1
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
2
|
Liu Y, Song X, Hou X, Wang Y, Cao X. Effect of Mn-HA on ARGs and MRGs in nitrogen-culturing sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121615. [PMID: 38936019 DOI: 10.1016/j.jenvman.2024.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous escalation in ARGs (antibiotic resistance genes) and MRGs (metal resistance genes) further complicates the intricate network of factors contributing to the proliferation of microbial resistance. Manganese, which has been reported to affect the resistance of bacteria to antibiotics and metals, plays a vital role in microbial nitrogen metabolism. Moreover, nitrifying and denitrifying populations are potential hosts for ARGs. In this study, manganese was introduced in its prevalent organic chelated form in the environment (Manganese humus chelates, Mn-HA) to a N metabolism sludge to explore the effect of manganese on MRGs and ARGs dissemination. Metagenomics results revealed that manganese availability enhances nitrogen metabolism, while a decrease in ARGs was noted which may be attributed to the inhibition of horizontal gene transfer (HGT), reflected in the reduced integrase -encoded gene int. Population analysis revealed that nitrifier and denitrifier genus harbor MRGs and ARGs, indicating that nitrifier and denitrifier are hosts of MRGs and ARGs. This raises the question of whether the prevalence of ARGs is always increased in metal-contained environments.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Romero-González LE, Montelongo-Martínez LF, González-Valdez A, Quiroz-Morales SE, Cocotl-Yañez M, Franco-Cendejas R, Soberón-Chávez G, Pardo-López L, Bustamante VH. Pseudomonas aeruginosa Isolates from Water Samples of the Gulf of Mexico Show Similar Virulence Properties but Different Antibiotic Susceptibility Profiles than Clinical Isolates. Int J Microbiol 2024; 2024:6959403. [PMID: 38784405 PMCID: PMC11115996 DOI: 10.1155/2024/6959403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis F. Montelongo-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Qi Q, Ghaly TM, Rajabal V, Gillings MR, Tetu SG. Dissecting molecular evolution of class 1 integron gene cassettes and identifying their bacterial hosts in suburban creeks via epicPCR. J Antimicrob Chemother 2024; 79:100-111. [PMID: 37962091 DOI: 10.1093/jac/dkad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVES Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution. METHODS We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts. The levels of streptomycin resistance conferred by the WT and altered aadA5 and aadA11 gene cassettes that encode aminoglycoside (3″) adenylyltransferases were experimentally quantified in an Escherichia coli host. RESULTS Class 1 integron gene cassette arrays were detected in Alphaproteobacteria and Gammaproteobacteria hosts. A subset of three gene cassettes displayed signatures of molecular evolution, namely the gain of a regulatory 5'-untranslated region (5'-UTR), the loss of attC recombination sites between adjacent gene cassettes, and the invasion of a 5'-UTR by an IS element. Notably, our experimental testing of a novel variant of the aadA11 gene cassette demonstrated that gaining the observed 5'-UTR contributed to a 3-fold increase in the MIC of streptomycin relative to the ancestral reference gene cassette in E. coli. CONCLUSIONS Dissecting the observed signatures of molecular evolution of class 1 integrons allowed us to explain their effects on antibiotic resistance phenotypes, while identifying their bacterial hosts enabled us to make better inferences on the likely origins of novel gene cassettes and IS that invade known gene cassettes.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Vaheesan Rajabal
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Michael R Gillings
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Shindoh S, Kadoya A, Kanechi R, Watanabe K, Suzuki S. Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. Front Microbiol 2023; 14:1230548. [PMID: 37779713 PMCID: PMC10539471 DOI: 10.3389/fmicb.2023.1230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Marine bacteria are possible reservoirs of antibiotic-resistance genes (ARGs) originating not only from clinical and terrestrial hot spots but also from the marine environment. We report here for the first time a higher rate of the sulfonamide-resistance gene sul4 in marine bacterial isolates compared with other sul genes. Among four sulfonamide-resistance genes (sul1, sul2, sul3, and sul4), sul4 was most abundant (45%) in 74 sulfonamide-resistant marine isolates by PCR screening. The order of abundance was sul4 (33 isolates) >sul2 (6 isolates) >sul3 (5 isolates) >sul1 (1 isolate). Whole-genome sequencing of 23 isolates of sul4-expressing α- and γ-proteobacteria and bacilli revealed that sul4 was not accompanied by known mobile genetic elements. This suggests that sul4 in these marine isolates is clonally transferred and not horizontally transferable. Folate metabolism genes formed a cluster with sul4, suggesting that the cluster area plays a role in folate metabolism, at which sul4 functions as a dihydropteroate synthase. Thus, sul4 might be expressed in marine species and function in folate synthesis, but it is not a transferable ARG.
Collapse
Affiliation(s)
- Suzune Shindoh
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Reo Kanechi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
6
|
Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA. Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 2023; 14:1231938. [PMID: 37720149 PMCID: PMC10500605 DOI: 10.3389/fmicb.2023.1231938] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Antibiotic resistance development and pathogen cross-dissemination are both considered essential risks to human health on a worldwide scale. Antimicrobial resistance genes (AMRs) are acquired, expressed, disseminated, and traded mainly through integrons, the key players capable of transferring genes from bacterial chromosomes to plasmids and their integration by integrase to the target pathogenic host. Moreover, integrons play a central role in disseminating and assembling genes connected with antibiotic resistance in pathogenic and commensal bacterial species. They exhibit a large and concealed diversity in the natural environment, raising concerns about their potential for comprehensive application in bacterial adaptation. They should be viewed as a dangerous pool of resistance determinants from the "One Health approach." Among the three documented classes of integrons reported viz., class-1, 2, and 3, class 1 has been found frequently associated with AMRs in humans and is a critical genetic element to serve as a target for therapeutics to AMRs through gene silencing or combinatorial therapies. The direct method of screening gene cassettes linked to pathogenesis and resistance harbored by integrons is a novel way to assess human health. In the last decade, they have witnessed surveying the integron-associated gene cassettes associated with increased drug tolerance and rising pathogenicity of human pathogenic microbes. Consequently, we aimed to unravel the structure and functions of integrons and their integration mechanism by understanding horizontal gene transfer from one trophic group to another. Many updates for the gene cassettes harbored by integrons related to resistance and pathogenicity are extensively explored. Additionally, an updated account of the assessment of AMRs and prevailing antibiotic resistance by integrons in humans is grossly detailed-lastly, the estimation of AMR dissemination by employing integrons as potential biomarkers are also highlighted. The current review on integrons will pave the way to clinical understanding for devising a roadmap solution to AMR and pathogenicity. Graphical AbstractThe graphical abstract displays how integron-aided AMRs to humans: Transposons capture integron gene cassettes to yield high mobility integrons that target res sites of plasmids. These plasmids, in turn, promote the mobility of acquired integrons into diverse bacterial species. The acquisitions of resistant genes are transferred to humans through horizontal gene transfer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Hafsa Qadri
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rohan Dhiman
- Department of Life Sciences, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
7
|
Naderi G, Asadian M, Khaki PA, Salehi M, Abdollahi A, Douraghi M. Occurrence of Acinetobacter baumannii genomic resistance islands (AbGRIs) in Acinetobacter baumannii strains belonging to global clone 2 obtained from COVID-19 patients. BMC Microbiol 2023; 23:234. [PMID: 37620750 PMCID: PMC10464229 DOI: 10.1186/s12866-023-02961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
AIM The Acinetobacter baumannii genomic resistance islands (AbGRIs), which were characterized in the genome of the global clone 2 (GC2) A. baumannii contain resistance genes. Here, we aimed to determine the occurrence of AbGRIs in GC2 A. baumannii obtained from COVID-19 patients in a referral hospital in Tehran, Iran. METHODS A total of 19 carbapenem-resistant A. baumannii (CRAB) isolates belonging to GC2 and sequence type 2 (ST2), including 17 from COVID-19 patients and two from the devices used in the ICU that the COVID-19 patients were admitted, were examined in this study. Antibiotic susceptibility testing was performed by the disk diffusion method. PCR and PCR mapping, followed by sequencing, were performed to characterize the structure of AbGRI resistance islands in the isolates tested. RESULTS The AbGRI3 was the most frequent resistance island (RI) detected, present in all the 19 isolates, followed by AbGRI1 (15 isolates; 78.9%) and AbGRI2 (three isolates; 15.8%). Notably, AbGRIs were identified in one of the A. baumannii strains, which was isolated from a medical device used in the ICU where COVID-19 patients were admitted. Furthermore, new structures of AbGRI1 and AbGRI3 resistance islands were found in this study, which was the first report of these structures. CONCLUSIONS The present study provided evidence for the circulation of the GC2 A. baumannii strains harboring AbGRI resistance islands in a referral hospital in Tehran, Iran. It was found that resistance to several classes of antibiotics in the isolates collected from COVID-19 patients is associated with the resistance genes located within AbGRIs.
Collapse
Affiliation(s)
- Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Asadian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Afarinesh Khaki
- Central Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Department of infectious diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Qi Q, Ghaly TM, Penesyan A, Rajabal V, Stacey JA, Tetu SG, Gillings MR. Uncovering Bacterial Hosts of Class 1 Integrons in an Urban Coastal Aquatic Environment with a Single-Cell Fusion-Polymerase Chain Reaction Technology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4870-4879. [PMID: 36912846 DOI: 10.1021/acs.est.2c09739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeremy Ac Stacey
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Jiao X, Guo W, Li X, Yao F, Zeng M, Yuan Y, Guo X, Wang M, Xie QD, Cai L, Yu F, Yu P, Xia Y. New insight into the microbiome, resistome, and mobilome on the dental waste water in the context of heavy metal environment. Front Microbiol 2023; 14:1106157. [PMID: 37152760 PMCID: PMC10157219 DOI: 10.3389/fmicb.2023.1106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Object Hospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW. Methods DWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods. Results DWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs. Conclusion DWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters.
Collapse
Affiliation(s)
- Xiaoyang Jiao
- College of Medicine, Shantou University, Shantou, China
| | - Wenyan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xin Li
- College of Medicine, Shantou University, Shantou, China
| | - Fen Yao
- Department of Pharmacology, College of Medicine, Shantou University, Shantou, China
| | - Mi Zeng
- College of Medicine, Shantou University, Shantou, China
| | - Yumeng Yuan
- College of Medicine, Shantou University, Shantou, China
| | - Xiaoling Guo
- College of Medicine, Shantou University, Shantou, China
| | - Meimei Wang
- College of Medicine, Shantou University, Shantou, China
| | - Qing Dong Xie
- College of Medicine, Shantou University, Shantou, China
| | - Leshan Cai
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feiyuan Yu
- College of Medicine, Shantou University, Shantou, China
| | - Pen Yu
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong Xia
- Department of Clinical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Yong Xia,
| |
Collapse
|
10
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Xu W, Zhang Y, Shi Y. Stress response characteristics of indigenous microorganisms in aromatic-hydrocarbons-contaminated groundwater in the cold regions of Northeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114139. [PMID: 36193588 DOI: 10.1016/j.ecoenv.2022.114139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The resistance mechanism of microbial communities in contaminated groundwater under combined stresses of aromatic hydrocarbons (AHs), NH4+, and Fe-Mn exceeding standard levels was studied in an abandoned oil depot in Northeast China. The response of environmental parameters and microbial communities under different pollution levels in the study area was discussed, and microscopic experiments were conducted using background groundwater with different AHs concentrations. The results showed that indigenous microbial community were significantly affected by environmental factors, including pH, TH, CODMn, TFe, Cr (VI), NH4+, NO3-, and SO42-. AHs likely had a limited influence on microbial communities, mainly causing indirect changes in the microbial community structure by altering the electron donor/acceptor (mainly Fe, Mn, NO3-, NO2-, NH4+, and SO42-) content in groundwater, and there was no linear effect of AHs content on the microbial community. In low- and medium-AHs-contaminated groundwater, the microbial diversity increased, whereas high AHs contents decreased the diversity of the microbial community. The microbial community had the strongest ability to metabolize AHs in the medium-AHs-contaminated groundwater. In the high-AHs-contaminated groundwater, microbial communities mainly degraded AHs through a complex co-metabolic mechanism due to the inhibitory effect caused by the high concentration of AHs, whereas in low-AHs-contaminated groundwater, microbial communities mainly caused a mutual transformation of inorganic electron donors/acceptors (mainly including N, S), and the microbial community's ability to metabolize AHs was weak. In the high-AHs-contaminated groundwater, the microbial community resisted the inhibitory effect of AHs mainly via a series of resistance mechanisms, such as regulating their life processes, avoiding unfavorable environments, and enhancing their feedback to the external environment under high-AHs-contaminated conditions.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
11
|
Keely SP, Brinkman NE, Wheaton EA, Jahne MA, Siefring SD, Varma M, Hill RA, Leibowitz SG, Martin RW, Garland JL, Haugland RA. Geospatial Patterns of Antimicrobial Resistance Genes in the US EPA National Rivers and Streams Assessment Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14960-14971. [PMID: 35737903 PMCID: PMC9632466 DOI: 10.1021/acs.est.2c00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AR) is a serious global problem due to the overuse of antimicrobials in human, animal, and agriculture sectors. There is intense research to control the dissemination of AR, but little is known regarding the environmental drivers influencing its spread. Although AR genes (ARGs) are detected in many different environments, the risk associated with the spread of these genes to microbial pathogens is unknown. Recreational microbial exposure risks are likely to be greater in water bodies receiving discharge from human and animal waste in comparison to less disturbed aquatic environments. Given this scenario, research practitioners are encouraged to consider an ecological context to assess the effect of environmental ARGs on public health. Here, we use a stratified, probabilistic survey of nearly 2000 sites to determine national patterns of the anthropogenic indicator class I integron Integrase gene (intI1) and several ARGs in 1.2 million kilometers of United States (US) rivers and streams. Gene concentrations were greater in eastern than in western regions and in rivers and streams in poor condition. These first of their kind findings on the national distribution of intI1 and ARGs provide new information to aid risk assessment and implement mitigation strategies to protect public health.
Collapse
Affiliation(s)
- Scott P. Keely
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Nichole E. Brinkman
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Emily A. Wheaton
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Michael A. Jahne
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Shawn D. Siefring
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Manju Varma
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Ryan A. Hill
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Scott G. Leibowitz
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Roy W. Martin
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jay L. Garland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| | - Richard A. Haugland
- Center
for Environmental Measurement and Modeling and Center for Environmental Solutions
and Emergency Response, US Environmental
Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
12
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
13
|
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119326. [PMID: 35491000 DOI: 10.1016/j.envpol.2022.119326] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution and the potential for co-selection of resistance to antibiotics in the environment is growing concern. However, clear associations between heavy metals and antibiotic resistance in river systems have not been developed. Here we investigated relationships between total and bioavailable heavy metals concentrations; metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances; mobile genetic elements; and the composition of local bacterial communities in low and high metal polluted rivers in UK and India. The results indicated that MRGs conferring resistance to cobalt (Co) and nickel (Ni) (rcnA), and Co, zinc (Zn), and cadmium (Cd) (czcA), and ARGs conferring resistance to carbapenem and erythromycin were the dominating resistant genes across the samples. The relative MRGs, ARGs, and integrons abundances tended to increase at high metal polluted environments, suggesting high metals concentrations have a strong potential to promote metal and antibiotic resistance by horizontal gene transmission and affecting bacterial communities, leading to the development of multi-metal and multi-antibiotic resistance. Network analysis demonstrated the positive and significant relationships between MRGs and ARGs as well as the potential for integrons playing a role in the co-transmission of MRGs and ARGs (r > 0.80, p < 0.05). Additionally, the major host bacteria of various MRGs and ARGs that could be accountable for greater MRGs and ARGs levels at high metal polluted environments were also identified by network analysis. Spearman's rank-order correlations and RDA analysis further confirm relationships between total and bioavailable heavy metals concentrations and the relative MRG, ARG, and integron abundances, as well as the composition of related bacterial communities (r > 0.80 (or < -0.80), p < 0.05). These findings are critical for assessing the possible human health concerns associated with metal-driven antibiotic resistance and highlight the need of considering metal pollution for developing appropriate measures to control ARG transmission.
Collapse
Affiliation(s)
- Sonia Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
14
|
Liguori K, Keenum I, Davis BC, Calarco J, Milligan E, Harwood VJ, Pruden A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9149-9160. [PMID: 35732277 DOI: 10.1080/10643389.2021.2024739] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions. Here we sought to establish scientific consensus on a framework for such standardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water, through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility professionals.
Collapse
Affiliation(s)
- Krista Liguori
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ishi Keenum
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Benjamin C Davis
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Erin Milligan
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Amy Pruden
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
15
|
Wang J, Zhang Y, Ding Y, Song H, Liu T. Analysis of microbial community resistance mechanisms in groundwater contaminated with SAs and high NH 4+-Fe-Mn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153036. [PMID: 35026256 DOI: 10.1016/j.scitotenv.2022.153036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/05/2023]
Abstract
The resistance mechanism of microbial communities in contaminated groundwater under the combined stress of sulfonamide antibiotics (SAs), NH4+, and Fe-Mn exceeding the standard levels was studied in an agricultural area along the Songhua River in Northeast China with developed livestock and poultry breeding. Representative points were selected in the study area to explore the response of environmental parameters and microbial communities, and microscopic experiments with different SA concentrations were conducted with background groundwater. The results showed a complex relationship between microbial communities and environmental factors. The environmental factors SM, SM2, SMX, DOC, NO3-, Fe, Mn, and HCO3- significantly affected the microbial community, with SMX, DOC, and Mn having the greatest effect. Three types of antibiotics with similar properties had different effects on the microbial community, and these effects were not simply additive or superimposed. After adding SAs, Proteobacteria with multi-resistance (99.85%) became the dominant phylum, and Acinetobacter (98.68%) became the dominant genus with SA resistance. SAs have a significant influence on bacterial chemotaxis, transporters, substance transport, and metabolism. Microorganisms resist the influence of SAs via a series of resistance mechanisms, such as enhancing the synthesis of relevant enzymes, generating new biochemical reactions, and reducing the transport of harmful substances through cell membranes. We also found that the proportion of exogenous compound degradation and metabolism-related functional genes in the presence of high SA concentrations increased significantly, which may be related to the degradation of SAs by microorganisms.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
16
|
Feng W, Lv J, Wang H, Yao P, Xiong L, Xia P, Yuan Q, Sun F. The first report of the bla IMP-10 gene and complete sequence of the IMP-10-encoding plasmid p12NE515 from Pseudomonas aeruginosa in China. Acta Trop 2022; 228:106326. [PMID: 35077675 DOI: 10.1016/j.actatropica.2022.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate a detailed genomic characterization of the blaIMP-10-carrying plasmid p12NE515 from a Pseudomonas aeruginosa isolate in China. METHODS Plasmid p12NE515 was subjected to whole-genome sequencing and the complete sequence was compared with related plasmid sequences. Transferability of plasmid, carbapenemase activity and bacterial susceptibility profiles were determined to assess p12NE515-mediated resistance phenotypes. RESULTS P. aeruginosa 12NE515 was identified as a less common sequence type of ST1976. p12NE515 harboring blaIMP-10 possessed a backbone identical to plasmid p60512-IMP (carrying blaIMP-1), but the accessory resistance regions differed. Only one accessory module, Tn7339, was carried in p12NE515, and this transposon was an insertion sequence-mediated transposition unit generated by the insertion of a novel class 1 integron, In1814, at the downstream end of ISPa17. Here, blaIMP-10 together with aacA7 was located in In1814, being at evolution stage III of Tn402-associated integron due to truncation of the tni module. CONCLUSION This study is the first to determine the complete sequence of a blaIMP-10-carrying plasmid, and this is also the first report of a blaIMP-10-producing strain in China. The prevalence of the blaIMP-10 gene and the genetic characterization of the blaIMP-10-carrying plasmid should be analyzed to provide deeper insight into the transmission mechanism of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Lv
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongping Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lirong Xiong
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
17
|
Fernández Rivas C, Porphyre T, Chase-Topping ME, Knapp CW, Williamson H, Barraud O, Tongue SC, Silva N, Currie C, Elsby DT, Hoyle DV. High Prevalence and Factors Associated With the Distribution of the Integron intI1 and intI2 Genes in Scottish Cattle Herds. Front Vet Sci 2021; 8:755833. [PMID: 34778436 PMCID: PMC8585936 DOI: 10.3389/fvets.2021.755833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8-84.0%) and intI2 as 82.4% (73.9-88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0-130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1-20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1-36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3-14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4-540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation.
Collapse
Affiliation(s)
- Cristina Fernández Rivas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, UMR5558, CNRS, VetAgro Sup, Université de Lyon, Villeurbanne Cedex, France
| | - Margo E Chase-Topping
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Charles W Knapp
- Centre for Water, Environment, Sustainability and Public Health, Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Helen Williamson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Olivier Barraud
- INSERM, CHU Limoges, UMR1092, Université de Limoges, Limoges, France
| | - Sue C Tongue
- Epidemiology Research Unit, Scotland's Rural College (SRUC), An Lòchran, Inverness Campus, Inverness, United Kingdom
| | - Nuno Silva
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Carol Currie
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Derek T Elsby
- Environmental Research Institute, University of the Highlands and Islands, Thurso, United Kingdom
| | - Deborah V Hoyle
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| |
Collapse
|
18
|
Yang Y, Zhang AN, Che Y, Liu L, Deng Y, Zhang T. Underrepresented high diversity of class 1 integrons in the environment uncovered by PacBio sequencing using a new primer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147611. [PMID: 34000537 DOI: 10.1016/j.scitotenv.2021.147611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Class 1 integrons (CL1s) are one of the major contributors to the horizontal transfer of antibiotic resistance genes (ARGs). However, our knowledge of CL1 in the environment is still very limited due to the limitations of the current PCR primers and the sequencing methods adopted. This study developed a new primer coupled with PacBio sequencing to investigate the underrepresented diversity of CL1s in a mixed environmental sample (i.e. activated sludge from wastewater treatment plant and pig feces from animal farm). The new primer successfully uncovered 20 extra ARGs subtypes and 57% (422/739) more unique integron array structures than the previous primers. Compared to the whole genome database, CL1s revealed in the environment in this study were of much greater diversity, having 93% (900/967) novel array structures. Antibiotic resistance is the predominant function (78.3% genes) carried by CL1, and a vast majority (98.6% genes) of them confer resistance to aminoglycoside, beta-lactam, trimethoprim, or chloramphenicol. Additionally, 78.5% unique CL1 arrays carried more than one ARGs, and 25.9% of them carried ARGs of clinical relevance with high transferability potential posing threat to the general public. Our results indicated the importance of CL1s in the spread of ARGs. Overall, combining PacBio sequencing with the new primer designed in this study largely broadened our knowledge of CL1s in the environment and their significance in the environmental proliferation of ARGs.
Collapse
Affiliation(s)
- Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - An-Ni Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong.
| |
Collapse
|
19
|
Schmitz BW, Innes GK, Xue J, Gerba CP, Pepper IL, Sherchan S. Reduction of erythromycin resistance gene erm(F) and class 1 integron-integrase genes in wastewater by Bardenpho treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1042-1050. [PMID: 31989707 DOI: 10.1002/wer.1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Wastewaters routinely contain antibiotic-resistant bacteria (ARB) and genes (ARG) that are removed to a varying degree during wastewater treatment. This study investigated the removal of the erythromycin ribosome methylase class F (erm(F)) and class 1 integron-integrase (intI1) genes at each stage from two water resource recovery facilities in southern Arizona. Although genes were significantly reduced by Bardenpho treatment, erm(F) and intI1 were still observed in ≥ 9 and 7 out of 12 secondary effluent samples. Primary processes via sedimentation or dissolved air flotation, as well as chlorine disinfection, did not significantly impact erm(F) and intI1 concentrations. Therefore, Bardenpho treatment was critical to reduce erm(F) and intI1. Concentrations of erm(F) and intI1 were compared with each other and other markers for anthropogenic pollution. Results from this study support intI1 as one suitable marker to measure erythromycin resistance genes in wastewater, as intI1 was found at higher concentrations, persisted more throughout treatment, and correlated with erm(F) at nearly every treatment stage. PRACTITIONER POINTS: Bardenpho treatment was the key process responsible for the reduction of intI1 and erm(F) genes during wastewater treatment. Primary treatment and chlorine disinfection did not impact erm(F) and intI1 gene concentrations. The intI1 gene is a suitable marker for measuring erm(F) genes in wastewater.
Collapse
Affiliation(s)
- Bradley W Schmitz
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Gabriel K Innes
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jia Xue
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Charles P Gerba
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, Arizona
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, Arizona
| | - Samendra Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
20
|
Wickramanayake MVKS, Dahanayake PS, Hossain S, De Zoysa M, Heo GJ. Aeromonas spp. Isolated from Pacific Abalone (Haliotis discus hannai) Marketed in Korea: Antimicrobial and Heavy-Metal Resistance Properties. Curr Microbiol 2020; 77:1707-1715. [PMID: 32300925 DOI: 10.1007/s00284-020-01982-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Antimicrobial and heavy-metal resistance of 29 Aeromonas spp. (Aeromonas hydrophila n = 9, Aeromonas enteropelogenes n = 14, Aeromonas veronii n = 3, Aeromonas salmonicida n = 2, and Aeromonas sobria n = 1) isolated from Pacific abalone marketed in Korea were analyzed. All isolates were found to be resistant against ampicillin. High level of resistant to cephalothin (86%), rifampicin (73%), imipenem (42%), and oxytetracycline (35%) were also detected. Thirteen (45%) of the isolates showed multiple antimicrobial resistance (MAR) index ≥ 0.2. The PCR assays implied the presence of qnrS, qnrB, qnrA, tetB, tetA, aac (3')- IIa, aac(6')-Ib, aphAI-IAB, blaCTX, blaTEM, and intI1 genes among 76%, 28%, 14%, 17%, 3%, 3%, 41%, 10%, 41%, 28%, and 66% of the isolates, respectively. Class 1 integron gene cassette profiles aadA1(3%) and aadA2 (3%) were also identified. Lead (Pb) resistance was the highest (69%) among 5 heavy metals tested, whereas 38%, 27%, and 20% of the isolates were resistant to Cadmium (Cd), Chromium (Cr), and Copper (Cu), respectively. Heavy-metal resistance genes, CopA, CzcA, and merA were positive in 83%, 75%, and 41% of the isolates, respectively. In conclusion, observed genotypic and phenotypic resistance profiles of Aeromonas spp. against antimicrobials and heavy metals reveal the ability of serving as a source of antimicrobials and heavy-metal-resistant traits.
Collapse
Affiliation(s)
- M V K S Wickramanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - P S Dahanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sabrina Hossain
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
21
|
Squadrone S. Water environments: metal-tolerant and antibiotic-resistant bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:238. [PMID: 32173770 DOI: 10.1007/s10661-020-8181-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/28/2020] [Indexed: 05/19/2023]
Abstract
The potential threat of both metals and antibiotics to the environment and human health has raised significant concerns in the last decade. Metal-resistant and antibiotic-resistant bacteria are found in most environments, including water, and the risk posed to humans and animals due to the spread of antibiotic-resistant bacteria and antibiotic-resistant genes in the environment is increasing. Bacteria have developed the ability to tolerate metals even at notable concentrations. This ability tends to favor the selection of antibiotic-resistant strains, even in pristine water environments, with the potential risk of spreading this resistance to human pathogens. In this mini-review, we focus on investigations performed in marine and freshwater environments worldwide, highlighting the presence of co-resistance to metals and antibiotics.
Collapse
Affiliation(s)
- Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| |
Collapse
|
22
|
Squadrone S. Water environments: metal-tolerant and antibiotic-resistant bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:238. [PMID: 32173770 DOI: 10.1007/s10661-020-8191-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
The potential threat of both metals and antibiotics to the environment and human health has raised significant concerns in the last decade. Metal-resistant and antibiotic-resistant bacteria are found in most environments, including water, and the risk posed to humans and animals due to the spread of antibiotic-resistant bacteria and antibiotic-resistant genes in the environment is increasing. Bacteria have developed the ability to tolerate metals even at notable concentrations. This ability tends to favor the selection of antibiotic-resistant strains, even in pristine water environments, with the potential risk of spreading this resistance to human pathogens. In this mini-review, we focus on investigations performed in marine and freshwater environments worldwide, highlighting the presence of co-resistance to metals and antibiotics.
Collapse
Affiliation(s)
- Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| |
Collapse
|
23
|
Liu C, Chen Y, Li X, Zhang Y, Ye J, Huang H, Zhu C. Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113652. [PMID: 31818620 DOI: 10.1016/j.envpol.2019.113652] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer.
Collapse
Affiliation(s)
- Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yanrong Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Ye
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkun Huang
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Wang JY, An XL, Huang FY, Su JQ. Antibiotic resistome in a landfill leachate treatment plant and effluent-receiving river. CHEMOSPHERE 2020; 242:125207. [PMID: 31675591 DOI: 10.1016/j.chemosphere.2019.125207] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 05/23/2023]
Abstract
Landfills leachate contained diverse antibiotic resistance genes (ARGs). Treated landfill leachate effluent could enter into the downstream environments, leading to the dissemination of ARGs, which might pose a health risk to public. Here, we used high-throughput qPCR to characterize the resistome and 16S rRNA-based Illumina sequencing to analyze the bacterial community in a leachate treatment plant and the river near the landfill. A total of 91 ARGs and 5 mobile genetic elements were detected. Leachate treatment process significantly changed the profiles of resistome and bacterial community structures. Similar bacterial community structure and ARG profiles were detected between effluent and downstream river, which were both dominated by multidrug and beta-lactams resistance genes and harbored higher ARG relative abundance than that in upstream river. In particular, seven ARGs were detected both in effluent and downstream river samples but not detected in upstream river, including genes encoding resistance to vancomycin (vanXD and vanSB) and carbapenem (cphA and blaGES), which implied the effects of the effluent on its receiving river. This study highlights the risk of discharge of processed landfill leachate in dissemination of antibiotic resistance determinants to the environments, and suggests an urgent need for surveillance of ARGs and development of techniques to mitigate the risk.
Collapse
Affiliation(s)
- Jia-Ying Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Fu-Yi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
25
|
Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. Clinical class 1 integron-integrase gene - A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2020; 135:105372. [PMID: 31838265 DOI: 10.1016/j.envint.2019.105372] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, 295 antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from the influent, activated sludge (AS), and membrane bioreactor (MBR) permeate were primarily examined in the wastewater treatment plant (WWTP) biweekly over 13 months. The absolute concentrations of ARGs and MGEs respectively ranged from 1.27 × 1010 to 1.94 × 1011 and 8.00 × 109 to 1.24 × 1011 copies/L in the influent, of which were reduced by 2 to 3 orders of magnitude in the permeate. No significant seasonal variation of ARGs and MGEs was found in the WWTP, except that the absolute abundance of ARGs and MGEs in the AS was peaked during spring. The antibiotics affected neither ARGs nor MGEs significantly, suggesting their concentrations may be not high enough to pose a selective pressure. In contrast, the bacterial community had direct effect on the MGEs variation, meanwhile the MGEs influenced the ARG abundance directly. Class 1 integron-integrase gene (intI1), clinical intI1, and Tn21 associated more frequently with ARGs in the AS over long-term, suggesting the potential of them involved in horizontal gene transfer. Both intI1 and clinical intI1 had significantly positive associations with the overall abundance of ARGs, as well as significantly negative relationships with the overall removal rates of ARGs in the MBR. However, the abundances between intI1 and clinical intI1 were significantly different. Meanwhile, clinical intI1 remained rather consistent proportion with the ARG abundance in the AS and permeate, was stronger correlated with human pathogens, and was associated with greater number of ARGs over time. Moreover, clinical intI1 was significantly associated with the removal efficiency of ARGs from all classes. Taken together, clinical intI1 can be adopted as an indicator for the abundance and removal efficiency of ARGs in the WWTP.
Collapse
Affiliation(s)
- Wanlin Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Enterprises Water Group (China) Investment Limited, Beijing 100102, China
| | - Jiaoqi Huyan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Ghazisaeedi F, Ciesinski L, Bednorz C, Johanns V, Pieper L, Tedin K, Wieler LH, Günther S. Phenotypic zinc resistance does not correlate with antimicrobial multi-resistance in fecal E. coli isolates of piglets. Gut Pathog 2020; 12:4. [PMID: 31988666 PMCID: PMC6972033 DOI: 10.1186/s13099-019-0342-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Following the ban on antimicrobial usage for growth promotion in animal husbandry in the EU, non-antimicrobial agents including heavy metal ions (e.g. zinc and copper), prebiotics or probiotics have been suggested as alternatives. Zinc has extensively been used in pig farming, particularly during weaning of piglets to improve animal health and growth rates. Recent studies, however, have suggested that high dietary zinc feeding during weaning of piglets increases the proportion of multi-drug resistant E. coli in the gut, contraindicating the appropriateness of zinc as an alternative. The underlying mechanisms of zinc effects on resistant bacteria remains unclear, but co-selection processes could be involved. In this study, we determined whether E. coli isolates from intestinal contents of piglets that had been supplemented with high concentrations of zinc acquired a higher tolerance towards zinc, and whether multi-drug resistant isolates tolerated higher zinc concentrations. In addition, we compared phenotypic zinc and copper resistance of E. coli isolates for possible correlation between phenotypic resistance/tolerance to different bivalent ionic metals. Results We screened phenotypic zinc/copper tolerance of 210 isolates (including antimicrobial resistant, multi-drug resistant, and non-resistant E. coli) selected from two, independent zinc-feeding animal trials by determining a zinc/copper minimal inhibitory concentration (Merlin, Bornheim-Hersel, Germany). In both trials, groups of piglets were supplemented either with high dietary zinc (> 2000 ppm) or control (50–70 ppm, background) concentrations. Our observations showed that high concentration zinc exposure did not have an effect on either zinc or copper phenotypic tolerance of E. coli isolates from the animals. No significant association was found between antimicrobial resistance and phenotypic zinc/copper tolerance of the same isolates. Conclusion Our findings argue against a co-selection mechanism of antimicrobial drug-resistance and zinc tolerance after dietary zinc supplementation in weaning piglets. An explanation for an increase in multi-drug resistant isolates from piglets with high zinc dietary feeding could be that resistant bacteria to antimicrobial agents are more persistent to stresses such as zinc or copper exposure.
Collapse
Affiliation(s)
- Fereshteh Ghazisaeedi
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L Ciesinski
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - C Bednorz
- 2Institute of Chemical Physiology, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany
| | - V Johanns
- 3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - L Pieper
- 4Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - K Tedin
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L H Wieler
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Sebastian Günther
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,5Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| |
Collapse
|
27
|
Sun C, Li W, Chen Z, Qin W, Wen X. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. ENVIRONMENT INTERNATIONAL 2019; 133:105156. [PMID: 31675532 DOI: 10.1016/j.envint.2019.105156] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Sewage sludge from wastewater treatment plants (WWTPs) harbours large amounts of antibiotics, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs), the variation and fate of these emerging pollutants during sludge treatment processes must be thoroughly studied to reduce their potential risks to human health. In this study, 7 pilot-scale CSTR anaerobic digesters were established with the same seed sludge and fed with the same thermal hydrolysis pre-treated sewage sludge, while operating under different conditions. High-throughput quantitative PCR, UPLC-MS/MS and Illumina Hiseq-sequencing were used to systematically evaluate the responses of antibiotics, ARGs, and MGEs in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion (AD) conditions. The results showed that thermal hydrolysis effectively reduced the abundance (>94%) of almost all subtypes of ARGs and MGEs, and it was a powerful technology for reducing tetracyclines, macrolides, and lincosamides. Besides, the abundance of ARGs and MGEs in thermophilic digesters was lower than that in mesophilic digesters, suggesting that thermophilic digesters could be used to avoid the ARGs rebounding. In addition, the thermophilic system further reduced the concentrations of quinolones. For the digesters operated under the mesophilic conditions, a longer hydraulic retention time (HRT) facilitated the removal of antibiotics, ARGs, and MGEs. Furthermore, the microbial community and MGEs had important effects on the persistence and proliferation of ARGs in AD process. The findings of this study provide effective clues for controlling the spread of antibiotic resistance and suggest the optimal operating conditions of digesters.
Collapse
Affiliation(s)
- Chenxiang Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co., Ltd., Beijing 100124, China
| | - Zhan Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wentao Qin
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Dickinson AW, Power A, Hansen MG, Brandt KK, Piliposian G, Appleby P, O'Neill PA, Jones RT, Sierocinski P, Koskella B, Vos M. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. ENVIRONMENT INTERNATIONAL 2019; 132:105117. [PMID: 31473413 DOI: 10.1016/j.envint.2019.105117] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Frequent and persistent heavy metal pollution has profound effects on the composition and activity of microbial communities. Heavy metals select for metal resistance but can also co-select for resistance to antibiotics, which is a global health concern. We here document metal concentration, metal resistance and antibiotic resistance along a sediment archive from a pond in the North West of the United Kingdom covering over a century of anthropogenic pollution. We specifically focus on zinc, as it is a ubiquitous and toxic metal contaminant known to co-select for antibiotic resistance, to assess the impact of temporal variation in heavy metal pollution on microbial community diversity and to quantify the selection effects of differential heavy metal exposure on antibiotic resistance. Zinc concentration and bioavailability was found to vary over the core, likely reflecting increased industrialisation around the middle of the 20th century. Zinc concentration had a significant effect on bacterial community composition, as revealed by a positive correlation between the level of zinc tolerance in culturable bacteria and zinc concentration. The proportion of zinc resistant isolates was also positively correlated with resistance to three clinically relevant antibiotics (oxacillin, cefotaxime and trimethoprim). The abundance of the class 1 integron-integrase gene, intI1, marker for anthropogenic pollutants correlated with the prevalence of zinc- and cefotaxime resistance but not with oxacillin and trimethoprim resistance. Our microbial palaeontology approach reveals that metal-contaminated sediments from depths that pre-date the use of antibiotics were enriched in antibiotic resistant bacteria, demonstrating the pervasive effects of metal-antibiotic co-selection in the environment.
Collapse
Affiliation(s)
- A W Dickinson
- College of Life and Environmental Science, University of Exeter, Penryn, UK; UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - A Power
- Biocatalysis Centre, University of Exeter, Exeter, UK
| | - M G Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - K K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - G Piliposian
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - P Appleby
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - P A O'Neill
- Welcome Trust Biomedical Informatics Hub, Geoffrey Pope Building, University of Exeter, Exeter, UK
| | - R T Jones
- School of Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, UK
| | - P Sierocinski
- College of Life and Environmental Science, University of Exeter, Penryn, UK
| | - B Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - M Vos
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Penryn, UK
| |
Collapse
|
29
|
Zhou SYD, Zhu D, Giles M, Yang XR, Daniell T, Neilson R, Zhu YG. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:227-235. [PMID: 31153027 DOI: 10.1016/j.envpol.2019.05.098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 05/11/2023]
Abstract
In China, the common use of antibiotics in agriculture is recognized as a potential public health risk through the increasing use of livestock derived manure as a means of fertilization. By doing so this may increase the transfer of antibiotic resistance genes (ARGs) from animals, to soils and plants. In this study two staple crops (rice and wheat) were investigated for ARG enrichment under differing fertilization regimes. Here, we applied 4 treatments, no fertilizer, mineral fertilizer, clean (reduced antibiotic practice) and dirty (current antibiotic practice) pig manure, to soil microcosms planted with either rice or wheat, to investigate fertilization effects on the abundance of ARGs in the respective phyllospheres. For both rice and wheat, samples were collected after two separate fertilization periods. In total, 162 unique ARGs and 5 mobile genetic elements (MGEs) were detected from all rice and wheat samples. The addition of both clean and dirty manure, enhanced ARG abundance significantly when compared to no fertilizer treatments (P < 0.001), though clean manure enriched ARGs to a lesser extent than dirty manure, in all rice and wheat samples (P < 0.001). The classes of ARGs recorded were different between crops, with wheat samples having a higher ARG diversity than rice. These results revealed that staple crops in China such as rice and wheat may be a reservoir for ARGs when clean and dirty pig manure is used for fertilization.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Madeline Giles
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Tim Daniell
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK; Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
30
|
Lamori JG, Xue J, Rachmadi AT, Lopez GU, Kitajima M, Gerba CP, Pepper IL, Brooks JP, Sherchan S. Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10188-10197. [PMID: 30758793 DOI: 10.1007/s11356-019-04468-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log10 gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log10 GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively.
Collapse
Affiliation(s)
- Jennifer G Lamori
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jia Xue
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Andri T Rachmadi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North13 West8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Gerardo U Lopez
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North13 West8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Charles P Gerba
- Department of Soil, Water and Environmental Science, The University of Arizona, 1117 E. Lowell St., Tucson, AZ, 85721, USA
| | - Ian L Pepper
- Department of Soil, Water and Environmental Science, The University of Arizona, 1117 E. Lowell St., Tucson, AZ, 85721, USA
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - John P Brooks
- Genetics and Sustainable Agriculture Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Samendra Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
31
|
Cerqueira F, Matamoros V, Bayona J, Elsinga G, Hornstra LM, Piña B. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes. ENVIRONMENTAL RESEARCH 2019; 170:16-25. [PMID: 30554053 DOI: 10.1016/j.envres.2018.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Social concern has raised during the last years due to the development of antibiotic resistance hotspots in different environmental compartments, including the edible parts of crops. To assess the influence of the water quality used for watering, we collected samples from soil, roots, leaves and beans from the legume plant Vicia faba (broad beans) in three agricultural peri-urban plots (Barcelona, NE Spain), irrigated with either groundwater, river water, or reclaimed water. Antibiotic resistance genes (ARGs) sul1, tetM, qnrS1, blaCTX-M-32,blaOXA-58, mecA, and blaTEM were quantified by real-time PCR, along with 16S rDNA and intl1 sequences, as proxies for bacterial abundance and integron prevalence, respectively. Microbiome composition of all samples were analyzed by high-throughput DNA sequencing. Results show a gradient of bacterial species diversity and of ARG prevalence from highly diverse soil samples to microbially-poor beans and leaves, in which Rhizobiales essentially displaced all other groups, and that presented very small loads of ARGs and integron sequences. The data suggest that the microbiome and the associated resistome were likely influenced by agricultural practices and water quality, and that future irrigation water legal standards should consider the specific Physiology of the different crop plants.
Collapse
Affiliation(s)
- Francisco Cerqueira
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain
| | - Josep Bayona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain
| | - Goffe Elsinga
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Luc M Hornstra
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain.
| |
Collapse
|
32
|
Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. CHEMOSPHERE 2019; 215:846-857. [PMID: 30359954 DOI: 10.1016/j.chemosphere.2018.10.114] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 05/19/2023]
Abstract
Misuse/over use of antibiotics increases the threats to human health since this is a main reason behind evolution of antibiotic resistant bacterial pathogens. However, metals such as mercury, lead, zinc, copper and cadmium are accumulating to critical concentration in the environment and triggering co-selection of antibiotic resistance in bacteria. The co-selection of metal driven antibiotic resistance in bacteria is achieved through co-resistance or cross resistance. Metal driven antibiotic resistant determinants evolved in bacteria and present on same mobile genetic elements are horizontally transferred to distantly related bacterial human pathogens. Additionally, in marine environment persistent pollutants like microplastics is recognized as a vector for the proliferation of metal/antibiotics and human pathogens. Recently published research confirmed that horizontal gene transfer between phylogenetically distinct microbes present on microplastics is much faster than free living microbes. Therefore, microplastics act as an emerging hotspot for metal driven co-selection of multidrug resistant human pathogens and pose serious threat to humans which do recreational activities in marine environment and ingest marine derived foods. Therefore, marine environment co-polluted with metal, antibiotics, human pathogens and microplastics pose an emerging health threat globally.
Collapse
Affiliation(s)
- Md Imran
- Department of Biotechnology, Goa University Taleigao Plateau, Goa, 403206, India.
| | - Kirti Ranjan Das
- Department of Biotechnology, Goa University Taleigao Plateau, Goa, 403206, India
| | - Milind Mohan Naik
- Department of Microbiology, Goa University Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
33
|
Belaynehe KM, Shin SW, Yoo HS. Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms. BMC Vet Res 2018; 14:340. [PMID: 30419899 PMCID: PMC6233274 DOI: 10.1186/s12917-018-1661-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/22/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Carriage of antibiotic-resistant foodborne pathogens by food production animals is one of many contributors to treatment failure in health care settings, and it necessitates an integrated approach to investigate the carriage of resistant pathogens harboring integrons in food-producing animals. METHODS Escherichia coli isolates with reduced susceptibility to tetracycline antibiotics (n = 92) were tested for associations between carriage of class1 integrons, phylogenetic group affiliation and tetracycline resistance determinants using the MIC method, PFGE analysis, PCR and sequencing. RESULTS Phylogroups B1 and A were the most common (58.7 and 19.6%, respectively), followed by groups D (20.7%) and B2 (1.1%). All isolates carried at least one of the tet genes examined. In addition, 88 (95.7%) of all tetracycline-resistant isolates carried tet(A) or tet(B), while 47 (51.1%) and 41 (44.6%) harbored only tet(A) or tet(B), respectively. Likewise, isolates harboring these genes had a higher chance (P < 0.05) of carrying class 1 integrons. Of the tested isolates, 38 (41.3%) carried the intI1 gene. Classical integrons with complete genes (sul1 and qacE∆1) at the 3'-CS were recognized in 27 isolates. PCR screening and subsequent sequencing demonstrated that 84.2% (32/38) of the intI1-positive isolates harbored resistance gene cassettes. Overall, seven gene cassettes were identified, either solely or combined with another gene cassette. The most common gene was aadA1 (10 isolates), followed by a combination of aadA1-dfrA1 (seven isolates), aadA1-dfrA12 (six isolates) and aadA1-aadA2-dfrA12 (three isolates). Genetic typing using PFGE showed minimum clonal relatedness with 28 different clusters and 12-25 discernible DNA fragments. CONCLUSIONS This study brings new insight into the relationships between the presence of integrons, phylogenetic group association and characteristics of tetracycline antibiotic resistance determinants in commensal E. coli strains.
Collapse
Affiliation(s)
- Kuastros Mekonnen Belaynehe
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Seung Won Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
34
|
An XL, Su JQ, Li B, Ouyang WY, Zhao Y, Chen QL, Cui L, Chen H, Gillings MR, Zhang T, Zhu YG. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. ENVIRONMENT INTERNATIONAL 2018; 117:146-153. [PMID: 29751164 DOI: 10.1016/j.envint.2018.05.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/18/2018] [Accepted: 05/05/2018] [Indexed: 05/25/2023]
Abstract
Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs.
Collapse
Affiliation(s)
- Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bing Li
- Division of Energy & Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Wei-Ying Ouyang
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Yi Zhao
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong.
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
35
|
Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Appl Environ Microbiol 2018; 84:AEM.02766-17. [PMID: 29475864 DOI: 10.1128/aem.02766-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments.
Collapse
|
36
|
Li X, Liu C, Chen Y, Huang H, Ren T. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11565-11575. [PMID: 29427277 DOI: 10.1007/s11356-018-1339-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
A survey was conducted in regions of North China to better understand the effect of antibiotic residue pollution from swine feedlots to nearby groundwater environment. A total of nine experimental sites located in the regions of Beijing, Hebei, and Tianjin were selected to analyze the presence of residues of 11 most commonly used antibiotics, including tetracyclines (TCs), fluoroquinolones (FQNs), sulfonamides (SAs), macrolides, and fenicols, by using liquid chromatography spectrometry. The three most common antibiotics were TCs, FQNs, and SAs, with mean concentrations of 416.4, 228.8, and 442.4 μg L-1 in wastewater samples; 19.9, 11.8, and 0.3 μg L-1 in groundwater samples from swine feedlots; and 29.7, 14.0, and 0 μg L-1 in groundwater samples from villages. Ordination analysis revealed that the composition and distribution of antibiotics and antibiotic resistance genes (AGRs) were similar in groundwater samples from swine feedlots and villages. FQNs and TCs occurred along the path from wastewater to groundwater at high concentrations and showed correlations with ARGs, with a strong correlation between FQN resistance gene (qnrA) copy number. FQN concentration was also found (P < 0.01) in wastewater and groundwater in villages (P < 0.01). Therefore, antibiotics discharged from swine feedlots through wastewater could disseminate into surrounding groundwater environments together with ARG occurrence (i.e., qnrA, sulI, sulII, tetG, tetM, and tetO). Overall, this study suggests that the spread of veterinary antibiotics from swine feedlots to groundwater environments should be highly attended and controlled by restricting excess antibiotic usage or improving the technology of manure management.
Collapse
Affiliation(s)
- Xiaohua Li
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkun Huang
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Tianzhi Ren
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| |
Collapse
|
37
|
Suhartono S, Savin MC, Gbur EE. Transmissible Plasmids and Integrons Shift Escherichia coli Population Toward Larger Multiple Drug Resistance Numbers. Microb Drug Resist 2018; 24:244-252. [DOI: 10.1089/mdr.2016.0329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Suhartono Suhartono
- Cell and Molecular Biology, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas
- Department of Biology, Faculty of Sciences, Syiah Kuala University, Banda Aceh, Indonesia
| | - Mary C. Savin
- Cell and Molecular Biology, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Edward E. Gbur
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
38
|
Parvez S, Khan AU. Hospital sewage water: a reservoir for variants of New Delhi metallo-β-lactamase (NDM)- and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Int J Antimicrob Agents 2018; 51:82-88. [DOI: 10.1016/j.ijantimicag.2017.08.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/22/2017] [Accepted: 08/26/2017] [Indexed: 01/21/2023]
|
39
|
Chen QL, Li H, Zhou XY, Zhao Y, Su JQ, Zhang X, Huang FY. An underappreciated hotspot of antibiotic resistance: The groundwater near the municipal solid waste landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:966-973. [PMID: 28783909 DOI: 10.1016/j.scitotenv.2017.07.164] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Landfills are so far the most common practice for the disposals of municipal solid waste (MSW) worldwide. Since MSW landfill receives miscellaneous wastes, including unused/expired antibiotics and bioactive wastes, it gradually becomes a huge potential bioreactor for breeding antibiotic resistance. Antibiotic resistance genes (ARGs) in landfill can flow to the environment through leakage of landfill leachate and pose a risk to public health. Using high throughput quantitative Polymerase Chain Reaction (HT-qPCR), we investigated the prevalence, diversity of ARGs and its association with various mobile genetic elements (MGEs) in MSW landfill groundwater. Totally 171 unique ARGs (belonging to 9 ARG types, encompassing 3 major resistance mechanisms) and 8 MGEs (6 transposase genes, and 2 integron-integrase genes) were identified. The normalized abundance of ARG was ranging from 0.24 to 5.66 copies/cell with multidrug, beta-lactams and tetracycline resistance genes being the most abundant ARG types. The co-occurrence pattern and significant correlation between MGEs and ARGs, indicated that MGEs may play an important role in the persistence and proliferation of ARGs. A Mantel test and Procrustes analysis suggested that ARG profiles were significantly correlated with bacterial community. Variation partitioning analysis (VPA) further demonstrated that bacterial community shifts contribute 65.8% of the total ARG variations. Additionally network analysis revealed that 15 bacterial taxa at family level might be the potential hosts of ARGs. These findings provide evidence that groundwater near MSW landfill is an underappreciated hotspot of antibiotic resistance and contribute to the spread of ARGs via the flowing contaminated groundwater.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
40
|
Martini MC, Quiroga MP, Pistorio M, Lagares A, Centrón D, Del Papa MF. Novel environmental class 1 integrons and cassette arrays recovered from an on-farm bio-purification plant. FEMS Microbiol Ecol 2017; 94:4781311. [DOI: 10.1093/femsec/fix190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/27/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- María Carla Martini
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - María Paula Quiroga
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| |
Collapse
|
41
|
Sui Q, Zhang J, Tong J, Chen M, Wei Y. Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9048-9057. [PMID: 26715413 DOI: 10.1007/s11356-015-5891-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| |
Collapse
|
42
|
Chamosa LS, Álvarez VE, Nardelli M, Quiroga MP, Cassini MH, Centrón D. Lateral Antimicrobial Resistance Genetic Transfer is active in the open environment. Sci Rep 2017; 7:513. [PMID: 28364120 PMCID: PMC5428826 DOI: 10.1038/s41598-017-00600-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Historically, the environment has been viewed as a passive deposit of antimicrobial resistance mechanisms, where bacteria show biological cost for maintenance of these genes. Thus, in the absence of antimicrobial pressure, it is expected that they disappear from environmental bacterial communities. To test this scenario, we studied native IntI1 functionality of 11 class 1 integron-positive environmental strains of distant genera collected in cold and subtropical forests of Argentina. We found natural competence and successful site-specific insertion with no significant fitness cost of both aadB and blaVIM-2 antimicrobial resistance gene cassettes, in a model system without antibiotic pressure. A bidirectional flow of antimicrobial resistance gene cassettes between natural and nosocomial habitats is proposed, which implies an active role of the open environment as a reservoir, recipient and source of antimicrobial resistance mechanisms, outlining an environmental threat where novel concepts of rational use of antibiotics are extremely urgent and mandatory.
Collapse
Affiliation(s)
- Luciana S Chamosa
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica E Álvarez
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maximiliano Nardelli
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo H Cassini
- Grupo GEMA, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Laboratorio de Biología del Comportamiento, IBYME, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
43
|
Xie WY, McGrath SP, Su JQ, Hirsch PR, Clark IM, Shen Q, Zhu YG, Zhao FJ. Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12602-12611. [PMID: 27934260 DOI: 10.1021/acs.est.6b02138] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Land applications of municipal sewage sludge may pose a risk of introducing antibiotic resistance genes (ARGs) from urban environments into agricultural systems. However, how the sewage sludge recycling and application method influence soil resistome and mobile genetic elements (MGEs) remains unclear. In the present study, high through-put quantitative PCR was conducted on the resistome of soils from a field experiment with past (between 1994 and 1997) and annual (since 1994) applications of five different sewage sludges. Total inputs of organic carbon were similar between the two modes of sludge applications. Intrinsic soil resistome, defined as the ARGs shared by the soils in the control and sludge-amended plots, consisted of genes conferring resistance to multidrug, β-lactam, Macrolide-Lincosamide-Streptogramin B (MLSB), tetracycline, vancomycin, and aminoglycoside, with multidrug resistance genes as the most abundant members. There was a strong correlation between the abundance of ARGs and MGE marker genes in soils. The composition and diversity of ARGs in the five sludges were substantially different from those in soils. Considerable proportions of ARGs and MGE marker genes in the sludges attenuated following the application, especially aminoglycoside and tetracycline resistance genes. Annual applications posed a more significant impact on the soil resistome, through both continued introduction and stimulation of the soil intrinsic ARGs. In addition, direct introduction of sludge-specific ARGs into soil was observed especially from ARG-rich sludge. These results provide a better insight into the characteristics of ARG dissemination from urban environment to the agricultural system through sewage sludge applications.
Collapse
Affiliation(s)
- Wan-Ying Xie
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Steve P McGrath
- Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
| | - Penny R Hirsch
- Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Ian M Clark
- Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Qirong Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
- Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
44
|
Farkas A, Crăciunaş C, Chiriac C, Szekeres E, Coman C, Butiuc-Keul A. Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment. MICROBIAL ECOLOGY 2016; 72:773-782. [PMID: 27079455 DOI: 10.1007/s00248-016-0758-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania.
| | - Cornelia Crăciunaş
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
| | - Cecilia Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Cristian Coman
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Gillings MR, Paulsen IT, Tetu SG. Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 2016; 1388:92-107. [DOI: 10.1111/nyas.13268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
46
|
Gillings MR. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci 2016; 1389:20-36. [DOI: 10.1111/nyas.13213] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Gillings
- Genes to Geoscience Research Centre, Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
47
|
Borruso L, Harms K, Johnsen PJ, Nielsen KM, Brusetti L. Distribution of class 1 integrons in a highly impacted catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1588-1594. [PMID: 27312274 DOI: 10.1016/j.scitotenv.2016.06.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 05/22/2023]
Abstract
Polluted compounds into freshwater sediments may select and enrich bacteria carrying specific genetic compositions. Here we examine the possible use of class 1 integrons as bioindicators in freshwater environments. Samples were collected from various sediments in an urban area (Zhangye, Gansu province, China), specifically within the city, in the industrial zone, in the surrounding agricultural area and in a nearby national park. Integrons void of gene cassettes were present in all human-impacted sampling sites. A higher diversity of class 1 integrons with various gene cassettes was found in the agricultural area. Class 1 integrons and related gene cassettes were not detected in the national park. These results suggest that the prevalence and composition of class 1 integrons could be further developed as bioindicators in polluted freshwater environments.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Klaus Harms
- Centre for GeoGenetics, National History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Department of Pharmacy, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Pål Jarle Johnsen
- Department of Pharmacy, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Kaare Magne Nielsen
- Department of Life Sciences and Health Oslo and Akershus University College of Applied Sciences, Oslo, Norway; Genøk-Centre for Biosafety, Tromsø, Norway
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.
| |
Collapse
|
48
|
Zhang J, Chen M, Sui Q, Wang R, Tong J, Wei Y. Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. BIORESOURCE TECHNOLOGY 2016; 217:28-36. [PMID: 26988135 DOI: 10.1016/j.biortech.2016.02.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
In this study, anaerobic digestion of mono-SS, MW-SS:FW and SS:MW-FW was investigated to understand the fate of ARGs and its drivers. Anaerobic digestion was effective for the reduction of metal resistance genes (MRGs), and could reduce the abundance of blaOXA-1, sulI and tetG, while sulII in co-digestion and blaTEM and ereA only in MW-SS. ARGs reduction could be partly attributed to the reduction of co-selective pressure from heavy metals reflected by MRGs. However, the abundance of mefA/E, ermB, ermF, tetM and tetX increased significantly. Anaerobic co-digestion, especially for MW-SS, could reduce total ARGs abundance compared with mono-SS, and evolution of bacterial community was the main driver for the fate of ARGs.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Power ML, Samuel A, Smith JJ, Stark JS, Gillings MR, Gordon DM. Escherichia coli out in the cold: Dissemination of human-derived bacteria into the Antarctic microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:58-65. [PMID: 27179324 DOI: 10.1016/j.envpol.2016.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/19/2016] [Accepted: 04/04/2016] [Indexed: 05/12/2023]
Abstract
Discharge of untreated sewage into Antarctic environments presents a risk of introducing non-native microorganisms, but until now, adverse consequences have not been conclusively identified. Here we show that sewage disposal introduces human derived Escherichia coli carrying mobile genetic elements and virulence traits with the potential to affect the diversity and evolution of native Antarctic microbial communities. We compared E. coli recovered from environmental and animal sources in Antarctica to a reference collection of E. coli from humans and non-Antarctic animals. The distribution of phylogenetic groups and frequency of 11 virulence factors amongst the Antarctic isolates were characteristic of E. coli strains more commonly associated with humans. The rapidly emerging E. coli ST131 and ST95 clones were found amongst the Antarctic isolates, and ST95 was the predominant E. coli recovered from Weddell seals. Class 1 integrons were found in 15% of the Antarctic E. coli with 4 of 5 identified gene cassette arrays containing antibiotic resistance genes matching those common in clinical contexts. Disposing untreated sewage into the Antarctic environment does disseminate non-native microorganisms, but the extent of this impact and implications for Antarctic ecosystem health are, as yet, poorly understood.
Collapse
Affiliation(s)
- Michelle L Power
- Biological Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Angelingifta Samuel
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT 2601, Australia.
| | - James J Smith
- Queensland University of Technology, Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences, GPO Box 2434, Brisbane, QLD 4001, Australia; JJSC Consulting Ltd., 16 Mullacor St., Ferny Grove, QLD 4055, Australia.
| | - Jonathon S Stark
- Antarctic Conservation and Management, Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia.
| | - Michael R Gillings
- Biological Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - David M Gordon
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT 2601, Australia.
| |
Collapse
|
50
|
Abella J, Bielen A, Huang L, Delmont TO, Vujaklija D, Duran R, Cagnon C. Integron diversity in marine environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015. [PMID: 26213132 DOI: 10.1007/s11356-015-5085-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Integrons are bacterial genetic elements known to be active vectors of antibiotic resistance among clinical bacteria. They are also found in bacterial communities from natural environments. Although integrons have become especially efficient for bacterial adaptation in the particular context of antibiotic usage, their role in natural environments in other contexts is still unknown. Indeed, most studies have focused on integrons and the spread of antibiotic resistance in freshwater or soil impacted by anthropogenic activities, with only few on marine environments. Notably, integrons show a wider diversity of both gene cassettes and integrase gene in natural environments than in clinical environments, suggesting a general role of integrons in bacterial adaptation. This article reviews the current knowledge on integrons in marine environments. We also present conclusions of our studies on polluted and nonpolluted backgrounds.
Collapse
Affiliation(s)
- Justine Abella
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| | - Ana Bielen
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Lionel Huang
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
- Euro Engineering, Technopole Hélioparc Bât Newton, 4 rue Jules Ferry, CS N 99207, 64053, Pau, Cedex 09, France
| | - Tom O Delmont
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biology Laboratory, Woods Hole, MA, USA
| | - Dušica Vujaklija
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Robert Duran
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France.
| |
Collapse
|