remain largely unsuccessful. Many challenges intrinsic to the virus characteristics and host response need to be overcome for either goal to be achieved. This article will review the obstacles to an effective HIV cure, specifically the steps involved in the generation of HIV latency, focusing on the role of the gut-associated lymphoid tissue, which has received less attention compared with the peripheral blood, despite being the largest repository of lymphoid tissue in the human body, and a large site for HIV persistence.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
- Division of Gastroenterology, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Taramasso L, Andreoni M, Antinori A, Bandera A, Bonfanti P, Bonora S, Borderi M, Castagna A, Cattelan AM, Celesia BM, Cicalini S, Cingolani A, Cossarizza A, D'Arminio Monforte A, D'Ettorre G, Di Biagio A, Di Giambenedetto S, Di Perri G, Esposito V, Focà E, Gervasoni C, Gori A, Gianotti N, Guaraldi G, Gulminetti R, Lo Caputo S, Madeddu G, Maggi P, Marandola G, Marchetti GC, Mastroianni CM, Mussini C, Perno CF, Rizzardini G, Rusconi S, Santoro M, Sarmati L, Zazzi M, Maggiolo F. Pillars of long-term antiretroviral therapy success. Pharmacol Res 2023; 196:106898. [PMID: 37648103 DOI: 10.1016/j.phrs.2023.106898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Meeting the challenge of antiretroviral therapy (ART) whose efficacy can last a lifetime requires continuous updating of the virological, pharmacological, and quality of life outcomes to be pursued and a continuous review of literature data on the efficacy and tolerability of new drugs and therapeutic strategies. METHODS With the aim of identifying open questions and answers about the current controversies in modern ART, we adapted the Design Thinking methodology to the needs of the design phase of a scientific article, involving a team of experts in HIV care. RESULTS Five main pillars of treatment success were discussed: sustained virologic suppression over time; immunological recovery; pharmacological attributes; long-term tolerability and safety of ART; and people's satisfaction and quality of life. The definition of the outcomes to be achieved in each thematic area and the tools to achieve them were reviewed and discussed. CONCLUSIONS Long-term treatment success should be intended as a combination of HIV-RNA suppression, immune recovery, and high quality of life. To achieve this, the regimen should be well-tolerated, with high potency, genetic barrier, and forgiveness, and should be tailored by a person-centered perspective, based on individual needs, preferences, and therapeutic history.
Collapse
Affiliation(s)
- Lucia Taramasso
- IRCCS Ospedale Policlinico San Martino di Genova, Genova, Italy.
| | | | - Andrea Antinori
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Alessandra Bandera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Paolo Bonfanti
- Università degli Studi di Milano-Bicocca, Fondazione IRCCS San Gerardo dei Tintori - Monza, Monza, Italy
| | - Stefano Bonora
- Ospedale Amedeo di Savoia, Università degli Studi di Torino, Torino, Italy
| | - Marco Borderi
- Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, Bologna, Italy
| | | | | | | | - Stefania Cicalini
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani IRCCS, Roma, Italy
| | | | | | | | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases AOU Policlinico Umberto I Sapienza, Rome, Italy
| | - Antonio Di Biagio
- Department of Health Sciences, Clinic of Infectious Diseases, University of Genoa, Genoa, Italy
| | | | - Giovanni Di Perri
- Ospedale Amedeo di Savoia, Università degli Studi di Torino, Torino, Italy
| | - Vincenzo Esposito
- UOC di Malattie infettive e Medicina di Genere P.O. Cotugno-A.O. dei Colli, Napoli, Italy
| | - Emanuele Focà
- Università degli Studi di Brescia e ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Andrea Gori
- Università degli Studi di Milano, Milano, Italy; ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco, Milano, Italy
| | | | - Giovanni Guaraldi
- Azienda Ospedaliero-Universitaria Policlinico di Modena, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Giordano Madeddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Paolo Maggi
- Università degli Studi della Campania Luigi Vanvitelli, AORN S. Anna e S. Sebastiano Caserta, Caserta, Italy
| | | | - Giulia Carla Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy
| | | | - Cristina Mussini
- Azienda Ospedaliero-Universitaria Policlinico di Modena, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Stefano Rusconi
- Ospedale Civile di Legnano ASST Ovest Milanese - Università degli Studi di Milano, Legnano, Italy
| | - Maria Santoro
- Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | | | | | | |
Collapse
|
8
|
Devanathan AS, White NR, Desyaterik Y, De la Cruz G, Nekorchuk M, Terry M, Busman-Sahay K, Adamson L, Luciw P, Fedoriw Y, Estes JD, Rosen EP, Kashuba ADM. Quantitative Imaging Analysis of the Spatial Relationship between Antiretrovirals, Reverse Transcriptase Simian-Human Immunodeficiency Virus RNA, and Fibrosis in the Spleens of Nonhuman Primates. Antimicrob Agents Chemother 2022; 66:e0060922. [PMID: 35856680 PMCID: PMC9380553 DOI: 10.1128/aac.00609-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 01/22/2023] Open
Abstract
Although current antiretroviral therapy (ART) has increased life expectancy, a cure for human immunodeficiency virus (HIV) remains elusive due to the persistence of the virus in tissue reservoirs. In the present study, we sought to elucidate the relationship between antiretrovirals (ARVs) and viral expression in the spleen. We performed mass spectrometry imaging (MSI) of 6 different ARVs, RNAscope in situ hybridization of viral RNA, and immunohistochemistry of three different fibrosis markers in the spleens of 8 uninfected and 10 reverse transcriptase simian-human immunodeficiency virus (RT-SHIV)-infected rhesus macaques (infected for 6 weeks) that had been dosed for 10 days with combination ART. Using MATLAB, computational quantitative imaging analysis was performed to evaluate the spatial and pharmacological relationships between the 6 ARVs, viral RNA, and fibrotic deposition. In these spleens, >50% of the spleen tissue area was not covered by any detectable ARV response (any concentration above the limits of detection for individual ARVs). The median spatial ARV coverage across all tissues was driven by maraviroc followed by efavirenz. Yet >50% of RNA-positive cells were not exposed to any detectable ARV. Quantifiable maraviroc and efavirenz colocalization with RNA-positive cells was usually greater than the in vitro concentration inhibiting 50% replication (IC50). Fibrosis markers covered more than 50% of the spleen tissue area and had negative relationships with cumulative ARV coverages. Our findings suggest that a heterogeneous ARV spatial distribution must be considered when evaluating viral persistence in lymphoid tissue reservoirs.
Collapse
Affiliation(s)
| | - Nicole R. White
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Yury Desyaterik
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Gabriela De la Cruz
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margaret Terry
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Paul Luciw
- University of California at Davis, Davis, California, USA
| | - Yuri Fedoriw
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Elias P. Rosen
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Angela D. M. Kashuba
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Baiyegunhi OO, Mann J, Khaba T, Nkosi T, Mbatha A, Ogunshola F, Chasara C, Ismail N, Ngubane T, Jajbhay I, Pansegrouw J, Dong KL, Walker BD, Ndung'u T, Ndhlovu ZM. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat Commun 2022; 13:4041. [PMID: 35831418 PMCID: PMC9279299 DOI: 10.1038/s41467-022-31692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
Collapse
Affiliation(s)
- Omolara O Baiyegunhi
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Khaba
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Bruce D Walker
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Institute for Medical Sciences and Engineering and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Durban, South Africa.
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Kroon E, Chottanapund S, Buranapraditkun S, Sacdalan C, Colby DJ, Chomchey N, Prueksakaew P, Pinyakorn S, Trichavaroj R, Vasan S, Manasnayakorn S, Reilly C, Helgeson E, Anderson J, David C, Zulk J, de Souza M, Tovanabutra S, Schuetz A, Robb ML, Douek DC, Phanuphak N, Haase A, Ananworanich J, Schacker TW. Paradoxically greater persistence of HIV RNA+ cells in lymphoid tissue when ART is initiated in the earliest stage of infection. J Infect Dis 2022; 225:2167-2175. [PMID: 35275599 PMCID: PMC9200151 DOI: 10.1093/infdis/jiac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Starting antiretroviral therapy (ART) in Fiebig 1 acute HIV infection limits the size of viral reservoirs in lymphoid tissues, but does not impact time to virus rebound during a treatment interruption. To better understand why the reduced reservoir size did not increase the time to rebound we measured the frequency and location of HIV RNA+ cells in lymph nodes from participants in the RV254 acute infection cohort. HIV RNA+ cells were detected more frequently and in greater numbers when ART was initiated in Fiebig 1 compared to later Fiebig stages and were localized to the T-cell zone compared to the B-cell follicle with treatment in later Fiebig stages. Variability of virus production in people treated during acute infection suggests that the balance between virus-producing cells and the immune response to clear infected cells rapidly evolves during the earliest stages of infection. Clinical Trials Registration: NCT02919306.
Collapse
Affiliation(s)
- Eugène Kroon
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | | | - Supranee Buranapraditkun
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Donn J Colby
- Institute of HIV Research and Innovation, Bangkok, Thailand.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rapee Trichavaroj
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Cavan Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Erika Helgeson
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Jacob Zulk
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mark de Souza
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | - Ashley Haase
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Current Moderna, Cambridge, MA
| | | |
Collapse
|
11
|
Li X, Zhao J, Naini SM, Sabiu G, Tullius SG, Shin SR, Bromberg JS, Fiorina P, Tsokos GC, Abdi R, Kasinath V. Kidney-Draining Lymph Node Fibrosis Following Unilateral Ureteral Obstruction. Front Immunol 2021; 12:768412. [PMID: 35024041 PMCID: PMC8744208 DOI: 10.3389/fimmu.2021.768412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Although the primary organ has been the subject of intense investigation in the field of organ fibrosis over the past several decades, the presence of lymph node fibrosis due to persistent activation of the immune response in its partner organ remains largely unknown. Previously, we demonstrated that activation of the immune response following ischemia-reperfusion injury (IRI) and crescentic glomerulonephritis (CGN) in the kidney was associated with extracellular matrix (ECM) production by fibroblastic reticular cells (FRCs) of the kidney-draining lymph node (KLN). Here, we sought to determine whether FRCs in the KLN become similarly fibrogenic following unilateral ureteral obstruction (UUO) of the kidney. We subjected 6-8-week-old C57BL/6J mice to UUO for 2, 7, and 14 days. We examined the microarchitecture of the kidney and KLN by immunofluorescence staining at each timepoint, and we quantified immune cell populations in the KLN by flow cytometry. The contralateral kidney unaffected by UUO and its partner KLN were used as controls. We found through immunofluorescence staining that FRCs increased production of ECM fibers and remodeled the microarchitecture of the UUO KLN, contributing to fibrosis that mirrored the changes in the kidney. We also observed by flow cytometry that the populations of CD11b+ antigen-presenting cells, CD11c+ dendritic cells, and activated CD4+ and CD8+ T cells were significantly higher in the UUO KLN than the KLN draining the unaffected contralateral kidney. Expression of the TGFβ/TGFβR signaling pathway was upregulated and colocalized with FRCs in the UUO KLNs, suggesting a possible mechanism behind the fibrosis. Both release of ureteral ligation at 2 days following UUO and depletion of FRCs at the time of injury onset halted the progression of fibrosis in both the kidney and the KLN. These findings for the first time highlight the association between fibrosis both in the kidney and the KLN during UUO, and they lay the groundwork for future studies that will investigate more deeply the mechanisms behind the connection between FRCs and KLN fibrosis.
Collapse
Affiliation(s)
- Xiaofei Li
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Jing Zhao
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Said Movahedi Naini
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Gianmarco Sabiu
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G. Tullius
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MA, United States
| | - Paolo Fiorina
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George C. Tsokos
- Division of Rheumatology and Department of Immunology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Vivek Kasinath
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Abstract
The lymph node (LN) represents a key structural component of the lymphatic system network responsible for the fluid balance in tissues and the immune system functioning. Playing an important role in providing the immune defense of the host organism, LNs can also contribute to the progression of pathological processes, e.g., the spreading of cancer cells. To gain a deeper understanding of the transport function of LNs, experimental approaches are used. Mathematical modeling of the fluid transport through the LN represents a complementary tool for studying the LN functioning under broadly varying physiological conditions. We developed an artificial neural network (NN) model to describe the lymph node drainage function. The NN model predicts the flow characteristics through the LN, including the exchange with the blood vascular systems in relation to the boundary and lymphodynamic conditions, such as the afferent lymph flow, Darcy’s law constants and Starling’s equation parameters. The model is formulated as a feedforward NN with one hidden layer. The NN complements the computational physics-based model of a stationary fluid flow through the LN and the fluid transport across the blood vessel system of the LN. The physical model is specified as a system of boundary integral equations (IEs) equivalent to the original partial differential equations (PDEs; Darcy’s Law and Starling’s equation) formulations. The IE model has been used to generate the training dataset for identifying the NN model architecture and parameters. The computation of the output LN drainage function characteristics (the fluid flow parameters and the exchange with blood) with the trained NN model required about 1000-fold less central processing unit (CPU) time than computationally tracing the flow characteristics of interest with the physics-based IE model. The use of the presented computational models will allow for a more realistic description and prediction of the immune cell circulation, cytokine distribution and drug pharmacokinetics in humans under various health and disease states as well as assisting in the development of artificial LN-on-a-chip technologies.
Collapse
|
13
|
Asowata OE, Singh A, Ngoepe A, Herbert N, Fardoos R, Reddy K, Zungu Y, Nene F, Mthabela N, Ramjit D, Karim F, Govender K, Ndung'u T, Porterfield JZ, Adamson JH, Madela FG, Manzini VT, Anderson F, Leslie A, Kløverpris HN. Irreversible depletion of intestinal CD4+ T cells is associated with T cell activation during chronic HIV infection. JCI Insight 2021; 6:146162. [PMID: 34618690 PMCID: PMC8663780 DOI: 10.1172/jci.insight.146162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
HIV infection in the human gastrointestinal (GI) tract is thought to be central to HIV progression, but knowledge of this interaction is primarily limited to cohorts within Westernized countries. Here, we present a large cohort recruited from high HIV endemic areas in South Africa and found that people living with HIV (PLWH) presented at a younger age for investigation in the GI clinic. We identified severe CD4+ T cell depletion in the GI tract, which was greater in the small intestine than in the large intestine and not correlated with years on antiretroviral treatment (ART) or plasma viremia. HIV-p24 staining showed persistent viral expression, particularly in the colon, despite full suppression of plasma viremia. Quantification of mucosal antiretroviral (ARV) drugs revealed no differences in drug penetration between the duodenum and colon. Plasma markers of gut barrier breakdown and immune activation were elevated irrespective of HIV, but peripheral T cell activation was inversely correlated with loss of gut CD4+ T cells in PLWH alone. T cell activation is a strong predictor of HIV progression and independent of plasma viral load, implying that the irreversible loss of GI CD4+ T cells is a key event in the HIV pathogenesis of PLWH in South Africa, yet the underlying mechanisms remain unknown.
Collapse
Affiliation(s)
- Osaretin E Asowata
- Africa Health Research Institute (AHRI), Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alveera Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban, South Africa
| | | | - Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban, South Africa.,Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Kavidha Reddy
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Yenzekile Zungu
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Faith Nene
- Africa Health Research Institute (AHRI), Durban, South Africa
| | | | - Dirhona Ramjit
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Katya Govender
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,University College London, Division of Infection and Immunity, London, United Kingdom.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - J Zachary Porterfield
- Africa Health Research Institute (AHRI), Durban, South Africa.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - John H Adamson
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Fusi G Madela
- Division Upper Gastrointestinal Tract and Colorectal Surgery, Inkosi Albert Luthuli Central Hospital (IALCH), University of KwaZulu-Natal, Durban, South Africa
| | - Vukani T Manzini
- Division Upper Gastrointestinal Tract and Colorectal Surgery, Inkosi Albert Luthuli Central Hospital (IALCH), University of KwaZulu-Natal, Durban, South Africa
| | - Frank Anderson
- Division Upper Gastrointestinal Tract and Colorectal Surgery, Inkosi Albert Luthuli Central Hospital (IALCH), University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,University College London, Division of Infection and Immunity, London, United Kingdom
| | - Henrik N Kløverpris
- Africa Health Research Institute (AHRI), Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Immunology and Microbiology, University of Copenhagen, Denmark.,University College London, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
14
|
Jianu C, Itu-Mureşan C, Drugan C, Filipescu I, Topan AV, Jianu ME, Morar II, Bolboacă SD. Evaluation of several serum interleukins as markers for treatment effectiveness in naïve HIV infected patients: A pilot study. PLoS One 2021; 16:e0260007. [PMID: 34784398 PMCID: PMC8594820 DOI: 10.1371/journal.pone.0260007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
In this observational pilot study, we investigated the impact of Dolutegravir, Raltegravir, Elvitegravir (Integrase Strand Transfer Inhibitors, INSTIs), or boosted Darunavir (a Protease Inhibitor, PI) in combination with two nucleoside reverstranscriptase inhibitors (Emtricitabine/Tenofovir disoproxil or Lamivudine/Tenofovir disoproxil, NRTI) on four interleukins (IL-4, IL-10, IL-13, and IL-21) as immune activation markers in naïve HIV(Human Immunodeficiency Virus)-infected patients during the first six months of combined standard-of-care antiretroviral therapy (cART). Newly diagnosed with HIV-infected subjects and without any disease that could affect the immune activation markers were evaluated. The patients’ physicians recommended the cART as standard-of-care and the ILs were measured before cART and six months of cART. The levels of CD4+ T-cells count and CD4+/CD8+ ratio significantly increased at six months (P-value<0.02) regardless of the drugs, INSTIs or PI. However, a CD4+/CD8+ >1 was observed in 25% of patients treated with Raltegravir and half of those treated with Dolutegravir. At six months of cART, viral load was detectable in only 6/31 individuals. IL-21 had an undetectable level in 30/31 patients after six months of cART. Our results suggest the potency in restoring immune markers in HIV-infected patients with all investigated drugs. Dolutegravir showed a tendency to statistically significant changes in IL-4 and IL-10. A clinical trial with random allocation of medication and an extensive follow-up is needed to replicate this research and validate the usefulness of evaluated ILs as markers of cART effectiveness.
Collapse
Affiliation(s)
- Cristian Jianu
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunosuppressed, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Corina Itu-Mureşan
- Department of Immunosuppressed, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Cristina Drugan
- Department of Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Irina Filipescu
- Department of Immunosuppressed, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Adriana Violeta Topan
- Department of Immunosuppressed, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
- Department of Infectious Diseases, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Elena Jianu
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- * E-mail: (MEJ); (SDB)
| | - Ioana Iulia Morar
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- * E-mail: (MEJ); (SDB)
| |
Collapse
|
15
|
Devanathan AS, Kashuba AD. Human Immunodeficiency Virus Persistence in the Spleen: Opportunities for Pharmacologic Intervention. AIDS Res Hum Retroviruses 2021; 37:725-735. [PMID: 33499746 DOI: 10.1089/aid.2020.0266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The persistence of HIV in the spleen, despite combination antiretroviral therapy, is not well understood. Sustained immune dysregulation and delayed immune recovery, in addition to immune cell exhaustion, may contribute to persistence of infection in the spleen. Eliminating HIV from this secondary lymphoid organ will require a thorough understanding of antiretroviral (ARV) pharmacology in the spleen, which has been minimally investigated. Low ARV exposure within the spleen may hinder the achievement of a functional or sterilizing cure if cells are not protected from HIV infection. In this study, we provide an overview of the anatomy and physiology of the spleen, review the evidence of the spleen as a site for persistence of HIV, discuss the consequences of persistence of HIV in the spleen, address challenges to eradicating HIV in the spleen, and examine opportunities for future curative efforts.
Collapse
Affiliation(s)
| | - Angela D.M. Kashuba
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Torres B, Guardo AC, Squarcia M, Diaz A, Fabra A, Caballero M, Ugarte A, Leal L, Gatell JM, Plana M, Garcia F. Impact of switching to raltegravir and/or adding losartan in lymphoid tissue fibrosis and inflammation in people living with HIV. A randomized clinical trial. HIV Med 2021; 22:674-681. [PMID: 34288357 DOI: 10.1111/hiv.13114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Persistent inflammation and immune activation are associated with lymph node fibrosis and end-organ diseases in treatment-suppressed people living with HIV (PLWH). We investigated the effect of switching to raltegravir and/or adding losartan on lymphoid tissue fibrosis and on the inflammatory/immune-activation mediators in treated HIV patients. METHODS Chronic HIV-infected patients treated with two nucleoside reverse transcriptase inhibitors (2NRTI) and one non-NRTI (NNRTI) or protease inhibitor (PI) during at least 48 weeks were randomized to four groups (n = 48): 2NRTI + efavirenz (EFV), 2NRTI + EFV + losartan, 2NRTI + raltegravir and 2NRTI + raltegravir + losartan for 48 weeks. Tonsillar biopsy and peripheral blood markers of CD4 and CD8 T-lymphocyte activation and senescence, monocyte activation and soluble markers of inflammation were determined at baseline and at week 48 and compared between groups. RESULTS No changes in lymphoid tissue architecture were observed. Adding losartan had no impact on lymphocyte subsets. Conversely, patients who switched to raltegravir showed a higher decrease in all activated [CD4+CD38+HLA-DR+, -0.3 vs. 0.48 (P = 0.033); CD8+CD38+ HLA-DR+, -1.6 vs. 1.3 (P = 0.02)] and senescent [CD4+CD28-CD57+, -0.3 vs. 0.26 (P = 0.04); CD8+CD28-CD57+, -6.1 vs. 3.8 (P = 0.002)] T lymphocytes. In addition, the median CD4/CD8 ratio increased by 0.35 in patients in the raltegravir group vs. 0.03 in the other arms (P = 0.002). Differences between groups in monocyte subpopulations or soluble inflammation markers were not observed. CONCLUSIONS Losartan had no effect on lymphoid fibrosis or immune activation/inflammation. Conversely, switching to a regimen with raltegravir significantly decreased activated and senescent T-lymphocyte subpopulations and increased CD4/CD8 ratio in successfully treated PLWH.
Collapse
Affiliation(s)
- B Torres
- Infectious Diseases Department, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A C Guardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Squarcia
- Radiology Department, Hospital Clínic, Barcelona, Spain
| | - A Diaz
- Pathology Department, Hospital Clínic, Barcelona, Spain
| | - A Fabra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Caballero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Otorhinolaryngology Department, Hospital Clínic, Barcelona, Spain
| | - A Ugarte
- Infectious Diseases Department, Hospital Clínic, Barcelona, Spain
| | - L Leal
- Infectious Diseases Department, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - J M Gatell
- Infectious Diseases Department, Hospital Clínic, Barcelona, Spain
| | - M Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - F Garcia
- Infectious Diseases Department, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
17
|
Moysi E, Del Rio Estrada PM, Torres-Ruiz F, Reyes-Terán G, Koup RA, Petrovas C. In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization. Front Immunol 2021; 12:683396. [PMID: 34177929 PMCID: PMC8221112 DOI: 10.3389/fimmu.2021.683396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Mexico City, Mexico
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
18
|
Quantitative Imaging Analysis of the Spatial Relationship between Antiretrovirals, Reverse Transcriptase Simian-Human Immunodeficiency Virus RNA, and Collagen in the Mesenteric Lymph Nodes of Nonhuman Primates. Antimicrob Agents Chemother 2021; 65:AAC.00019-21. [PMID: 33782003 DOI: 10.1128/aac.00019-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) persistence in tissue reservoirs is a major barrier to HIV cure. While antiretrovirals (ARVs) suppress viral replication, antiretroviral therapy (ART) interruption results in rapid rebound viremia that may originate from lymphoid tissues. To understand the relationship between anatomic distribution of ARV exposure and viral expression in lymph nodes, we performed mass spectrometry imaging (MSI) of 6 ARVs, RNAscope in situ hybridization for viral RNA (vRNA), and immunohistochemistry of collagen in mesenteric lymph nodes from 8 uninfected and 10 reverse transcriptase simian/human immunodeficiency virus (RT-SHIV)-infected rhesus macaques dosed to steady state with combination ART. MATLAB-based quantitative imaging analysis was used to evaluate spatial and pharmacological relationships between these ARVs, viral RNA (both vRNA+ cells and follicular dendritic cell [FDC]-bound virions), and collagen deposition. Using MSI, 31% of mesenteric lymph node tissue area was found to be not covered by any ARV. Additionally, 28% of FDC-trapped virions and 21% of infected cells were not exposed to any detected ARV. Of the 69% of tissue area that was covered by cumulative ART exposure, nearly 100% of concentrations were greater than in vitro 50% inhibitory concentration (IC50) values; however, 52% of total tissue coverage was from only one ARV, primarily maraviroc. Collagen covered ∼35% of tissue area but did not influence ARV distribution heterogeneity. Our findings are consistent with our hypothesis that ARV distribution, in addition to total-tissue drug concentration, must be considered when evaluating viral persistence in lymph nodes and other reservoir tissues.
Collapse
|
19
|
Baker JV, Wolfson J, Collins G, Morse C, Rhame F, Liappis AP, Rizza S, Temesgen Z, Mystakelis H, Deeks S, Neaton J, Schacker T, Sereti I, Tracy RP. Losartan to reduce inflammation and fibrosis endpoints in HIV disease. AIDS 2021; 35:575-583. [PMID: 33252490 PMCID: PMC8062089 DOI: 10.1097/qad.0000000000002773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Persistent inflammation and incomplete immune recovery among persons with HIV (PHIV) are associated with increased disease risk. We hypothesized that the angiotensin receptor blocker (ARB) losartan would reduce inflammation by mitigating nuclear factor (NF)κB responses and promote T-cell recovery via inhibition of transforming growth factor-beta (TGFβ)-mediated fibrosis. METHODS Losartan (100 mg) versus placebo over 12 months was investigated in a randomized (1 : 1) placebo-controlled trial, among PHIV age at least 50 years, receiving antiretroviral therapy (ART), with HIV RNA less than 200 copies/ml and CD4+ cell count 600 cells/μl or less. Inflammation, fibrosis and myocardial biomarkers were measured in blood using ELISA, electrochemiluminescence and immunoturbidimetric methods, and T-cell and monocyte phenotypes were assessed with flow cytometry among a subset of participants. Changes over follow-up in (log-2 transformed) biomarkers and cell phenotypes (untransformed) were compared between losartan and placebo arms using linear mixed models. RESULTS Among 108 PHIV (n = 52 to losartan; n = 56 to placebo), 97% had a month 12 visit. Median age was 57 years and baseline CD4+ cell count was 408 cells/μl. Losartan treatment was not associated with an improvement in interleukin-6 levels, or other blood measures of inflammation, immune activation, fibrosis activity or myocardial function. CD4+ and CD8+ T cells also did not differ by treatment group. Losartan reduced SBP and DBP by 6 and 5 mmHg, respectively. CONCLUSION Among older PHIV with viral suppression, losartan did not improve blood measures of inflammation nor T-cell immune recovery. Losartan treatment is unlikely to reduce inflammation associated comorbidities to a clinically meaningful degree, beyond the benefits from lowering blood pressure. CLINICALTRIALSGOV NCT02049307.
Collapse
Affiliation(s)
- Jason V. Baker
- Hennepin Healthcare Research Institute
- University of Minnesota, Minneapolis, Minnesota
| | | | | | - Caryn Morse
- Wake Forest Baptist Medical Center, Winston Salem, North Carolina
| | | | | | | | | | | | - Steven Deeks
- University of California San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
20
|
Scholz EMB, Kashuba ADM. The Lymph Node Reservoir: Physiology, HIV Infection, and Antiretroviral Therapy. Clin Pharmacol Ther 2021; 109:918-927. [PMID: 33529355 DOI: 10.1002/cpt.2186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Despite advances in treatment, finding a cure for HIV remains a top priority. Chronic HIV infection is associated with increased risk of comorbidities, such as diabetes and cardiovascular disease. Additionally, people living with HIV must remain adherent to daily antiretroviral therapy, because lapses in medication adherence can lead to viral rebound and disease progression. Viral recrudescence occurs from cellular reservoirs in lymphoid tissues. In particular, lymph nodes are central to the pathology of HIV due to their unique architecture and compartmentalization of immune cells. Understanding how antiretrovirals (ARVs) penetrate lymph nodes may explain why these tissues are maintained as HIV reservoirs, and how they contribute to viral rebound upon treatment interruption. In this report, we review (i) the physiology of the lymph nodes and their function as part of the immune and lymphatic systems, (ii) the pathogenesis and outcomes of HIV infection in lymph nodes, and (iii) ARV concentrations and distribution in lymph nodes, and the relationship between ARVs and HIV in this important reservoir.
Collapse
Affiliation(s)
- Erin M B Scholz
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina, USA.,School of Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Eckard AR, Hughes HY, Hagood NL, O’Riordan MA, Labbato D, Kosco JC, Scott SE, McComsey GA. Fecal Calprotectin Is Elevated in HIV and Related to Systemic Inflammation. J Acquir Immune Defic Syndr 2021; 86:231-239. [PMID: 33065582 PMCID: PMC8285069 DOI: 10.1097/qai.0000000000002538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fecal calprotectin (FC), a biomarker of gastrointestinal (GI) inflammation, is used in the diagnosis and management of inflammatory bowel disease. HIV infection severely damages gut-associated lymphoid and epithelial tissues leading to GI inflammation that drives systemic inflammation and increases subsequent risk of comorbidities. For the first time, we compared FC concentrations by HIV and antiretroviral therapy (ART) status and determined the relationship to systemic inflammation. METHODS People with and without HIV were enrolled and underwent a comprehensive clinical and laboratory assessment. Stool samples were collected, and FC was measured by enzyme-linked immunosorbent assay ELISA. Plasma biomarkers of inflammation were also measured. RESULTS One hundred one participants with HIV (83 ART-treated and 18 ART-naive) and 89 uninfected controls were enrolled. There were no significant differences between ART-naive and ART-treated participants, but both HIV groups had significantly higher FC concentrations than controls when FC was considered as a continuous variable or by cut-offs used in inflammatory bowel disease. The highest median and largest proportion of participants with FC >100 µg/g were seen in ART-naive, followed by ART-treated and then controls. Among HIV participants, FC concentrations were positively associated with high-sensitivity C-reactive protein, soluble tumor necrosis factor receptor II, and soluble vascular cellular adhesion molecule and inversely associated with CD4 counts. CONCLUSIONS FC concentrations are elevated in HIV regardless of ART status. ART and immune reconstitution seem to reduce FC but not to concentrations seen in uninfected controls. Our results suggest a role for FC as a noninvasive surrogate measurement of GI inflammation and associated systemic inflammation in HIV.
Collapse
Affiliation(s)
| | - Heather Y. Hughes
- Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | | | | | - Danielle Labbato
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Julia C. Kosco
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sarah E. Scott
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Grace A. McComsey
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
22
|
Huerta L. Editorial: Anti-infective 2020: HIV-From pathogenesis to treatment. Curr Opin Pharmacol 2020; 54:x-xii. [PMID: 33357716 PMCID: PMC7800138 DOI: 10.1016/j.coph.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leonor Huerta
- Instituto de Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
23
|
Devanathan AS, Fallon JK, White NR, Schauer AP, Van Horne B, Blake K, Sykes C, Kovarova M, Adamson L, Remling-Mulder L, Luciw P, Garcia JV, Akkina R, Pirone JR, Smith PC, Kashuba ADM. Antiretroviral Penetration and Drug Transporter Concentrations in the Spleens of Three Preclinical Animal Models and Humans. Antimicrob Agents Chemother 2020; 64:e01384-20. [PMID: 32661005 PMCID: PMC7508597 DOI: 10.1128/aac.01384-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Adequate antiretroviral (ARV) concentrations in lymphoid tissues are critical for optimal antiretroviral therapy (ART). While the spleen contains 25% of the body's lymphocytes, there are minimal data on ARV penetration in this organ. This study quantified total and protein-unbound splenic ARV concentrations and determined whether drug transporters, sex, or infection status were modifiers of these concentrations in animal models and humans. Two humanized mice models (hu-HSC-Rag [n = 36; 18 HIV-positive (HIV+) and 18 HIV-negative (HIV-)] and bone marrow-liver-thymus [n = 13; 7 HIV+ and 6 HIV-]) and one nonhuman primate (NHP) model (rhesus macaque [n = 18; 10 SHIV+ and 8 SHIV-]) were dosed to steady state with ARV combinations. HIV+ human spleens (n = 14) from the National NeuroAIDS Tissue Consortium were analyzed postmortem (up to 24 h postdose). ARV concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), drug transporter concentrations were measured with LC-MS proteomics, and protein binding in NHP spleens was determined by rapid equilibrium dialysis. Mice generally had the lowest splenic concentrations of the three species. Protein binding in splenic tissue was 6 to 96%, compared to 76 to 99% in blood plasma. NHPs had quantifiable Mrp4, Bcrp, and Ent1 concentrations, and humans had quantifiable ENT1 concentrations. None significantly correlated with tissue ARV concentrations. There was also no observable influence of infection status or sex. With these dosing strategies, NHP splenic penetration most closely resembled that of humans. These data can inform tissue pharmacokinetic scaling to humans to target HIV reservoirs by identifying important species-related differences.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - John K Fallon
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nicole R White
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Amanda P Schauer
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Brian Van Horne
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Kimberly Blake
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Martina Kovarova
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | - Paul Luciw
- University of California, Davis, Davis, California, USA
| | - J Victor Garcia
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ramesh Akkina
- Colorado State University, Fort Collins, Colorado, USA
| | - Jason R Pirone
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Philip C Smith
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Huang L, Deng J, Lang R, Liao G, Jiang W. Enriched LPS Staining within the Germinal Center of a Lymph Node from an HIV-Infected Long-Term Nonprogressor but Not from Progressors. J Immunol Res 2020; 2020:7471380. [PMID: 32455142 PMCID: PMC7225845 DOI: 10.1155/2020/7471380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
An increased level of microbial translocation has been observed in HIV-infected individuals. The host response to microbial translocation is compromised in HIV-infected progressors but remains unknown in HIV-infected long-term nonprogressors (LTNPs). To evaluate microbial translocation in HIV, we assessed lipopolysaccharide (LPS) immunohistochemistry staining in lymph nodes. We found enriched bacterial LPS immunohistochemistry staining in the germinal center of a lymph node from an HIV-infected LTNP, evenly distributed from three progressors with impaired germinal center structures and rarely detected from two HIV-negative individuals. The impaired germinal center structures were consistent with collagen deposition in lymph nodes using immunohistochemistry staining. These results suggest greater immune responses against bacterial LPS translocation in LTNPs, which may reveal an important mechanism in controlling microbial translocation and disease progression in HIV LTNPs.
Collapse
Affiliation(s)
- Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100039
| | - Jianning Deng
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China 530023
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China 100020
| | - Guoyang Liao
- Chief of No. 5 Biologicals Department, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kuming, China 650118
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA 29425
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, USA 29425
| |
Collapse
|
25
|
Mtshali Z, Moodley J, Naicker T. An Insight into the Angiogenic and Lymphatic Interplay in Pre-eclampsia Comorbid with HIV Infection. Curr Hypertens Rep 2020; 22:35. [PMID: 32200445 DOI: 10.1007/s11906-020-01040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To provide insight on the imbalance of angiogenic and lymphangiogenic factors in pre-eclampsia, as well as highlight polymorphism in genes related to angiogenesis and lymphangiogenesis. RECENT FINDINGS The pregnancy-specific disorder pre-eclampsia is diagnosed by the presence of hypertension with/without proteinuria, after 20 weeks of gestation. The pathogenesis of pre-eclampsia remains ambiguous, but research over the years has identified an imbalance in maternal and foetal factors. Familial predisposition and gene variation are also linked to pre-eclampsia development. The sFlt-1/PIGF ratio has attracted great attention over the years; more recently several researchers have reported that a sFlt-1/PIGF ratio of ≤ 38 can be used to predict short-term absence of pre-eclampsia. This ratio has the potential to prevent adverse pregnancy outcomes and reduce healthcare costs significantly. Genome-wide studies have additionally identified variation in the foetal gene near Flt-1. The development of preeclampsia is not limited to the maternal interface, but foetal involvement as well as genetic interplay is associated with the disorder.
Collapse
Affiliation(s)
- Zamahlabangane Mtshali
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| | - Jagidesa Moodley
- Department of Obstetrics and Gynaecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Martinez VG, Pankova V, Krasny L, Singh T, Makris S, White IJ, Benjamin AC, Dertschnig S, Horsnell HL, Kriston-Vizi J, Burden JJ, Huang PH, Tape CJ, Acton SE. Fibroblastic Reticular Cells Control Conduit Matrix Deposition during Lymph Node Expansion. Cell Rep 2019; 29:2810-2822.e5. [PMID: 31775047 PMCID: PMC6899512 DOI: 10.1016/j.celrep.2019.10.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-β and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.
Collapse
Affiliation(s)
- Victor G Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valeriya Pankova
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lukas Krasny
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Tanya Singh
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Simone Dertschnig
- UCL Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Paul H Huang
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Saxena V, Li L, Paluskievicz C, Kasinath V, Bean A, Abdi R, Jewell CM, Bromberg JS. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol Rev 2019; 292:9-23. [PMID: 31538349 PMCID: PMC6935411 DOI: 10.1111/imr.12799] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vivek Kasinath
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asher Bean
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, Robert E. Fischell Institute for Biomedical Devices University of Maryland, College Park, MD 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Cryptogenic Multifocal Ulcerative Sclerosing Enteritis: A Curious Case of Intestinal Obstruction in the Setting of Human Immunodeficiency Virus. ACG Case Rep J 2019; 6:e00070. [PMID: 31616747 PMCID: PMC6658071 DOI: 10.14309/crj.0000000000000070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/27/2019] [Indexed: 11/17/2022] Open
Abstract
Cryptogenic multifocal ulcerative sclerosing enteritis (CMUSE) is a rare clinical entity characterized by chronic, relapsing episodes of ileus and obstruction resulting from superficial ulcerating lesions of the small intestine with a clinical course that responds favorably to corticosteroids. We report a case of CMUSE arising in a patient with a history of human immunodeficiency virus infection. This case highlights the unique pathology of CMUSE as well as the potential pathogenesis of this atypical clinical entity.
Collapse
|
29
|
Furler RL, Newcombe KL, Del Rio Estrada PM, Reyes-Terán G, Uittenbogaart CH, Nixon DF. Histoarchitectural Deterioration of Lymphoid Tissues in HIV-1 Infection and in Aging. AIDS Res Hum Retroviruses 2019; 35:1148-1159. [PMID: 31474115 DOI: 10.1089/aid.2019.0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Impaired immunity is a common symptom of aging and advanced Human Immunodeficiency Virus type 1 (HIV-1) disease. In both diseases, a decline in lymphocytic function and cellularity leads to ineffective adaptive immune responses to opportunistic infections and vaccinations. Furthermore, despite sustained myeloid cellularity there is a background of chronic immune activation and a decrease in innate immune function in aging. In HIV-1 disease, myeloid cellularity is often more skewed than in normal aging, but similar chronic activation and innate immune dysfunction typically arise. Similarities between aging and HIV-1 infection have led to several investigations into HIV-1-mediated aging of the immune system. In this article, we review various studies that report alterations of leukocyte number and function during aging, and compare those alterations with those observed during progressive HIV-1 disease. We pay particular attention to changes within lymphoid tissue microenvironments and how histoarchitectural changes seen in these two diseases affect immunity. As we review various immune compartments including peripheral blood as well as primary and secondary lymphoid organs, common themes arise that help explain the decline of immunity in the elderly and in HIV-1-infected individuals with advanced disease. In both conditions, lymphoid tissues often show signs of histoarchitectural deterioration through fat accumulation and/or fibrosis. These structural changes can be attributed to a loss of communication between leukocytes and the surrounding stromal cells that produce the extracellular matrix components and growth factors necessary for cell migration, cell proliferation, and lymphoid tissue function. Despite the common general impairment of immunity in aging and HIV-1 progression, deterioration of immunity is caused by distinct mechanisms at the cellular and tissue levels in these two diseases.
Collapse
Affiliation(s)
- Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin L. Newcombe
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Perla M. Del Rio Estrada
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Gustavo Reyes-Terán
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, Medicine-Pediatrics, UCLA AIDS Institute and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
30
|
Mylvaganam G, Yanez AG, Maus M, Walker BD. Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology. Front Immunol 2019; 10:2109. [PMID: 31552045 PMCID: PMC6746828 DOI: 10.3389/fimmu.2019.02109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
As the AIDS epidemic unfolded, the appearance of opportunistic infections in at-risk persons provided clues to the underlying problem: a dramatic defect in cell-mediated immunity associated with infection and depletion of CD4+ T lymphocytes. Moreover, the emergence of HIV-associated malignancies in these same individuals was a clear indication of the significant role effective cellular immunity plays in combating cancers. As research in the HIV field progressed, advances included the first demonstration of the role of PD-1 in human T cell exhaustion, and the development of gene-modified T cell therapies, including chimeric antigen receptor (CAR) T cells. In the intervening years, the oncology field has capitalized on these advances, effectively mobilizing the cellular immune response to achieve immune-mediated remission or cure of previously intractable cancers. Although similar therapeutic advances have not yet been achieved in the HIV field, spontaneous CD8+ T cell mediated remission or functional cure of HIV infection does occur in very small subset of individuals in the absence of anti-retroviral therapy (ART). This has many similarities to the CD8+ T cell mediated functional control or elimination of cancers, and indicates that immunotherapy for HIV is a rational goal. In HIV infection, one major barrier to successful immunotherapy is the small, persistent population of infected CD4+ T cells, the viral reservoir, which evades pharmacological and immune-mediated clearance, and is largely maintained in secondary lymphoid tissues at sites where CD8+ T cells have limited access and/or function. The reservoir-enriched lymphoid microenvironment bears a striking resemblance to the tumor microenvironment of many solid tumors–namely high levels of anti-inflammatory cytokines, expression of co-inhibitory receptors, and physical exclusion of immune effector cells. Here, we review the parallels between CD8+ T cell-mediated immune control of HIV and cancer, and how advances in cancer immunotherapy may provide insights to direct the development of effective HIV cure strategies. Specifically, understanding the impact of the tissue microenvironment on T cell function and development of CAR T cells and therapeutic vaccines deserve robust attention on the path toward a CD8+ T cell mediated cure of HIV infection.
Collapse
Affiliation(s)
- Geetha Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Marcela Maus
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States.,MGH Cancer Center, Boston, MA, United States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States.,Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
| |
Collapse
|
31
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The purpose of the present review is to describe the major barriers to HIV eradication and assess the most promising cure strategies under investigation. RECENT FINDINGS There are significant challenges to achieve HIV eradication. These include the establishment of persistent latently infected cells, systemic chronic immune activation, and immune dysfunction. Since the announcement of the first HIV cure involving the Berlin patient, several attempts to reproduce these results have failed. Thus, it is widely accepted that long-term HIV remission would be a more feasible approach. Optimization of ART, immune-based therapies, therapeutic vaccinations, and gene editing, amongst others, are strategies aimed at controlling HIV in the absence of ART. These new strategies alone or in combination are being developed in preclinical studies and clinical trials and will provide further insight into whether long-term HIV remission is possible. SUMMARY The present review discusses several mechanisms that mediate the persistence of the HIV reservoir, clinical cases that provide hope in finding a functional cure of HIV, and promising interventional strategies being tested in preclinical studies and clinical trials that attempt to reduce the HIV reservoirs and/or boost the immune responses to control HIV in the absence of ART.
Collapse
|
33
|
Magnuson AM, Regan DP, Booth AD, Fouts JK, Solt CM, Hill JL, Dow SW, Foster MT. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. Eur J Nutr 2019; 59:1641-1654. [PMID: 31165249 DOI: 10.1007/s00394-019-02019-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Accumulation of visceral, but not subcutaneous, adipose tissue is highly associated with metabolic disease. Inflammation inciting from adipose tissue is commonly associated with metabolic disease risk and comorbidities. However, constituents of the immune system, lymph nodes, embedded within these adipose depots remain under-investigated. We hypothesize that, lymph nodes are inherently distinct and differentially respond to diet-induced obesity much like the adipose depots they reside in. METHODS Adipose tissue and lymph nodes were collected from the visceral and inguinal depots of male mice fed 13 weeks of standard CHOW or high fat diet (HFD). Immune cells were isolated from tissues, counted and characterized by flow cytometry or plated for proliferative capacity following Concanavalin A stimulation. Lymph node size and fibrosis area were also characterized. RESULTS In HFD fed mice visceral adipose tissue accumulation was associated with significant enlargement of the lymph node encased within. The subcutaneous lymph node did not change. Compared with mice fed CHOW for 13 weeks, mice fed HFD had a decline in immune cell populations and immune cell proliferative ability, as well as, exacerbated fibrosis accumulation, within the visceral, but not subcutaneous, lymph node. CONCLUSIONS Obesity-induced chronic low-grade inflammation is associated with impaired immunity and increased susceptibility to disease. Excessive visceral adiposity and associated inflammation driven by diet likely leads to obesity-induced immune suppression by way of lymph node/lymphatic system pathophysiology.
Collapse
Affiliation(s)
- Aaron M Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrea D Booth
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Josephine K Fouts
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Claudia M Solt
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Jessica L Hill
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Steve W Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA.
| |
Collapse
|
34
|
Samal J, Kelly S, Na-Shatal A, Elhakiem A, Das A, Ding M, Sanyal A, Gupta P, Melody K, Roland B, Ahmed W, Zakir A, Bility M. Human immunodeficiency virus infection induces lymphoid fibrosis in the BM-liver-thymus-spleen humanized mouse model. JCI Insight 2018; 3:120430. [PMID: 30232273 DOI: 10.1172/jci.insight.120430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
A major pathogenic feature associated with HIV infection is lymphoid fibrosis, which persists during antiretroviral therapy (ART). Lymphoid tissues play critical roles in the generation of antigen-specific immune response, and fibrosis disrupts the stromal network of lymphoid tissues, resulting in impaired immune cell trafficking and function, as well as immunodeficiency. Developing an animal model for investigating the impact of HIV infection-induced lymphoid tissue fibrosis on immunodeficiency and immune cell impairment is critical for therapeutics development and clinical translation. Said model will enable in vivo mechanistic studies, thus complementing the well-established surrogate model of SIV infection-induced lymphoid tissue fibrosis in macaques. We developed a potentially novel human immune system-humanized mouse model by coengrafting autologous fetal thymus, spleen, and liver organoids under the kidney capsule, along with i.v. injection of autologous fetal liver-derived hematopoietic stem cells, thus termed the BM-liver-thymus-spleen (BLTS) humanized mouse model. BLTS humanized mouse model supports development of human immune cells and human lymphoid organoids (human thymus and spleen organoids). HIV infection in BLTS humanized mice results in progressive fibrosis in human lymphoid tissues, which was associated with immunodeficiency in the lymphoid tissues, and lymphoid tissue fibrosis persists during ART, thus recapitulating clinical outcomes.
Collapse
|
35
|
Kityo C, Makamdop KN, Rothenberger M, Chipman JG, Hoskuldsson T, Beilman GJ, Grzywacz B, Mugyenyi P, Ssali F, Akondy RS, Anderson J, Schmidt TE, Reimann T, Callisto SP, Schoephoerster J, Schuster J, Muloma P, Ssengendo P, Moysi E, Petrovas C, Lanciotti R, Zhang L, Arévalo MT, Rodriguez B, Ross TM, Trautmann L, Sekaly RP, Lederman MM, Koup RA, Ahmed R, Reilly C, Douek DC, Schacker TW. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest 2018; 128:2763-2773. [PMID: 29781814 DOI: 10.1172/jci97377] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/10/2018] [Indexed: 11/17/2022] Open
Abstract
Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.
Collapse
Affiliation(s)
- Cissy Kityo
- Joint Clinical Research Center, Kampala, Uganda
| | - Krystelle Nganou Makamdop
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | - Rama S Akondy
- Emory Vaccine Center, and Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Jodi Anderson
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | - Eirini Moysi
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Constantinos Petrovas
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Lin Zhang
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria T Arévalo
- Center for Vaccines and Immunology and Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology and Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafi Ahmed
- Emory Vaccine Center, and Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Cavan Reilly
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
36
|
Huang L, Deng J, Xu W, Wang H, Shi L, Wu F, Wu D, Nei W, Zhao M, Mao P, Zhou X. CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection. Mol Med Rep 2018; 18:77-86. [PMID: 29749506 PMCID: PMC6059705 DOI: 10.3892/mmr.2018.8964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Lymph node (LN) fibrosis resulting in cluster of differentiation (CD) 4+ T cell reduction following human immunodeficiency virus (HIV) infection is an important step in the pathogenesis of acquired immunodeficiency syndrome. The mechanisms mediating LN fibrosis following HIV infection have not been completely elucidated. In order to investigate the mechanism of LN fibrosis, the expression of transforming growth factor (TGF)‑β1 was determined in the LNs of HIV‑infected individuals by immunohistochemistry and fluorescence‑based flow cytometry. The effect of stimulated CD8+ T cells on collagen secretion by fibroblasts was detected using immunofluorescence staining and western blot analysis. The results demonstrated that the LNs of HIV‑infected individuals exhibited a significantly increased proportion of CD8+ T cells with high TGF‑β1 expression. These CD8+ T cells demonstrated increased CD38 and programmed cell death protein 1 expression and decreased CD127 expression compared with the controls. CD8+ T cells from the LNs of non‑HIV infected individuals expressed a high TGF‑β1 level following stimulation with phorbol‑12‑myristate 13‑acetate. These CD8+T cells subsequently induced the secretion of a large amount of type I collagen in human lymphatic fibroblasts. The results of the present study indicated that CD8+ T cells with high TGF‑β1 expression served an important role in LN fibrosis following HIV infection.
Collapse
Affiliation(s)
- Lei Huang
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Jianning Deng
- Guangxi AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi 530023, P.R. China
| | - Wen Xu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Hongbo Wang
- The Second Center of Hepatobiliary Surgery Department, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Lei Shi
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Fengyao Wu
- Guangxi AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi 530023, P.R. China
| | - Dan Wu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Weimin Nei
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Min Zhao
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Panyong Mao
- Research Clinical Center for Translational Medicine, 302 Military Hospital of China, Beijing 100039, P.R. China
| | - Xianzhi Zhou
- The Fourth Military Medical University, Xian, Shaanxi 710032, P.R. China
| |
Collapse
|
37
|
Ferrando-Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, McDermott AB, Palesch D, Paiardini M, Pavlakis GN, Brenchley JM, Douek D, Mascola JR, Petrovas C, Koup RA. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest 2018; 128:2089-2103. [PMID: 29664020 DOI: 10.1172/jci96207] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
LN follicles constitute major reservoir sites for HIV/SIV persistence. Cure strategies could benefit from the characterization of CD8+ T cells able to access and eliminate HIV-infected cells from these areas. In this study, we provide a comprehensive analysis of the phenotype, frequency, localization, and functionality of follicular CD8+ T cells (fCD8+) in SIV-infected nonhuman primates. Although disorganization of follicles was a major factor, significant accumulation of fCD8+ cells during chronic SIV infection was also observed in intact follicles, but only in pathogenic SIV infection. In line with this, tissue inflammatory mediators were strongly associated with the accumulation of fCD8+ cells, pointing to tissue inflammation as a major factor in this process. These fCD8+ cells have cytolytic potential and can be redirected to target and kill HIV-infected cells using bispecific antibodies. Altogether, our data support the use of SIV infection to better understand the dynamics of fCD8+ cells and to develop bispecific antibodies as a strategy for virus eradication.
Collapse
Affiliation(s)
| | | | | | | | - Krystelle Nganou Makamdop
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | - David Palesch
- Department of Pathology, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Department of Pathology, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - George N Pavlakis
- Human Retrovirus Section, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
38
|
Mullins TLK, Li SX, Bethel J, Goodenow MM, Hudey S, Sleasman JW. Sexually transmitted infections and immune activation among HIV-infected but virally suppressed youth on antiretroviral therapy. J Clin Virol 2018; 102:7-11. [PMID: 29454196 DOI: 10.1016/j.jcv.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection is associated with chronic immune activation, and concurrent sexually transmitted infections (STIs) may increase immune activation. OBJECTIVES Because HIV-infected youth are at high risk of STIs and little is known about the impact of STIs on immune activation in HIV-infected youth, we conducted an exploratory study examining the association between STIs and systemic inflammation and immune activation among HIV-infected adolescents. STUDY DESIGN Forty-nine behaviorally infected U.S. youth ages 18-24 years with baseline CD4+ T-cells >350 who maintained viral suppression on therapy by week 48 were included. Evaluation for STIs (herpes simplex virus [HSV], Chlamydia trachomatis, syphilis, Neisseria gonorrhoeae) was conducted as standard of care and reported on case report forms. Measures of T-cell subsets, systemic immune activation, and soluble factors were examined at week 48 for differences between participants with an STI diagnosis during the 48 weeks compared to those without an STI. RESULTS Forty-three participants (88%) were male; 57% had baseline CD4+ T-cell counts >500 cells/mm3. Eighteen youth were reported to have ≥1 STI. At week 48, participants with STIs demonstrated lower CD4+ T-cell counts (any STI vs. no STI, p = 0.024; HSV vs. no STI, p = 0.022) and evidence of increased systemic immune activation, including higher CD57 intensity, higher HLA-DR intensity, and lower CD28 percentage, when compared to those without STIs. There were no differences in soluble factors between STI groups. CONCLUSIONS Results indicate novel activation of CD4+ T-cells among HIV-infected youth who have STIs other than HSV, which may contribute to disease progression.
Collapse
Affiliation(s)
- Tanya L Kowalczyk Mullins
- Division of Adolescent and Transition Medicine Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4000, Cincinnati, OH, 45229, United States; University of Cincinnati College of Medicine, CARE/Crawley Building, Suite E-870, 3230 Eden Avenue, Cincinnati, OH, 45267, United States.
| | - Su X Li
- Westat, 1600 Research Boulevard, Rockville, MD, 20850, United States
| | - James Bethel
- Westat, 1600 Research Boulevard, Rockville, MD, 20850, United States
| | - Maureen M Goodenow
- Dept. of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, P.O. Box 103633 Gainesville, FL, 32610, United States
| | - Stephanie Hudey
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - John W Sleasman
- Duke University, School of Medicine, Department of Pediatrics, 133 MSRB I, DUMC Box 2644, Durham, NC, 27710, United States
| |
Collapse
|
39
|
Abstract
The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103-10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006; Ances et al. J Infect Dis 201(3):336-340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279-1286, 2007; Lifson et al. HIV Clin Trials 9(3):177-185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787-794, 2009; Robbins et al. Clin Infect Dis 48(3):350-361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.
Collapse
Affiliation(s)
- Elena Bruzzesi
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
40
|
Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ, Deeks SG, Luciw P, Chipman J, Beilman G, Hoskuldsson T, Khoruts A, Anderson J, Deleage C, Jasurda J, Schmidt T, Hafertepe M, Callisto S, Pearson H, Reimann T, Schuster J, Schoephoerster J, Southern P, Perkey K, Shang L, Wietgrefe S, Fletcher CV, Lifson JD, Douek DC, McCune JM, Haase AT, Schacker TW. Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med 2017; 23:1271-1276. [PMID: 28967921 PMCID: PMC5831193 DOI: 10.1038/nm.4411] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/25/2017] [Indexed: 12/13/2022]
Abstract
In the quest for a functional cure or the eradication of HIV infection, it is necessary to know the sizes of the reservoirs from which infection rebounds after treatment interruption. Thus, we quantified SIV and HIV tissue burdens in tissues of infected nonhuman primates and lymphoid tissue (LT) biopsies from infected humans. Before antiretroviral therapy (ART), LTs contained >98% of the SIV RNA+ and DNA+ cells. With ART, the numbers of virus (v) RNA+ cells substantially decreased but remained detectable, and their persistence was associated with relatively lower drug concentrations in LT than in peripheral blood. Prolonged ART also decreased the levels of SIV- and HIV-DNA+ cells, but the estimated size of the residual tissue burden of 108 vDNA+ cells potentially containing replication-competent proviruses, along with evidence of continuing virus production in LT despite ART, indicated two important sources for rebound following treatment interruption. The large sizes of these tissue reservoirs underscore challenges in developing 'HIV cure' strategies targeting multiple sources of virus production.
Collapse
Affiliation(s)
- Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Cissy Kityo
- Joint Clinical Research Center, Kampala, Uganda
| | | | - Louise Swainson
- Division of Experimental Medicine, University of California, San Francisco, CA
| | | | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Paul Luciw
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, CA
| | - Jeffrey Chipman
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Gregory Beilman
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | | | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Jacob Jasurda
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Thomas Schmidt
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | - Samuel Callisto
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Hope Pearson
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Thomas Reimann
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Jared Schuster
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | - Peter Southern
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Katherine Perkey
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Liang Shang
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Steve Wietgrefe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD
| | - Daniel C. Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, CA
| | - Ashley T. Haase
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
41
|
Effectiveness of Xielikang capsules in treating HIV-related diarrhea by increasing the plasma concentration of interleukin-17. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30314-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Luo Z, Li Z, Martin L, Wan Z, Meissner EG, Espinosa E, Wu H, Yu X, Fu P, Julia Westerink MA, Kilby JM, Wu J, Huang L, Heath SL, Li Z, Jiang W. Pathological Role of Anti-CD4 Antibodies in HIV-Infected Immunologic Nonresponders Receiving Virus-Suppressive Antiretroviral Therapy. J Infect Dis 2017; 216:82-91. [PMID: 28498953 DOI: 10.1093/infdis/jix223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Increased mortality and morbidity occur among human immunodeficiency virus (HIV)-infected patients in whom CD4+ T-cell counts do not increase despite viral suppression with antiretroviral therapy (ART). Here we identified an underlying mechanism. Significantly elevated plasma levels of anti-CD4 immunoglobulin G (IgG) were found in HIV-positive immunologic nonresponders (ie, HIV-positive individuals with CD4+ T-cell counts of ≤350 cells/μL), compared with levels in HIV-positive immunologic responders (ie, HIV-positive individuals with CD4+ T-cell counts of ≥500 cells/μL) and healthy controls. Higher plasma level of anti-CD4 IgG correlated with blunted CD4+ T-cell recovery. Furthermore, purified anti-CD4 IgG from HIV-positive immunologic nonresponders induced natural killer (NK) cell-dependent CD4+ T-cell cytolysis and apoptosis through antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. We also found that anti-CD4 IgG-mediated ADCC exerts greater apoptosis of naive CD4+ T cells relative to memory CD4+ T cells. Consistently, increased frequencies of CD107a+ NK cells and profound decreases of naive CD4+ T cells were observed in immunologic nonresponders as compared to responders and healthy controls ex vivo. These data indicate that autoreactive anti-CD4 IgG may play an important role in blunted CD4+ T-cell reconstitution despite effective ART.
Collapse
Affiliation(s)
- Zhenwu Luo
- Department of Microbiology and Immunology
| | - Zhen Li
- Department of Microbiology and Immunology.,Beijing You'an Hospital, Capital Medical University
| | - Lisa Martin
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | - Zhuang Wan
- Department of Microbiology and Immunology
| | - Eric G Meissner
- Department of Microbiology and Immunology.,Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | - Enrique Espinosa
- Department of Integrative in Immunology, National Institute for Respiratory Diseases, Mexico City, Mexico
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University
| | - Xiaocong Yu
- Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Pingfu Fu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Maria Anna Julia Westerink
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | - J Michael Kilby
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | | | - Lei Huang
- Treatment and Research Center for Infectious Diseases, 302nd Hospital of the PLA, Beijing, China
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Zihai Li
- Department of Microbiology and Immunology
| | - Wei Jiang
- Department of Microbiology and Immunology.,Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| |
Collapse
|
43
|
Seang S, Somasunderam A, Nigalye M, Somsouk M, Schacker TW, Sanchez JL, Hunt PW, Utay NS, Lake JE. Circulating LOXL 2 Levels Reflect Severity of Intestinal Fibrosis and GALT CD4 + T Lymphocyte Depletion in Treated HIV Infection. Pathog Immun 2017; 2:239-252. [PMID: 28782046 PMCID: PMC5542020 DOI: 10.20411/pai.v2i2.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Incomplete immune reconstitution may occur despite successful antiretroviral therapy (ART). Gut-associated lymphoid tissue (GALT) fibrosis may contribute via local CD4+ T lymphocyte depletion, intestinal barrier disruption, microbial translocation, and immune activation. METHODS In a cross-sectional analysis, we measured circulating fibrosis biomarker levels on cryopreserved plasma from adult HIV-infected (HIV+) SCOPE study participants on suppressive ART who also had fibrosis quantification on recto-sigmoid biopsies. Relationships among biomarker levels, clinical and demographic variables, GALT lymphoid aggregate (LA) collagen deposition, and LA CD4+ T lymphocyte density were analyzed using simple regression. Biomarker levels were also compared to levels in HIV+ viremic SCOPE participants and a convenience sample of HIV-uninfected (HIV-) samples. RESULTS HIV+ aviremic participants (n = 39) were 92% male and 41% non-white, with median age 48 years, CD4+ T lymphocyte count 277 cells/mm3, and 17 years since HIV diagnosis. Most biomarkers were lower in HIV- (n = 36) vs HIV+ aviremic individuals, although CXCL4 levels were higher. HIV+ viremic individuals (N = 18) had higher median TGF-β3, CIC-C1Q, and TIMP-1 (P < 0.05) and lower LOXL2 levels (P = 0.08) than HIV+ aviremic individuals. Only higher LOXL2 levels correlated with more GALT collagen deposition (R = 0.44, P= 0.008) and lower LA CD4+ T lymphocyte density (R = -0.32, P = 0.05) among aviremic individuals. CONCLUSIONS Circulating LOXL2 levels may be a noninvasive measure of intestinal fibrosis and GALT CD4+ T lymphocyte depletion in treated HIV infection. LOXL2 crosslinks elastin and collagen, and elevated LOXL2 levels occur in pathologic states, making LOXL2 inhibition a potential interventional target for intestinal fibrosis and its sequelae.
Collapse
Affiliation(s)
- Sophie Seang
- Pitie Salpetrière Hospital, University Pierre et Marie Curie, Paris, FRANCE and INSERM UMR-S943
| | | | | | - Ma Somsouk
- University of California, San Francisco, California
| | | | | | | | | | - Jordan E. Lake
- University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
44
|
Eckard AR, Meissner EG, Singh I, McComsey GA. Cardiovascular Disease, Statins, and HIV. J Infect Dis 2017; 214 Suppl 2:S83-92. [PMID: 27625435 DOI: 10.1093/infdis/jiw288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV)-infected patients are at an increased risk of serious, non-AIDS-defining comorbidities, even in the setting of viral suppression with combination antiretroviral therapy. This increased risk is due in part to immune dysfunction and heightened inflammation and immune activation associated with chronic HIV infection. Statins have wide-reaching immunomodulatory effects, and their use in the HIV-infected population may be of particular benefit. In this article, we review the pathogenesis of increased inflammation during HIV infection and how it contributes to the risk of cardiovascular disease among HIV-infected individuals. We then we review the immunomodulatory effects of statins and how they may attenuate the risk of cardiovascular disease and other comorbidities in this unique patient population.
Collapse
|
45
|
Freeman ML, Shive CL, Nguyen TP, Younes SA, Panigrahi S, Lederman MM. Cytokines and T-Cell Homeostasis in HIV Infection. J Infect Dis 2017; 214 Suppl 2:S51-7. [PMID: 27625431 DOI: 10.1093/infdis/jiw287] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Untreated human immunodeficiency virus (HIV) infection is characterized by progressive CD4(+) T-cell depletion and CD8(+) T-cell expansion, and CD4(+) T-cell depletion is linked directly to the risk for opportunistic infections and infection-associated mortality. With suppression of HIV replication by antiretroviral therapy, circulating CD4(+) Tcell numbers typically improve while CD8(+) T-cell expansion persists, and both CD4(+) T-cell cytopenia and CD8(+) T-cell expansion are associated with morbidity and mortality. In this brief review, we report on the role that selected homeostatic and inflammatory cytokines may play both in the failure of CD4(+) T-cell restoration and the CD8(+) T-cell expansion that characterize HIV infection.
Collapse
Affiliation(s)
- Michael L Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Carey L Shive
- Department of Veterans Affairs, Cleveland VA Medical Center, Ohio
| | - Thao P Nguyen
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Michael M Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| |
Collapse
|
46
|
Morawski BM, Yunus M, Kerukadho E, Turyasingura G, Barbra L, Ojok AM, DiNardo AR, Sowinski S, Boulware DR, Mejia R. Hookworm infection is associated with decreased CD4+ T cell counts in HIV-infected adult Ugandans. PLoS Negl Trop Dis 2017; 11:e0005634. [PMID: 28542260 PMCID: PMC5462474 DOI: 10.1371/journal.pntd.0005634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/07/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
Most studies evaluating epidemiologic relationships between helminths and HIV have been conducted in the pre-ART era, and evidence of the impact of helminth infections on HIV disease progression remains conflicting. Less is known about helminth infection and clinical outcomes in HIV-infected adults receiving antiretroviral therapy (ART). We sampled HIV-infected adults for eight gastrointestinal parasites and correlated parasitic infection with demographic predictors, and clinical and immunologic outcomes. Contrasting with previous studies, we measured parasitic infection with a quantitative, highly sensitive and specific polymerase chain reaction (PCR) method. This cohort study enrolled HIV-infected Ugandans from August-September 2013 in Mbale, Uganda and collected stool and blood samples at enrollment. Real-time PCR quantified stool: Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, Cryptosporidium spp., Entamoeba histolytica, and Giardia intestinalis infection. Generalized linear models assessed relationships between parasitic infection and clinical or demographic data. 35% of participants (71/202) tested positive for ≥1 helminth, mainly N. americanus (55/199, 28%), and 4.5% (9/202) were infected with ≥2 stool parasites. Participants with hookworm infection had lower average CD4+ cell counts (-94 cells/mcL, 95%CI: -141, -48 cells/mcL; p<0.001) after adjustment for sex, CD4+ nadir at clinic entry, and time on ART. The high prevalence of parasitic infection and correlation with decreased CD4+ concentrations highlight the need to re-examine the effects of invasive helminth co-infection in rural, HIV-infected populations in the era of widely available ART. Elucidating the relationship between hookworm infection and immune recovery could provide opportunities for health optimization, e.g. integrated deworming, in these vulnerable populations.
Collapse
Affiliation(s)
- Bozena M. Morawski
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Miya Yunus
- The AIDS Support Organization, Kampala, Uganda
| | | | | | | | | | - Andrew R. DiNardo
- Division of Global and Immigrant Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Stefanie Sowinski
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States of America
| | - David R. Boulware
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Rojelio Mejia
- Section of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
47
|
Guo FP, Li YJ, Qiu ZF, Lv W, Han Y, Xie J, Li YL, Song XJ, Du SS, Mehraj V, Li TS, Routy JP. Baseline Naive CD4+ T-cell Level Predicting Immune Reconstitution in Treated HIV-infected Late Presenters. Chin Med J (Engl) 2017; 129:2683-2690. [PMID: 27824000 PMCID: PMC5126159 DOI: 10.4103/0366-6999.193460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Among HIV-infected patients initiating antiretroviral therapy (ART), early changes in CD4+ T-cell subsets are well described. However, HIV-infected late presenters initiating treatment present with a suboptimal CD4+ T-cell reconstitution and remain at a higher risk for AIDS and non-AIDS events. Therefore, factors associated with CD4+ T-cell reconstitution need to be determined in this population, which will allow designing effective immunotherapeutic strategies. Methods: Thirty-one adult patients with baseline CD4+ T-cell count <350 cells/mm3 exhibiting viral suppression after ART initiation were followed in the HIV/AIDS research center of Peking Union Medical College Hospital in Beijing, China, from October 2002 to September 2013. Changes in T-cell subsets and associated determinants were measured. Results: Median baseline CD4+ T-cell count was 70 cells/mm3. We found a biphasic reconstitution of T-cell subsets and immune activation: a rapid change during the first 6 months followed by a more gradual change over the subsequent 8 years. Baseline CD4+ T-cell count >200 cells/mm3 in comparison to CD4+ T-cell count ≤200 cells/mm3 was associated with more complete immune Reconstitution (77.8% vs. 27.3% respectively; P = 0.017) and normalized CD4/CD8 ratio. We showed that the baseline percentage of naive CD4+ T-cell was a predictive marker for complete immune reconstitution (area under receiver operating characteristic curve 0.907), and 12.4% as cutoff value had a sensitivity of 84.6% and a specificity of 88.2%. Conclusions: Baseline naive CD4+ T-cell percentage may serve as a predictive marker for optimal immune reconstitution during long-term therapy. Such study findings suggest that increasing thymic output should represent an avenue to improve patients who are diagnosed late in the course of infection.
Collapse
Affiliation(s)
- Fu-Ping Guo
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi-Jia Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhi-Feng Qiu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Lv
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Xie
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan-Ling Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao-Jing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shan-Shan Du
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Vikram Mehraj
- Division of Hematology, Research Institute and Chronic Viral Illness Service, McGill University, Montreal, Quebec, Canada
| | - Tai-Sheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jean-Pierre Routy
- Division of Hematology, Research Institute and Chronic Viral Illness Service, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Yeo KP, Angeli V. Bidirectional Crosstalk between Lymphatic Endothelial Cell and T Cell and Its Implications in Tumor Immunity. Front Immunol 2017; 8:83. [PMID: 28220121 PMCID: PMC5292621 DOI: 10.3389/fimmu.2017.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Lymphatic vessels have been traditionally considered as passive transporters of fluid and lipids. However, it is apparent from recent literature that the function of lymphatic vessels is not only restricted to fluid balance homeostasis but also extends to regulation of immune cell trafficking, antigen presentation, tolerance, and immunity, all which may impact the progression of inflammatory responses and diseases such as cancer. The lymphatic system and the immune system are intimately connected, and there is emergent evidence for a crosstalk between T cell and lymphatic endothelial cell (LEC). This review describes how LECs in lymph nodes can affect multiple functional properties of T cells and the impact of these LEC-driven effects on adaptive immunity and, conversely, how T cells can modulate LEC growth. The significance of such crosstalk between T cells and LECs in cancer will also be discussed.
Collapse
Affiliation(s)
- Kim Pin Yeo
- Immunology Programme, Department of Microbiology and Immunology, Yoon Loo Lin School of Medicine, Life Science Institute, National University of Singapore , Singapore , Singapore
| | - Veronique Angeli
- Immunology Programme, Department of Microbiology and Immunology, Yoon Loo Lin School of Medicine, Life Science Institute, National University of Singapore , Singapore , Singapore
| |
Collapse
|
49
|
Tanaskovic S, Fernandez S, Saraswati H, Yunihastuti E, Gani RA, Djauzi S, Price P. Naive and Memory CD4⁺ T Cells Are Differentially Affected in Indonesian HIV Patients Responding to ART. Viral Immunol 2016; 29:176-83. [PMID: 27035638 DOI: 10.1089/vim.2015.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While most HIV patients beginning antiretroviral therapy (ART) with advanced immunodeficiency recover CD4(+) T cell numbers, the profiles and functions of the newly acquired CD4(+) T cells have not been monitored in a resource-limiting setting. In this study, HIV patients (n = 31) from Jakarta, Indonesia, were studied 9 months after commencing ART with nadir CD4(+) T cell counts <200 cells/μL. All patients were hepatitis C virus (HCV) seropositive, but asymptomatic. Twelve healthy age-matched controls from the same community were included. CD4(+) T cell subsets, immune activation (HLA-DR), and expression of the interleukin (IL)-7 receptor α chain (CD127) were quantitated by flow cytometry. Proliferation (expression of Ki67) was measured following in vitro stimulation (5 days) with anti-CD3 antibody or IL-7. Fifty-two percent of patients recovered CD4(+) T cell counts >200 cells/μL over 12 months. At 9 months, patients had fewer naive and CD31(+)-naive CD4(+) T cells, more effector memory (EM) CD4(+) T cells, and higher HLA-DR expression on CD4(+) T cells than controls. CD127 expression was low on all CD4(+) T cell subsets except for naive cells, where it was similar to controls. Similarly, after anti-CD3 antibody or IL-7 stimulation, patients had lower Ki67 expression than controls in all subsets, except naive CD4(+) T cells where it was normal or elevated. Overall in the first year of ART, patients had fewer naive and more EM CD4(+) T cells. Ongoing immune activation and, antigen-driven stimulation and differentiation of naive T cells may reduce the naive T cell pool, while driving the maturation and accumulation of memory cells with proliferative defects.
Collapse
Affiliation(s)
- Sara Tanaskovic
- 1 School of Pathology and Laboratory Medicine, University of Western Australia , Perth, Australia
| | - Sonia Fernandez
- 1 School of Pathology and Laboratory Medicine, University of Western Australia , Perth, Australia
| | - Henny Saraswati
- 2 Virology and Cancer Pathobiology Research Centre for Health Service, University of Indonesia , Jakarta, Indonesia
| | - Evy Yunihastuti
- 3 School of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital , Jakarta, Indonesia
| | - Rino A Gani
- 3 School of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital , Jakarta, Indonesia
| | - Samsuridjal Djauzi
- 3 School of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital , Jakarta, Indonesia
| | - Patricia Price
- 3 School of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital , Jakarta, Indonesia .,4 School of Biomedical Science, Curtin University of Technology , Perth, Australia
| |
Collapse
|
50
|
Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection. Drugs 2016; 76:533-49. [PMID: 26915027 DOI: 10.1007/s40265-016-0546-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the antiretroviral therapy (ART) era, serious non-AIDS events (SNAEs) have become the major causes of morbidity and mortality in HIV-infected persons. Early ART initiation has the strongest evidence for reducing SNAEs and mortality. Biomarkers of immune activation, inflammation and coagulopathy do not fully normalize despite virologic suppression and persistent immune activation is an important contributor to SNAEs. A number of strategies aimed to reduce persistent immune activation including ART intensification to reduce residual viremia; treatment of co-infections to reduce chronic antigen stimulation; the use of anti-inflammatory agents, reducing microbial translocation as well as interventions to improve immune recovery through cytokine administration and reducing lymphoid tissue fibrosis, have been investigated. To date, there is little conclusive evidence on which strategies beyond treatment of hepatitis B and C co-infections and reducing cardiovascular risk factors will result in clinical benefits in patients already on ART with viral suppression. The use of statins seems to show early promise and larger clinical trials are underway to confirm their efficacy. At this stage, clinical care of HIV-infected patients should therefore focus on early diagnosis and prompt ART initiation, treatment of active co-infections and the aggressive management of co-morbidities until further data are available.
Collapse
|