1
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
2
|
Das UN. Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Arch Med Sci 2021; 19:1327-1359. [PMID: 37732033 PMCID: PMC10507771 DOI: 10.5114/aoms/135703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 09/22/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection. Epithelial and T, NK, and other immunocytes release bioactive lipids especially arachidonic acid (AA) in response to microbial infections to inactivate them and upregulate the immune system. COVID-19 (coronavirus) and other enveloped viruses including severe acute respiratory syndrome (SARS-CoV-1 of 2002-2003) and Middle East respiratory syndrome (MERS; 2012-ongoing) and hepatitis B and C (HBV and HCV) can be inactivated by AA, γ-linolenic acid (GLA, dihomo-GLA (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), which are precursors to several eicosanoids. Prostaglandin E1, lipoxin A4, resolvins, protectins and maresins enhance phagocytosis of macrophages and leukocytes to clear debris from the site(s) of infection and injury, enhance microbial clearance and wound healing to restore homeostasis. Bioactive lipids modulate the generation of M1 and M2 macrophages and the activity of other immunocytes. Mesenchymal and adipose tissue-derived stem cells secrete LXA4 and other bioactive lipids to bring about their beneficial actions in COVID-19. Bioactive lipids regulate vasomotor tone, inflammation, thrombosis, immune response, inactivate enveloped viruses, regulate T cell proliferation and secretion of cytokines, stem cell survival, proliferation and differentiation, and leukocyte and macrophage functions, JAK kinase activity and neutrophil extracellular traps and thus, have a critical role in COVID-19.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, Battle Ground, WA, USA
- Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, Saint-Petersburg, Russia
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Telangana, India
| |
Collapse
|
3
|
Complex and Controversial Roles of Eicosanoids in Fungal Pathogenesis. J Fungi (Basel) 2021; 7:jof7040254. [PMID: 33800694 PMCID: PMC8065571 DOI: 10.3390/jof7040254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptative immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemoattractant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections.
Collapse
|
4
|
Zhang S, Ou J, Luo Z, Kim IH. Effect of dietary β-1,3-glucan supplementation and heat stress on growth performance, nutrient digestibility, meat quality, organ weight, ileum microbiota, and immunity in broilers. Poult Sci 2020; 99:4969-4977. [PMID: 32988533 PMCID: PMC7598134 DOI: 10.1016/j.psj.2020.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to determine the effect of dietary β-1,3-glucan supplementation and heat stress (HS) on growth performance, nutrient digestibility, meat quality, organ weight, ileum microbiota, and immunity in broiler. A total of 1,440 1-day-old Ross 308 male chicks with an average initial BW of 43.06 ± 1.94 g were sorted into 6 (2 × 3) treatments, 14 replications per treatment. This trail included 2 factors: the dosage of β-1,3-glucan (0, 100 g/T, and 200 g/T) and feeding condition (HS and normal). During the whole trial, significant impacts were observed in BW gain, feed intake,feed conversion rate, and the digestibility of DM and energy between normal treatments and HS treatments (P < 0.05). From day 21 to 35, HS-challenged birds fed the diet with 200 g/T β-1,3-glucan had a lower feed conversion rate than those fed the diet with 0 or 100 g/T β-1,3-glucan (P < 0.05). Moreover, the HS-exposed birds that fed the diet with β-1,3-glucan indicated a greater energy digestibility than those fed the nontreatment diet (P < 0.05). Besides, β-1,3-glucan supplementation could elevate meat pH of all birds and decrease cooking loss significantly of HS-exposed birds (P < 0.05). The HS birds fed the β-1,3-glucan diet obtained a reduced amount of Escherichia coli in the ileum than those fed the nontreatment diet (P < 0.05). Besides, β-1,3-glucan supplementation lowered the level of tumor necrosis factor-α in HS-exposed birds significantly (P < 0.05). These results indicated 100 and 200 g/T β-1,3-glucan supplementation, under HS condition or not, can increase growth performance without a negative response on immunity. Under HS condition, the addition of β-1,3-glucan at dosage from 100 to 200 g/T in the diet can increase energy digestibility, decrease cooking loss, reduce E. coli mount in the ileum, and the tumor necrosis factor-α concentration.
Collapse
Affiliation(s)
- Song Zhang
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam 330-714, South Korea; Department of Animal Intestinal Health, Kemin Industries (China)Co., Zhuhai 519040, P. R. China
| | - Jiwen Ou
- Department of Animal Intestinal Health, Kemin Industries (China)Co., Zhuhai 519040, P. R. China
| | - Zheng Luo
- Department of Animal Intestinal Health, Kemin Industries (China)Co., Zhuhai 519040, P. R. China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam 330-714, South Korea.
| |
Collapse
|
5
|
Tan TG, Lim YS, Tan A, Leong R, Pavelka N. Fungal Symbionts Produce Prostaglandin E 2 to Promote Their Intestinal Colonization. Front Cell Infect Microbiol 2019; 9:359. [PMID: 31681635 PMCID: PMC6813641 DOI: 10.3389/fcimb.2019.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a ubiquitous fungal symbiont that resides on diverse human barrier surfaces. Both mammalian and fungal cells can convert arachidonic acid into the lipid mediator, prostaglandin E2 (PGE2), but the physiological significance of fungus-derived PGE2 remains elusive. Here we report that a C. albicans mutant deficient in PGE2 production suffered a loss of competitive fitness in the murine gastrointestinal (GI) tract and that PGE2 supplementation mitigated this fitness defect. Impaired fungal PGE2 production affected neither the in vitro fitness of C. albicans nor hyphal morphogenesis and virulence in either systemic or mucosal infection models. Instead, fungal production of PGE2 was associated with enhanced fungal survival within phagocytes. Consequently, ablation of colonic phagocytes abrogated the intra-GI fitness boost conferred by fungal PGE2. These observations suggest that C. albicans has evolved the capacity to produce PGE2 from arachidonic acid, a host-derived precursor, to promote its own colonization of the host gut. Analogous mechanisms might undergird host-microbe interactions of other symbiont fungi.
Collapse
Affiliation(s)
- Tze Guan Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol 2018; 9:1261. [PMID: 29915598 PMCID: PMC5994417 DOI: 10.3389/fimmu.2018.01261] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.
Collapse
Affiliation(s)
- Surabhi Goyal
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juan Camilo Castrillón-Betancur
- Septomics Research Center, Jena University Hospital, Jena, Germany.,International Leibniz Research School for Microbial and Biomolecular Interactions, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knöll Institute, Jena, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Abstract
The body is exposed to foreign pathogens every day, but remarkably, most pathogens are effectively cleared by the innate immune system without the need to invoke the adaptive immune response. Key cellular components of the innate immune system include macrophages and neutrophils and the recruitment and function of these cells are tightly regulated by chemokines and cytokines in the tissue space. Innate immune responses are also known to regulate development of adaptive immune responses often via the secretion of various cytokines. In addition to these protein regulators, numerous lipid mediators can also influence innate and adaptive immune functions. In this review, we cover one particular lipid regulator, prostaglandin E2 (PGE2) and describe its synthesis and signaling and what is known about the ability of this lipid to regulate immunity and host defense against viral, fungal and bacterial pathogens.
Collapse
Affiliation(s)
| | - Bethany B Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Kottom TJ, Hebrink DM, Jenson PE, Marsolek PL, Wüthrich M, Wang H, Klein B, Yamasaki S, Limper AH. Dectin-2 Is a C-Type Lectin Receptor that Recognizes Pneumocystis and Participates in Innate Immune Responses. Am J Respir Cell Mol Biol 2018; 58:232-240. [PMID: 28886250 DOI: 10.1165/rcmb.2016-0335oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pneumocystis is an important fungal pathogen that causes life-threatening pneumonia in patients with AIDS and malignancy. Lung fungal pathogens are recognized by C-type lectin receptors (CLRs), which bind specific ligands and stimulate innate immune responses. The CLR Dectin-1 was previously shown to mediate immune responses to Pneumocystis spp. For this reason, we investigated a potential role for Dectin-2. Rats with Pneumocystis pneumonia (PCP) exhibited elevated Dectin-2 mRNA levels. Soluble Dectin-2 carbohydrate-recognition domain fusion protein showed binding to intact Pneumocystis carinii (Pc) and to native Pneumocystis major surface glycoprotein/glycoprotein A (Msg/gpA). RAW macrophage cells expressing V5-tagged Dectin-2 displayed enhanced binding to Pc and increased protein tyrosine phosphorylation. Furthermore, the binding of Pc to Dectin-2 resulted in Fc receptor-γ-mediated intracellular signaling. Alveolar macrophages from Dectin-2-deficient mice (Dectin-2-/-) showed significant decreases in phospho-Syk activation after challenge with Pc cell wall components. Stimulation of Dectin-2-/- alveolar macrophages with Pc components showed significant decreases in the proinflammatory cytokines IL-6 and TNF-α. Finally, during infection with Pneumocystis murina, Dectin-2-/- mice displayed downregulated mRNA expression profiles of other CLRs implicated in fungal immunity. Although Dectin-2-/- alveolar macrophages had reduced proinflammatory cytokine release in vitro, Dectin-2-/- deficiency did not reduce the overall resistance of these mice in the PCP model, and organism burdens were statistically similar in the long-term immunocompromised and short-term immunocompetent PCP models. These results suggest that Dectin-2 participates in the initial innate immune signaling response to Pneumocystis, but its deficiency does not impair resistance to the organism.
Collapse
Affiliation(s)
- Theodore J Kottom
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Deanne M Hebrink
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Paige E Jenson
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Paige L Marsolek
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | - Bruce Klein
- 2 Department of Pediatrics.,3 Department of Internal Medicine, and.,4 Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, Wisconsin; and
| | - Sho Yamasaki
- 5 Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Andrew H Limper
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
9
|
Fourie R, Ells R, Kemp G, Sebolai OM, Albertyn J, Pohl CH. Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans. Prostaglandins Leukot Essent Fatty Acids 2017; 117:36-46. [PMID: 28237086 DOI: 10.1016/j.plefa.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
The interaction of clinically relevant microorganisms is the focus of various studies, e.g. the interaction between the pathogenic yeast, Candida albicans, and the bacterium, Pseudomonas aeruginosa. During infection both release arachidonic acid, which they can transform into eicosanoids. This study evaluated the production of prostaglandin E2, prostaglandin F2α and 15-hydroxyeicosatetraenoic acid by biofilms of P. aeruginosa and C. albicans. The influence of co-incubation, acetylsalicylic acid and nordihydroguaiaretic acid on biofilm formation and eicosanoid production was evaluated. Acetylsalicylic acid decreased colony forming units of P. aeruginosa, but increased metabolic activity and eicosanoid production of the cells. In contrast to prostaglandin E2, prostaglandin F2a production by C. albicans was insensitive to acetylsalicylic acid, indicating that different enzymes are responsible for their production in this yeast. Nordihydroguaiaretic acid inhibited biofilm formation by P. aeruginosa, however co-incubation provided protection against this inhibitor. Production of these eicosanoids could affect pathogen-clearance and infection dynamics and this previously uncharacterized facet of interaction could facilitate novel therapeutic intervention against polymicrobial infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Ruan Ells
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa; National Control Laboratory for Biological Products, University of the Free State, Bloemfontein, South Africa
| | - Gabré Kemp
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
10
|
Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Front Physiol 2016; 7:64. [PMID: 26955357 PMCID: PMC4767902 DOI: 10.3389/fphys.2016.00064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Ruan Ells
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa; National Control Laboratory, University of the Free StateBloemfontein, South Africa
| | - Chantel W Swart
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| |
Collapse
|
11
|
Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Mishra NN, Ali S, Shukla PK. Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine. Braz J Infect Dis 2014; 18:287-93. [PMID: 24389279 PMCID: PMC9427476 DOI: 10.1016/j.bjid.2013.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022] Open
|
13
|
Snyder N, Seeberger P, Mukosera G, Held E. 9.05 Technology-Enabled Synthesis of Carbohydrates. COMPREHENSIVE ORGANIC SYNTHESIS II 2014. [PMCID: PMC7173493 DOI: 10.1016/b978-0-08-097742-3.00914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Automated solid-phase oligosaccharide synthesis has revolutionized the emerging field of glycomics. The automation process, in which selectively functionalized monosaccharide building blocks are added sequentially to a growing oligosaccharide chain connected via an inert linker to a solid support, has been used to prepare a number of biologically relevant oligosaccharide-based constructs in record time and on scales that would have been impossible using standard solution-phase synthetic techniques. This review highlights recent developments in automated solid-phase oligosaccharide synthesis including engineering advancements that have led to the design of a fully automated platform, new and improved linker strategies that have broadened the scope of the chemical reactions that can be used in automation, and recent developments in the synthesis of functionalized monosaccharide building blocks. The automated solid-phase synthesis of biologically relevant carbohydrate constructs including bacterial and viral antigens, cancer antigens, vaccine candidates, and N-linked core oligosaccharides is also presented.
Collapse
|
14
|
Biondo GA, Dias-Melicio LA, Bordon-Graciani AP, Kurokawa CS, Soares AMV. Production of leukotriene B4 by Paracoccidioides brasiliensis. Yeast 2012; 29:201-8. [DOI: 10.1002/yea.2900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/21/2012] [Accepted: 04/03/2012] [Indexed: 01/27/2023] Open
Affiliation(s)
- Guilherme Augusto Biondo
- Departamento de Microbiologia e Imunologia; Universidade Estadual Paulista (UNESP); Campus de Botucatu; SP; Brazil
| | | | - Ana Paula Bordon-Graciani
- Departamento de Microbiologia e Imunologia; Universidade Estadual Paulista (UNESP); Campus de Botucatu; SP; Brazil
| | - Cilmery Suemi Kurokawa
- Departamento de Pediatria; Universidade Estadual Paulista (UNESP); Campus de Botucatu; SP; Brazil
| | | |
Collapse
|
15
|
Sciadonic acid modulates prostaglandin E2 production by epithelial cells during infection with C. albicans and C. dubliniensis. Prostaglandins Other Lipid Mediat 2012; 97:66-71. [DOI: 10.1016/j.prostaglandins.2011.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 12/02/2011] [Indexed: 12/24/2022]
|
16
|
Morato-Marques M, Campos MR, Kane S, Rangel AP, Lewis C, Ballinger MN, Kim SH, Peters-Golden M, Jancar S, Serezani CH. Leukotrienes target F-actin/cofilin-1 to enhance alveolar macrophage anti-fungal activity. J Biol Chem 2011; 286:28902-28913. [PMID: 21715328 PMCID: PMC3190697 DOI: 10.1074/jbc.m111.235309] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/28/2011] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-δ (PKCδ) and PI3K but not PKCα and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.
Collapse
Affiliation(s)
- Mariana Morato-Marques
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Marina R Campos
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Steve Kane
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Ana P Rangel
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Casey Lewis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Megan N Ballinger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Sang-Hoon Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Eulji University School of Medicine, Seoul, 139-711, Republic of Korea
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Carlos H Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and.
| |
Collapse
|
17
|
Abstract
In nearly every living organism, metabolites derived from lipid peroxidation, the so-called oxylipins, are involved in regulating developmental processes as well as environmental responses. Among these bioactive lipids, the mammalian and plant oxylipins are the best characterized, and much information about their physiological role and biosynthetic pathways has accumulated during recent years. Although the occurrence of oxylipins and enzymes involved in their biosynthesis has been studied for nearly three decades, knowledge about fungal oxylipins is still scarce as compared with the situation in plants and mammals. However, the research performed so far has shown that the structural diversity of oxylipins produced by fungi is high and, furthermore, that the enzymes involved in oxylipin metabolism are diverse and often exhibit unusual catalytic activities. The aim of this review is to present a synopsis of the oxylipins identified so far in fungi and the enzymes involved in their biosynthesis.
Collapse
Affiliation(s)
- Florian Brodhun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
18
|
Koyama T, Makita M, Shibata N, Okawa Y. Influence of oxidative and osmotic stresses on the structure of the cell wall mannan of Candida albicans serotype A. Carbohydr Res 2009; 344:2195-200. [DOI: 10.1016/j.carres.2009.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/08/2009] [Accepted: 08/01/2009] [Indexed: 11/25/2022]
|
19
|
Hetland G, Johnson E, Lyberg T, Bernardshaw S, Tryggestad AMA, Grinde B. Effects of the Medicinal MushroomAgaricus blazeiMurill on Immunity, Infection and Cancer. Scand J Immunol 2008; 68:363-70. [DOI: 10.1111/j.1365-3083.2008.02156.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Bernardshaw S, Hetland G, Grinde B, Johnson E. An extract of the mushroom Agaricus blazei Murill protects against lethal septicemia in a mouse model of fecal peritonitis. Shock 2008; 25:420-5. [PMID: 16670646 DOI: 10.1097/01.shk.0000209526.58614.92] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial septicemia is frequently occurring during gastroenterological surgery. Because of increasing problems in hospitals with bacteria developing multiresistance against antibiotics, prophylactic treatment using immunomodulators is interesting. We have examined the putatively anti-infective immunomodulatory action of the edible mushroom, Agaricus blazei Murill (AbM), in an experimental peritonitis model in BALB/c mice. The mice were orally given an extract of AbM or phosphate-buffered saline 1 day before the induction of peritonitis with various concentrations of feces from the mice. The state of septicemia, as measured by the number of colony-forming units of bacteria in blood, and the survival rate of the animals were compared between the groups. Mice that were orally treated with AbM extract before bacterial challenge showed significantly lower levels of septicemia and improved survival rates. Our findings suggest that the AbM extract, when given prophylactically, may improve health. Further studies are needed on humans when considering whether AbM could be used as an alternative treatment modality for patients at risk of contracting serious bacterial peritonitis.
Collapse
|
21
|
Erb-Downward JR, Noverr MC. Characterization of prostaglandin E2 production by Candida albicans. Infect Immun 2007; 75:3498-505. [PMID: 17470538 PMCID: PMC1932954 DOI: 10.1128/iai.00232-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans produces lipid metabolites that are functionally similar to host prostaglandins. These studies, using mass spectrometry, demonstrate that C. albicans produces authentic prostaglandin E(2) (PGE(2)) from arachidonic acid. Maximal PGE(2) production was achieved at 37 degrees C in stationary-phase culture supernatants and in cell-free lysates generated from stationary-phase cells. Interestingly, PGE(2) production is inhibited by both nonspecific cyclooxygenase and lipoxygenase inhibitors but not by inhibitors specific for the cyclooxygenase 2 isoenzyme. The C. albicans genome does not possess a cyclooxygenase homolog; however, several genes that may play a role in prostaglandin production from C. albicans were investigated. It was found that a C. albicans fatty acid desaturase homolog (Ole2) and a multicopper oxidase homolog (Fet3) play roles in prostaglandin production, with ole2/ole2 and fet3/fet3 mutant strains exhibiting reduced PGE(2) levels compared with parent strains. This work demonstrates that the synthesis of PGE(2) in C. albicans proceeds via novel pathways.
Collapse
Affiliation(s)
- John R Erb-Downward
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
22
|
Fernández-Arenas E, Cabezón V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C. Integrated Proteomics and Genomics Strategies Bring New Insight into Candida albicans Response upon Macrophage Interaction. Mol Cell Proteomics 2007; 6:460-78. [PMID: 17164403 DOI: 10.1074/mcp.m600210-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The interaction of Candida albicans with macrophages is considered a crucial step in the development of an adequate immune response in systemic candidiasis. An in vitro model of phagocytosis that includes a differential staining procedure to discriminate between internalized and non-internalized yeast was developed. Upon optimization of a protocol to obtain an enriched population of ingested yeasts, a thorough genomics and proteomics analysis was carried out on these cells. Both proteins and mRNA were obtained from the same sample and analyzed in parallel. The combination of two-dimensional PAGE with MS revealed a total of 132 differentially expressed yeast protein species upon macrophage interaction. Among these species, 67 unique proteins were identified. This is the first time that a proteomics approach has been used to study C. albicans-macrophage interaction. We provide evidence of a rapid protein response of the fungus to adapt to the new environment inside the phagosome by changing the expression of proteins belonging to different pathways. The clear down-regulation of the carbon-compound metabolism, plus the up-regulation of lipid, fatty acid, glyoxylate, and tricarboxylic acid cycles, indicates that yeast shifts to a starvation mode. There is an important activation of the degradation and detoxification protein machinery. The complementary genomics approach led to the detection of specific pathways related to the virulence of Candida. Network analyses allowed us to generate a hypothetical model of Candida cell death after macrophage interaction, highlighting the interconnection between actin cytoskeleton, mitochondria, and autophagy in the regulation of apoptosis. In conclusion, the combination of genomics, proteomics, and network analyses is a powerful strategy to better understand the complex host-pathogen interactions.
Collapse
Affiliation(s)
- Elena Fernández-Arenas
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Li L, Kashleva H, Dongari-Bagtzoglou A. Cytotoxic and cytokine-inducing properties of Candida glabrata in single and mixed oral infection models. Microb Pathog 2007; 42:138-47. [PMID: 17306958 PMCID: PMC1973167 DOI: 10.1016/j.micpath.2006.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
Oral candidiasis is a common opportunistic infection, with Candida albicans being the most prevalent etiologic agent and Candida glabrata emerging as an important pathogen. C. glabrata is frequently co-isolated with C. albicans from oral lesions. Although C. albicans has been shown to trigger significant cytokine responses and cell damage, C. glabrata has not been systematically studied yet. The purpose of this study was to characterize the ability of C. glabrata to induce proinflammatory cytokine responses and host damage as a single infecting organism and in combination with C. albicans, using in vitro models of the oral mucosa. In monolayer oral epithelial cell cultures, C. glabrata failed to induce a significant interleukin-1alpha and interleukin-8 cytokine response and showed lower cytotoxicity, compared to C. albicans. However, C. glabrata triggered a significantly higher granulocyte macrophage colony stimulating factor response than C. albicans. C. glabrata strains showed a strain-dependent tissue damaging ability and a superficial invasion of the mucosal compartment in a three-dimensional (3-D) in vitro model of the human oral mucosa and submucosa. In the 3-D system, co-infection failed to promote host damage beyond the levels of infection with C. albicans alone. These studies indicate that C. glabrata induces cytokines in human oral epithelium in a strain-specific manner, but its tissue/cell damaging ability, compared to C. albicans, is low. Synergy between C. glabrata and C. albicans in cytokine induction and host damage was not observed with the strains tested.
Collapse
Affiliation(s)
| | | | - Anna Dongari-Bagtzoglou
- Correspondence: Anna Dongari-Bagtzoglou, University of Connecticut, School of Dental Medicine, Department of Periodontology, 263 Farmington Ave, Farmington, CT 06030-1710, Tel: 860-679-4543, Fax: 860-679-1673, E-mail:
| |
Collapse
|
24
|
Suram S, Brown GD, Ghosh M, Gordon S, Loper R, Taylor PR, Akira S, Uematsu S, Williams DL, Leslie CC. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem 2006; 281:5506-14. [PMID: 16407295 DOI: 10.1074/jbc.m509824200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.
Collapse
Affiliation(s)
- Saritha Suram
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mao XF, Piao XS, Lai CH, Li DF, Xing JJ, Shi BL. Effects of β-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs1. J Anim Sci 2005; 83:2775-82. [PMID: 16282615 DOI: 10.2527/2005.83122775x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A total of 108 crossbred piglets (7.75 +/- 0.24 kg of BW) weaned at 28 d was used to study the interactive effects of beta-glucan obtained from the Chinese herb Astragalus membranaceus (AM) and Escherichia coli lipopolysaccharide (LPS) challenge on performance, immunological, adrenal, and somatotropic responses of weaned pigs. The treatments were in a 2 x 3 factorial arrangement; main effects were level of Astragalus membranaceus glucan (AMG; 0, 500, or 1,000 mg/kg; as-fed basis) and presence of immunological challenge (with or without LPS). The experiment included six replicate pens per treatment and three pigs per pen. Lipopolysaccharide challenges were conducted on d 7 and 21 of the trial. Blood samples were obtained from the vena cava from one pig per pen at 3 h after LPS challenge to determine plasma responses. Weight gain and feed:gain ratio were unaffected by glucan. However, there was a quadratic effect on feed intake (P < 0.05): pigs fed 500 mg of glucan/kg had the highest feed intake. Immunological challenge with LPS decreased weight gain (P = 0.02). An interaction (P = 0.01 to 0.09) between AMG and LPS was observed for glucose, IL-1beta, PGE2, and cortisol. Astragalus membranaceus glucan had a quadratic effect on the plasma concentrations of glucose, IL-1beta, PGE2, and cortisol (P < 0.05) after both LPS challenges. Plasma concentrations of glucose, IL-1beta, PGE2, and cortisol (P < 0.05) were all increased in LPS-challenged pigs compared with the control pigs after both LPS challenges. The IGF-I concentrations were less for LPS-challenged pigs than for unchallenged pigs. The lymphocyte proliferation response of peripheral blood induced by 5 microg of concanavalin A/mL (P < 0.01) and IL-2 bioactivity (P < 0.05) increased linearly with increasing addition of glucan. Pigs challenged with LPS had greater T-lymphocyte proliferation (P = 0.06) and IL-2 bioactivity (P = 0.07) than unchallenged pigs after the first immunological challenge but not after the second. In conclusion, although glucan did not improve pig performance under the conditions of the present experiment, when included at 500 mg/kg, it decreased the release of inflammatory cytokine and corticosteroid and improved the lymphocyte proliferation response of weanling piglets via enhanced IL-2 bioactivity.
Collapse
Affiliation(s)
- X F Mao
- National Key Lab of Animal Nutrition, China Agricultural University, Beijing, 100094, P.R. China
| | | | | | | | | | | |
Collapse
|
26
|
Wright LC, Payne J, Santangelo RT, Simpanya MF, Chen SCA, Widmer F, Sorrell TC. Cryptococcal phospholipases: a novel lysophospholipase discovered in the pathogenic fungus Cryptococcus gattii. Biochem J 2005; 384:377-84. [PMID: 15320865 PMCID: PMC1134121 DOI: 10.1042/bj20041079] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans produces an extracellular PLB1 (phospholipase B1), shown previously to be a virulence factor. A novel phospholipase (LPL1) with only LPL (lysophospholipase) and LPTA (transacylase) activities has now been characterized in C. gattii, and found to be a 66-kDa glycoprotein (by SDS/PAGE), with a native molecular mass of 670 kDa. The pI was 6.3, and it was active at high temperatures (to 70 degrees C), as well as at both acidic and neutral pH values. It was stimulated by calcium and palmitoyl carnitine at pH 7.0, but not at pH 5.0, and palmitoyl lysophosphatidylcholine was the preferred substrate. Sequencing indicated that LPL1 is a novel cryptococcal lysophospholipase, and not the gene product of CnLYSO1 or PLB1. A protein with only LPL and LPTA activities was subsequently isolated from two strains of C. neoformans var. grubii. A PLB1 enzyme was isolated from both C. gattii and a highly virulent strain of C. neoformans var. grubii (H99). In both cases, all three enzyme activities (PLB, LPL and LPTA) were present in one 95-120 kDa glycoprotein (by SDS/PAGE) with pI 3.9-4.3. Characterization of PLB1 from C. gattii showed that it differed from that of C. neoformans in its larger native mass (275 kDa), high PLB activity relative to LPL and LPTA, and preference for saturated lipid substrates. Differences in the properties between the secreted phospholipases of the two cryptococcal species could contribute to phenotypic differences that determine their respective environmental niches and different clinical manifestations.
Collapse
Affiliation(s)
- Lesley C Wright
- Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead, Westmead, NSW 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. EUKARYOTIC CELL 2005; 3:1076-87. [PMID: 15470236 PMCID: PMC522606 DOI: 10.1128/ec.3.5.1076-1087.2004] [Citation(s) in RCA: 555] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is both a benign gut commensal and a frequently fatal systemic pathogen. The interaction of C. albicans with the host's innate immune system is the primary factor in this balance; defects in innate immunity predispose the patient to disseminated candidiasis. Because of the central importance of phagocytic cells in defense against fungal infections, we have investigated the response of C. albicans to phagocytosis by mammalian macrophages using genomic transcript profiling. This analysis reveals a dramatic reprogramming of transcription in C. albicans that occurs in two successive steps. In the early phase cells shift to a starvation mode, including gluconeogenic growth, activation of fatty acid degradation, and downregulation of translation. In a later phase, as hyphal growth enables C. albicans to escape from the macrophage, cells quickly resume glycolytic growth. In addition, there is a substantial nonmetabolic response imbedded in the early phase, including machinery for DNA damage repair, oxidative stress responses, peptide uptake systems, and arginine biosynthesis. Further, a surprising percentage of the genes that respond specifically to macrophage contact have no known homologs, suggesting that the organism has undergone substantial evolutionary adaptations to the commensal or pathogen lifestyle. This transcriptional reprogramming is almost wholly absent in the related, but nonpathogenic, yeast Saccharomyces cerevisiae, suggesting that these large-scale and coordinated changes contribute significantly to the ability of this organism to survive and cause disease in vivo.
Collapse
Affiliation(s)
- Michael C Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin, Houston, TX 77030, USA.
| | | | | |
Collapse
|
28
|
Masuoka J. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 2004; 17:281-310. [PMID: 15084502 PMCID: PMC387410 DOI: 10.1128/cmr.17.2.281-310.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although fungi have always been with us as commensals and pathogens, fungal infections have been increasing in frequency over the past few decades. There is a growing body of literature describing the involvement of carbohydrate groups in various aspects of fungal disease. Carbohydrates comprising the cell wall or capsule, or as a component of glycoproteins, are the fungal cell surface entities most likely to be exposed to the surrounding environment. Thus, the fungus-host interaction is likely to involve carbohydrates before DNA, RNA, or even protein. The interaction between fungal and host cells is also complex, and early studies using whole cells or crude cell fractions often produced seemingly conflicting results. What was needed, and what has been developing, is the ability to identify specific glycan structures and determine how they interact with immune system components. Carbohydrate analysis is complicated by the complexity of glycan structures and by the challenges of separating and detecting carbohydrates experimentally. Advances in carbohydrate chemistry have enabled us to move from the foundation of composition analysis to more rapid characterization of specific structures. This, in turn, will lead to a greater understanding of how fungi coexist with their hosts as commensals or exist in conflict as pathogens.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA.
| |
Collapse
|
29
|
Deva R, Shankaranarayanan P, Ciccoli R, Nigam S. Candida albicans induces selectively transcriptional activation of cyclooxygenase-2 in HeLa cells: pivotal roles of Toll-like receptors, p38 mitogen-activated protein kinase, and NF-kappa B. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3047-55. [PMID: 12960330 DOI: 10.4049/jimmunol.171.6.3047] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Candidiasis, in its mucocutaneous form as well as in an invasive form, is frequently associated with high morbidity. PGE(2), which is generated by enzymatic activity of cyclooxygenases (COXs) 1 and 2, has been shown to trigger morphogenesis in Candida albicans. In the present study, we investigated whether C. albicans altered COX-2 expression in HeLa cells. RT-PCR and Western blot analyses revealed a time-dependent biphasic behavior of COX-2 mRNA expression and COX-2 protein level. COX-1 protein remained unaffected. Neutralization with Abs against Toll-like receptors (TLR) 2 and 4 inhibited the Candida-induced production of PGE(2), suggesting a vital role for TLRs in the recognition and signaling in mammalian cells upon infection with C. albicans. Transient transfections with COX-2 promoter-luciferase construct and various inhibitors of mitogen-activated protein kinases (MAPK), such as protein kinase C (PKC) inhibitor GF203190X, p38(MAPK) inhibitor SB203109, and extracellular-regulated kinases 1 and 2 inhibitor PD98509 showed that C. albicans up-regulates selectively COX-2, but not COX-1, through p38(MAPK) and PKC pathways. No involvement of other stress kinases, e.g., c-Jun NH(2)-terminal kinase and extracellular-regulated kinases 1 and 2, was observed. Transient transfection of NF-kappaB promoter construct and dominant negative plasmid of IkappaBbeta kinase showed that COX-2 transcription is mediated through p38(MAPK) and NF-kappaB pathways. That NF-kappaB up-regulates p38(MAPK) is novel and is in contradiction to earlier reports in which NF-kappaB was shown to inhibit p38(MAPK). In conclusion, multiple converging signaling pathways, involving TLRs followed by PKC, p38(MAPK), and/or NF-kappaB, are triggered by C. albicans in activation of COX-2 gene.
Collapse
Affiliation(s)
- Rupal Deva
- Eicosanoid and Lipid Research Division and Centre for Experimental Gynecology and Breast Research, Department of Gynecology, University Medical Centre Benjamin Franklin, Free University of Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Noverr MC, Erb-Downward JR, Huffnagle GB. Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 2003; 16:517-33. [PMID: 12857780 PMCID: PMC164223 DOI: 10.1128/cmr.16.3.517-533.2003] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen "cross-talk" that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens.
Collapse
Affiliation(s)
- Mairi C Noverr
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0642, USA
| | | | | |
Collapse
|
31
|
Kanda N, Tani K, Enomoto U, Nakai K, Watanabe S. The skin fungus-induced Th1- and Th2-related cytokine, chemokine and prostaglandin E2 production in peripheral blood mononuclear cells from patients with atopic dermatitis and psoriasis vulgaris. Clin Exp Allergy 2002; 32:1243-50. [PMID: 12190666 DOI: 10.1046/j.1365-2745.2002.01459.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND It is suggested that skin fungi may be involved in the development of atopic dermatitis (AD) and psoriasis vulgaris (PV). OBJECTIVE We studied skin fungus-induced Th1- or Th2-related cytokine, chemokine and prostaglandin E2 (PGE2) secretion in peripheral blood mononuclear cells (PBMC) from patients with AD and PV and normal subjects. METHODS PBMC were cultured with the extracts of Malassezia furfur (MF), Candida albicans (CA) and Trichophyton rubrum (TR). The cytokine, chemokine and PGE2 amounts in the supernatants were measured by enzyme-linked immunosorbent assays. RESULTS MF induced IL-4 and macrophage-derived chemokine (MDC) secretion in AD patients, while induced IFN-gamma and interferon-inducible protein of 10 kDa (IP-10) secretion in PV patients, however, did not induce either secretion in normal subjects. CA induced IL-4, MDC, IFN-gamma and IP-10 secretion in AD and PV patients and normal subjects. In AD patients, the magnitude of IL-4 and MDC responses to CA was higher than that to MF. Compared with PV patients and normal subjects, the magnitude of IL-4 and MDC responses to CA was higher while that of IFN-gamma and IP-10 responses to CA was lower in AD patients. TR induced moderate IL-4 and MDC secretion only in AD patients. The three fungi induced higher levels of PGE2 secretion in AD patients than in PV patients and normal subjects. Cyclooxygenase-2 inhibitor NS-398 suppressed PGE2 responses to MF, CA and TR, and partially suppressed IL-4 and MDC responses to MF, CA and TR, while enhanced IFN-gamma and IP-10 responses to CA in AD patients, and these effects of NS-398 were reversed by cyclic AMP analogue. CONCLUSION AD patients manifest Th2-skewed responses to MF, CA and TR, which may be partially attributable to the enhanced PGE2 responses to these fungi. PV patients manifest Th1-skewed responses to MF.
Collapse
Affiliation(s)
- N Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Malassezia species are members of the human cutaneous commensal flora, in addition to causing a wide range of cutaneous and systemic diseases in suitably predisposed individuals. Studies examining cellular and humoral immune responses specific to Malassezia species in patients with Malassezia-associated diseases and healthy controls have generally been unable to define significant differences in their immune response. The use of varied antigenic preparations and strains from different Malassezia classifications may partly be responsible for this, although these problems can now be overcome by using techniques based on recent work defining some important antigens and also a new taxonomy for the genus. The finding that the genus Malassezia is immunomodulatory is important in understanding its ability to cause disease. Stimulation of the reticuloendothelial system and activation of the complement cascade contrasts with its ability to suppress cytokine release and downregulate phagocytic uptake and killing. The lipid-rich layer around the yeast appears to be pivotal in this alteration of phenotype. Defining the nonspecific immune response to Malassezia species and the way in which the organisms modulate it may well be the key to understanding how Malassezia species can exist as both commensals and pathogens.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Division of Microbiology, University of Leeds and Leeds General Infirmary, Leeds, United Kingdom.
| | | |
Collapse
|
33
|
Deva R, Ciccoli R, Kock L, Nigam S. Involvement of aspirin-sensitive oxylipins in vulvovaginal candidiasis. FEMS Microbiol Lett 2001; 198:37-43. [PMID: 11325551 DOI: 10.1111/j.1574-6968.2001.tb10616.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
3(R)-Hydroxyoxylipins are produced via an aspirin-sensitive pathway in Candida albicans, an abundant pathogen in vulvovaginal candidiasis. In the present study, we have investigated the effect of aspirin on vaginal isolates of C. albicans from patients with recurrent candidiasis. Aspirin alone and with clotrimazole, a commonly used drug, strongly suppressed growth of C. albicans. 3(R)-Hydroxyoxylipins, which were selectively located in hyphae and other filamentous structures, but not in free blastospores, were almost totally suppressed by aspirin. Moreover, C. albicans stimulated prostaglandin E(2) (PGE(2)) production in HeLa cells. PGE(2) is a stimulus for germ tube formation in C. albicans. We conclude therefore that the administration of aspirin should be beneficial in the treatment of vulvovaginal candidiasis by dual ways: (i) by inhibition of 3(R)-hydroxyoxylipin formation, and (ii) by inhibition of PGE(2) formation in the infected host tissue.
Collapse
Affiliation(s)
- R Deva
- Eicosanoid Research Division, Department of Gynecology and Obstetrics, University Medicine Center Benjamin Franklin, Free University Berlin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Pontón J, Omaetxebarría MJ, Elguezabal N, Alvarez M, Moragues MD. Immunoreactivity of the fungal cell wall. Med Mycol 2001. [DOI: 10.1080/mmy.39.1.101.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
35
|
Kottom TJ, Limper AH. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta -1,3-glucan deposition. J Biol Chem 2000; 275:40628-34. [PMID: 11013231 DOI: 10.1074/jbc.m002103200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.
Collapse
Affiliation(s)
- T J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
36
|
Fradin C, Poulain D, Jouault T. beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect Immun 2000; 68:4391-8. [PMID: 10899835 PMCID: PMC98331 DOI: 10.1128/iai.68.8.4391-4398.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-1,2-linked oligomannoside residues are present, associated with mannan and a glycolipid, the phospholipomannan, at the Candida albicans cell wall surface. beta-1,2-linked oligomannoside residues act as adhesins for macrophages and stimulate these cells to undergo cytokine production. To characterize the macrophage receptor involved in the recognition of C. albicans beta-1,2-oligomannoside we used the J774 mouse cell line, which is devoid of the receptor specific for alpha-linked mannose residues. A series of experiments based on affinity binding on either C. albicans yeast cells or beta-1,2-oligomannoside-conjugated bovine serum albumin (BSA) and subsequent disclosure with biotinylated conjugated BSA repeatedly led to the detection of a 32-kDa macrophage protein. An antiserum specific for this 32-kDa protein inhibited C. albicans binding to macrophages and was used to immunoprecipitate the molecule. Two high-pressure liquid chromatography-purified peptides from the 32-kDa tryptic digest showed complete homology to galectin-3 (previously designated Mac-2 antigen), an endogenous lectin with pleiotropic functions which is expressed in a wide variety of cell types with which C. albicans interacts as a saprophyte or a parasite.
Collapse
Affiliation(s)
- C Fradin
- Laboratoire de Mycologie Fondamentale et Appliquée, INSERM E9915, Faculté de Médecine, Pôle Recherche, 59037 Lille Cedex, France
| | | | | |
Collapse
|
37
|
Deva R, Ciccoli R, Schewe T, Kock JL, Nigam S. Arachidonic acid stimulates cell growth and forms a novel oxygenated metabolite in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:299-311. [PMID: 10903481 DOI: 10.1016/s1388-1981(00)00073-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection of human tissues by Candida albicans has been reported to cause the release of arachidonic acid (AA), eicosanoids and other proinflammatory mediators from host cells. Therefore, we investigated the interaction of this pathogen with AA. AA stimulated cell growth at micromolar concentrations when used as a sole carbon source. Moreover, it selectively inhibited the antimycin A-resistant alternative oxidase. [1-(14)C]AA was completely metabolised by C. albicans. Only one-seventh of the radioactivity metabolised was found in CO(2), whereas two-thirds occurred in carbohydrates suggesting a predominant role of the glyoxalate shunt of citrate cycle. About 1% of radioactivity was found in polar lipids including eicosanoids. A novel AA metabolite, which revealed immunoreactivity with an antibody against 3(R)-hydroxy-oxylipins, was identified as 3, 18-dihydroxy-5,8,11,14-eicosatetraenoic acid. Using immunofluorescence microscopy, endogenous 3(R)-hydroxy-oxylipins were found in hyphae but not in yeast cells. Such compounds have recently been shown to be connected with the sexual stage of the life cycle of Dipodascopsis uninucleata. Together, we propose that infection-mediated release of AA from host cells may modulate cell growth, morphogenesis and invasiveness of C. albicans by several modes. A better understanding of its role is thus promising for novel approaches towards the treatment of human mycoses.
Collapse
Affiliation(s)
- R Deva
- Department of Gynaecology, University Medical Centre Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
Vassallo R, Standing JE, Limper AH. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3755-63. [PMID: 10725735 DOI: 10.4049/jimmunol.164.7.3755] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophage-induced lung inflammation contributes substantially to respiratory failure during Pneumocystis carinii pneumonia. We isolated a P. carinii cell wall fraction rich in glucan carbohydrate, which potently induces TNF-alpha and macrophage-inflammatory protein-2 generation from alveolar macrophages. Instillation of this purified P. carinii carbohydrate cell wall fraction into healthy rodents is accompanied by substantial increases in whole lung TNF-alpha generation and is associated with neutrophilic infiltration of the lungs. Digestion of the P. carinii cell wall isolate with zymolyase, a preparation containing predominantly beta-1,3 glucanase, substantially reduces the ability of this P. carinii cell wall fraction to activate alveolar macrophages, thus suggesting that beta-glucan components of the P. carinii cell wall largely mediate TNF-alpha release. Furthermore, the soluble carbohydrate beta-glucan receptor antagonists laminariheptaose and laminarin also substantially reduce the ability of the P. carinii cell wall isolate to stimulate macrophage-inflammatory activation. In contrast, soluble alpha-mannan, a preparation that antagonizes macrophage mannose receptors, had minimal effect on TNF-alpha release induced by the P. carinii cell wall fraction. P. carinii beta-glucan-induced TNF-alpha release from alveolar macrophages was also inhibited by both dexamethasone and pentoxifylline, two pharmacological agents with potential activity in controlling P. carinii-induced lung inflammation. These data demonstrate that P. carinii beta-glucan cell wall components can directly stimulate alveolar macrophages to release proinflammatory cytokines mainly through interaction with cognate beta-glucan receptors on the phagocyte.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Binding, Competitive/immunology
- Cell Wall/chemistry
- Cell Wall/enzymology
- Cell Wall/immunology
- Cells, Cultured
- Chemokine CXCL2
- Chemokines/metabolism
- Dexamethasone/pharmacology
- Female
- Glucan Endo-1,3-beta-D-Glucosidase/metabolism
- Glucans/administration & dosage
- Glucans/immunology
- Glucans/isolation & purification
- Glucans/metabolism
- Inflammation/immunology
- Inflammation/metabolism
- Intubation, Intratracheal
- Lectins, C-Type
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Mannose/metabolism
- Mannose Receptor
- Mannose-Binding Lectins
- Pentoxifylline/pharmacology
- Pneumocystis/chemistry
- Pneumocystis/enzymology
- Pneumocystis/immunology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Immunologic/antagonists & inhibitors
- Solubility
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- R Vassallo
- Thoracic Diseases Research Unit, Division of Pulmonary Medicine, Department of Biochemistry, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
39
|
Jouault T, Fradin C, Trinel PA, Poulain D. Candida albicans-derived beta-1,2-linked mannooligosaccharides induce desensitization of macrophages. Infect Immun 2000; 68:965-8. [PMID: 10639473 PMCID: PMC97232 DOI: 10.1128/iai.68.2.965-968.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans beta-1,2-oligomannosides stimulate macrophage tumor necrosis factor alpha (TNF-alpha) but not NO release. This stimulation desensitized macrophages by altering beta-1, 2-oligomannoside-dependent TNF-alpha production and lipopolysaccharide-dependent TNF-alpha and NO secretion. Desensitization was not related to tyrosine phosphorylation signal transduction but was transferred by culture supernatants in which arachidonic acid derivatives were evidenced.
Collapse
Affiliation(s)
- T Jouault
- Laboratoire de Mycologie Fondamentale et Appliquée, INSERM E9915, Université de Lille II, Faculté de Médecine H. Warembourg, Lille, France.
| | | | | | | |
Collapse
|
40
|
Cleary JA, Kelly GE, Husband AJ. The effect of molecular weight and beta-1,6-linkages on priming of macrophage function in mice by (1,3)-beta-D-glucan. Immunol Cell Biol 1999; 77:395-403. [PMID: 10540205 DOI: 10.1046/j.1440-1711.1999.00848.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1,3-beta-D-glucans (glucans) are structural elements in the cell walls of yeast and fungi with immunomodulatory properties, mediated through their ability to activate macrophages. This study assessed the activation of cells of the peritoneal cavity between 3 and 90 days after i.p. injection of particulate yeast glucan differing in molecular weight (MW) and degree of (1,6)-linkages. Female QS mice, 7-9 weeks of age, were injected, i.p., with varying doses of low (< 5 x 10(5)), medium (1-2 x 10(6)) or high (> 3 x 10(6)) MW glucans, all with low (< 5%) beta-(1,6)-linkages, or high MW (> 3 x 10(6)) glucan with high 1,6-linkages (> 20%). All glucans induced a transient increase in the proportion of neutrophils and eosinophils and a reduction in mast cell numbers in the peritoneal cavity. Peritoneal macrophages showed an altered morphology, increased intracellular acid phosphatase, increased LPS-stimulated NO production and increased PMA-stimulated superoxide production. There were no significant changes in serum lysozyme levels. Most macrophage activities returned to control levels by 28 days post injection of 1, 3-beta-D-glucan. There was a trend for higher MW or (1,6)-linked, (1, 3)-beta-D-glucans to be more stimulatory. It was concluded that particulate yeast (1,3)-beta-D-glucan is an effective stimulator of immune function, the efficiency of which may be influenced by the MW and degree of (1,6)-linkages.
Collapse
Affiliation(s)
- J A Cleary
- Department of Veterinary Anatomy and Pathology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
41
|
Abstract
Penicillium marneffei, a dimorphic fungus endemic in parts of Asia, causes disease in those with impaired cell-mediated immunity, especially persons with AIDS. The histopathology of penicilliosis marneffei features the intracellular infection of macrophages. We studied the interactions between human leukocytes and heat-killed yeast-phase P. marneffei. Monocyte-derived macrophages bound and internalized P. marneffei in the presence of complement-sufficient pooled human serum (PHS). Binding and phagocytosis were still seen if PHS was heat inactivated or omitted altogether. The binding of unopsonized P. marneffei to monocyte-derived macrophages occurred in the absence of divalent cations and was not affected by inhibitors of mannose and beta-glucan receptors or monoclonal antibodies directed against CD14 and CD11/CD18. Binding was profoundly inhibited by wheat germ agglutinin. A vigorous respiratory burst was seen in peripheral blood mononuclear cells (PBMC) stimulated with P. marneffei, regardless of whether the fungi were opsonized. However, tumor necrosis factor alpha (TNF-alpha) release from PBMC stimulated with P. marneffei occurred only if serum was present. These data demonstrate that (i) monocyte-derived macrophages bind and phagocytose P. marneffei even in the absence of opsonization, (ii) binding is divalent cation independent but is inhibited by wheat germ agglutinin, suggesting that the major receptor(s) recognizing P. marneffei is a glycoprotein with exposed N-acetyl-beta-D-glucosaminyl groups, (iii) P. marneffei stimulates the respiratory burst regardless of whether opsonins are present, and (iv) serum factors are required for P. marneffei to stimulate TNF-alpha release. The ability of unopsonized P. marneffei to parasitize mononuclear phagocytes without stimulating the production of TNF-alpha may be critical for the virulence of this intracellular parasite.
Collapse
Affiliation(s)
- Y Rongrungruang
- The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
42
|
Sendid B, Tabouret M, Poirot JL, Mathieu D, Fruit J, Poulain D. New enzyme immunoassays for sensitive detection of circulating Candida albicans mannan and antimannan antibodies: useful combined test for diagnosis of systemic candidiasis. J Clin Microbiol 1999; 37:1510-7. [PMID: 10203514 PMCID: PMC84817 DOI: 10.1128/jcm.37.5.1510-1517.1999] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two standardized enzyme immunoassays for the serological diagnosis of candidiasis were developed. The first one detects antimannan antibodies, while the second one detects mannan with a sensitivity of 0.1 ng/ml. These tests were applied to 162 serum samples retrospectively selected from 43 patients with mycologically and clinically proven candidiasis caused by Candida albicans. Forty-three serum samples were positive for mannan, and 63 had significant antibody levels. Strikingly, only five serum samples were simultaneously positive by both tests. When the results were analyzed per patient, 36 (84%) presented at least one serum positive by one test. For 30 of them, positivity by one test was always associated with negative results by the other test for any of the tested sera. For six patients whose sera were positive for either an antigen or an antibody response, a balance between positivity by each test was evidenced by kinetic analysis of sera drawn during the time course of the infection. Controls consisted of 98 serum samples from healthy individuals, 93 serum samples from patients hospitalized in intensive care units, and 39 serum samples from patients with deep mycoses. The sensitivities and specificities were 40 and 98% and 53 and 94% for mannanemia or antibody detection, respectively. These values reached 80 and 93%, respectively, when the results of both tests were combined. These observations, which clearly demonstrate a disparity between circulation of a given mannan catabolite and antimannan antibody response, suggest that use of both enzyme immunoassays may be useful for the routine diagnosis of candidiasis.
Collapse
Affiliation(s)
- B Sendid
- Equipe INSERM 99-15, Laboratoire de Mycologie Fondamentale et Appliquée, CH&U, Faculté de Médecine, Pôle Recherche, F-59045 Lille, France
| | | | | | | | | | | |
Collapse
|
43
|
Wakshull E, Brunke-Reese D, Lindermuth J, Fisette L, Nathans RS, Crowley JJ, Tufts JC, Zimmerman J, Mackin W, Adams DS. PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. IMMUNOPHARMACOLOGY 1999; 41:89-107. [PMID: 10102791 DOI: 10.1016/s0162-3109(98)00059-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PGG-Glucan, a soluble beta-(1,6)-branched beta-(1,3)-linked glucose homopolymer derived from the cell wall of the yeast Saccharomyces cerevisiae, is an immunomodulator which enhances leukocyte anti-infective activity and enhances myeloid and megakaryocyte progenitor proliferation. Incubation of human whole blood with PGG-Glucan significantly enhanced the oxidative burst response of subsequently isolated blood leukocytes to both soluble and particulate activators in a dose-dependent manner, and increased leukocyte microbicidal activity. No evidence for inflammatory cytokine production was obtained under these conditions. Electrophoretic mobility shift assays demonstrated that PGG-Glucan induced the activation of an NF-kappaB-like nuclear transcription factor in purified human neutrophils. The binding of 3H-PGG-Glucan to human leukocyte membranes was specific, concentration-dependent, saturable, and high affinity (Kd approximately 6 nM). A monoclonal antibody specific to the glycosphingolipid lactosylceramide was able to inhibit activation of the NF-kappaB-like factor by PGG-Glucan, and ligand binding data, including polysaccharide specificity, suggested that the PGG-Glucan binding moiety was lactosylceramide. These results indicate that PGG-Glucan enhances neutrophil anti-microbial functions and that interaction between this beta-glucan and human neutrophils is mediated by the glycosphingolipid lactosylceramide present at the cell surface.
Collapse
Affiliation(s)
- E Wakshull
- Department of Biology, Alpha-Beta Technology, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This study was undertaken to assess whether gamma-linolenic acid (GLA) in the form of evening primrose oil (EPO) could affect rat serum cytokines, interferon-gamma (IFN-gamma), monocyte chemotactic protein-1 (MCP-1) and tumour necrosis factor-alpha (TNF-alpha). The following diets were administered: control, glucan, Freund's adjuvant and glucan plus Freund's adjuvant with and without GLA. In the presence of GLA, the IFN-gamma and MCP-1 levels were significantly decreased in contrast to the control group of TNF-alpha, which was significantly stimulated. On account of interaction between diets and GLA, the remaining diet groups of TNF-alpha were either not affected or were inhibited in the presence of GLA. The observations indicate that GLA may modulate the level of serum IFN-gamma, MCP-1 and TNF-alpha, which may be a worthwhile line of treatment in certain human diseases.
Collapse
Affiliation(s)
- J Dirks
- Department of Urology, University of Pretoria, South Africa
| | | | | |
Collapse
|
45
|
Abstract
Specific mechanisms of recognition of microbial products have been developed by host cells. Among these mechanisms, recognition of lipopolysaccharide of Gram-negative bacteria by CD14, a glycoprotein expressed at the surface of myelomonocytic cells, plays a major role. There is increasing evidence that CD14 also serves as a receptor for other microbial products including peptidoglycan of Gram-positive bacteria. A common theme is that CD14 represents a key molecule in innate immunity. Recognition of microbial products by host cells leads to cell activation and production of a large array of mediators that are necessary for the development of controlled inflammatory processes. When the activation process is out of control, such as in septic shock, these mediators can be detrimental to the host.
Collapse
Affiliation(s)
- D Heumann
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
46
|
Shepherd VL, Lane KB, Abdolrasulnia R. Ingestion of Candida albicans down-regulates mannose receptor expression on rat macrophages. Arch Biochem Biophys 1997; 344:350-6. [PMID: 9264549 DOI: 10.1006/abbi.1997.0219] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The frequency of infection and death due to various Candida species has increased steadily during the past decade, with mucocutaneous candidal infections as a common problem in the immunocompromised host. Mononuclear phagocytes are important in phagocytosis of this organism. In areas where there are low levels of opsonins, the macrophage-specific mannose receptor plays a dominant role in mediating Candida albicans ingestion. Following receptor-mediated infection, the host macrophage produces inflammatory cytokines and mediators that lead to ultimate killing of the invading Candida. Infection of macrophages by pathogens often leads to altered function that might effect their subsequent host defense properties. For example, function of both the complement receptor type 3 and the mannose receptor are down-regulated following exposure to pathogens or pathogen-derived products. In the current study, we have examined the down-regulation of mannose receptor expression following Candida infection and have investigated possible mechanisms that might be involved. Mannose receptor activity was decreased following 24 h postinfection with Candida. Both tumor necrosis factor and nitric oxide were produced during the infection, and inhibition of the these mediators partially blocked the effect on the receptor. Infection with Candida also inhibited the ability of dexamethasone to up-regulate mannose receptor expression. Finally, mannose receptor protein turnover was accelerated in Candida-infected macrophages. We conclude that Candida down-regulates one of the receptors involved in its internalization through a combination of production of modulatory molecules and enhanced receptor degradation. These results support the hypothesis that pathogens that infect macrophages have the ability to alter the phagocytic pathways available for subsequent host defense.
Collapse
Affiliation(s)
- V L Shepherd
- Department of Medicine, Vanderbilt University, and VA Medical Center, Nashville, Tennessee 37212, USA.
| | | | | |
Collapse
|
47
|
Abstract
Candida albicans, an increasingly common opportunistic pathogenic fungus, frequently causes disease in immunodeficient but not immunocompetent hosts. Clarifying the role of the phagocytic cells that participate in resistance to candidiasis not only is basic to understanding how the host copes with this dimorphic pathogen but also will expedite the development of innovative prophylactic and therapeutic approaches for treating the multiple clinical presentations that candidiasis encompasses. In this review, we present evidence that a diverse population of mononuclear phagocytes, in different states of activation and differentiation and from a variety of host species, can phagocytize C. albicans blastoconidia via an array of opsonic and nonopsonic mechanisms and can kill C. albicans blastoconidia and hyphae by means of oxygen-dependent and -independent mechanisms. Reactive nitrogen intermediates should now be added to the well-established candidacidal reactive oxygen intermediates of macrophages. Furthermore, what were thought to be two independent pathways, i.e., nitric oxide and superoxide anion, have now been shown to combine to form a potent macrophage candidacidal molecule, peroxynitrite. In contrast to monocytes and neutrophils, which are important in resistance to early stages of C. albicans infections, more differentiated macrophages activated by cytokines such as gamma interferon participate in the acquired resistance of hosts with C. albicans-specific, cell-mediated immunity. Evidence presented in this review demonstrates that mononuclear phagocytes, in some instances in the absence of other professional phagocytes such as neutrophils, play an import role in resistance to systemic and mucosal candidiasis.
Collapse
Affiliation(s)
- A Vázquez-Torres
- Department of Surgery, University of Wisconsin Medical School, Madison 53706-1532, USA
| | | |
Collapse
|
48
|
Jouault T, Delaunoy C, Sendid B, Ajana F, Poulain D. Differential humoral response against alpha- and beta-linked mannose residues associated with tissue invasion by Candida albicans. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1997; 4:328-33. [PMID: 9144372 PMCID: PMC170527 DOI: 10.1128/cdli.4.3.328-333.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Candida albicans mannan is the major cell wall antigen that elicits antibodies considered to be of little diagnostic value. It comprises epitopes corresponding to sequences of alpha- and beta-1,2-linked mannose residues. Both types of oligomannosidic epitopes may also be present on the glycosidic portions of other C. albicans molecules, i.e., mannoproteins (MP) (either structural or enzymatic) and glycolipids. The human humoral responses against beta-1,2- and alpha-linked oligomannosides were investigated by C. albicans Western blotting by considering the elective distribution of beta-1,2-oligomannosidic epitopes over a 14- to 18-kDa phospholipomannan (PLM) and the presence of alpha-mannosidic epitopes over heavily glycosylated MP. Western blotting of 51 control sera confirmed the presence of antibodies against C. albicans as a commensal member of the indigenous microflora; an immunoglobulin G (IgG) reactivity linked to enzyme-linked immunosorbent assay mannan signals was found for both PLM (beta-1,2-Man residues) and MP (alpha-Man residues). Despite strong reactivities against mannan and MP, IgG from 21 hospitalized patients with mycological evidence of deep-tissue invasion by C. albicans very significantly failed to react or reacted only faintly with PLM. This downregulation of anti-beta-1,2-oligomannosidic epitopes, associated with tissue invasion by C. albicans, was confirmed in 3 of 4 AIDS patients with extended oroesophageal candidosis. The application of a dissociation procedure proved that the absence of PLM reactivity was not due to the presence of immune complexes. These data provide the first evidence for a qualitative modification of the human antimannan antibody response associated with the C. albicans commensal-pathogenic transition.
Collapse
Affiliation(s)
- T Jouault
- Unité INSERM 42, Domaine du CERTIA, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
Recognition and phagocytosis of micro-organisms in a serum-poor environment represent innate immunity against many extracellular pathogens. As a paradigm for such processes, we discuss the recognition of Klebsiella pneumoniae by alveolar macrophages and monocyte-derived macrophages in the absence of serum. Macrophages recognize and subsequently kill Klebsiella expressing Man-alpha 2/3-Man or Rha-alpha 2/3-Rha sequences in their capsular polysaccharides by two mechanisms: (a) recognition of the capsular structures by macrophage mannose receptors, and (b) opsonization by the lung surfactant protein A (SP-A), which binds to the capsular polysaccharides of Klebsiella and to SP-A receptors on the macrophages. Sp-A may also enhance phagocytosis by increasing the activity of macrophage mannose receptors. We conclude that a specific microbial surface structure may be a target for recognition by macrophages via several mechanisms, as exemplified in the case of Klebsiella capsular polysaccharides. Multiple recognition mechanisms of pathogens by macrophages may be essential to provide innate immunity to reduce the frequency of infections caused by a relatively less virulent bacterium in the immuno-compromised host.
Collapse
Affiliation(s)
- Y Keisari
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|
50
|
Olson EJ, Standing JE, Griego-Harper N, Hoffman OA, Limper AH. Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun 1996; 64:3548-54. [PMID: 8751898 PMCID: PMC174262 DOI: 10.1128/iai.64.9.3548-3554.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
beta-Glucans are polymers of D-glucose which represent major structural components of fungal cell walls. It was shown previously that fungi interact with macrophages through beta-glucan receptors, thereby inducing release of tumor necrosis factor alpha (TNF-alpha). Additional studies demonstrated that vitronectin, a host adhesive glycoprotein, binds to fungi and enhances macrophage recognition of these organisms. Since vitronectin contains a carbohydrate-binding region, we postulated that vitronectin binds fungal beta-glucans and subsequently augments macrophage TNF-alpha release in response to this fungal component. To study this, we first determined the release of TNF-alpha from alveolar macrophages stimulated with fungal beta-glucan. Maximal TNF-alpha release occurred with moderate concentrations of beta-glucan (100 to 200 micrograms/ml), whereas higher concentrations of beta-glucan (> or = 500 micrograms/ml) caused apparent suppression of the TNF-alpha activity released. This suppression of TNF-alpha activity by high concentrations of beta-glucan was mediated by the particulate beta-glucan binding soluble TNF-alpha, through the lectin-binding domain of the cytokine, rendering the TNF-alpha less available for measurement. Next, we assessed the interaction of vitronectin with beta-glucan. Binding of 125I-vitronectin to particulate fungal beta-glucan was dose dependent and specifically inhibitable by unlabeled vitronectin. Furthermore, treatment of beta-glucan with vitronectin substantially augmented macrophage TNF-alpha release in response to this fungal component. These findings demonstrate that fungal beta-glucan can directly modulate TNF-alpha release from macrophages. Further, these studies indicate that the host adhesive glycoprotein vitronectin specifically binds beta-glucan and augments macrophage cytokine release in response to this fungal element.
Collapse
Affiliation(s)
- E J Olson
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|