1
|
Dei-Dzeha MS, Dayie NTKD, Atiase Y, Baah BB, Tetteh-Quarcoo PB, Osei MM, Semevor GO, Okyere I, Kotey FCN, Donkor ES. Comparison of nasopharyngeal bacteriological profile between patients with diabetes and healthy individuals in Accra, Ghana. BMC Res Notes 2024; 17:362. [PMID: 39702258 DOI: 10.1186/s13104-024-07003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The nasopharynx is characterised by a rich microbial diversity, making it an important endogenous reservoir for respiratory infections. People living with diabetes (PLWD) have a high risk for acquisition of respiratory tract infections, but their nasopharyngeal bacterial flora have rarely been investigated. AIM To investigate the nasopharyngeal bacterial flora among PLWD and non-diabetics at the Korle Bu Teaching Hospital in Accra. METHODOLOGY This study was a case-control one, involving 130 each of PLWD and non-diabetics. Nasopharyngeal swab specimens were obtained from the participants and cultured for bacteria, which were identified using MALDITOF mass spectrometry. RESULTS The bacterial flora present in the anterior nares of the participants of both study groups was characterised by a rich diversity, comprising both Gram-positives and Gram-negatives. In the diabetics, the dominant bacteria were Acinetobacter baumannii (19.6%), Staphylococcus epidermidis (18.12%), Staphylococcus aureus (15.2%), and Rahnella aquatilis (12.3%). In the control group, however, the dominant bacteria were Staphylococcus epidermidis (21.9%), Staphylococcus aureus (19.0%), Proteus mirabilis (10.9%), Pseudomonas aeruginosa (10.2%), Acinetobacter baumannii (8.8%), and Enterobacter cloacae (7.2%). Between groups, Acinetobacter baumannii (19.6% vs. 8.8%, p = 0.014) and Rahnella aquatilis (12.3% vs. 0.0%, p < 0.001) recorded a significantly higher prevalence in the diabetes group than in the control group. On the contrary, Klebsiella pneumoniae (0.0% vs. 4.4%, p = 0.003), Proteus mirabilis (2.2% vs. 10.9%, p = 0.006), and Pseudomonas aeruginosa (0.7% vs. 10.2%, p < 0.001) had significantly lower prevalence than in the control group. CONCLUSION The nasopharyngeal bacterial flora of PLWD in Accra seems to have comparable diversities with those of non-diabetics. Nonetheless, the PLWD had a higher carriage rate of Acinetobacter baumannii but seem to have some protection against carriage of Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Michael S Dei-Dzeha
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Nicholas T K D Dayie
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Yacoba Atiase
- Department of Medicine, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Bismark B Baah
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Mary-Magdalene Osei
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Grace O Semevor
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Isaac Okyere
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
2
|
Sharma A, Shuppara AM, Padron GC, Sanfilippo JE. Combining multiple stressors blocks bacterial migration and growth. Curr Biol 2024; 34:5774-5781.e4. [PMID: 39549703 DOI: 10.1016/j.cub.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors.1,2,3,4,5 In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics.6,7,8,9,10,11,12 Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H2O2) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and H2O2 that commonly co-occur in human host tissues,13,14,15,16,17,18 we discover that previous reports significantly overestimate the H2O2 levels required to block bacterial growth. Specifically, we establish that flow increases H2O2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H2O2 levels, we identify the core H2O2 regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple H2O2 scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of H2O2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H2O2 and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander M Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gilberto C Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph E Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Dubach VRA, San Segundo-Acosta P, Murphy BJ. Structural and mechanistic insights into Streptococcus pneumoniae NADPH oxidase. Nat Struct Mol Biol 2024; 31:1769-1777. [PMID: 39039317 PMCID: PMC11564096 DOI: 10.1038/s41594-024-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) have a major role in the physiology of eukaryotic cells by mediating reactive oxygen species production. Evolutionarily distant proteins with the NOX catalytic core have been found in bacteria, including Streptococcus pneumoniae NOX (SpNOX), which is proposed as a model for studying NOXs because of its high activity and stability in detergent micelles. We present here cryo-electron microscopy structures of substrate-free and nicotinamide adenine dinucleotide (NADH)-bound SpNOX and of NADPH-bound wild-type and F397A SpNOX under turnover conditions. These high-resolution structures provide insights into the electron-transfer pathway and reveal a hydride-transfer mechanism regulated by the displacement of F397. We conducted structure-guided mutagenesis and biochemical analyses that explain the absence of substrate specificity toward NADPH and suggest the mechanism behind constitutive activity. Our study presents the structural basis underlying SpNOX enzymatic activity and sheds light on its potential in vivo function.
Collapse
Affiliation(s)
- Victor R A Dubach
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Redox and Metalloprotein Research Group, IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Pablo San Segundo-Acosta
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Madrid, Spain.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Bazant J, Weiss A, Baldauf J, Schermuly RT, Hain T, Lucas R, Mraheil MA. Pneumococcal hydrogen peroxide regulates host cell kinase activity. Front Immunol 2024; 15:1414195. [PMID: 38903521 PMCID: PMC11188345 DOI: 10.3389/fimmu.2024.1414195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Protein kinases are indispensable reversible molecular switches that adapt and control protein functions during cellular processes requiring rapid responses to internal and external events. Bacterial infections can affect kinase-mediated phosphorylation events, with consequences for both innate and adaptive immunity, through regulation of antigen presentation, pathogen recognition, cell invasiveness and phagocytosis. Streptococcus pneumoniae (Spn), a human respiratory tract pathogen and a major cause of community-acquired pneumoniae, affects phosphorylation-based signalling of several kinases, but the pneumococcal mediator(s) involved in this process remain elusive. In this study, we investigated the influence of pneumococcal H2O2 on the protein kinase activity of the human lung epithelial H441 cell line, a generally accepted model of alveolar epithelial cells. Methods We performed kinome analysis using PamGene microarray chips and protein analysis in Western blotting in H441 lung cells infected with Spn wild type (SpnWT) or with SpnΔlctOΔspxB -a deletion mutant strongly attenuated in H2O2 production- to assess the impact of pneumococcal hydrogen peroxide (H2O2) on global protein kinase activity profiles. Results Our kinome analysis provides direct evidence that kinase activity profiles in infected H441 cells significantly vary according to the levels of pneumococcal H2O2. A large number of kinases in H441 cells infected with SpnWT are significantly downregulated, whereas this no longer occurs in cells infected with the mutant SpnΔlctOΔspxB strain, which lacks H2O2. In particular, we describe for the first time H2O2-mediated downregulation of Protein kinase B (Akt1) and activation of lymphocyte-specific tyrosine protein kinase (Lck) via H2O2-mediated phosphorylation.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Astrid Weiss
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Julia Baldauf
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary, Sleep and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Sakuma C, Shizukuishi S, Ogawa M, Honjo Y, Takeyama H, Guan JL, Weiser J, Sasai M, Yamamoto M, Ohnishi M, Akeda Y. Individual Atg8 paralogs and a bacterial metabolite sequentially promote hierarchical CASM-xenophagy induction and transition. Cell Rep 2024; 43:114131. [PMID: 38656870 DOI: 10.1016/j.celrep.2024.114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.
Collapse
Affiliation(s)
- Chisato Sakuma
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Yuko Honjo
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, CARE/Crawley Building, Suite E-870 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jeffery Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
6
|
Sharma A, Shuppara AM, Padron GC, Sanfilippo JE. Combining multiple stressors unexpectedly blocks bacterial migration and growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595753. [PMID: 38853869 PMCID: PMC11160647 DOI: 10.1101/2024.05.27.595753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In nature, organisms experience combinations of stressors. However, laboratory studies typically simplify reality and focus on the effects of an individual stressor. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H 2 O 2 ) to the human pathogen Pseudomonas aeruginosa . By treating cells with levels of flow and H 2 O 2 that commonly co-occur in nature, we discover that previous reports significantly overestimate the H 2 O 2 levels required to block bacterial growth. Specifically, we establish that flow increases H 2 O 2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H 2 O 2 levels, we identify the core H 2 O 2 regulon, characterize OxyR-mediated dynamic regulation, and dissect the redundant roles of multiple H 2 O 2 scavenging systems. By examining single-cell behavior, we serendipitously discover that the combined effects of H 2 O 2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H 2 O 2 and flow synergize to restrict bacterial colonization and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Collapse
|
7
|
Jiang W, Lin T, Pan J, Rivera CE, Tincher C, Wang Y, Zhang Y, Gao X, Wang Y, Tsui HCT, Winkler ME, Lynch M, Long H. Spontaneous mutations and mutational responses to penicillin treatment in the bacterial pathogen Streptococcus pneumoniae D39. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:198-211. [PMID: 38827133 PMCID: PMC11136922 DOI: 10.1007/s42995-024-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/04/2024] [Indexed: 06/04/2024]
Abstract
Bacteria with functional DNA repair systems are expected to have low mutation rates due to strong natural selection for genomic stability. However, our study of the wild-type Streptococcus pneumoniae D39, a pathogen responsible for many common diseases, revealed a high spontaneous mutation rate of 0.02 per genome per cell division in mutation-accumulation (MA) lines. This rate is orders of magnitude higher than that of other non-mutator bacteria and is characterized by a high mutation bias in the A/T direction. The high mutation rate may have resulted from a reduction in the overall efficiency of selection, conferred by the tiny effective population size in nature. In line with this, S. pneumoniae D39 also exhibited the lowest DNA mismatch-repair (MMR) efficiency among bacteria. Treatment with the antibiotic penicillin did not elevate the mutation rate, as penicillin did not induce DNA damage and S. pneumoniae lacks a stress response pathway. Our findings suggested that the MA results are applicable to within-host scenarios and provide insights into pathogen evolution. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00220-6.
Collapse
Affiliation(s)
- Wanyue Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Caitlyn E. Rivera
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, 266000 China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Ho-Ching T. Tsui
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | | | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
8
|
Shearer HL, Currie MJ, Agnew HN, Trappetti C, Stull F, Pace PE, Paton JC, Dobson RCJ, Dickerhof N. Hypothiocyanous acid reductase is critical for host colonization and infection by Streptococcus pneumoniae. J Biol Chem 2024; 300:107282. [PMID: 38604564 PMCID: PMC11107202 DOI: 10.1016/j.jbc.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.
Collapse
Affiliation(s)
- Heather L Shearer
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand; Biomolecular Interaction Centre, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Hannah N Agnew
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Paul E Pace
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - James C Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand.
| |
Collapse
|
9
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Jennert F, Schaaf D, Nau R, Kohler TP, Hammerschmidt S, Häusler D, Valentin-Weigand P, Seele J. Hydrogen peroxide is responsible for the cytotoxic effects of Streptococcus pneumoniae on primary microglia in the absence of pneumolysin. J Innate Immun 2024; 16:000536514. [PMID: 38569474 PMCID: PMC11060703 DOI: 10.1159/000536514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/25/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM). METHODS Microglia and BMDM were co-incubated with S. pneumoniae D39 to analyze survival of phagocytes by fluorescence microscopy, bacterial growth by quantitative plating, and phagocytosis by an antibiotic protection assay. Ply was detected by hemolysis assay and Western blot analysis. RESULTS We found that microglia were killed during pneumococcal infection with a wild-type and an isogenic ply-deficient mutant, whereas viability of BMDM was not affected by pneumococci. Treatment with recombinant Ply showed a dose-dependent cytotoxic effect on microglia and BMDM. However, high concentrations of recombinant Ply were required and under the chosen experimental conditions, Ply was not detectable in the supernatant during infection of microglia. Inactivation of H2O2 by exogenously added catalase abolished its cytotoxic effect. Consequently, infection of microglia with pneumococci deficient for the pyruvate oxidase SpxB, primarily producing H2O2, resulted in reduced killing of microglia. CONCLUSION Taken together, in the absence of Ply, H2O2 caused cell death in primary phagocytes in concentrations produced by pneumococci.
Collapse
Affiliation(s)
- Franziska Jennert
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Désirée Schaaf
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Roland Nau
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Evangelisches Krankenhaus Göttingen-Weende, Department of Geriatrics, Göttingen, Germany
| | - Thomas P. Kohler
- Greifswald University, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Sven Hammerschmidt
- Greifswald University, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Darius Häusler
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Peter Valentin-Weigand
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Jana Seele
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Evangelisches Krankenhaus Göttingen-Weende, Department of Geriatrics, Göttingen, Germany
| |
Collapse
|
11
|
Derunets AS, Selimzyanova AI, Rykov SV, Kuznetsov AE, Berezina OV. Strategies to enhance stress tolerance in lactic acid bacteria across diverse stress conditions. World J Microbiol Biotechnol 2024; 40:126. [PMID: 38446232 DOI: 10.1007/s11274-024-03905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Lactic acid bacteria (LAB) hold significant importance in diverse fields, including food technology, industrial biotechnology, and medicine. As basic components of starter cultures, probiotics, immunomodulators, and live vaccines, LAB cells resist a variety of stressors, including temperature fluctuations, osmotic and pH shocks, exposure to oxidants and ultraviolet radiation, substrate deprivation, mechanical damage, and more. To stay alive in these adversities, LAB employ a wide range of stress response strategies supported by various mechanisms, for example rearrangement of metabolism, expression of specialized biomolecules (e.g., chaperones and antioxidants), exopolysaccharide synthesis, and complex repair and regulatory systems. LAB can coordinate responses to various stressors using global regulators. In this review, we summarize current knowledge about stress response strategies used by LAB and consider mechanisms of response to specific stressful factors, supported by illustrative examples. In addition, we discuss technical approaches to increase the stress resistance of LAB, including pre-adaptation, genetic modification of strains, and adjustment of cultivation conditions. A critical analysis of the recent findings in this field augments comprehension of stress tolerance mechanisms in LAB, paving the way for prospective research directions with implications in fundamental and practical areas.
Collapse
Affiliation(s)
- A S Derunets
- National Research Center Kurchatov Institute, Moscow, Russia.
| | | | - S V Rykov
- National Research Center Kurchatov Institute, Moscow, Russia
| | - A E Kuznetsov
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - O V Berezina
- National Research Center Kurchatov Institute, Moscow, Russia
| |
Collapse
|
12
|
Kemnitz N, Fuchs P, Remy R, Ruehrmund L, Bartels J, Klemenz AC, Trefz P, Miekisch W, Schubert JK, Sukul P. Effects of Contagious Respiratory Pathogens on Breath Biomarkers. Antioxidants (Basel) 2024; 13:172. [PMID: 38397770 PMCID: PMC10886173 DOI: 10.3390/antiox13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
13
|
Fu T, Gifford DR, Knight CG, Brockhurst MA. Eco-evolutionary dynamics of experimental Pseudomonas aeruginosa populations under oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001396. [PMID: 37943284 PMCID: PMC10710836 DOI: 10.1099/mic.0.001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human immune system to confront invading bacteria. In this study, we show that strains of the opportunistic pathogenic bacterium Pseudomonas aeruginosa vary in their eco-evolutionary responses to hydrogen peroxide stress. By quantifying their 24 h growth kinetics across hydrogen peroxide gradients we show that a transmissible epidemic strain isolated from a chronic airway infection of a cystic fibrosis patient, LESB58, is much more susceptible to hydrogen peroxide than either of the reference strains, PA14 or PAO1, with PAO1 showing the lowest susceptibility. Using a 12 day serial passaging experiment combined with a mathematical model, we then show that short-term susceptibility controls the longer-term survival of populations exposed to subinhibitory levels of hydrogen peroxide, but that phenotypic evolutionary responses can delay population extinction. Our model further suggests that hydrogen peroxide driven extinctions are more likely with higher rates of population turnover. Together, these findings suggest that hydrogen peroxide is likely to be an effective defence in host niches where there is high population turnover, which may explain the counter-intuitively high susceptibility of a strain isolated from chronic lung infection, where such ecological dynamics may be slower.
Collapse
Affiliation(s)
- Taoran Fu
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Danna R. Gifford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PT, UK
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Labossiere A, Ramsey M, Merritt J, Kreth J. Molecular commensalism-how to investigate underappreciated health-associated polymicrobial communities. mBio 2023; 14:e0134223. [PMID: 37754569 PMCID: PMC10653818 DOI: 10.1128/mbio.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The study of human commensal bacteria began with the first observation of prokaryotes >340 years ago. Since then, the study of human-associated microbes has been justifiably biased toward the study of infectious pathogens. However, the role of commensal microbes has in recent years begun to be understood with some appreciation of them as potential protectors of host health rather than bystanders. As our understanding of these valuable microbes grows, it highlights how much more remains to be learned about them and their roles in maintaining health. We note here that a thorough framework for the study of commensals, both in vivo and in vitro is overall lacking compared to well-developed methodologies for pathogens. The modification and application of methods for the study of pathogens can work well for the study of commensals but is not alone sufficient to properly characterize their relationships. This is because commensals live in homeostasis with the host and within complex communities. One difficulty is determining which commensals have a quantifiable impact on community structure and stability as well as host health, vs benign microbes that may indeed serve only as bystanders. Human microbiomes are composed of bacteria, archaea, fungi, and viruses. This review focuses particularly on oral bacteria, yet many of the principles of commensal impacts on host health observed in the mouth can translate well to other host sites. Here, we discuss the value of commensals, the shortcomings involved in model systems for their study, and some of the more notable impacts they have upon not only each other but host health.
Collapse
Affiliation(s)
- Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
15
|
Shearer HL, Pace PE, Smith LM, Fineran PC, Matthews AJ, Camilli A, Dickerhof N, Hampton MB. Identification of Streptococcus pneumoniae genes associated with hypothiocyanous acid tolerance through genome-wide screening. J Bacteriol 2023; 205:e0020823. [PMID: 37791755 PMCID: PMC10601753 DOI: 10.1128/jb.00208-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of ΔahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen. IMPORTANCE Streptococcus pneumoniae is a human pathogen that causes pneumonia, bacteremia, and meningitis. Vaccination provides protection only against a quarter of the known S. pneumoniae serotypes, and the bacterium is rapidly becoming resistant to antibiotics. As such, new treatments are required. One strategy is to sensitize the bacteria to killing by the immune system. In this study, we performed a genome-wide screen to identify genes that help this bacterium resist oxidative stress exerted by the host at sites of colonization and infection. By identifying a number of critical pneumococcal defense mechanisms, our work provides novel targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Heather L. Shearer
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| | - Paul E. Pace
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Leah M. Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Peter C. Fineran
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Allison J. Matthews
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| | - Mark B. Hampton
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| |
Collapse
|
16
|
Bazant J, Ott B, Hudel M, Hain T, Lucas R, Mraheil MA. Impact of Endogenous Pneumococcal Hydrogen Peroxide on the Activity and Release of Pneumolysin. Toxins (Basel) 2023; 15:593. [PMID: 37888624 PMCID: PMC10611280 DOI: 10.3390/toxins15100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. The pore-forming cholesterol-dependent cytolysin (CDC) pneumolysin (PLY) and the physiological metabolite hydrogen peroxide (H2O2) can greatly increase the virulence of pneumococci. Although most studies have focused on the contribution of both virulence factors to the course of pneumococcal infection, it is unknown whether or how H2O2 can affect PLY activity. Of note, S. pneumoniae exploits endogenous H2O2 as an intracellular signalling molecule to modulate the activity of several proteins. Here, we demonstrate that H2O2 negatively affects the haemolytic activity of PLY in a concentration-dependent manner. Prevention of cysteine-dependent sulfenylation upon substitution of the unique and highly conserved cysteine residue to serine in PLY significantly reduces the toxin's susceptibility to H2O2 treatment and completely abolishes the ability of DTT to activate PLY. We also detect a clear gradual correlation between endogenous H2O2 generation and PLY release, with decreased H2O2 production causing a decline in the release of PLY. Comparative transcriptome sequencing analysis of the wild-type S. pneumoniae strain and three mutants impaired in H2O2 production indicates enhanced expression of several genes involved in peptidoglycan (PG) synthesis and in the production of choline-binding proteins (CPBs). One explanation for the impact of H2O2 on PLY release is the observed upregulation of the PG bridge formation alanyltransferases MurM and MurN, which evidentially negatively affect the PLY release. Our findings shed light on the significance of endogenous pneumococcal H2O2 in controlling PLY activity and release.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Benjamin Ott
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Martina Hudel
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Torsten Hain
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| |
Collapse
|
17
|
Hernandez-Morfa M, Olivero NB, Zappia VE, Piñas GE, Reinoso-Vizcaino NM, Cian MB, Nuñez-Fernandez M, Cortes PR, Echenique J. The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Front Microbiol 2023; 14:1269843. [PMID: 37789846 PMCID: PMC10543277 DOI: 10.3389/fmicb.2023.1269843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a gram-positive, aerotolerant bacterium that naturally colonizes the human nasopharynx, but also causes invasive infections and is a major cause of morbidity and mortality worldwide. This pathogen produces high levels of H2O2 to eliminate other microorganisms that belong to the microbiota of the respiratory tract. However, it also induces an oxidative stress response to survive under this stressful condition. Furthermore, this self-defense mechanism is advantageous in tolerating oxidative stress imposed by the host's immune response. This review provides a comprehensive overview of the strategies employed by the pneumococcus to survive oxidative stress. These strategies encompass the utilization of H2O2 scavengers and thioredoxins, the adaptive response to antimicrobial host oxidants, the regulation of manganese and iron homeostasis, and the intricate regulatory networks that control the stress response. Here, we have also summarized less explored aspects such as the involvement of reparation systems and polyamine metabolism. A particular emphasis is put on the role of the oxidative stress response during the transient intracellular life of Streptococcus pneumoniae, including coinfection with influenza A and the induction of antibiotic persistence in host cells.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - German E. Piñas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
18
|
Mariani F, Galvan EM. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics (Basel) 2023; 12:1164. [PMID: 37508260 PMCID: PMC10376372 DOI: 10.3390/antibiotics12071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Polymicrobial biofilms provide a complex environment where co-infecting microorganisms can behave antagonistically, additively, or synergistically to alter the disease outcome compared to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are frequently reported in healthcare and community settings, and they can also involve other bacterial and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species biofilms in chronic wounds has been extensively described. This review article explores the recent updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among others. The molecular mechanisms behind these polymicrobial interactions in the context of infected wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.
Collapse
Affiliation(s)
- Florencia Mariani
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| | - Estela Maria Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| |
Collapse
|
19
|
Bao Y, Chen Z, Wang Y, Liu L, Wang H, Li Z, Feng F. Co-assembly of graphene/polyoxometalate films for highly electrocatalytic and sensing hydroperoxide. Front Chem 2023; 11:1199135. [PMID: 37273509 PMCID: PMC10233151 DOI: 10.3389/fchem.2023.1199135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Graphene oxide (GO) films mixed with polyethylenimine (PEI) were prepared by a layer-by-layer assembly (LBL) method, in which the GO component is then converted to reduced GO (rGO) in situ through an electron transfer interaction with a polyoxometalate (POM) that is assembled on the outer surface. With this, devices were manufactured by spreading composite films of (PEI/rGO)n-POM with different numbers of PEI/rGO layers on ITO substrates. Cyclic voltammetry (CV) reveals that the catalytic activity for H2O2 of (PEI/rGO)n-POM films was significantly higher than that of similar films of (PEI/GO)n/PEI/POM manufactured LBL with the same number of layers, although the catalyst POM content of (PEI/rGO)n-POM was only half that of (PEI/GO)n/PEI/POM. The catalytic activity of (PEI/rGO)n-POM films first increases and then decreases as the number of PEI/rGO layers increases. The result shows that (PEI/rGO)3-POM films with three PEI/rGO layers exhibit the highest efficiency. Amperometric measurements of the (PEI/rGO)3-POM films showed improved current response, high sensitivity, wide linear range, low detection limit, and fast response for H2O2 detection. The enhanced catalytic property of (PEI/rGO)n-POM films is attributed to the electron transfer interaction and electrostatic interaction between POM and rGO.
Collapse
Affiliation(s)
- Yayan Bao
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Zezhong Chen
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Yuzhen Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Lizhen Liu
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Haiyan Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Zuopeng Li
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Feng Feng
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| |
Collapse
|
20
|
Shahid S, Nisar MI, Jehan F, Ahmed S, Kabir F, Hotwani A, Muneer S, Qazi MF, Muhammad S, Ali A, Zaidi AK, Iqbal NT. Co-carriage of Staphylococcus aureus and Streptococcus pneumoniae among children younger than 2 years of age in a rural population in Pakistan. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2023; 21:None. [PMID: 37337613 PMCID: PMC10276771 DOI: 10.1016/j.cegh.2023.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives Staphylococcus aureus and Streptococcus pneumoniae are common colonizers of the human nasopharynx. In this study, we describe S. aureus nasopharyngeal carriage and evaluate its association with S. pneumoniae carriage post-10-valent pneumococcal conjugate vaccine (PCV10) introduction in Pakistan. Methods A serial cross-sectional study was undertaken from 2014 to 2018, children <2 years were randomly selected, and nasopharyngeal swabs were collected using standard WHO guidelines. S. aureus and S. pneumoniae isolates were identified using standard methods and tested for antimicrobial susceptibility by the standard Kirby-Bauer disk-diffusion method as per Clinical & Laboratory Standards Institute (CLSI) recommendations. Regression analysis was used to determine predictors associated with S. aureus carriage. Results We enrolled 3140 children. S. aureus carriage prevalence was 5.6% (176/3140), and 50.1% (81/176) of the isolates were methicillin-resistant S. aureus (MRSA). S. aureus carriage was higher in the absence of pneumococcus compared to isolates in which pneumococcus was present (7.5% vs 5.0%). S. aureus carriage was negatively associated with pneumococcal carriage, being in 3rd and 4th year of enrollment, and vaccination with two and three PCV10 doses, in addition, fast breathing, ≥2 outpatients visits, and rainy season were positively associated. The following resistance rates were observed: 98.9% for penicillin, 74.4% for fusidic acid, and 23.3% for gentamicin, 10.2% for erythromycin, and 8.5% for cotrimoxazole. All isolates were susceptible to amikacin. Conclusions Overall S. aureus carriage prevalence was low, PCV10 vaccine was protective against the carriage. The proportion of MRSA carriage and antimicrobial resistance was high in this community warranting continuous monitoring for invasive infections.
Collapse
Affiliation(s)
- Shahira Shahid
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Muhammad Imran Nisar
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fyezah Jehan
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sheraz Ahmed
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Aneeta Hotwani
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sahrish Muneer
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Sajid Muhammad
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Asad Ali
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Anita K.M. Zaidi
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Najeeha T. Iqbal
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
21
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
22
|
Ekinci E, Van Heirstraeten L, Willen L, Desmet S, Wouters I, Vermeulen H, Lammens C, Goossens H, Van Damme P, Verhaegen J, Beutels P, Theeten H, Malhotra-Kumar S. Serotype 19A and 6C Account for One-Third of Pneumococcal Carriage Among Belgian Day-Care Children Four Years After a Shift to a Lower-Valent PCV. J Pediatric Infect Dis Soc 2022; 12:36-42. [PMID: 36377804 PMCID: PMC9909365 DOI: 10.1093/jpids/piac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pneumococcal conjugate vaccines (PCVs) effectively reduce infection and asymptomatic carriage of Streptococcus pneumoniae vaccine serotypes. In 2016, Belgium replaced its infant PCV13 program by a 4-year period of PCV10. Concomitantly, S. pneumoniae serotype carriage was monitored together with the carriage of other nasopharyngeal pathogens in children attending day-care centers. METHODS From 2016 to 2019, a total of 3459 nasopharyngeal swabs were obtained from children aged 6-30 months. Culture and qPCR were used for the identification of S. pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus and for serotyping and antimicrobial susceptibility assessment of S. pneumoniae strains. RESULTS S. pneumoniae colonization was frequent and stable over the study years. H. influenzae and M. catarrhalis were more frequently carried (P < .001) than S. pneumoniae, by, respectively, 92.3% and 91.0% of children. Prevalence of all PCV13 serotypes together increased significantly over time from 5.8% to 19.6% (P < .001) and was attributable to the increasing prevalence of serotype 19A. Coincidently, non-vaccine serotype 6C increased (P < .001) and the overall pneumococcal non-susceptibility to tetracycline and erythromycin. Non-susceptibility to cotrimoxazole decreased (P < .001). CONCLUSIONS The switch to a PCV program no longer covering serotypes 19A, 6A, and 3 was associated with a sustained increase of serotypes 19A and 6C in healthy children, similarly as in invasive pneumococcal disease. This resulted in a re-introduction of the 13-valent conjugate vaccine during the summer of 2019.
Collapse
Affiliation(s)
- Esra Ekinci
- Corresponding Author: Esra Ekinci, Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium. E-mail:
| | | | - Laura Willen
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Stefanie Desmet
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Ine Wouters
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Jan Verhaegen
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | |
Collapse
|
23
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
24
|
Lee H, Edgar RJ, Lichtenstein IJ, Velarde JJ, Korotkova N, Wessels MR. Streptococcus pyogenes can support or inhibit growth of Haemophilus influenzae by supplying or restricting extracellular NAD+. PLoS One 2022; 17:e0270697. [PMID: 36170255 PMCID: PMC9518897 DOI: 10.1371/journal.pone.0270697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor for cellular metabolism and serves as a substrate in enzymatic processes. NAD+ is produced by de novo synthesis or salvage pathways in nearly all bacterial species. Haemophilus influenzae lacks the capacity for de novo synthesis, so it is dependent on import of NAD+ from the external environment or salvage biosynthetic pathways for recycling of NAD+ precursors and breakdown products. However, the actual sources of NAD+ utilized by H. influenzae in the respiratory tract are not well defined. In this study, we found that a variety of bacteria, including species found in the upper airway of humans, released NAD+ that was readily detectable in extracellular culture fluid, and which supported growth of H. influenzae in vitro. By contrast, certain strains of Streptococcus pyogenes (group A streptococcus or GAS) inhibited growth of H. influenzae in vitro by secreting NAD+-glycohydrolase (NADase), which degraded extracellular NAD+. Conversely, GAS strains that lacked enzymatically active NADase released extracellular NAD+, which could support H. influenzae growth. Our results suggest that many bacterial species, including normal flora of the upper airway, release NAD+ into the environment. GAS is distinctive in its ability to both release and degrade NAD+. Thus, colonization of the airway with H. influenzae may be promoted or restricted by co-colonization with GAS in a strain-specific manner that depends, respectively, on release of NAD+ or secretion of active NADase. We suggest that, in addition to its role as a cytotoxin for host cells, NADase may serve a separate function by restricting growth of H. influenzae in the human respiratory tract.
Collapse
Affiliation(s)
- Hyunju Lee
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Rebecca J. Edgar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ian J. Lichtenstein
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jorge J. Velarde
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
A newly identified flavoprotein disulfide reductase Har protects Streptococcus pneumoniae against hypothiocyanous acid. J Biol Chem 2022; 298:102359. [PMID: 35952759 PMCID: PMC9483559 DOI: 10.1016/j.jbc.2022.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Hypothiocyanous acid (HOSCN) is an antimicrobial oxidant produced from hydrogen peroxide and thiocyanate anions by heme peroxidases in secretory fluids such as in the human respiratory tract. Some respiratory tract pathogens display tolerance to this oxidant, which suggests that there might be therapeutic value in targeting HOSCN defense mechanisms. However, surprisingly little is known about how bacteria protect themselves from HOSCN. We hypothesized that tolerant pathogens have a flavoprotein disulfide reductase that uses NAD(P)H to directly reduce HOSCN, similar to thioredoxin reductase in mammalian cells. Here, we report the discovery of a previously uncharacterized flavoprotein disulfide reductase with HOSCN reductase activity, which we term Har (hypothiocyanous acid reductase), in Streptococcus pneumoniae, a bacterium previously found to be tolerant of HOSCN. S. pneumoniae generates large amounts of hydrogen peroxide that can be converted to HOSCN in the respiratory tract. Using deletion mutants, we demonstrate that the HOSCN reductase is dispensable for growth of S. pneumoniae in the presence of lactoperoxidase and thiocyanate. However, bacterial growth in the HOSCN-generating system was completely crippled when deletion of HOSCN reductase activity was combined with disruption of GSH import or recycling. Our findings identify a new bacterial HOSCN reductase and demonstrate a role for this protein in combination with GSH utilization to protect S. pneumoniae from HOSCN.
Collapse
|
26
|
Pham H, Tran TDT, Yang Y, Ahn JH, Hur HG, Kim YH. Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium. J Microbiol 2022; 60:795-805. [DOI: 10.1007/s12275-022-2261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
27
|
Induction of the macrolide-resistance efflux pump Mega inhibits intoxication of Staphylococcus aureus strains by Streptococcus pneumoniae. Microbiol Res 2022; 263:127134. [PMID: 35905580 DOI: 10.1016/j.micres.2022.127134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Streptococcus pneumoniae (Spn) kills Staphylococcus aureus (Sau) through a contact-dependent mechanism that is catalyzed by cations, including iron, to convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH). There are two well-characterized ABC transporters that contribute to the pool of iron in Spn, named Pia and Piu. Some Spn strains have acquired genes mef(E)/mel encoding another ABC trasporter (Mega) that produces an inducible efflux pump for resistance to macrolides. In macrolide-resistant Spn clinical isolates the insertion of Mega class 1. IV and 2. IVc deleted the locus piaABCD and these strains were attenuated for intoxicating Sau. The goal of this study was to investigate if the disruption of iron acquisition, or the antimicrobial-resistance activity of Mega, contributed to inhibiting the killing mechanism. Neither depletion of iron with 2,2'-dipyridyl-d8 (DP) nor incubating with a double knockout mutant SpnΔpiaAΔpiuA, inhibited killing of Sau. Clinical Spn strains carrying Mega1. IV or Mega2. IVc showed a significant delay for killing Sau. An ex vivo recombination system was used to transfer Mega1. IV or Mega2. IVc to reference Spn strains, which was confirmed by whole genome sequencing, and recombinants TIGR4Mega2. IVc, D39Mega2. IVc, and D39Mega1. IV were delayed for killing Sau. We then compared Sau killing of selected Mega-carrying Spn strains when incubated with sub-inhibitory erythromycin (Mega-induced) or sub-inhibitory cefuroxime. Remarkably, killing of Sau was completely inhibited under the Mega-induced condition whereas incubation with cefuroxime did not interfere with killing. Both mef(E) and mel were upregulated > 400-fold, and spxB (encoding an enzyme responsible for production of most H2O2) was upregulated 14.2-fold, whereas transcription of the autolysin (lytA) gene was downregulated when incubated with erythromycin. We demonstrated that erythromycin induction of Mega inhibits the •OH-mediated intoxication of Sau and that the inhibition occurred at the post-translational level suggesting that an imbalance of ions in the membrane inhibits these reactions.
Collapse
|
28
|
Differential Pneumococcal Growth Features in Severe Invasive Disease Manifestations. Microbiol Spectr 2022; 10:e0005022. [PMID: 35678554 PMCID: PMC9241771 DOI: 10.1128/spectrum.00050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The nasopharyngeal commensal Streptococcus pneumoniae can become invasive and cause metastatic infection. This requires the pneumococcus to have the ability to adapt, grow, and reside in diverse host environments. Therefore, we studied whether the likelihood of severe disease manifestations was related to pneumococcal growth kinetics. For 383 S. pneumoniae blood isolates and 25 experimental mutants, we observed highly reproducible growth curves in nutrient-rich medium. The derived growth features were lag time, maximum growth rate, maximum density, and stationary-phase time before lysis. First, the pathogenicity of each growth feature was probed by comparing isolates from patients with and without marked preexisting comorbidity. Then, growth features were related to the propensity of causing severe manifestations of invasive pneumococcal disease (IPD). A high maximum bacterial density was the most pronounced pathogenic growth feature, which was also an independent predictor of 30-day mortality (P = 0.03). Serotypes with an epidemiologically higher propensity for causing meningitis displayed a relatively high maximum density (P < 0.005) and a short stationary phase (P < 0.005). Correspondingly, isolates from patients diagnosed with meningitis showed an especially high maximum density and short stationary phase compared to isolates from the same serotype that had caused uncomplicated bacteremic pneumonia. In contrast, empyema-associated strains were characterized by a relatively long lag phase (P < 0.0005), and slower growth (P < 0.005). The course and dissemination of IPD may partly be attributable to the pneumococcal growth features involved. If confirmed, we should tailor the prevention and treatment strategies for the different infection sites that can complicate IPD. IMPORTANCEStreptococcus pneumoniae is a leading infectious cause of deaths worldwide. To understand the course and outcome of pneumococcal infection, most research has focused on the host and its response to contain bacterial growth. However, bacterial epidemiology suggest that certain pneumococcal serotypes are particularly prone to causing complicated infections. Therefore, we took the bacterial point of view, simply examining in vitro growth features for hundreds of pneumococcal blood isolates. Their growth curves were very reproducible. Certain poles of pneumococcal growth features were indeed associated with specific clinical manifestations like meningitis or pleural empyema. This indicates that bacterial growth style potentially affects the progression of infection. Further research on bacterial growth and adaptation to different host environments may therefore provide key insight into pathogenesis of complicated invasive disease. Such knowledge could lead to more tailored vaccine targets or therapeutic approaches to reduce the million deaths that are caused by pneumococcal disease every year.
Collapse
|
29
|
Sabra W, Wang W, Goepfert C, Zeng AP. Food-web and metabolic interactions of the lung inhabitants Streptococcus pneumoniae and Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4885-4898. [PMID: 35706134 DOI: 10.1111/1462-2920.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Bacteria that successfully adapt to different substrates and environmental niches within the lung and overcome the immune defence can cause serious lung infections. Such infections are generally complex, and recognised as polymicrobial in nature. Both Pseudomonas aeruginosa and Streptococcus pneumoniae can cause chronic lung infections and were both detected in cystic fibrosis (CF) lung at different stages. In this study, single and dual species cultures of Pseudomonas aeruginosa and Streptococcus pneumoniae were studied under well controlled planktonic growth conditions. Under pH-controlled conditions, both species apparently benefited from the presence of the other. In co-culture with P. aeruginosa, S. pneumoniae grew efficiently under aerobic conditions, whereas in pure S. pneumoniae culture, growth inhibition occurred in bioreactors with dissolved oxygen concentrations above the microaerobic range. Lactic acid and acetoin that are produced by S. pneumoniae was efficiently utilised by P. aeruginosa. In pH-uncontrolled co-cultures, the low pH triggered by S. pneumoniae assimilation of glucose and lactic acid production negatively affected the growth of both strains. Nevertheless, ammonia production improved significantly, and P. aeruginosa growth dominated at later growth stages. This study revealed unreported metabolic interactions of two important pathogenic microorganisms and shed new lights into pathophysiology of bacterial lung infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wael Sabra
- Faculty of life science, Rheine-Waal University of applied sciences, Marie-Curie-Straße 1, Kleve.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Christiane Goepfert
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
30
|
Clavier B, Zhadan A, Baptiste T, Boucher F, Guiet A, Porcher F, Brezová V, Roques C, Corbel G. Revisiting Mg solubility in CuO nanorods: limit probed by neutron diffraction and effect on the particle toxicity towards bacteria in water. Dalton Trans 2022; 51:8411-8424. [PMID: 35593297 DOI: 10.1039/d2dt00352j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both nanometer-sized CuO and MgO particles exhibit bactericidal activities against Staphylococcus aureus and Escherichia coli, two bacteria causing healthcare-associated infections. The solid solution Cu1-xMgxO is potentially interesting for biomedical applications as one of the compositions could have a much higher bactericidal activity than the parent CuO and MgO oxides considered separately. But, to date, no Vegard's law proves the real existence of such a solid solution. This study was aimed at shedding light on the solubility of Mg2+ ions in CuO nanoparticles and its impact on the free oxygen radicals they produce, the quantity of which determines their bactericidal performance. The solid solution Cu1-xMgxO does exist and particles were synthesized as nanorods of 50-60 nm length by thermally decomposing at 400 °C the single source precursors Cu1-xMgx(OH)2. Vegard's laws exist only in the compositional range 0 ≤ x ≤ 0.1, due to the low capacity of the distorted NaCl-type structure to accommodate regular coordination [MgO6] octahedra. Only neutron diffraction allowed the detection of the small amount of MgO nanoparticles present as impurity in a 10 g sample beyond the solubility limit of x = 0.1. In this series, CuO nanorods remain the most active against E. coli and S. aureus with reduction in viability of 99.998% and 98.7% after 180 min in water, respectively. Our synthesis route has significantly increased the activity of pure CuO nanoparticles beyond the values reported so far, especially against E. coli. The bactericidal performances of CuO and the magnesium-substituted counterparts (i.e. Cu1-xMgxO) are not linked to cupric ions they release in water since their mass concentrations after 180 min are much lower than minimal concentrations inhibiting the growth of E. coli and S. aureus. These CuO nanorods kill bacteria in water because they produce a large quantity of free oxygen radicals in the presence of H2O2 only, the majority of which are highly toxic HO˙ radicals. Mg2+ ions have a detrimental effect on this production, thus explaining the lowest bactericidal performance of Cu1-xMgxO nanorods. Definitive knowledge of the toxicity of Cu1-xMgxO nanoparticles towards bacteria in water is now available.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Antonii Zhadan
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Florence Porcher
- Laboratoire Léon Brillouin, CEA-CNRS, 91191 Gif-sur-Yvette Cedex, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, chemin des maraîchers, 31 062 Toulouse Cedex 4, France.,Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
31
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
32
|
Nicchi S, Giusti F, Carello S, Utrio Lanfaloni S, Tavarini S, Frigimelica E, Ferlenghi I, Rossi Paccani S, Merola M, Delany I, Scarlato V, Maione D, Brettoni C. Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae. iScience 2022; 25:103931. [PMID: 35265810 PMCID: PMC8899411 DOI: 10.1016/j.isci.2022.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist. Mcat induces ROS and NET production to a lesser extent than NTHi in dHL-60 cells Mcat interferes with ROS-related responses in chemically-activated cells Mcat subverts the autophagic pathway surviving intracellularly while NTHi does not Intracellular survival of NTHi is enhanced by the co-infecting bacterium Mcat
Collapse
Affiliation(s)
- Sonia Nicchi
- GSK, Siena, 53100, Italy.,University of Bologna, Bologna, 40141, Italy
| | | | - Stefano Carello
- GSK, Siena, 53100, Italy.,University of Turin, Turin, 10100, Italy
| | | | | | | | | | | | - Marcello Merola
- GSK, Siena, 53100, Italy.,University of Naples Federico II, Naples, 80133, Italy
| | | | | | | | | |
Collapse
|
33
|
Ortega-Peña S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Staphylococcus epidermidis Controls Opportunistic Pathogens in the Nose, Could It Help to Regulate SARS-CoV-2 (COVID-19) Infection? Life (Basel) 2022; 12:341. [PMID: 35330092 PMCID: PMC8954679 DOI: 10.3390/life12030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host's innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells.
Collapse
Affiliation(s)
- Silvestre Ortega-Peña
- Laboratorio Tejido Conjuntivo, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luís Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Mario E. Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Juan C. Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
34
|
Resistance of Streptococcus pneumoniae to hypothiocyanous acid generated by host peroxidases. Infect Immun 2022; 90:e0053021. [PMID: 35156851 DOI: 10.1128/iai.00530-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a serious human respiratory pathogen. It generates hydrogen peroxide (H2O2) as part of its normal metabolism, yet it lacks enzymes that remove this oxidant. Here we show that lactoperoxidase and myeloperoxidase, two host enzymes present in the respiratory tract, convert bacterial H2O2 into HOSCN that S. pneumoniae can resist. We found that incubation of S. pneumoniae with myeloperoxidase in chloride-rich buffer killed the bacteria due to formation of toxic hypochlorous acid (HOCl). However, the addition of physiological concentrations of thiocyanate protected the bacteria. Similarly, S. pneumoniae remained viable in the presence of lactoperoxidase and thiocyanate even though the majority of bacterial H2O2 was converted to hypothiocyanous acid (HOSCN). S. pneumoniae and Pseudomonas aeruginosa, another respiratory pathogen, were similarly sensitive to H2O2 and HOCl. In contrast, S. pneumoniae tolerated much higher doses of HOSCN than P. aeruginosa. When associated with neutrophil extracellular traps (NETs), S. pneumoniae continued to generate H2O2, which was converted to HOCl by MPO present on NETs. However, there was no loss in bacterial viability because HOCl was scavenged by the NET proteins. We conclude that at sites of infection, bacteria will be protected from HOCl by thiocyanate and extracellular proteins including those associated with NETs. Resistance to HOSCN may give S. pneumoniae a survival advantage over other pathogenic bacteria. Understanding the mechanisms by which S. pneumoniae protects itself from HOSCN may reveal novel strategies for limiting the colonization and pathogenicity of this deadly pathogen.
Collapse
|
35
|
Clavier B, Baptiste T, Zhadan A, Guiet A, Boucher F, Brezová V, Roques C, Corbel G. Understanding the bactericidal mechanism of Cu(OH) 2 nanorods in water through Mg-substitution: high production of toxic hydroxyl radicals by non-soluble particles. J Mater Chem B 2022; 10:779-794. [PMID: 35040839 DOI: 10.1039/d1tb02233d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To date, there is still a lack of definite knowledge regarding the toxicity of Cu(OH)2 nanoparticles towards bacteria. This study was aimed at shedding light on the role played by released cupric ions in the toxicity of nanoparticles. To address this issue, the bactericidal activity of Cu(OH)2 was at first evaluated in sterile water, a medium in which particles are not soluble. In parallel, an isovalent substitution of cupric ions by Mg2+ was attempted in the crystal structure of Cu(OH)2 nanoparticles to increase their solubility and determine the impact on the bactericidal activity. For the first time, mixed Cu1-xMgx(OH)2 nanorods (x ≤ 0.1) of about 15 nm in diameter and a few hundred nanometers in length were successfully prepared by a simple co-precipitation at room temperature in mixed alkaline (NaOH/Na2CO3) medium. For E. coli, 100% reduction of one million CFU per mL (6 log10) occurs after only 180 min on contact with both Cu(OH)2 and Cu0.9Mg0.1(OH)2 nanorods. The entire initial inoculum of S. aureus is also killed by Cu(OH)2 after 180 min (100% or 6 log10 reduction), while 0.01% of these bacteria stay alive on contact with Cu0.9Mg0.1(OH)2 (99.99% or 4 log10 reduction). The bactericidal performances of Cu(OH)2 and the magnesium-substituted counterparts (i.e. Cu1-xMgx(OH)2) are not linked to cupric ions they release in water since their mass concentrations after 180 min are much lower than minimal concentrations inhibiting the growth of E. coli and S. aureus. Finally, an EPR spin trapping study reveals how these nanorods kill bacteria in water: only the presence of hydrogen peroxide, a by-product of the normal metabolism of oxygen in aerobic bacteria, allows the Cu(OH)2 and its magnesium-substituted counterparts to produce a lethal amount of free radicals, the majority of which are the highly toxic HO˙.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Antonii Zhadan
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, Chemin des Maraîchers, 31 062 Toulouse Cedex 4, France.,Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
36
|
Shearer HL, Paton JC, Hampton MB, Dickerhof N. Glutathione utilization protects Streptococcus pneumoniae against lactoperoxidase-derived hypothiocyanous acid. Free Radic Biol Med 2022; 179:24-33. [PMID: 34923101 DOI: 10.1016/j.freeradbiomed.2021.12.261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia, resulting in more than one million deaths each year worldwide. This pathogen generates large amounts of hydrogen peroxide (H2O2), which will be converted to hypothiocyanous acid (HOSCN) by lactoperoxidase (LPO) in the human respiratory tract. S. pneumoniae has been shown to be more resistant to HOSCN than some bacteria, and sensitizing S. pneumoniae to HOSCN may be a novel treatment strategy for combating this deadly pathogen. In this study we investigated the role of the low molecular weight thiol glutathione in HOSCN resistance. S. pneumoniae does not synthesize glutathione but imports it from the environment via an ABC transporter. Upon treatment of S. pneumoniae with HOSCN, bacterial glutathione was reversibly oxidized in a time- and dose-dependent manner, and intracellular proteins became glutathionylated. Bacterial death was observed when the reduced glutathione pool dropped below 20%. A S. pneumoniae mutant unable to import glutathione (ΔgshT) was more readily killed by exogenous HOSCN. Furthermore, bacterial growth in the presence of LPO converting bacterial H2O2 to HOSCN was significantly impeded in mutants that were unable to import glutathione, or mutants unable to recycle oxidized glutathione (Δgor). This research highlights the importance of glutathione in protecting S. pneumoniae from HOSCN. Limiting glutathione utilization by S. pneumoniae may be a way to limit colonization and pathogenicity.
Collapse
Affiliation(s)
- Heather L Shearer
- From the Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Australia
| | - Mark B Hampton
- From the Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Nina Dickerhof
- From the Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|
37
|
Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial Response to Oxidative Stress and RNA Oxidation. Front Genet 2022; 12:821535. [PMID: 35082839 PMCID: PMC8784731 DOI: 10.3389/fgene.2021.821535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria have to cope with oxidative stress caused by distinct Reactive Oxygen Species (ROS), derived not only from normal aerobic metabolism but also from oxidants present in their environments. The major ROS include superoxide O2−, hydrogen peroxide H2O2 and radical hydroxide HO•. To protect cells under oxidative stress, bacteria induce the expression of several genes, namely the SoxRS, OxyR and PerR regulons. Cells are able to tolerate a certain number of free radicals, but high levels of ROS result in the oxidation of several biomolecules. Strikingly, RNA is particularly susceptible to this common chemical damage. Oxidation of RNA causes the formation of strand breaks, elimination of bases or insertion of mutagenic lesions in the nucleobases. The most common modification is 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine. The structure and function of virtually all RNA species (mRNA, rRNA, tRNA, sRNA) can be affected by RNA oxidation, leading to translational defects with harmful consequences for cell survival. However, bacteria have evolved RNA quality control pathways to eliminate oxidized RNA, involving RNA-binding proteins like the members of the MutT/Nudix family and the ribonuclease PNPase. Here we summarize the current knowledge on the bacterial stress response to RNA oxidation, namely we present the different ROS responsible for this chemical damage and describe the main strategies employed by bacteria to fight oxidative stress and control RNA damage.
Collapse
Affiliation(s)
- André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alda F Q Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
38
|
Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021; 9:microorganisms9122550. [PMID: 34946151 PMCID: PMC8706950 DOI: 10.3390/microorganisms9122550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.
Collapse
|
39
|
Ma X, Lang J, Chen P, Yang R. Silver Nanoparticles as an Effective Antimicrobial against Otitis Media Pathogens. AIChE J 2021; 67:e17468. [PMID: 35450419 PMCID: PMC9017526 DOI: 10.1002/aic.17468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023]
Abstract
Otitis Media (OM) is the most common reason for U.S. children to receive prescribed oral antibiotics, leading to potential to cause antibiotic resistance. To minimize oral antibiotic usage, we developed polyvinylpyrrolidone-coated silver nanoparticles (AgNPs-PVP), which completely eradicated common OM pathogens, i.e., Streptococcus pneumoniae and non-typeable Haemophilus influenzae (NTHi) at 1.04μg/mL and 2.13μg/mL. The greater antimicrobial efficacy against S. pneumoniae was a result of the H2O2-producing ability of S. pneumoniae and the known synergistic interactions between H2O2 and AgNPs. To enable the sustained local delivery of AgNPs-PVP (e.g., via injection through perforated tympanic membranes), a hydrogel formulation of 18%(w/v)P407 was developed. Reverse thermal gelation of the AgNPs-PVP-P407 hydrogel could gel rapidly upon entering the warm auditory bullae and thereby sustained release of antimicrobials. This hydrogel-based local delivery system completely eradicated OM pathogens in vitro without cytotoxicity, and thus represents a promising strategy for treating bacterial OM without relying on conventional antibiotics.
Collapse
Affiliation(s)
- Xiaojing Ma
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jiayan Lang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Pengyu Chen
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
40
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
41
|
Prasad SV, Piktel E, Depciuch J, Maximenko A, Suprewicz Ł, Daniluk T, Spałek J, Wnorowska U, M Zielinski P, Parlinska-Wojtan M, B Savage P, Okła S, Fiedoruk K, Bucki R. Targeting bacteria causing otitis media using nanosystems containing nonspherical gold nanoparticles and ceragenins. Nanomedicine (Lond) 2021; 16:2657-2678. [PMID: 34823374 DOI: 10.2217/nnm-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: To evaluate the antibacterial and antibiofilm activity of ceragenin-conjugated nonspherical gold nanoparticles against the most common agents of otitis media. Methods: Minimal inhibitory and bactericidal concentrations and colony-counting assays, as well as colorimetric and fluorimetric methods, were used to estimate the antibacterial activity of compounds in phosphate-buffered saline and human cerumen. The nanosystems' biocompatibility and ability to decrease IL-8 release was tested using keratinocyte cells. Results: The tested compounds demonstrated strong antimicrobial activity against planktonic and biofilm cultures at nontoxic doses due to the induction of oxidative stress followed by the damage of bacterial membranes. Conclusion: This study indicates that ceragenin-conjugated nonspherical gold nanoparticles have potential as new treatment methods for eradicating biofilm-forming pathogens associated with otitis media.
Collapse
Affiliation(s)
- Suhanya V Prasad
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Alexey Maximenko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, PL-30392, Krakow, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Jakub Spałek
- Department of Pathology, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317, Kielce, Poland.,Department of Otolaryngology, Head & Neck Surgery, Holy Cross Cancer Center in Kielce, PL-25734, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Piotr M Zielinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | | | - Paul B Savage
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Sławomir Okła
- Department of Otolaryngology, Head & Neck Surgery, Holy Cross Cancer Center in Kielce, PL-25734, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| |
Collapse
|
42
|
Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021; 203:e0043921. [PMID: 34606370 PMCID: PMC8604078 DOI: 10.1128/jb.00439-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Akhila Parthasarathy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
43
|
Wu Y, Jiang W, Huo S, Li S, Xu Y, Ding S, Zhou J, Liu H, Lv W, Wang Y. Nano-metal-organic-frameworks for treating H 2O 2-Secreting bacteria alleviate pulmonary injury and prevent systemic sepsis. Biomaterials 2021; 279:121237. [PMID: 34749071 DOI: 10.1016/j.biomaterials.2021.121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
As a vital bacteria-secreted toxin, hydrogen peroxide (H2O2) can destroy infected tissues and increase vascular permeability, leading to life-threatening systemic bacteremia or sepsis. No strategy that can alleviate H2O2-induced injury and prevent systemic sepsis has been reported. Herein, as a proof of concept, we demonstrate the use of H2O2-reactive metal-organic framework nanosystems (MOFs) for treating H2O2-secreting bacteria. In mice infected with Streptococcus pneumoniae (S. pneumoniae) isolated from patients, MOFs efficiently accumulate in the lungs after systemic administration due to infection-induced alveolar-capillary barrier dysfunction. Moreover, MOFs sequester pneumococcal H2O2, reduce endothelial DNA damage, and prevent systemic dissemination of bacteria. In addition, this nanosystem exhibits excellent chemodynamic bactericidal effects against drug-resistant bacteria. Through synergistic therapy with the antibiotic ampicillin, MOFs eliminate over 98% of invading S. pneumoniae, resulting in a survival rate of greater than 90% in mice infected with a lethal dose of S. pneumoniae. This work opens up new paths for the clinical treatment of toxin-secreting bacteria.
Collapse
Affiliation(s)
- Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Shuya Li
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Youcui Xu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jing Zhou
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hang Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Weifu Lv
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China.
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China; Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
44
|
Anatomical site-specific carbohydrate availability impacts Streptococcus pneumoniae virulence and fitness during colonization and disease. Infect Immun 2021; 90:e0045121. [PMID: 34748366 DOI: 10.1128/iai.00451-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact Spn's behavior. Herein, using chemically-defined media (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical-site specific carbohydrate availability impacted Spn physiology and virulence. Spn grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity, slower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus Spn grown in CDM modeling blood (CDM-B). Using RNA-seq, we determined the transcriptome for Spn WT and its isogenic CCR deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded for established virulence determinants such polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established Spn virulence traits. Spn grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of Spn in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters Spn physiology and virulence, in turn promoting anatomical-site specific fitness.
Collapse
|
45
|
Demonstration of N, N-Dimethyldithiocarbamate as a Copper-Dependent Antibiotic against Multiple Upper Respiratory Tract Pathogens. Microbiol Spectr 2021; 9:e0077821. [PMID: 34468162 PMCID: PMC8557878 DOI: 10.1128/spectrum.00778-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transition metals are necessary cofactors and structural elements in living systems. Exposure to high concentrations of biologically important transition metals, such as zinc and copper, results in cell toxicity. At the infection site, the immune system deploys metal sorbent proteins (e.g., lactoferrin and calprotectin) to starve pathogens of necessary metals (such as iron), while phagocytes expose engulfed pathogens to high levels of other metals, such as copper and zinc. The opportunistic pathogen Streptococcus pneumoniae (the pneumococcus) encounters macrophages during initial and protracted infections. The pneumococcus employs a copper export pathway, which improves colonization and persistent infection of the nasopharynx and the upper respiratory tract. Because copper is tightly regulated in the host, we instead sought to leverage the localized power of nutritional immunity by identifying small molecules with copper-dependent toxicity (CDT) through a targeted screen of compounds for antibiotic efficacy. We chose to include dithiocarbamates, based on the copper synergy observed in other organisms with 1-(diethylthiocarbamoyldisulfanyl)-N,N-diethyl-methanethioamide (tetraethylthiuram disulfide, disulfiram). We observed CDT of some dithiocarbamates in S. pneumoniae. Only N,N-dimethyldithiocarbamate (DMDC) was consistently toxic across a range of concentrations with copper both in vitro and in vivo against the pneumococcus. We also observed various degrees of CDT in vitro using DMDC in Staphylococcus aureus, Coccidioides posadasii, and Schistosoma mansoni. Collectively, we demonstrate that the compound DMDC is a potent bactericidal compound against S. pneumoniae with antimicrobial efficacy against bacterial and fungal pathogens. IMPORTANCE With the rise of antibiotic resistance, approaches that add new antimicrobials to the current repertoire are vital. Here, we investigate putative and known copper ionophores in an attempt to intoxicate bacteria and use ionophore/copper synergy, and we ultimately find success with N,N-dimethyldithiocarbamate (DMDC). We show that DMDC has in vitro efficacy in a copper-dependent manner and kills pathogens across three different kingdoms, Streptococcus pneumoniae, Coccidioides posadasii, and Schistosoma mansoni, and in vivo efficacy against S. pneumoniae. As such, dithiocarbamates represent a new potential class of antimicrobials and thus warrant further mechanistic investigation.
Collapse
|
46
|
Capsule Promotes Intracellular Survival and Vascular Endothelial Cell Translocation during Invasive Pneumococcal Disease. mBio 2021; 12:e0251621. [PMID: 34634940 PMCID: PMC8510516 DOI: 10.1128/mbio.02516-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polysaccharide capsule that surrounds Streptococcus pneumoniae (Spn) is one of its most important virulence determinants, serving to protect against phagocytosis. To date, 100 biochemical and antigenically distinct capsule types, i.e., serotypes, of Spn have been identified. Yet how capsule influences pneumococcal translocation across vascular endothelial cells (VEC), a key step in the progression of invasive disease, was unknown. Here, we show that despite capsule being inhibitory of Spn uptake by VEC, capsule enhances the escape rate of internalized pneumococci and thereby promotes translocation. Upon investigation, we determined that capsule protected Spn against intracellular killing by VEC and H2O2-mediated killing in vitro. Using a nitroblue tetrazolium reduction assay and nuclear magnetic resonance (NMR) analyses, purified capsule was confirmed as having antioxidant properties which varied according to serotype. Using an 11-member panel of isogenic capsule-switch mutants, we determined that serotype affected levels of Spn resistance to H2O2-mediated killing in vitro, with killing resistance correlated positively with survival duration within VEC, rate of transcytosis to the basolateral surface, and human attack rates. Experiments with mice supported our in vitro findings, with Spn producing oxidative-stress-resistant type 4 capsule being more organ-invasive than that producing oxidative-stress-sensitive type 2 capsule during bacteremia. Capsule-mediated protection against intracellular killing was also observed for Streptococcus pyogenes and Staphylococcus aureus. We conclude that capsular polysaccharide plays an important role within VEC, serving as an intracellular antioxidant, and that serotype-dependent differences in antioxidant capabilities impact the efficiency of VEC translocation and a serotype’s potential for invasive disease.
Collapse
|
47
|
Nakamya MF, Ayoola MB, Shack LA, Swiatlo E, Nanduri B. The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome. Pathogens 2021; 10:pathogens10101322. [PMID: 34684271 PMCID: PMC8540371 DOI: 10.3390/pathogens10101322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genome plasticity, antibiotic resistance, and limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions to limit the spread of this pathogen. Pathogenic mechanisms that allow successful adaption and persistence in the host could be potential innovative therapeutic targets. Polyamines are ubiquitous polycationic molecules that regulate many cellular processes. We previously reported that deletion of polyamine transport operon potABCD, which encodes a putrescine/spermidine transporter (ΔpotABCD), resulted in an unencapsulated attenuated phenotype. Here, we characterize the transcriptome, metabolome, and stress responses of polyamine transport-deficient S. pneumoniae. Compared with the wild-type strain, the expression of genes involved in oxidative stress responses and the nucleotide sugar metabolism was reduced, while expression of genes involved in the Leloir, tagatose, and pentose phosphate pathways was higher in ΔpotABCD. A metabolic shift towards the pentose phosphate pathway will limit the synthesis of precursors of capsule polysaccharides. Metabolomics results show reduced levels of glutathione and pyruvate in the mutant. Our results also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. Our findings demonstrate the importance of polyamine transport in pneumococcal physiology that could impact in vivo fitness. Thus, polyamine transport in pneumococci represents a novel target for therapeutic interventions.
Collapse
Affiliation(s)
- Mary F. Nakamya
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
| | - Moses B. Ayoola
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
| | - Leslie A. Shack
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA;
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
- Correspondence: ; Tel.: +1-662-325-5859; Fax: +1-662-325-1031
| |
Collapse
|
48
|
Schnabel U, Balazinski M, Wagner R, Stachowiak J, Boehm D, Andrasch M, Bourke P, Ehlbeck J. Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Mu R, Anderson D, Merritt J, Wu H, Kreth J. Post-translational modification of Streptococcus sanguinis SpxB influences protein solubility and H 2 O 2 production. Mol Oral Microbiol 2021; 36:267-277. [PMID: 34314577 DOI: 10.1111/omi.12348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Streptococcal pyruvate oxidase (SpxB) is a hydrogen peroxide-generating enzyme and plays a critical role in Streptococcus sanguinis interspecies interactions, but less is known about its biochemistry. We examined SpxB subcellular localization using protein fractionation and microscopy and found SpxB to be primarily cytoplasmic, but a small portion is also membrane associated. Potential post-translational modifications of SpxB were determined using coimmunoprecipitation and mass spectrometry. Two mutant strains were constructed to further validate the presence of predicted site-specific post-translational modifications. These site mutated SpxB proteins exhibited reduced solubility in vivo, which likely contributes to the observed phenotypic changes in colony morphology, bacterial growth, and H2 O2 production. Overall, our data suggest that SpxB post-translational modifications likely play a major role to regulate SpxB function in S. sanguinis.
Collapse
Affiliation(s)
- Rong Mu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Department of Integrative Biomedical & Diagnostic Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - David Anderson
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
50
|
Barron SL, Saez J, Owens RM. In Vitro Models for Studying Respiratory Host-Pathogen Interactions. Adv Biol (Weinh) 2021; 5:e2000624. [PMID: 33943040 PMCID: PMC8212094 DOI: 10.1002/adbi.202000624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Respiratory diseases and lower respiratory tract infections are among the leading cause of death worldwide and, especially given the recent severe acute respiratory syndrome coronavirus-2 pandemic, are of high and prevalent socio-economic importance. In vitro models, which accurately represent the lung microenvironment, are of increasing significance given the ethical concerns around animal work and the lack of translation to human disease, as well as the lengthy time to market and the attrition rates associated with clinical trials. This review gives an overview of the biological and immunological components involved in regulating the respiratory epithelium system in health, disease, and infection. The evolution from 2D to 3D cell biology and to more advanced technological integrated models for studying respiratory host-pathogen interactions are reviewed and provide a reference point for understanding the in vitro modeling requirements. Finally, the current limitations and future perspectives for advancing this field are presented.
Collapse
Affiliation(s)
- Sarah L. Barron
- Bioassay Impurities and QualityBiopharmaceuticals DevelopmentR&DAstraZenecaCambridgeCB21 6GPUK
- Department of Chemical Engineering and BiotechnologyPhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Janire Saez
- Department of Chemical Engineering and BiotechnologyPhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyPhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|