1
|
Inoue J, Huber N, Fendel R, Held J. Automated total nucleic acid extraction with magnetic beads for the detection of Plasmodium falciparum in large study cohorts. Malar J 2024; 23:398. [PMID: 39716256 DOI: 10.1186/s12936-024-05227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Molecular methods play an important role in clinical trials assessing anti-malarial drugs and vaccines, as well as in epidemiological studies aimed at detecting Plasmodium species, especially when dealing with large sample sizes. Molecular techniques are more sensitive and generally have a higher throughput compared to the gold standard microscopy. Further optimization can be achieved with automation of nucleic acid isolation, allowing for rapid and precise extraction. This study evaluated the isolation of total nucleic acids from Plasmodium falciparum mocked samples using an automated extraction method with a magnetic bead-based kit compared to a manual silica column-based kit. Additionally, two different RNA preservation solutions were compared. METHODS Plasmodium falciparum Dd2 parasites were serially diluted and spiked into whole blood. The dilutions were stored in two different RNA preservation solutions and total nucleic acids extracted with an automated magnetic bead-based kit and a manual silica column-based kit. Subsequently, a reverse transcription (RT) qPCR for Plasmodium detection targeting Plasmodium 18S rRNA and DNA in a single reaction was performed and the quantification cycle (Cq) values across the different sample groups were compared. RESULTS Comparable Cq values across the various sample preparations were obtained, suggesting minimal influence from RNA preservation solutions (p = 0.686) or extraction methods (p = 0.119) on RT-qPCR outcomes. Automated nucleic acids extraction allowed processing numerous samples in a shorter timeframe and showed similar efficiency in detecting Plasmodium in blood samples by RT-qPCR as manual extraction. CONCLUSIONS The automated method for nucleic acid isolation is a valuable tool for the detection of Plasmodium infections in large-scale studies. It is efficient, reliable, and cost-effective. Its potential applications extend to other molecular surveillance studies to support malaria control measures.
Collapse
MESH Headings
- Plasmodium falciparum/isolation & purification
- Plasmodium falciparum/genetics
- Malaria, Falciparum/diagnosis
- Malaria, Falciparum/parasitology
- RNA, Protozoan/analysis
- RNA, Protozoan/isolation & purification
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/analysis
- DNA, Protozoan/isolation & purification
- DNA, Protozoan/genetics
- Humans
- Automation, Laboratory/methods
- Real-Time Polymerase Chain Reaction/methods
- Cohort Studies
Collapse
Affiliation(s)
- Juliana Inoue
- Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nina Huber
- Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.
| |
Collapse
|
2
|
Telfils R, Dossou AY, Djènontin A, Adimi E, Akoho R, Bailly J, Bouraïma A, Matondo D, Sissinto-Savi de Tove Y, Houinato D, Massougbodji A, Dechavanne C, Cottrell G. Dynamics of submicroscopic and microscopic asymptomatic malaria infection and associated factors: A longitudinal study in South Benin. PLoS One 2024; 19:e0311217. [PMID: 39666763 PMCID: PMC11637252 DOI: 10.1371/journal.pone.0311217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024] Open
Abstract
INTRODUCTION Asymptomatic malaria infection is now recognized as a potential threat to malaria control. However, its prevalence and its dynamics are poorly documented especially in a perennial context of high seasonal transmission. A longitudinal study was conducted in southern Benin to investigate the dynamics of asymptomatic malaria infection and to identify factors influencing it. METHODS A cohort of 377 participants was recruited, stratified into three age groups (under 5 years, between 5 and 15 years, over 15 years). After inclusion, two visits were made one-month apart between August and November 2021. Malaria infection was diagnosed by microscopy and PCR and questionnaires were administered to the participants. The dynamics of malaria infection, both submicroscopic (positive PCR / negative blood smear) and microscopic (positive blood smear), and related factors were determined using a mixed ordinal polytomous regression model and a multistate Markov model. RESULTS The human infectious reservoir consisted primarily of asymptomatic submicroscopic infections (289/512 (56.4%)), followed by asymptomatic microscopic infections (182/512 (35.5%)) and symptomatic infections (41/512 (8%)). The prevalence of asymptomatic infection was highly related to age-group (5-15 years: OR: 4 .12 [2.55-6.67] and > 15 years OR: 2.80 [1.73-4.54] compared to the under 5 years old group). The children under 15 years with asymptomatic infection had the highest risk of becoming symptomatic. The mean duration of asymptomatic infections in 5-15-year-olds was the longest (76.7 days (53.8-109.1)). CONCLUSION This study revealed a persistent asymptomatic malaria reservoir over the follow-up period, with substantial variations between age-groups. These findings are important elements to consider for an optimal deployment of malaria control interventions.
Collapse
Affiliation(s)
| | | | - Armel Djènontin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou (Bénin) and Centre de Recherche pour la Lutte Contre les Maladies Infectieuses Tropicales (CReMIT), Université d’Abomey-Calavi (UAC), Cotonou, Bénin
| | - Elisée Adimi
- Centre d’Étude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | - Romuald Akoho
- Centre d’Étude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | | | - Aziz Bouraïma
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou (Bénin) and Centre de Recherche pour la Lutte Contre les Maladies Infectieuses Tropicales (CReMIT), Université d’Abomey-Calavi (UAC), Cotonou, Bénin
| | | | | | - Dismand Houinato
- Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Bénin
| | | | - Célia Dechavanne
- IRD, MERIT, Université Paris Cité, Paris, France
- Centre d’Étude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | | |
Collapse
|
3
|
Hogan KM, Gilmore M, McCarron GP, Griffiths BM, Koehler JW, García GA, von Fricken ME. Knowledge, attitudes, and practices regarding malaria transmission and prevention in an indigenous Maijuna community: a qualitative study in the Peruvian Amazon. Malar J 2024; 23:314. [PMID: 39425050 PMCID: PMC11490027 DOI: 10.1186/s12936-024-05121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Peru is a low-endemic transmission area for malaria, where the majority (84%) of incident malaria cases are localized to the department of Loreto, which is composed of several geographically isolated rural communities. Recent intervention efforts targeting at-risk Indigenous populations that live in riverine communities in Loreto place emphasis on preventive behaviours to decrease transmission. However, malaria related behaviour change is often dependent upon local knowledge, beliefs, and practices, especially in areas where malaria is viewed an embedded and unavoidable aspect of life. METHODS This exploratory case study used semi-structured interviews conducted in Spanish between February and March of 2019 to examine the knowledge, attitudes, and practices related to malaria prevention among the Indigenous Maijuna people of Sucusari, Loreto, Peru. Participants who consented were also administered a rapid diagnostic test (RDT) upon the time of interview. RESULTS A total of 33 community members were interviewed, and 31 were tested via malaria rapid diagnostic tests, with RDT filter paper subsequently tested using PCR. All test results were negative for malaria. Themes that emerged included: varying knowledge of methods to prevent malaria, reports of observed changes in malaria incidence over time, confusion surrounding malaria transmission, treatment-seeking as a common behaviour, the belief that medications are effective, and the acceptance of bed nets which were viewed as a lifestyle norm. CONCLUSION These shared narratives should be used as a foundation for further studies and health interventions among communities in the Peruvian Amazon with limited access to health services where culturally resonant, community-based health programming is essential to improving health. Takeaways regarding confusion surrounding malaria transmission should also be considered.
Collapse
Affiliation(s)
- Kathryn M Hogan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael Gilmore
- School of Integrative Studies, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
| | - Graziella P McCarron
- School of Integrative Studies, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
| | - Brian M Griffiths
- The Earth Commons-Georgetown University's Institute for Environment & Sustainability, 3700 O St. NW, Washington, DC, USA
| | - Jeffrey W Koehler
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD, 21702, USA
| | - Guillermo A García
- MCD Global Health, 8403 Colesville Road, Suite 320, Silver Spring, MD, 20910, USA
| | - Michael E von Fricken
- Department of Environmental & Global Health, Emerging Pathogens Institute, One Health Center of Excellence, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Patiño LH, Castañeda S, Camargo M, Cao LY, Liggayu B, Paniz-Mondolfi A, Ramírez JD. Validation of real-time PCR assays for detecting Plasmodium and Babesia DNA species in blood samples. Acta Trop 2024; 258:107350. [PMID: 39134111 DOI: 10.1016/j.actatropica.2024.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Malaria and babesiosis are global health threats affecting humans, wildlife, and domestic animals, particularly in Africa, the Americas, and Europe. Malaria can lead to severe outcomes, while babesiosis usually resembles a mild illness but can be severe and fatal in individuals with weakened immune systems. Swift, accurate detection of these parasites is crucial for treatment and control. We evaluated a real-time PCR assay for diagnosing five Plasmodium and three Babesia species from blood samples, assessing its sensitivity, specificity, and analytical performance by analyzing 46 malaria-positive and 32 Babesia spp-positive samples diagnosed through microscopy. The limit of detection for Plasmodium species ranged from 30 to 0.0003 copies/µL. For mixed infections, it was 0.3 copies/µL for P. falciparum/P. vivax and 3 copies/µL for P. malariae/P. knowlesi. Babesia species had a detection limit of 0.2 copies/µL. No cross-reactivity was observed among 64 DNA samples from various microorganisms. The assay showed good sensitivity, detecting Plasmodium and Babesia species with 100 % accuracy overall, except for P. falciparum (97.7 %) and B. microti (12.5 %). The low sensitivity of detecting B. microti was attributed to limitations in microscopy for species identification. This technique heavily relies on the proficiency of the examiner, as species within the genus cannot be distinguished under a microscope. Additionally, Babesia can be confused with the early trophozoite stage (ring forms) of Plasmodium parasites. The findings support multiplex qPCR's diagnostic superiority over the gold standard, despite higher costs. It offers enhanced sensitivity, specificity, and detects mixed infections, crucial for effective monitoring and diagnosis of malaria and babesiosis in endemic regions with significant public health challenges.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Li Yong Cao
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernadette Liggayu
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Panicker VP, Narayanan A, Sreedharan Nair AK, Krishnan A, Ajay N, Kumar V. Standardization of quantitative PCR (qPCR) method to detect the level of parasitaemia in Babesia gibsoni infected dogs. J Microbiol Methods 2024; 224:107009. [PMID: 39098402 DOI: 10.1016/j.mimet.2024.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The present investigation aimed to quantitatively assess the level of parasitemia in dogs using qPCR.The dogs selected for this study were infected with the haemoprotozoan parasite Babesia gibsoni. In the study, dogs diagnosed with babesiosis were divided into two groups (n = 12) and subjected to distinct treatment strategies. The first group received clindamycin-metronidazole-doxycycline (CMD) therapy, while the second group was treated with a combination of buparvaquone-azithromycin (BPV-AZM). The level of parasitemia in the infected dogs was determined using an absolute quantification-based qPCR method. This assessment was conducted both prior to initiating the treatment and on the 10th day following the commencement of the treatment protocols. On the tenth day after the initiation of treatment, the CMD group exhibited a lower level of parasitemia in comparison to the BPV-AZM group. In the CMD treated groups, the mean parasitemia decreased from 4.9E + 06 to 3.4E + 06, indicating a reduction in parasitic load. Conversely, in the BPV-AZM treatment groups, the mean parasitemia increased from 1.62E + 06 to 2.87E + 06, suggesting an increase in parasitic load. On the 10th day, the CMD-treated group demonstrated a statistically significant decline in the level of parasitemia, with a P-value of ≤0.001. This indicates a strong and significant reduction in parasitic load following the CMD treatment. Therefore, the absolute quantification-based qPCR method could effectively assess the initial treatment response by measuring the level of parasitemia.
Collapse
Affiliation(s)
- Varuna Purushothama Panicker
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, India.
| | - Athira Narayanan
- University Veterinary Hospital & Teaching Veterinary Clinical Complex, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, India
| | - Ajith Kumar Sreedharan Nair
- University Veterinary Hospital & Teaching Veterinary Clinical Complex, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, India
| | - Anjaly Krishnan
- Project Scientist B, IHCI, NIE-ICMR, Chennai, Tamil Nadu 600077, India
| | - Nimna Ajay
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, India
| | - Vinod Kumar
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, India
| |
Collapse
|
6
|
Von Wowern F, Makenga G, Wellmann Thomsen S, Wellmann Thomsen L, Filtenborg Hocke E, Baraka V, Opot BH, Minja DTR, Lusingu JPA, Van-Geertruyden JP, Hansson H, Alifrangis M. Lack of selection of antimalarial drug resistance markers after intermittent preventive treatment of schoolchildren (IPTsc) against malaria in northeastern Tanzania. Int J Infect Dis 2024; 146:107102. [PMID: 38876161 DOI: 10.1016/j.ijid.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/07/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE Intermittent Preventive Treatment of schoolchildren (IPTsc) is recommended by WHO as a strategy to protect against malaria; to explore whether IPTsc with dihydroartemisinin-piperaquine (DP) or artesunate-amodiaquine (ASAQ) cause a selection of molecular markers in Plasmodium falciparum genes associated with resistance in children in seven schools in Tanga region, Tanzania. METHODS SNPs in P. falciparum genes Pfmdr1, Pfexo, Pfkelch13, and Pfcrt and copy number variations in Pfplasmepsin-2 and Pfmdr1 were assessed in samples collected at 12 months (visit 4, n=74) and 20 months (visit 6, n=364) after initiation of IPTsc and compared with the baseline prevalence (n=379). RESULTS The prevalence of Pfmdr1 N86 and Pfexo 415G was >99% and 0%, respectively without any temporal differences observed. The prevalence of Pfmdr1 184F changed significantly from baseline (52.2%) to visit 6 (64.6%) (χ2=6.11, P=0.013), but no differences were observed between the treatment arms (χ2=0.05, P=0.98). Finally, only minor differences in the amplification of Pfmdr1 were observed; from 10.2% at baseline to 16.7% at visit 6 (χ2=0.98, P=0.32). CONCLUSIONS The IPTsc strategy does not seem to pose a risk for the selection of markers associated with DP or ASAQ resistance. Continuously and timely surveillance of markers of antimalarial drug resistance is recommended.
Collapse
Affiliation(s)
- Frederik Von Wowern
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Geofrey Makenga
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania; Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Sarah Wellmann Thomsen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Louise Wellmann Thomsen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emma Filtenborg Hocke
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Benjamin H Opot
- Kenya Medical Research Institute (KEMRI)/Walter Reed Project, United States Army Medical Research Directorate-Africa (USAMRD-A), Kisumu, Kenya
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | | | - Helle Hansson
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
7
|
Friedman-Klabanoff DJ, Berry AA, Travassos MA, Shriver M, Cox C, Butts J, Lundeen JS, Strauss KA, Joshi S, Shrestha B, Mo AX, Nomicos EYH, Deye GA, Regules JA, Bergmann-Leitner ES, Pasetti MF, Laurens MB. Recombinant Full-length Plasmodium falciparum Circumsporozoite Protein-Based Vaccine Adjuvanted With Glucopyranosyl Lipid A-Liposome Quillaja saponaria 21: Results of Phase 1 Testing With Malaria Challenge. J Infect Dis 2024; 229:1883-1893. [PMID: 38330357 PMCID: PMC11175675 DOI: 10.1093/infdis/jiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION NCT03589794.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mallory Shriver
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Kathleen A Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Annie X Mo
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Effie Y H Nomicos
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory A Deye
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason A Regules
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Elke S Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Angwe MK, Mwebaza N, Nsobya SL, Vudriko P, Dralabu S, Omali D, Tumwebaze MA, Ocan M. Day 3 parasitemia and Plasmodium falciparum Kelch 13 mutations among uncomplicated malaria patients treated with artemether-lumefantrine in Adjumani district, Uganda. PLoS One 2024; 19:e0305064. [PMID: 38837973 PMCID: PMC11152288 DOI: 10.1371/journal.pone.0305064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Artemisinin resistance threatens malaria control and elimination efforts globally. Recent studies have reported the emergence of Plasmodium falciparum parasites tolerant to artemisinin agents in sub-Saharan Africa, including Uganda. The current study assessed the day 3 parasite clearance and its correlation with P. falciparum K13 propeller gene (pfkelch13) mutations in P. falciparum parasites isolated from patients with uncomplicated malaria under artemether-lumefantrine (AL) treatment. This study enrolled 100 P. falciparum-positive patients to whom AL was prescribed between 09/September/2022 and 06/November/2022. Blood samples were collected in EDTA tubes before treatment initiation (day 0) and on day 3. Parasitemia was assessed by microscopy from blood smears and quantitative polymerase chain reaction (qPCR) from the DNA extracted. The day 0 parasite K13 gene was sequenced using Sanger sequencing. Sequence data were analysed using MEGA version 11 software. The data were analysed using STATA version 15, and the Mann‒Whitney U test was used to compare PCR parasite clearance on day 3 using the comparative CT value method and pfkelch13 mutations. The prevalence of day 3 parasitaemia was 24% (24/100) by microscopy and 63% (63/100) by qPCR from the AL-treated patients. P. falciparum K13-propeller gene polymorphism was detected in 18.8% (15/80) of the day 0 DNA samples. The K13 mutations found were C469Y, 12.5% (10/80); A675V, 2.5% (2/80); A569S, 1.25%, (1/80), A578S, 1.25%, (1/80) and; F491S, 1.25%, (1/80) a new allele not reported anywhere. The C469Y mutation, compared to the wild-type, was associated with delayed parasite clearance p = 0.0278, Hodges-Lehmann estimation 3.2108 on the log scale, (95%CI 1.7076, 4.4730). There was a high prevalence of day 3 P. falciparum among malaria patients treated using artemether-lumefantrine. We conclude the presence of the K13 mutation associated with artemisinin resistance by P. falciparum in Adjumani district, Uganda, necessitates regular surveillance of the effectiveness and efficacy of artemether-lumefantrine in the country.
Collapse
Affiliation(s)
- Martin Kamilo Angwe
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University, Kampala, Uganda
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Norah Mwebaza
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University, Kampala, Uganda
| | - Sam Lubwama Nsobya
- Infectious Diseases Research Collaboration, Makerere University, Kampala, Uganda
| | - Patrick Vudriko
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Saviour Dralabu
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Denis Omali
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University, Kampala, Uganda
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Maria Agnes Tumwebaze
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Moses Ocan
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University, Kampala, Uganda
| |
Collapse
|
9
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Angwe MK, Mwebaza N, Nsobya SL, Vudriko P, Dralabu S, Omali D, Tumwebaze MA, Ocan M. Day 3 parasitemia and Plasmodium falciparum Kelch 13 mutations among uncomplicated malaria patients treated with artemether-lumefantrine in Adjumani district, Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.26.24306433. [PMID: 38712186 PMCID: PMC11071562 DOI: 10.1101/2024.04.26.24306433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Artemisinin resistance threatens malaria control and elimination efforts globally. Recent studies have reported the emergence of Plasmodium falciparum parasites tolerant to artemisinin agents in sub-Saharan Africa, including Uganda. The current study assessed the day 3 parasite clearance and its correlation with P. falciparum K13 propeller gene (pfkelch13) mutations in P. falciparum parasites isolated from patients with uncomplicated malaria under artemether-lumefantrine (AL) treatment. This study enrolled 100 P. falciparum-positive patients to whom AL was prescribed between 09/September/2022 and 06/November/2022. Blood samples were collected in EDTA tubes before treatment initiation (day 0) and on day 3. Parasitemia was assessed by microscopy from blood smears and quantitative polymerase chain reaction (qPCR) from the DNA extracted. The day 0 parasite K13 gene was sequenced using Sanger sequencing. Sequence data were analysed using MEGA version 11 software. The data were analysed using STATA version 15, and the Mann‒Whitney U test was used to compare PCR parasite clearance on day 3 using the comparative CT value method and pfkelch13 mutations. The prevalence of day 3 parasitaemia was 24% (24/100) by microscopy and 63% (63/100) by qPCR from the AL-treated patients. P. falciparum K13-propeller gene polymorphism was detected in 18.8% (15/80) of the day 0 DNA samples. The K13 mutations found were C469Y, 12.5% (10/80); A675V, 2.5% (2/80); A569S, 1.25%, (1/80), A578S, 1.25%, (1/80) and; F491S, 1.25%, (1/80) a new allele not reported anywhere. The C469Y mutation, compared to the wild-type, was associated with delayed parasite clearance p=0.0278, Hodges-Lehmann estimation 3.2108 on the log scale, (95%CI 1.7076, 4.4730). There was a high prevalence of day 3 P. falciparum among malaria patients treated using artemether-lumefantrine. We conclude that the K13 mutation associated with artemisinin resistance by P. falciparum is present in Adjumani district, Uganda. This necessitates regular surveillance of the effectiveness and efficacy of artemether-lumefantrine in the country.
Collapse
Affiliation(s)
- Martin Kamilo Angwe
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University
- Department of Biomolecular Resources and Biolab Sciences, School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine, Animal Resources and Biosecurity Makerere University
| | - Norah Mwebaza
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University
| | | | - Patrick Vudriko
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University
| | - Savior Dralabu
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University
| | - Denis Omali
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University
- Infectious Disease Institute, Makerere University
| | - Maria Agnes Tumwebaze
- Research Center for Tropical Diseases and Vector Control, Department of Pharmacy, Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University
| | - Moses Ocan
- Department of Pharmacology and Therapeutics, College of Health Science, Makerere University
| |
Collapse
|
11
|
Braima KA, Piera KA, Lubis IND, Noviyanti R, Rajahram GS, Kariodimedjo P, Nainggolan IRA, Permatasari R, Trianty L, Amalia R, Sakam SSB, Tan AF, William T, Westaway JAF, Lee P, Daim S, Surendra H, Christy N, Letizia AG, Peatey CL, Moideen MA, Barber BE, Sutherland CJ, Anstey NM, Grigg MJ. Improved limit of detection for zoonotic Plasmodium knowlesi and P. cynomolgi surveillance using reverse transcription for total nucleic acid preserved samples or dried blood spots. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.04.24305339. [PMID: 38633782 PMCID: PMC11023669 DOI: 10.1101/2024.04.04.24305339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/μL for P. knowlesi and 0.002 parasites/μL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/μL); Divis et al. real-time 18S rRNA (0.0002 parasites/μL); Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/μL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.
Collapse
Affiliation(s)
- Kamil A Braima
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Inke ND Lubis
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | | | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre-Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
- School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia
| | | | - Irbah RA Nainggolan
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Ranti Permatasari
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Leily Trianty
- Eijkman Research Center for Molecular Biology, BRIN, Indonesia
| | | | - Sitti Saimah binti Sakam
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Angelica F Tan
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre-Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Jacob AF Westaway
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - PingChin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah Malaysia
| | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Henry Surendra
- Monash University Indonesia, Tangerang, Indonesia
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | | | - Christopher L Peatey
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Mohd Arshil Moideen
- Malaysian Armed Forces and Faculty of Medicine & Defence Health, National Defence University of Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Colin J Sutherland
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
12
|
Sikulu-Lord MT, Edstein MD, Goh B, Lord AR, Travis JA, Dowell FE, Birrell GW, Chavchich M. Rapid and non-invasive detection of malaria parasites using near-infrared spectroscopy and machine learning. PLoS One 2024; 19:e0289232. [PMID: 38527002 PMCID: PMC10962802 DOI: 10.1371/journal.pone.0289232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/26/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Novel and highly sensitive point-of-care malaria diagnostic and surveillance tools that are rapid and affordable are urgently needed to support malaria control and elimination. METHODS We demonstrated the potential of near-infrared spectroscopy (NIRS) technique to detect malaria parasites both, in vitro, using dilutions of infected red blood cells obtained from Plasmodium falciparum cultures and in vivo, in mice infected with P. berghei using blood spotted on slides and non-invasively, by simply scanning various body areas (e.g., feet, groin and ears). The spectra were analysed using machine learning to develop predictive models for infection. FINDINGS Using NIRS spectra of in vitro cultures and machine learning algorithms, we successfully detected low densities (<10-7 parasites/μL) of P. falciparum parasites with a sensitivity of 96% (n = 1041), a specificity of 93% (n = 130) and an accuracy of 96% (n = 1171) and differentiated ring, trophozoite and schizont stages with an accuracy of 98% (n = 820). Furthermore, when the feet of mice infected with P. berghei with parasitaemia ≥3% were scanned non-invasively, the sensitivity and specificity of NIRS were 94% (n = 66) and 86% (n = 342), respectively. INTERPRETATION These data highlights the potential of NIRS technique as rapid, non-invasive and affordable tool for surveillance of malaria cases. Further work to determine the potential of NIRS to detect malaria in symptomatic and asymptomatic malaria cases in the field is recommended including its capacity to guide current malaria elimination strategies.
Collapse
Affiliation(s)
- Maggy T. Sikulu-Lord
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael D. Edstein
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Brendon Goh
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Anton R. Lord
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jye A. Travis
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Floyd E. Dowell
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Geoffrey W. Birrell
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Costa E, Rocha D, Lopes JIF, Andrade E, Cardoso P, Ribeiro M, Fontana-Maurell M, Vicentino ARR, Calazans AR, Arruda MB, Mesquita CDA, Ferreira AGP, Amorim Filho L, Alvarez P. Detection of Plasmodium spp. in asymptomatic blood donors by the new Brazilian NAT PLUS HIV/HBV/HCV/Malaria Bio-Manguinhos kit. Transfusion 2024; 64:501-509. [PMID: 38258881 DOI: 10.1111/trf.17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Transfusion-transmitted malaria (TTM) is a public health problem in endemic and nonendemic areas. The Brazilian Ministry of Health (MH) requested the development of a nucleic acid amplification test (NAT) for the detection of Plasmodium spp. in public blood centers to increase blood safety. STUDY DESIGN AND METHODS The new Brazilian NAT kit named NAT PLUS HIV/HBV/HCV/Malaria Bio-Manguinhos was first implemented in HEMORIO, a public blood center in the city of Rio de Janeiro. Since October 1, 2022, this blood center has been testing all its blood donations for malaria in a pool of six plasma samples to detect Plasmodium spp. by real-time polymerase chain reaction (PCR). RESULTS Since the implementation of the NAT PLUS platform until February 2023, HEMORIO has successfully received and tested 200,277 donations. The platform detected two asymptomatic donors in the city of Rio de Janeiro, which is a nonendemic region for malaria. Our analyses suggested a malaria from the Amazon region caused by Plasmodium vivax, in the first case, while an autochthonous transmission case by Plasmodium malariae was identified in the rural area of Rio de Janeiro state. DISCUSSION The NAT PLUS platform detects Plasmodium spp. in plasma samples with sensitivity capable of detecting subpatent infections. This is the first time worldwide that a group developed and implemented molecular diagnosis for Plasmodium spp. to be used by public blood centers to avoid TTM.
Collapse
Affiliation(s)
- Elaine Costa
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | - Daniele Rocha
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | | | - Elisabete Andrade
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | - Pedro Cardoso
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | - Marisa Ribeiro
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | - Marcela Fontana-Maurell
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amanda Roberta Revoredo Vicentino
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Alexandre Rodrigues Calazans
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | - Monica Barcellos Arruda
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | | | - Antonio Gomes Pinto Ferreira
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| | | | - Patrícia Alvarez
- Laboratório de Tecnologia Diagnóstica (LATED), Instituto de Tecnologia de Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brasil
| |
Collapse
|
14
|
Koliopoulos P, Kayange N, Jensen C, Gröndahl B, Eichmann J, Daniel T, Huth F, Eckert T, Klamm N, Follmann M, Medina-Montaño GC, Hokororo A, Pretsch L, Klüber J, Schmidt C, Züchner A, Addo MM, Okamo B, Mshana SE, Gehring S. Challenges in Diagnosing and Treating Acutely Febrile Children with Suspected Malaria at Health Care Facilities in the Lake Mwanza Region of Tanzania. Am J Trop Med Hyg 2024; 110:202-208. [PMID: 38150741 PMCID: PMC10859794 DOI: 10.4269/ajtmh.23-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/20/2023] [Indexed: 12/29/2023] Open
Abstract
Acute febrile diseases transmitted by mosquitos are a diagnostic challenge for pediatricians working in sub-Saharan Africa. Misclassification due to the lack of rapid, reliable diagnostic tests leads to the overuse of antibiotics and antimalarials. Children presenting with acute fever and suspected of having malaria were examined at health care facilities in the Mwanza Region of Tanzania. The sensitivity and specificity of blood smear microscopy and malaria rapid diagnostic tests that targeted histidine-rich protein 2 and Plasmodium lactate dehydrogenase were compared with a multiplex reverse transcriptase-polymerase chain reaction (PCR)-ELISA. Six hundred ninety-eight children presented with acute fever and met the criteria for inclusion; 23% received antibiotics and 23% received antimalarials prior to admission. Subsequently, 20% were confirmed by PCR to have Plasmodium falciparum infection. Blood smear microscopy exhibited 33% sensitivity and 93% specificity. The malaria rapid test provided 87% sensitivity and 98% specificity in detecting acute malaria infections. Only 7% of malaria-negative children received antimalarials at Sengerema Designated District Hospital when treatment was guided by the results of rapid testing. In contrast, 75% of malaria-negative patients were treated with antimalarial drugs at health facilities that used blood smears as the standard diagnostic test. Misclassification and premedication of nonmalarial, febrile illnesses contribute to the emergence of antimalarial and antimicrobial resistance. The incorporation of malaria rapid diagnostic tests into the clinical routine translated into improved treatment and a significant reduction in antimalarial drug prescriptions.
Collapse
Affiliation(s)
- Philip Koliopoulos
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Neema Kayange
- Department of Pediatric and Adolescent Medicine, Bugando Medical Centre, Mwanza, Tanzania
| | - Christian Jensen
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Britta Gröndahl
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Jana Eichmann
- Department of Pediatric and Adolescent Medicine, St. Joseph Hospital, Berlin, Germany
| | - Tim Daniel
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Florian Huth
- Department of Visceral and Thoracic Surgery, Klinikum Worms, Worms, Germany
| | - Till Eckert
- Department of Internal Medicine, GeoMed Kreisklinik, Gerolzhofen, Germany
| | - Nele Klamm
- Center of Gynecology and Obstetrics, Augusta-Kranken-Anstalt, Bochum, Germany
| | - Marlene Follmann
- Department of Internal Medicine, Gesundheits- und Pflegezentrum, Rüsselsheim, Germany
| | | | - Adolfine Hokororo
- Department of Pediatric and Adolescent Medicine, Bugando Medical Centre, Mwanza, Tanzania
| | - Leah Pretsch
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Julia Klüber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christian Schmidt
- Department of Pediatric and Adolescent Medicine, St. Vinzenz-Hospital, Dinslaken, Germany
| | - Antke Züchner
- CCBRT Maternity and Newborn Hospital, Dar es Salaam, Tanzania
| | - Marylyn M. Addo
- Institute for Infection Research and Vaccine Development, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bernard Okamo
- Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | | | - Stephan Gehring
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
15
|
Ochora DO, Murithi C, Masai RJ, Abdi F, Cheruyiot A, Katuura E, Asiimwe S, Nabatanzi A, Anywar G, Oryem-Origa H, Namukobe J, Kakudidi EK, Yenesew A, Akala HM, Kamau E. Ex vivo and in vitro antiplasmodial activity and toxicity of Caesalpinia decapetala (Roth) Alston (Fabaceae). JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117007. [PMID: 37549860 DOI: 10.1016/j.jep.2023.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is among the most prevalent and devastating parasitic diseases globally with most cases reported in Sub-Saharan Africa. One of the major reasons for the high malaria prevalence is the ever-increasing emergence of resistant strains of malaria-causing parasites to the currently used antimalarial drugs. This, therefore, calls for the search for antimalarial compounds with alternative modes of action. Plants used in traditional medicine for the treatment of malaria offer possible sources of such compounds. Caesalpinia decapetala has been used traditionally for the treatment of various diseases including malaria. However, the antiplasmodial activity of the plant has never been reported. AIM OF THE STUDY To determine the ex vivo and in vitro antiplasmodial activities of the extracts of the roots, stem bark and leaves of Caesalpinia decapetala. METHODOLOGY The roots, stem bark and leaves of Caesalpinia decapetala (Roth) Alston (Caesalpiniaceae) were collected and air-dried under a shade then extracted consecutively with dichloromethane and methanol (1:1 (v/v) (4 × 0.8 L). The extracts were tested for antiplasmodial activities against four strains of Plasmodium falciparum (W2, DD2, 3D7, and D6) and fresh P. falciparum field isolates using the SYBR green I assay. The mean fifty percent inhibition concentration (IC50) was determined for each assay. An acute oral toxicity test was done based on the Organization for Economic Cooperation and Development (OECD 425) guidelines using Swiss albino mice. RESULTS The leaves and stem bark extracts showed good antiplasmodial activities with IC50 values of 4.54 and 4.86 μg/mL, respectively, when tested against the fresh field isolates ex vivo. Similarly, the roots extract showed an IC50 value of 6.49 μg/mL when tested against field isolates ex vivo. The roots extract showed the highest antiplasmodial activities among the samples when tested against W2 (IC50 = 6.12 μg/mL), DD2 (IC50 = 8.17 μg/mL), and D6 (IC50 = 16.02 μg/mL) strains of P. falciparum whereas the leaves showed the highest activity (IC50 = 9.3 μg/mL) when tested against the 3D7 strain of P. falciparum. No mortality was observed for the mice treated with 2000 mg/kg of the leaves and stem bark extracts. The mouse treated with 2000 mg/kg of the roots extracts regained weight by day 12 of the observation period. CONCLUSION Caesalpinia decapetala has the potential to suppress the growth of P. falciparum thereby contributing to combating the recurrent emergence of antimalarial drug resistance.
Collapse
Affiliation(s)
- Douglas O Ochora
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya; DSI/NWU, Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, 2520, Potchefstroom, South Africa; United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya.
| | - Caroline Murithi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Rael J Masai
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya.
| | - Farid Abdi
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya.
| | - Agnes Cheruyiot
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya.
| | - Esther Katuura
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Savina Asiimwe
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Alice Nabatanzi
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Hannington Oryem-Origa
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Jane Namukobe
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Esezah K Kakudidi
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Abiy Yenesew
- Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Hoseah M Akala
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya.
| | - Edwin Kamau
- Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, Honolulu, Hawaii (HI), USA.
| |
Collapse
|
16
|
Kamau E, Maisiba R, Dear N, Esber A, Parikh AP, Iroezindu M, Bahemana E, Kibuuka H, Owuoth J, Maswai J, Opot B, Okoth RO, Abdi F, Mwalo M, Juma D, Andagalu B, Akala HM, Shah N, Crowell TA, Cowden J, Polyak CS, Ake JA. Implications of asymptomatic malaria infections on hematologic parameters in adults living with HIV in malaria-endemic regions with varying transmission intensities. Int J Infect Dis 2023; 137:82-89. [PMID: 37788741 DOI: 10.1016/j.ijid.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVES HIV and malaria coinfection impacts disease management and clinical outcomes. This study investigated hematologic abnormalities in malaria-asymptomatic people living with HIV (PLHIV) in regions with differing malaria transmission. METHODS Study participants were enrolled in the African Cohort Study: two sites in Kenya, one in Uganda, and one in Nigeria. Data was collected at enrollment and every 6 months. Logistic regression estimated odds ratios for associations between HIV/malaria status and anemia, thrombocytopenia, and leucopenia. RESULTS Samples from 1587 participants with one or more visits comprising 1471 (92.7%) from PLHIV and 116 (7.3%) without HIV were analyzed. Parasite point prevalence significantly differed across the study sites (P <0.001). PLHIV had higher odds of anemia, with males at lower odds compared to females; the odds of anemia decreased with age, reaching significance in those ≥50 years old. Participants in Kisumu, Kenya had higher odds of anemia compared to other sites. PLHIV had higher odds of leucopenia, but malaria co-infection was not associated with worsened leucopenia. The odds of thrombocytopenia were decreased in HIV/malaria co-infection compared to the uninfected group. CONCLUSION Hematological parameters are important indicators of health and disease. In PLHIV with asymptomatic malaria co-infection enrolled across four geographic sites in three African countries, abnormalities in hematologic parameters differ in different malaria transmission settings and are region-specific.
Collapse
Affiliation(s)
- Edwin Kamau
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; Department of Pathology and Area Laboratory Service, Tripler Army Medical Center, Honolulu, USA.
| | - Risper Maisiba
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Nicole Dear
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, USA
| | - Allahna Esber
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, USA
| | - Ajay P Parikh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, USA
| | - Michael Iroezindu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; HJF Medical Research International, Abuja, Nigeria
| | - Emmanuel Bahemana
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; HJF Medical Research International, Mbeya, Tanzania
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - John Owuoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya; HJF Medical Research International, Kisumu, Kenya
| | - Jonah Maswai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; U.S. Army Medical Research Directorate - Africa, Kericho, Kenya
| | - Benjamin Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Raphael O Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Farid Abdi
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Maureen Mwalo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya; Kenya Medical Research Institute, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Neha Shah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, USA
| | - Jessica Cowden
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, Kisumu, Kenya
| | - Christina S Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA
| |
Collapse
|
17
|
Bechtold P, Wagner P, Hosch S, Gregorini M, Stark WJ, Gody JC, Kodia-Lenguetama ER, Pagonendji MS, Donfack OT, Phiri WP, García GA, Nsanzanbana C, Daubenberger CA, Schindler T, Vickos U. Development and evaluation of PlasmoPod: A cartridge-based nucleic acid amplification test for rapid malaria diagnosis and surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001516. [PMID: 37756280 PMCID: PMC10529553 DOI: 10.1371/journal.pgph.0001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Malaria surveillance is hampered by the widespread use of diagnostic tests with low sensitivity. Adequate molecular malaria diagnostics are often only available in centralized laboratories. PlasmoPod is a novel cartridge-based nucleic acid amplification test for rapid, sensitive, and quantitative detection of malaria parasites. PlasmoPod is based on reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of the highly abundant Plasmodium spp. 18S ribosomal RNA/DNA biomarker and is run on a portable qPCR instrument which allows diagnosis in less than 30 minutes. Our analytical performance evaluation indicates that a limit-of-detection as low as 0.02 parasites/μL can be achieved and no cross-reactivity with other pathogens common in malaria endemic regions was observed. In a cohort of 102 asymptomatic individuals from Bioko Island with low malaria parasite densities, PlasmoPod accurately detected 83 cases, resulting in an overall detection rate of 81.4%. Notably, there was a strong correlation between the Cq values obtained from the reference RT-qPCR assay and those obtained from PlasmoPod. In an independent cohort, using dried blood spots from malaria symptomatic children living in the Central African Republic, we demonstrated that PlasmoPod outperforms malaria rapid diagnostic tests based on the PfHRP2 and panLDH antigens as well as thick blood smear microscopy. Our data suggest that this 30-minute sample-to-result RT-qPCR procedure is likely to achieve a diagnostic performance comparable to a standard laboratory-based RT-qPCR setup. We believe that the PlasmoPod rapid NAAT could enable widespread accessibility of high-quality and cost-effective molecular malaria surveillance data through decentralization of testing and surveillance activities, especially in elimination settings.
Collapse
Affiliation(s)
- Philippe Bechtold
- Institute for Chemical and Bioengineering, ETH Zurich, Zuerich, Switzerland
- Diaxxo AG, Zuerich, Switzerland
| | - Philipp Wagner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Salome Hosch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Michele Gregorini
- Institute for Chemical and Bioengineering, ETH Zurich, Zuerich, Switzerland
- Diaxxo AG, Zuerich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zuerich, Switzerland
- Diaxxo AG, Zuerich, Switzerland
| | - Jean Chrysostome Gody
- Paediatric Hospital and University Complex of Bangui, Bangui, Central African Republic
| | | | | | | | | | | | - Christian Nsanzanbana
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Claudia A. Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ulrich Vickos
- Infectious and Tropical Diseases Unit, Department of Medicine, Amitié Hospital, Bangui, Central African Republic
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
19
|
Andagalu B, Watson OJ, Onyango I, Opot B, Okoth R, Chemwor G, Sifuna P, Juma D, Cheruiyot A, Yeda R, Okudo C, Wafubwa J, Yalwala S, Abuom D, Ogutu B, Cowden J, Akala HM, Kamau E. Malaria Transmission Dynamics in a High-Transmission Setting of Western Kenya and the Inadequate Treatment Response to Artemether-Lumefantrine in an Asymptomatic Population. Clin Infect Dis 2023; 76:704-712. [PMID: 35767269 PMCID: PMC9938745 DOI: 10.1093/cid/ciac527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.
Collapse
Affiliation(s)
- Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Oliver J Watson
- Medical Research Council, Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Irene Onyango
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Benjamin Opot
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Peter Sifuna
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Agnes Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Jackline Wafubwa
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Santos Yalwala
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - David Abuom
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | | | - Jessica Cowden
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Edwin Kamau
- Department of Emerging and Infectious Diseases (DEID), US Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Jung S, Bong KW, Na W. Multiplex Assay for Rapid Detection and Analysis of Nucleic Acid Using Barcode Receptor Encoded Particle (BREP). Biomedicines 2022; 10:3246. [PMID: 36552002 PMCID: PMC9775236 DOI: 10.3390/biomedicines10123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Several multiplex nucleic acid assay platforms have been developed in response to the increasing importance of nucleic acid analysis, but these assays should be optimized as per the requirements of point-of-care for clinical diagnosis. To achieve rapid and accurate detection, involving a simple procedure, we propose a new concept in the field of nucleic acid multiplex assay platforms using hydrogel microparticles, called barcode receptor-encoded particles (BREPs). The BREP assay detects multiple targets in a single reaction with a single fluorophore by analyzing graphically encoded hydrogel particles. By introducing sets of artificially synthesized barcode receptor and barcode probes, the BREP assay is easily applicable in multiplexing any genetic target; sets of barcode receptors and barcode probes should be designed delicately for universal application. The performance of the BREP assay was successfully verified in a multiplex assay for the identification of different malaria species with high sensitivity, wide dynamic range, fast detection time, and multiplexibility.
Collapse
Affiliation(s)
- Semyung Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonhwi Na
- Engineering Research Center for Biofluid Biopsy, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Kerr G, Robinson LJ, Russell TL, Macdonald J. Lessons for improved COVID-19 surveillance from the scale-up of malaria testing strategies. Malar J 2022; 21:223. [PMID: 35858916 PMCID: PMC9296766 DOI: 10.1186/s12936-022-04240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Effective control of infectious diseases is facilitated by informed decisions that require accurate and timely diagnosis of disease. For malaria, improved access to malaria diagnostics has revolutionized malaria control and elimination programmes. However, for COVID-19, diagnosis currently remains largely centralized and puts many low- and middle-income countries (LMICs) at a disadvantage. Malaria and COVID-19 are infectious diseases that share overlapping symptoms. While the strategic responses to disease control for malaria and COVID-19 are dependent on the disease ecologies of each disease, the fundamental need for accurate and timely testing remains paramount to inform accurate responses. This review highlights how the roll-out of rapid diagnostic tests has been fundamental in the fight against malaria, primarily within the Asia Pacific and along the Greater Mekong Subregion. By learning from the successful elements of malaria control programmes, it is clear that improving access to point-of-care testing strategies for COVID-19 will provide a suitable framework for COVID-19 diagnosis in not only the Asia Pacific, but all malarious countries. In malaria-endemic countries, an integrated approach to point-of-care testing for COVID-19 and malaria would provide bi-directional benefits for COVID-19 and malaria control, particularly due to their paralleled likeness of symptoms, infection control strategies and at-risk individuals. This is especially important, as previous disease pandemics have disrupted malaria control infrastructure, resulting in malaria re-emergence and halting elimination progress. Understanding and combining strategies may help to both limit disruptions to malaria control and support COVID-19 control.
Collapse
Affiliation(s)
- Genevieve Kerr
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | | | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, ACT, Australia.
| |
Collapse
|
22
|
Lin H, Zhao S, Ye Y, Shao L, Jiang N, Yang K. A Fluorescent Recombinase Aided Amplification Assay for Detection of Babesia microti. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:201-205. [PMID: 35772739 PMCID: PMC9256288 DOI: 10.3347/kjp.2022.60.3.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Babesia microti is one of the most common causative agents of babesiosis. A sensitive and rapid detection is necessary for screening potentially infected individuals. In this study, B. microti cytochrome c oxidase subunit I (cox1) was selected as the target gene, multiple primers were designed, and optimized by a recombinase-aided amplification (RAA) assay. The optimal primers and probe were labeled with fluorescein. The sensitivity of fluorescent RAA (fRAA) was evaluated using gradient diluents of the cox1 recombinant plasmid and genomic DNA extracted from whole blood of B. microti infected mice. The specificity of fRAA was assessed by other transfusion transmitted parasites. The analytical sensitivity of the fRAA assay was 10 copies of recombinant plasmid per reaction and 10 fg/μl B. microti genomic DNA. No cross-reaction with any other blood-transmitted parasites was observed. Our results demonstrated that the fRAA assay would be rapid, sensitive, and specific for the detection of B. microti.
Collapse
Affiliation(s)
| | - Song Zhao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064,
PR China
| | - Yuying Ye
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064,
PR China
| | - Lei Shao
- Jiangsu Province Blood Center, Nanjing 210042,
PR China
| | - Nizhen Jiang
- Jiangsu Province Blood Center, Nanjing 210042,
PR China
| | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064,
PR China
- Corresponding authors (, )
| |
Collapse
|
23
|
Nundu SS, Simpson SV, Arima H, Muyembe JJ, Mita T, Ahuka S, Yamamoto T. It Is Time to Strengthen the Malaria Control Policy of the Democratic Republic of Congo and Include Schools and School-Age Children in Malaria Control Measures. Pathogens 2022; 11:729. [PMID: 35889975 PMCID: PMC9315856 DOI: 10.3390/pathogens11070729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite a decade of sustained malaria control, malaria remains a serious public health problem in the Democratic Republic of Congo (DRC). Children under five years of age and school-age children aged 5-15 years remain at high risk of symptomatic and asymptomatic malaria infections. The World Health Organization's malaria control, elimination, and eradication recommendations are still only partially implemented in DRC. For better malaria control and eventual elimination, the integration of all individuals into the national malaria control programme will strengthen malaria control and elimination strategies in the country. Thus, inclusion of schools and school-age children in DRC malaria control interventions is needed.
Collapse
Affiliation(s)
- Sabin S. Nundu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; (J.-J.M.); (S.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (S.V.S.); (T.Y.)
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Shirley V. Simpson
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (S.V.S.); (T.Y.)
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; (J.-J.M.); (S.A.)
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Steve Ahuka
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; (J.-J.M.); (S.A.)
| | - Taro Yamamoto
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (S.V.S.); (T.Y.)
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| |
Collapse
|
24
|
Christensen P, Bozdech Z, Watthanaworawit W, Imwong M, Rénia L, Malleret B, Ling C, Nosten F. Reverse transcription PCR to detect low density malaria infections. Wellcome Open Res 2022; 6:39. [PMID: 35592834 PMCID: PMC9086519 DOI: 10.12688/wellcomeopenres.16564.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Targeted malaria elimination strategies require highly sensitive tests to detect low density malaria infections (LDMI). Commonly used methods for malaria diagnosis such as light microscopy and antigen-based rapid diagnostic tests (RDTs) are not sensitive enough for reliable identification of infections with parasitaemia below 200 parasites per milliliter of blood. While targeted malaria elimination efforts on the Thailand-Myanmar border have successfully used high sample volume ultrasensitive quantitative PCR (uPCR) to determine malaria prevalence, the necessity for venous collection and processing of large quantities of patient blood limits the widespread tractability of this method. Methods: Here we evaluated a real-time reverse transcription PCR (RT-qPCR) method that reduces the required sample volume compared to uPCR. To do this, 304 samples collected from an active case detection program in Kayin state, Myanmar were compared using uPCR and RT-qPCR. Results: Plasmodium spp. RT-qPCR confirmed 18 of 21 uPCR Plasmodium falciparum positives, while P. falciparum specific RT-qPCR confirmed 17 of the 21 uPCR P. falciparum positives. Combining both RT-qPCR results increased the sensitivity to 100% and specificity was 95.1%. Conclusion: Malaria detection in areas of low transmission and LDMI can benefit from the increased sensitivity of ribosomal RNA detection by RT-PCR, especially where sample volume is limited. Isolation of high quality RNA also allows for downstream analysis of malaria transcripts.
Collapse
Affiliation(s)
- Peter Christensen
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Microbiology and Immunology, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Laurent Rénia
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- A*STAR ID Labs, A*STAR, Singapore, 138648, Singapore
| | - Benoît Malleret
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Kaewchot S, Tangsudjai S, Sariya L, Mongkolphan C, Saechin A, Sariwongchan R, Panpeth N, Thongsahuan S, Suksai P. Zoonotic pathogens survey in free-living long-tailed macaques in Thailand. Int J Vet Sci Med 2022; 10:11-18. [PMID: 35291581 PMCID: PMC8890534 DOI: 10.1080/23144599.2022.2040176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Long-tailed macaques (Macaca fascicularis) are known to harbour a variety of infectious pathogens, including zoonotic species. Long-tailed macaques and humans coexist in Thailand, which creates potential for interspecies pathogen transmission. This study was conducted to assess the presence of B virus, Mycobacterium spp., simian foamy virus (SFV), hepatitis B virus (HBV), and Plasmodium spp. in 649 free-living Thai long-tailed macaques through polymerase-chain reaction. DNA of SFV (56.5%), HBV (0.3%), and Plasmodium spp. (2.2%) was detected in these macaques, whereas DNA of B virus and Mycobacterium spp. was absent. SFV infection in long-tailed macaques is broadly distributed in Thailand and is correlated with age. The HBV sequences in this study were similar to HBV sequences from orangutans. Plasmodium spp. DNA was identified as P. inui. Collectively, our results indicate that macaques can carry zoonotic pathogens, which have a public health impact. Surveillance and awareness of pathogen transmission between monkeys and humans are important.
Collapse
Affiliation(s)
- Supakarn Kaewchot
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Siriporn Tangsudjai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Chalisa Mongkolphan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Aeknarin Saechin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rattana Sariwongchan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Natanon Panpeth
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | | | - Parut Suksai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
26
|
Dahal P, Khanal B, Rai K, Kattel V, Yadav S, Bhattarai NR. Challenges in Laboratory Diagnosis of Malaria in a Low-Resource Country at Tertiary Care in Eastern Nepal: A Comparative Study of Conventional vs. Molecular Methodologies. J Trop Med 2021; 2021:3811318. [PMID: 34992661 PMCID: PMC8727160 DOI: 10.1155/2021/3811318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
For ongoing malaria elimination programmes, available methods such as microscopy and rapid diagnostic tests (RDTs) cannot detect all malaria cases in acute febrile illness. These methods are entirely dependent on the course of infection, parasite load, and skilled technical resources. Our study objectives were to estimate the performance of light microscopy and a RDT as well as real-time PCR for the detection of the Plasmodium parasite. Altogether, 52 blood samples collected from patients with acute febrile illness were tested by microscopy, RDT, and real-time PCR. The results were compared in terms of sensitivity and specificity. Microscopy detected the malaria parasite in 5.8% of the blood samples whereas 13.5% were detected by the RDT and 27% by real-time PCR. Considering real-time PCR as the gold standard method, microscopy had a sensitivity of 21.4% and a specificity of 100%, and the RDT had a sensitivity of 28.6% and a specificity of 92.1%. Microscopy together with the RDT successfully detected malaria positive cases in blood samples of Ct value below 20, but both were unable to detect malaria cases between 26-40 Ct value ranges amplified by real-time PCR. Despite various diagnostic tools being available, microscopy still remains the method of choice for diagnosis, while the RDT is user-friendly when applied at the point of care. However, our preliminary results emphasize the need to implement the test with higher sensitivity and specificity in the context of a malaria elimination programme. Such programmes can be a crucial opportunity to understand the species prevalent in a low-endemic region. However, these results should be further verified with a large cohort study to document the submicroscopic infection.
Collapse
Affiliation(s)
- Pragyan Dahal
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Basudha Khanal
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Keshav Rai
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Vivek Kattel
- Department of Internal Medicine, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Satish Yadav
- Department of Pediatrics, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Narayan Raj Bhattarai
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
27
|
Ochora DO, Kakudidi EK, Namukobe J, Ipulet P, Wakoli DM, Okore W, Mwakio EW, Yeda RA, Cheruiyot AC, Juma DW, Andagalu B, Roth AL, Ogutu BR, Yenesew A, Akala HM. Synergism in Antiplasmodial Activities of Artemether and Lumefantrine in Combination with Securidaca longipedunculata Fresen (Polygalaceae). PLANTS (BASEL, SWITZERLAND) 2021; 11:47. [PMID: 35009051 PMCID: PMC8747340 DOI: 10.3390/plants11010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Malaria is the most lethal parasitic disease in the world. The frequent emergence of resistance by malaria parasites to any drug is the hallmark of sustained malaria burden. Since the deployment of artemisinin-based combination therapies (ACTs) it is clear that for a sustained fight against malaria, drug combination is one of the strategies toward malaria elimination. In Sub-Saharan Africa where malaria prevalence is the highest, the identification of plants with a novel mechanism of action that is devoid of cross-resistance is a feasible strategy in drug combination therapy. Thus, artemether and lumefantrine were separately combined and tested with extracts of Securidaca longipedunculata, a plant widely used to treat malaria, at fixed extract-drug ratios of 4:1, 3:1, 1:1, 1:2, 1:3, and 1:4. These combinations were tested for antiplasmodial activity against three strains of Plasmodium falciparum (W2, D6, and DD2), and seven field isolates that were characterized for molecular and ex vivo drug resistance profiles. The mean sum of fifty-percent fractional inhibition concentration (FIC50) of each combination and singly was determined. Synergism was observed across all fixed doses when roots extracts were combined with artemether against D6 strain (FIC50 0.403 ± 0.068) and stems extract combined with lumefantrine against DD2 strain (FIC50 0.376 ± 0.096) as well as field isolates (FIC50 0.656 ± 0.067). Similarly, synergism was observed in all ratios when leaves extract were combined with lumefantrine against W2 strain (FIC50 0.456 ± 0.165). Synergism was observed in most combinations indicating the potential use of S. longipedunculata in combination with artemether and lumefantrine in combating resistance.
Collapse
Affiliation(s)
- Douglas O. Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda; (E.K.K.); (P.I.)
| | - Esezah K. Kakudidi
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda; (E.K.K.); (P.I.)
| | - Jane Namukobe
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda;
| | - Perpetua Ipulet
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda; (E.K.K.); (P.I.)
| | - Dancan M. Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro P.O. Box 536-20115, Kenya;
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kisumu P.O. Box 54-40100, Kenya;
| | - Winnie Okore
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kisumu P.O. Box 54-40100, Kenya;
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Edwin W. Mwakio
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Redempthah A. Yeda
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Agnes C. Cheruiyot
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Dennis W. Juma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Ben Andagalu
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Amanda L. Roth
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Bernhards R. Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu P.O. Box 1578-40100, Kenya;
| | - Abiy Yenesew
- Department of Chemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Hoseah M. Akala
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| |
Collapse
|
28
|
Nundu SS, Culleton R, Simpson SV, Arima H, Muyembe JJ, Mita T, Ahuka S, Yamamoto T. Malaria parasite species composition of Plasmodium infections among asymptomatic and symptomatic school-age children in rural and urban areas of Kinshasa, Democratic Republic of Congo. Malar J 2021; 20:389. [PMID: 34600558 PMCID: PMC8487491 DOI: 10.1186/s12936-021-03919-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Malaria remains a major public health concern in the Democratic Republic of Congo (DRC), and school-age children are relatively neglected in malaria prevalence surveys and may constitute a significant reservoir of transmission. This study aimed to understand the burden of malaria infections in school-age children in Kinshasa/DRC. METHODS A total of 634 (427 asymptomatic and 207 symptomatic) blood samples collected from school-age children aged 6 to 14 years were analysed by microscopy, RDT and Nested-PCR. RESULTS The overall prevalence of Plasmodium spp. by microscopy, RDT and PCR was 33%, 42% and 62% among asymptomatic children and 59%, 64% and 95% in symptomatic children, respectively. The prevalence of Plasmodium falciparum, Plasmodium malariae and Plasmodium ovale spp. by PCR was 58%, 20% and 11% among asymptomatic and 93%, 13% and 16% in symptomatic children, respectively. Among P. ovale spp., P. ovale curtisi, P. ovale wallikeri and mixed P. ovale curtisi + P. ovale wallikeri accounted for 75%, 24% and 1% of infections, respectively. All Plasmodium species infections were significantly more prevalent in the rural area compared to the urban area in asymptomatic infections (p < 0.001). Living in a rural as opposed to an urban area was associated with a five-fold greater risk of asymptomatic malaria parasite carriage (p < 0.001). Amongst asymptomatic malaria parasite carriers, 43% and 16% of children harboured mixed Plasmodium with P. falciparum infections in the rural and the urban areas, respectively, whereas in symptomatic malaria infections, it was 22% and 26%, respectively. Few children carried single infections of P. malariae (2.2%) and P. ovale spp. (1.9%). CONCLUSION School-age children are at significant risk from both asymptomatic and symptomatic malaria infections. Continuous systematic screening and treatment of school-age children in high-transmission settings is needed.
Collapse
Affiliation(s)
- Sabin S Nundu
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Ehime, Japan.
| | - Shirley V Simpson
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Steve Ahuka
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
29
|
Kamau E, Yates A, Maisiba R, Singoei V, Opot B, Adeny R, Arima CO, Otieno V, Sumbi CS, Okoth RO, Abdi F, Mwalo M, Ochola J, Otieno J, Ake J, Imbach M, Turley HA, Juma D, Akala HM, Owuoth J, Andagalu B, Crowell TA, Nwoga C, Cowden J, Polyak CS. Epidemiological and clinical implications of asymptomatic malaria and schistosomiasis co-infections in a rural community in western Kenya. BMC Infect Dis 2021; 21:937. [PMID: 34503469 PMCID: PMC8431856 DOI: 10.1186/s12879-021-06626-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria and schistosomiasis present considerable disease burden in tropical and sub-tropical areas and severity is worsened by co-infections in areas where both diseases are endemic. Although pathogenesis of these infections separately is well studied, there is limited information on the pathogenic disease mechanisms and clinical disease outcomes in co-infections. In this study, we investigated the prevalence of malaria and schistosomiasis co-infections, and the hematologic and blood chemistry abnormalities in asymptomatic adults in a rural fishing community in western Kenya. METHODS This sub-study used samples and data collected at enrollment from a prospective observational cohort study (RV393) conducted in Kisumu County, Kenya. The presence of malaria parasites was determined using microscopy and real-time-PCR, and schistosomiasis infection by urine antigen analysis (CCA). Hematological analysis and blood chemistries were performed using standard methods. Statistical analyses were performed to compare demographic and infection data distribution, and hematologic and blood chemistry parameters based on different groups of infection categories. Clinically relevant hematologic conditions were analyzed using general linear and multivariable Poisson regression models. RESULTS From February 2017 to May 2018, we enrolled 671 participants. The prevalence of asymptomatic Plasmodium falciparum was 28.2% (157/556) and schistosomiasis 41.2% (229/562), with 18.0% (100/556) of participants co-infected. When we analyzed hematological parameters using Wilcoxon rank sum test to evaluate median (IQR) distribution based on malarial parasites and/or schistosomiasis infection status, there were significant differences in platelet counts (p = 0.0002), percent neutrophils, monocytes, eosinophils, and basophils (p < 0.0001 each). Amongst clinically relevant hematological abnormalities, eosinophilia was the most prevalent at 20.6% (116/562), whereas thrombocytopenia was the least prevalent at 4.3% (24/562). In univariate model, Chi-Square test performed for independence between participant distribution in different malaria parasitemia/schistosomiasis infection categories within each clinical hematological condition revealed significant differences for thrombocytopenia and eosinophilia (p = 0.006 and p < 0.0001, respectively), which was confirmed in multivariable models. Analysis of the pairwise mean differences of liver enzyme (ALT) and kidney function (Creatinine Clearance) indicated the presence of significant differences in ALT across the infection groups (parasite + /CCA + vs all other groups p < .003), but no differences in mean Creatinine Clearance across the infection groups. CONCLUSIONS Our study demonstrates the high burden of asymptomatic malaria parasitemia and schistosomiasis infection in this rural population in Western Kenya. Asymptomatic infection with malaria or schistosomiasis was associated with laboratory abnormalities including neutropenia, leukopenia and thrombocytopenia. These abnormalities could be erroneously attributed to other diseases processes during evaluation of diseases processes. Therefore, evaluating for co-infections is key when assessing individuals with laboratory abnormalities. Additionally, asymptomatic infection needs to be considered in control and elimination programs given high prevalence documented here.
Collapse
Affiliation(s)
- Edwin Kamau
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Adam Yates
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA
| | - Risper Maisiba
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Valentine Singoei
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,HJF Medical Research International, Kisumu, Kenya
| | - Benjamin Opot
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Rose Adeny
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Cornel O Arima
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Victor Otieno
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Catherine S Sumbi
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Raphael O Okoth
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Farid Abdi
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Maurine Mwalo
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Jew Ochola
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,HJF Medical Research International, Kisumu, Kenya
| | - June Otieno
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Imbach
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA
| | - Hannah A Turley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA
| | - Dennis Juma
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Hoseah M Akala
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - John Owuoth
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,HJF Medical Research International, Kisumu, Kenya
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya.,Kenya Medical Research Institute, Kisumu, Kenya
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA
| | - Chiaka Nwoga
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA
| | - Jessica Cowden
- United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Christina S Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| | | |
Collapse
|
30
|
Christensen P, Bozdech Z, Watthanaworawit W, Imwong M, Rénia L, Malleret B, Ling C, Nosten F. Reverse transcription PCR to detect low density malaria infections. Wellcome Open Res 2021; 6:39. [PMID: 35592834 PMCID: PMC9086519 DOI: 10.12688/wellcomeopenres.16564.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 05/14/2024] Open
Abstract
Background: Targeted malaria elimination strategies require highly sensitive tests to detect low density malaria infections (LDMI). Commonly used methods for malaria diagnosis such as light microscopy and antigen-based rapid diagnostic tests (RDTs) are not sensitive enough for reliable identification of infections with parasitaemia below 200 parasites per milliliter of blood. While targeted malaria elimination efforts on the Thailand-Myanmar border have successfully used high sample volume ultrasensitive quantitative PCR (uPCR) to determine malaria prevalence, the necessity for venous collection and processing of large quantities of patient blood limits the widespread tractability of this method. Methods: Here we evaluated a real-time reverse transcription PCR (RT-qPCR) method that reduces the required sample volume compared to uPCR. To do this, 304 samples collected from an active case detection program in Kayin state, Myanmar were compared using uPCR and RT-qPCR. Results: Plasmodium spp. RT-qPCR confirmed 18 of 21 uPCR Plasmodium falciparum positives, while P. falciparum specific RT-qPCR confirmed 17 of the 21 uPCR P. falciparum positives. Combining both RT-qPCR results increased the sensitivity to 100% and specificity was 95.1%. Conclusion: Malaria detection in areas of low transmission and LDMI can benefit from the increased sensitivity of ribosomal RNA detection by RT-PCR, especially where sample volume is limited. Isolation of high quality RNA also allows for downstream analysis of malaria transcripts.
Collapse
Affiliation(s)
- Peter Christensen
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Microbiology and Immunology, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Laurent Rénia
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- A*STAR ID Labs, A*STAR, Singapore, 138648, Singapore
| | - Benoît Malleret
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Cannon MV, Bogale HN, Bhalerao D, Keita K, Camara D, Barry Y, Keita M, Coulibaly D, Kone AK, Doumbo OK, Thera MA, Plowe CV, Travassos MA, Irish SR, Yeroshefsky J, Dorothy J, Prendergast B, St. Laurent B, Fritz ML, Serre D. High-throughput detection of eukaryotic parasites and arboviruses in mosquitoes. Biol Open 2021; 10:bio058855. [PMID: 34156069 PMCID: PMC8325944 DOI: 10.1242/bio.058855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Vector-borne pathogens cause many human infectious diseases and are responsible for high mortality and morbidity throughout the world. They can also cause livestock epidemics with dramatic social and economic consequences. Due to its high costs, vector-borne disease surveillance is often limited to current threats, and the investigation of emerging pathogens typically occurs after the reports of clinical cases. Here, we use high-throughput sequencing to detect and identify a wide range of parasites and viruses carried by mosquitoes from Cambodia, Guinea, Mali and the USA. We apply this approach to individual Anopheles mosquitoes as well as pools of mosquitoes captured in traps; and compare the outcomes of this assay when applied to DNA or RNA. We identified known human and animal pathogens and mosquito parasites belonging to a wide range of taxa, as well as DNA sequences from previously uncharacterized organisms. Our results also revealed that analysis of the content of an entire trap could be an efficient approach to monitor and identify rare vector-borne pathogens in large surveillance studies. Overall, we describe a high-throughput and easy-to-customize assay to screen for a wide range of pathogens and efficiently complement current vector-borne disease surveillance approaches.
Collapse
Affiliation(s)
- Matthew V. Cannon
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Devika Bhalerao
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kalil Keita
- Programme National de Lutte contre le Paludisme, Guinea
| | - Denka Camara
- Programme National de Lutte contre le Paludisme, Guinea
| | - Yaya Barry
- Programme National de Lutte contre le Paludisme, Guinea
| | - Moussa Keita
- Programme National de Lutte contre le Paludisme, Guinea
| | - Drissa Coulibaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark A. Travassos
- Malaria Research Program, Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Seth R. Irish
- U.S. President's Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Joshua Yeroshefsky
- Department of Entomology, University of Maryland College Park, College Park, MD 20742, USA
| | - Jeannine Dorothy
- Mosquito Control Program, Maryland Department of Agriculture, Annapolis, MD 21401, USA
| | - Brian Prendergast
- Mosquito Control Program, Maryland Department of Agriculture, Annapolis, MD 21401, USA
| | - Brandyce St. Laurent
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Megan L. Fritz
- Department of Entomology, University of Maryland College Park, College Park, MD 20742, USA
| | - David Serre
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Current Situation of Transfusion-Transmitted Malaria in China. J Trop Med 2021; 2021:3970370. [PMID: 34306101 PMCID: PMC8285173 DOI: 10.1155/2021/3970370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Although China is moving toward the eradication of malaria and no indigenous malaria has been reported in most Chinese provinces for several years, recent evaluations have revealed that imported cases remain a major challenge to eliminating malaria, with the number of transfusion-transmitted malaria (TTM) cases increasing over time. Here, we review several TTM case reports published after the implementation of the National Malaria Elimination Program in 2010. A total of 12 TTM cases were reported in China between 2013 and 2018. All recipients and donors were diagnosed using rapid diagnosis test and peripheral blood smears. Plasmodium species in donors with low-density parasites were identified using PCR. Nine (75.0%) were identified as Plasmodium falciparum, two (16.7%) were identified as Plasmodium vivax, and one (8.3%) was identified as Plasmodium ovale. All were imported from malaria-endemic areas. New action plans designed to meet the challenges of TTM are necessary to ensure the elimination of malaria in China. Paying more attention to the frequency of TTM could help to enhance blood safety in China.
Collapse
|
33
|
Kamau E, Bennett JW, Yadava A. Safety and Tolerability of Mosquito-Bite Induced Controlled Human Infection with P. vivax in Malaria-Naïve Study Participants - Clinical Profile and Utility of Molecular Diagnostic Methods. J Infect Dis 2021; 225:146-156. [PMID: 34161579 DOI: 10.1093/infdis/jiab332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Plasmodium vivax controlled-human-malaria-infection (PvCHMI) is an important tool for the evaluation of drugs, vaccines and pathologies associated with this parasite. However, there is little data on its safety due to the limited number of PvCHMIs performed to-date. METHODS We report clinical and laboratory data collected, to include hematological and biochemical profiles and adverse-events, following mosquito-bite induced PvCHMI in malaria-naïve study-participants (ClinicalTrials.gov_NCT01157897). Malaria diagnosis and treatment initiation was based on microscopic analysis of Giemsa-stained slides. Exploratory molecular assays were used to detect parasites using real-time PCR. RESULTS Adverse-events (AEs) were mild to moderate and no study-related severe AEs were observed in any of the study participants. Majority of the symptoms were transient, resolving within 48hours. Molecular-diagnostic methods detected parasitemia in 100% of study-participants before malaria diagnosis using microscopy. Of the reported AEs, microscopy detected 67-100%, qPCR 79-100% and qRT-PCR detected 96-100% of the study-participants prior to appearance of symptoms. Almost all the symptoms appeared after the initiation of treatment, likely as a known consequence of drug treatment. CONCLUSIONS PvCHMI is safe with majority of the infections being detected prior to the appearance of clinical symptoms, which can be further alleviated by using sensitive molecular methods for clinical diagnosis.
Collapse
Affiliation(s)
- Edwin Kamau
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Jason W Bennett
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.,Multidrug-resistant organism Repository & Surveillance Network, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Anjali Yadava
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
34
|
Kifude C, Stiffler D, Rockabrand D, Miller R, Parsons E, Ocholla S, Dizon NI, Torrevillas BK, Waitumbi J, Oyieko J, Luckhart S, Stewart VA. Asymptomatic falciparum and Non-falciparum Malarial Parasitemia in Adult Volunteers with and without HIV-1 Coinfection in a Cohort Study in Western Kenya. Am J Trop Med Hyg 2021; 105:159-166. [PMID: 34097645 DOI: 10.4269/ajtmh.21-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/19/2021] [Indexed: 11/07/2022] Open
Abstract
Asymptomatic malarial parasitemia represents the largest reservoir of infection and transmission, and the impact of coinfection with HIV-1 on this reservoir remains incompletely described. Accordingly, we sought to determine the prevalence of asymptomatic malarial parasitemia in Kombewa, Western Kenya, a region that is endemic for both malaria and HIV-1. A total of 1,762 dried blood spots were collected from asymptomatic adults in a cross-sectional study. The presence of parasitemia was first determined by a sensitive Plasmodium genus-specific 18S assay, followed by less sensitive species-specific DNA-based quantitative polymerase chain reaction (PCR) assays. The prevalence of asymptomatic malarial parasitemia by 18S genus-specific PCR assay was 64.4% (1,134/1,762). Of the 1,134 malaria positive samples, Plasmodium falciparum was the most prevalent species (57.4%), followed by Plasmodium malariae (3.8%) and Plasmodium ovale (2.6%) as single or mixed infections. As expected, the majority of infections were below the detection limit of microscopy and rapid diagnostic tests. HIV-1 prevalence was 10.6%, and we observed a significant association with malarial parasitemia by χ2 analysis (P = 0.0475). Seventy-one percent of HIV-1 infected volunteers were positive for Plasmodium 18S (132/186), with only 29% negative (54/186). In HIV-1-negative volunteers, the proportion was lower; 64% were found to be positive for 18S (998/1,569) and 36% were negative (571/1,569). Overall, the prevalence of asymptomatic malarial parasitemia in Western Kenya is high, and knowledge of these associations with HIV-1 infection are critically important for malaria elimination and eradication efforts focused on this important reservoir population.
Collapse
Affiliation(s)
- Carolyne Kifude
- 1Basic Science Laboratory, U.S. Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Deborah Stiffler
- 2Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David Rockabrand
- 2Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robin Miller
- 2Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Emily Parsons
- 1Basic Science Laboratory, U.S. Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya.,2Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Stephen Ocholla
- 1Basic Science Laboratory, U.S. Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Nathaniel I Dizon
- 2Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Brandi K Torrevillas
- 3Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho
| | - John Waitumbi
- 1Basic Science Laboratory, U.S. Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Janet Oyieko
- 1Basic Science Laboratory, U.S. Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Shirley Luckhart
- 3Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho.,4Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - V Ann Stewart
- 2Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
35
|
Sikalima J, Schue JL, Hill SE, Mulenga M, Handema R, Daka V, Chileshe J, Kasongo W, Chaponda M, Bukasa Kabuya JB, Moss WJ, Ippolito MM. House Structure Is Associated with Malaria among Febrile Patients in a High-Transmission Region of Zambia. Am J Trop Med Hyg 2021; 104:2131-2138. [PMID: 33844650 PMCID: PMC8176472 DOI: 10.4269/ajtmh.20-1378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/10/2021] [Indexed: 11/07/2022] Open
Abstract
Since the late nineteenth century, the importance of house structure as a determinant of malaria risk has been recognized. Few studies to date have examined the association of housing and malaria in clinical populations. We conducted a cross-sectional study of febrile patients (n = 282) at two rural health clinics in a high malaria-transmission area of northern Zambia. Participants underwent testing for Plasmodium falciparum infection by PCR. Demographic and other risk factors including house structure, indoor residual spraying (IRS), bed net use, education level, and household income were collected. Data were fitted to logistic regression models for relational and mediation analyses. Residing in a house with a thatch roof was associated with higher odds of malaria than residing in a house with corrugated metal (odds ratio: 2.6; 95% CI: 1.0-6.3, P = 0.04). Lower income and educational attainment were also associated with greater odds of malaria. Living under a thatch roof accounted for 24% (95% CI: 14-82) of the effect of household income on malaria risk, and income accounted for 11% (95% CI: 8-19) of the effect of education. Neither IRS nor bed net use was associated with malaria risk despite large, local investments in these vector control interventions. The findings testify to malaria as a disease of rural poverty and contribute further evidence to the utility of housing improvements in vector control programs.
Collapse
Affiliation(s)
- Jay Sikalima
- Tropical Diseases Research Centre, Ndola, Zambia
| | - Jessica L. Schue
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sarah E. Hill
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Modest Mulenga
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Kitwe, Zambia
| | - Ray Handema
- Tropical Diseases Research Centre, Ndola, Zambia
| | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Kitwe, Zambia
| | | | | | | | | | - William J. Moss
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Matthew M. Ippolito
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - for the Southern and Central Africa International Centers of Excellence for Malaria Research
- Tropical Diseases Research Centre, Ndola, Zambia
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Kitwe, Zambia
| |
Collapse
|
36
|
Akala HM, Watson OJ, Mitei KK, Juma DW, Verity R, Ingasia LA, Opot BH, Okoth RO, Chemwor GC, Juma JA, Mwakio EW, Brazeau N, Cheruiyot AC, Yeda RA, Maraka MN, Okello CO, Kateete DP, Managbanag JR, Andagalu B, Ogutu BR, Kamau E. Plasmodium interspecies interactions during a period of increasing prevalence of Plasmodium ovale in symptomatic individuals seeking treatment: an observational study. LANCET MICROBE 2021; 2:e141-e150. [DOI: 10.1016/s2666-5247(21)00009-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
|
37
|
Ultrasensitive Diagnostics for Low-Density Asymptomatic Plasmodium falciparum Infections in Low-Transmission Settings. J Clin Microbiol 2021; 59:JCM.01508-20. [PMID: 33148707 DOI: 10.1128/jcm.01508-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The emergence of multidrug-resistant Plasmodium falciparum malaria in Southeast Asia (SEA) has accelerated regional malaria elimination efforts. Most malaria in this and other low-transmission settings exists in asymptomatic individuals, which conventional diagnostic tests lack the sensitivity to detect. This has led to the development of new ultrasensitive diagnostics that are capable of detecting these low-parasitemia infections. This review summarizes the current status of ultrasensitive technologies, including PCR and loop-mediated isothermal amplification (LAMP)-based methods, as well as a newly developed ultrasensitive rapid diagnostic test (uRDT). The sensitivity, specificity, and field performance of these platforms will be examined, as well as their suitability for use in resource-limited settings to aid in malaria elimination efforts. uRDTs, with their improved sensitivity, are now able to detect approximately half of asymptomatic infections, providing a useful point-of-contact tool for malaria surveillance. The increased sensitivity and high-throughput nature of PCR-based tests make them ideal for screening large populations in places where laboratory capacity exists, and the recent commercialization of malaria LAMP kits should facilitate their adoption as a public health tool in places where such infrastructure is lacking. Finally, recent advances with dried blood spots may enable utilization of the extensive laboratory infrastructure of higher-income countries to assist with molecular surveillance in support of malaria elimination. If malaria is to be eliminated in SEA and other low-endemicity regions, then ultrasensitive diagnostics will likely play a key role in identifying and clearing the vast asymptomatic pool of infections that are common to these regions.
Collapse
|
38
|
Christensen P, Bozdech Z, Watthanaworawit W, Imwong M, Rénia L, Malleret B, Ling C, Nosten F. Reverse transcription PCR to detect low density malaria infections. Wellcome Open Res 2021; 6:39. [PMID: 35592834 PMCID: PMC9086519 DOI: 10.12688/wellcomeopenres.16564.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 05/14/2024] Open
Abstract
Background: Targeted malaria elimination strategies require highly sensitive tests to detect low density malaria infections (LDMI). Commonly used methods for malaria diagnosis such as light microscopy and antigen-based rapid diagnostic tests (RDTs) are not sensitive enough for reliable identification of infections with parasitaemia below 200 parasites per milliliter of blood. While targeted malaria elimination efforts on the Thailand-Myanmar border have successfully used high sample volume ultrasensitive quantitative PCR (uPCR) to determine malaria prevalence, the necessity for venous collection and processing of large quantities of patient blood limits the widespread tractability of this method. Methods: Here we evaluated a real-time reverse transcription PCR (RT-PCR) method that reduces the required sample volume compared to uPCR. To do this, 304 samples collected from an active case detection program in Kayin state, Myanmar were compared using uPCR and RT-PCR. Results: Plasmodium spp. RT-PCR confirmed 18 of 21 uPCR Plasmodium falciparum positives, while P. falciparum specific RT-PCR confirmed 17 of the 21 uPCR P. falciparum positives. Combining both RT-PCR results increased the sensitivity to 100% and specificity was 95.1%. Conclusion: Malaria detection in areas of low transmission and LDMI can benefit from the increased sensitivity of ribosomal RNA detection by RT-PCR, especially where sample volume is limited. Isolation of high quality RNA also allows for downstream analysis of malaria transcripts.
Collapse
Affiliation(s)
- Peter Christensen
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Microbiology and Immunology, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Laurent Rénia
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- A*STAR ID Labs, A*STAR, Singapore, 138648, Singapore
| | - Benoît Malleret
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol University, Maesot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Stiffler DM, Oyieko J, Kifude CM, Rockabrand DM, Luckhart S, Stewart VA. HIV-1 Infection Is Associated With Increased Prevalence and Abundance of Plasmodium falciparum Gametocyte-Specific Transcripts in Asymptomatic Adults in Western Kenya. Front Cell Infect Microbiol 2021; 10:600106. [PMID: 33614525 PMCID: PMC7892447 DOI: 10.3389/fcimb.2020.600106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023] Open
Abstract
As morbidity and mortality due to malaria continue to decline, the identification of individuals with a high likelihood of transmitting malaria is needed to further reduce the prevalence of malaria. In areas of holoendemic malaria transmission, asymptomatically infected adults may be infected with transmissible gametocytes. The impact of HIV-1 on gametocyte carriage is unknown, but co-infection may lead to an increase in gametocytemia. In this study, a panel of qPCR assays was used to quantify gametocyte stage-specific transcripts present in dried blood spots obtained from asymptomatic adults seeking voluntary HIV testing in Kombewa, Kenya. A total of 1,116 Plasmodium-specific 18S-positive samples were tested and 20.5% of these individuals had detectable gametocyte-specific transcripts. Individuals also infected with HIV-1 were 1.82 times more likely to be gametocyte positive (P<0.0001) and had significantly higher gametocyte copy numbers when compared to HIV-negative individuals. Additionally, HIV-1 positivity was associated with higher gametocyte prevalence in men and increased gametocyte carriage with age. Overall, these data suggest that HIV-positive individuals may have an increased risk of transmitting malaria parasites in regions with endemic malaria transmission and therefore should be at a higher priority for treatment with gametocidal antimalarial drugs.
Collapse
Affiliation(s)
- Deborah M Stiffler
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janet Oyieko
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Carolyne M Kifude
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - David M Rockabrand
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
40
|
Koliopoulos P, Kayange NM, Daniel T, Huth F, Gröndahl B, Medina-Montaño GC, Pretsch L, Klüber J, Schmidt C, Züchner A, Ulbert S, Mshana SE, Addo M, Gehring S. Multiplex-RT-PCR-ELISA panel for detecting mosquito-borne pathogens: Plasmodium sp. preserved and eluted from dried blood spots on sample cards. Malar J 2021; 20:66. [PMID: 33526038 PMCID: PMC7851927 DOI: 10.1186/s12936-021-03595-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Children are the most vulnerable group affected by malaria and other tropical, vector-borne diseases in low-resource countries. Infants presenting with acute onset fever represent a major sector of outpatient care in the Lake Victoria region. Misclassification and overuse of antibiotics and anti-malarial medications are consistent problems. Identifying the prevalent mosquito-borne pathogens in the region will reduce the prescription of non-indicated medicines. METHODS The literature was reviewed focusing on the mosquito-borne pathogens most prevalent in sub-Saharan Africa. Accordingly, an assay comprised of a multiplex-reverse transcriptase-polymerase chain reaction and an enzyme-linked immunosorbent assay (multiplex-RT-PCR-ELISA) was designed and validated in its ability to identify and differentiate nine human mosquito-borne pathogens including eight arboviruses and Plasmodium sp., the aetiologic agents of malaria. Blood samples obtained from 132 children suspected of having malaria were spotted and preserved on Whatman® 903 protein sample cards. Multiplex-RT-PCR-ELISA analysis was assessed and compared to results obtained by blood smear microscopy and the malaria rapid diagnostic test (RDT). RESULTS Nine out of nine pathogens were amplified specifically by the multiplex-RT-PCR-ELISA panel. Twenty-seven out of 132 paediatric patients presenting with acute fever were infected with Plasmodium sp., confirmed by multiplex-RT-PCR. The results of blood smear microscopy were only 40% sensitive and 92.8% specific. The malaria RDT, on the other hand, detected acute Plasmodium infections with 96.3% sensitivity and 98.1% specificity. The preservation of Plasmodium sp. in clinical sera and whole blood samples spotted on sample cards was evaluated. The duration of successful, sample card storage was 186 to 312 days. CONCLUSIONS Reliable, easy-to-use point of care diagnostic tests are a powerful alternative to laboratory-dependent gold standard tests. The multiplex-RT-PCR-ELISA amplified and identified nine vector-borne pathogens including Plasmodium sp. with great accuracy. Translation of improved diagnostic approaches, i.e., multiplex-RT-PCR-ELISA, into effective treatment options promises to reduce childhood mortality and non-indicated prescriptions.
Collapse
Affiliation(s)
- Philip Koliopoulos
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Neema Mathias Kayange
- Department of Pediatric and Adolescent Medicine, Bugando Medical Centre, Mwanza, Tanzania
| | - Tim Daniel
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Florian Huth
- Department of Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Germany
| | - Britta Gröndahl
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany.
| | | | - Leah Pretsch
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Julia Klüber
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christian Schmidt
- Department of Pediatric and Adolescent Medicine, St. Vinzenz-Hospital, Dinslaken, Germany
| | - Antke Züchner
- Department of Pediatric and Adolescent Medicine, Bugando Medical Centre, Mwanza, Tanzania
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Steven E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Marylyn Addo
- Department of Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Germany
| | - Stephan Gehring
- Center of Pediatric and Adolescent Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
41
|
Huang F, Jacob CG, Takala-Harrison S, Adams M, Yang HL, Liu H, Xia ZG, Zhou SS, Tang LH, Plowe CV. Genomic Epidemiology of Antimalarial Drug Resistance in Plasmodium falciparum in Southern China. Front Cell Infect Microbiol 2021; 10:610985. [PMID: 33489939 PMCID: PMC7820777 DOI: 10.3389/fcimb.2020.610985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Emerging artemisinin resistance in Southeast Asia poses a significant risk to malaria control and eradication goals, including China’s plan to eliminate malaria nationwide by 2020. Plasmodium falciparum was endemic in China, especially in Southern China. Parasites from this region have shown decreased susceptibility to artemisinin and delayed parasite clearance after artemisinin treatment. Understanding the genetic basis of artemisinin resistance and identifying specific genetic loci associated with this phenotype is crucial for surveillance and containment of resistance. In this study, parasites were collected from clinical patients from Yunnan province and Hainan island. The parasites were genotyped using a P. falciparum-specific single nucleotide polymorphism (SNP) microarray. The SNP profiles examined included a total of 27 validated and candidate molecular markers of drug resistance. The structure of the parasite population was evaluated by principal component analysis by using the EIGENSOFT program, and ADMIXTURE was used to calculate maximum likelihood estimates for the substructure analysis. Parasites showed a high prevalence of resistance haplotypes of pfdhfr and pfdhps and moderate prevalence of pfcrt. There was no mutation identified on pfmdr1. Candidate SNPs on chromosomes 10, 13, and 14 that were associated with delayed parasite clearance showed a low prevalence of mutants. Parasites from Southern China were clustered and separated from those from Southeast Asia. Parasites from Yunnan province were substructured from parasites from Hainan island. This study provides evidence for a genomic population with drug resistance in Southern China and also illustrates the utility of SNP microarrays for large-scale parasite molecular epidemiology.
Collapse
Affiliation(s)
- Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heng-Lin Yang
- Malaria Department, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Hui Liu
- Malaria Department, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Zhi-Gui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shui-Sen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Lin-Hua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | | |
Collapse
|
42
|
Kalinjuma AV, Darling AM, Mugusi FM, Abioye AI, Okumu FO, Aboud S, Masanja H, Hamer DH, Hertzmark E, Fawzi WW. Factors associated with sub-microscopic placental malaria and its association with adverse pregnancy outcomes among HIV-negative women in Dar es Salaam, Tanzania: a cohort study. BMC Infect Dis 2020; 20:796. [PMID: 33109111 PMCID: PMC7590608 DOI: 10.1186/s12879-020-05521-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria infection during pregnancy has negative health consequences for both mothers and offspring. Sub-microscopic malaria infection during pregnancy is common in most African countries. We sought to identify factors associated with sub-microscopic placental malaria, and its association with adverse pregnancy outcomes among HIV-negative pregnant women in Dar es Salaam, Tanzania. METHODS We recruited a cohort of pregnant women during their first trimester and assessed for the occurrence of placental malaria and pregnancy outcomes. The follow-up was done monthly from recruitment until delivery. Histopathology placental malaria positive results were defined as the presence of malaria pigment or parasitized erythrocytes on the slide (histology-positive (HP)), and the sub-microscopic placental infection was defined as positive Plasmodium falciparum DNA by polymerase chain reaction (DNA PCR) amplification in a negative histopathology test. Adverse pregnancy outcomes investigated included low birth weight (birth weight below 2.5 kg), prematurity (live birth below 37 weeks), and small-for-gestational-age (SGA) (live born with a birth weight below 10th percentile for gestational age and sex). Weighted baseline category logit, log-binomial, and log-Poisson models were used to assess factors associated with placental malaria, and its association with adverse pregnancy outcomes. RESULTS Among 1115 women who had histopathology and DNA PCR performed, 93 (8%) had HP placental infection, and 136 (12%) had the sub-microscopic placental infection. The risk of sub-microscopic placental malaria was greater in women who did not use mosquito prevention methods such as bed nets, fumigation, or mosquito coils (odds ratio (OR) = 1.75; 95% confidence interval (CI): 1.05-2.92; P = 0.03) and in women who were anemic (OR = 1.59; 95% CI: 1.20-2.11; P = 0.001). Women who were underweight had reduced odds of sub-microscopic placental malaria infection (OR = 0.33; 95% CI: 0.17-0.62; P = 0.001). Women who were overweight/obese had 1.48 times higher the odds of HP placental malaria compared to normal weight (OR = 1.48; 95% CI: 1.03-2.11; P = 0.03). HP placental malaria infection was associated with an increased risk of SGA births (RR = 1.30, 95% CI: 0.98-1.72, P = 0.07). In contrast, the sub-microscopic infection was associated with a reduced risk of SGA births (RR = 0.61, 95% CI: 0.43-0.88, P = 0.01). Placental malaria was not associated with low birth weight or prematurity. CONCLUSION Malaria prevention methods and maternal nutrition status during early pregnancy were important predictors of sub-microscopic placental malaria. More research is needed to understand sub-microscopic placental malaria and the possible mechanisms mediating the association between placental malaria and SGA.
Collapse
Affiliation(s)
- Aneth Vedastus Kalinjuma
- Department of Intervention and Clinical Trials, Ifakara Health Institute, P.O. Box 53, Ifakara, Morogoro, Tanzania.
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Anne Marie Darling
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ferdinand M Mugusi
- Departments of Internal Medicine; and Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Ajibola Ibraheem Abioye
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fredros O Okumu
- Department of Intervention and Clinical Trials, Ifakara Health Institute, P.O. Box 53, Ifakara, Morogoro, Tanzania
| | - Said Aboud
- Departments of Internal Medicine; and Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Honorati Masanja
- Department of Intervention and Clinical Trials, Ifakara Health Institute, P.O. Box 53, Ifakara, Morogoro, Tanzania
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ellen Hertzmark
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wafaie W Fawzi
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
43
|
Varo R, Balanza N, Mayor A, Bassat Q. Diagnosis of clinical malaria in endemic settings. Expert Rev Anti Infect Ther 2020; 19:79-92. [PMID: 32772759 DOI: 10.1080/14787210.2020.1807940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Malaria continues to be a major global health problem, with over 228 million cases and 405,000 deaths estimated to occur annually. Rapid and accurate diagnosis of malaria is essential to decrease the burden and impact of this disease, particularly in children. We aimed to review the main available techniques for the diagnosis of clinical malaria in endemic settings and explore possible future options to improve its rapid recognition. AREAS COVERED literature relevant to malaria diagnosis was identified through electronic searches in Pubmed, with no language or date restrictions and limited to humans. EXPERT OPINION Light microscopy is still considered the gold standard method for malaria diagnosis and continues to be at the frontline of malaria diagnosis. However, technologies as rapid diagnostic tests, mainly those who detect histidine-rich protein-2, offer an accurate, rapid and affordable alternative for malaria diagnosis in endemic areas. They are now the technique most extended in endemic areas for parasitological confirmation. In these settings, PCR-based assays are usually restricted to research and they are not currently helpful in the management of clinical malaria. Other technologies, such as isothermal methods could be an interesting and alternative approach to PCR in the future.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23 , Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan De Deu (University of Barcelona) , Barcelona, Spain.,Consorcio De Investigación Biomédica En Red De Epidemiología Y Salud Publica (CIBERESP) , Madrid, Spain
| |
Collapse
|
44
|
Srisutham S, Suwannasin K, Mathema VB, Sriprawat K, Smithuis FM, Nosten F, White NJ, Dondorp AM, Imwong M. Utility of Plasmodium falciparum DNA from rapid diagnostic test kits for molecular analysis and whole genome amplification. Malar J 2020; 19:193. [PMID: 32460780 PMCID: PMC7251736 DOI: 10.1186/s12936-020-03259-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Rapid diagnostic tests (RDTs) have become the most common diagnostic tool for detection of Plasmodium falciparum malaria, in particular in remote areas. RDT blood spots provide a source of parasite DNA for molecular analysis. In this study, the utility of RDTs for molecular analysis and the performance of different methods for whole genome amplification were investigated. Methods Positive P. falciparum RDTs were collected from Kayin, Myanmar from August 2014 to January 2016. The RDT samples were stored for 6 months, 9 months, 20 months, 21 months, and 32 months before DNA extraction and subsequent molecular analysis of P. falciparum kelch 13 (pfkelch13) mutations, P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum plasmepsin 2 (pfplasmepsin2) gene amplification. In addition, performance of four whole genome amplification (WGA) kits were compared, including REPLI-g®, MALBACTM, PicoPLEX®, and GenomePlex®, for which DNA quantity and quality were compared between original DNA and post-WGA products. Results The proportion of successful amplification of the different molecular markers was similar between blood spots analysed from RDTs stored for 6, 9, 20, 21, or 32 months. Successful amplification was dependent on the molecular markers fragment length (p value < 0.05): 18% for a 1245 bp fragment of pfkelch13, 71% for 364 bp of pfkelch13, 81% for 87 bp of pfmdr1, 81% for 108 bp of pfplasmepsin2. Comparison of the four WGA assay kits showed that REPLI-g®, MALBACTM, and PicoPLEX® increased the quantity of DNA 60 to 750-fold, whereas the ratio of parasite DNA amplification over human DNA was most favourable for MALBAC®. Sequencing results of pfkelch13, P. falciparum chloroquine resistance transporter (pfcrt), P. falciparum dihydrofolate reductase (pfdhfr) and six microsatellite markers assessed from the post-WGA product was the same as from the original DNA. Conclusions Blood spots from RDTs are a good source for molecular analysis of P. falciparum, even after storage up to 32 months. WGA of RDT-derived parasite DNA reliably increase DNA quantity with sufficient quality for molecular analysis of resistance markers.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Frank M Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Medical Action Myanmar, Yangon, Myanmar
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Henley WH, Siegfried NA, Ramsey JM. Spatially isolated reactions in a complex array: using magnetic beads to purify and quantify nucleic acids with digital and quantitative real-time PCR in thousands of parallel microwells. LAB ON A CHIP 2020; 20:1771-1779. [PMID: 32347869 DOI: 10.1039/d0lc00069h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantitative real-time PCR (qPCR) has been the standard for nucleic acid quantification as it has a large dynamic range and good sensitivity. Digital PCR is rapidly supplanting qPCR in many applications as it provides excellent quantitative precision. However, both techniques require extensive sample preparation, and highly multiplexed assays that quantify multiple targets can be difficult to design and optimize. Here we describe a new nucleic acid quantification method that we call Spatially Isolated Reactions in a Complex Array (SIRCA), a highly parallel nucleic acid preparation, amplification, and detection approach that uses superparamagnetic microbeads in an array of thousands of 100 fL microwells to simplify sample purification and reduce reagent dispensing steps. Primers, attached to superparamagnetic microbeads through a thermo-labile bond, capture and separate target sequences from the sample. The microbeads are then magnetically loaded into a microwell array such that wells predominately contain a single bead. Master mix, lacking primers, is added before sealing the reaction wells with hydrophobic oil. Thermocycling releases the primer pair from the beads during PCR amplification. At low target concentrations, most beads capture, on average, less than one target molecule, and precise, digital PCR quantification can be derived from the percentage of positive reactions. At higher concentrations, qPCR signal is used to determine the average number of target molecules per reaction, significantly extending the dynamic range beyond the digital saturation point. We demonstrate that SIRCA can quantify DNA and RNA targets using thousands of parallel reactions, achieving attomolar limits of detection and a linear dynamic range of 105. The work reported here is a first step towards multiplexed SIRCA assays.
Collapse
Affiliation(s)
- W Hampton Henley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
46
|
Mhamilawa LE, Aydin-Schmidt B, Mmbando BP, Ngasala B, Morris U. Detection of Plasmodium falciparum by Light Microscopy, Loop-Mediated Isothermal Amplification, and Polymerase Chain Reaction on Day 3 after Initiation of Artemether-Lumefantrine Treatment for Uncomplicated Malaria in Bagamoyo District, Tanzania: A Comparative Trial. Am J Trop Med Hyg 2020; 101:1144-1147. [PMID: 31549618 DOI: 10.4269/ajtmh.19-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microscopy-determined Plasmodium falciparum positivity rates exceeding 10% on day 3 after initiation of artemisinin-based combination therapy (ACT) is an important indicator of artemisinin resistance. However, microscopy does not detect low-density parasitemia, contrary to molecular tools such as loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). We compared microscopy, LAMP, and PCR for detection of P. falciparum on day 3 after ACT in 256 patients with uncomplicated malaria in Bagamoyo District, Tanzania. Day 3 positivity rates were 0%, 84.8%, and 84.4% for each method, respectively. The sensitivity and specificity of LAMP against PCR was 100% (95% CI, 96.1-100) and 77.4% (95% CI, 58.9-90.4) when quantitative PCR-determined parasite densities were ≥ two parasites/µL. Loop-mediated isothermal amplification had comparable diagnostic accuracy to PCR and could potentially represent a field-friendly tool for determining day 3 positivity rates. However, what day 3 P. falciparum positivity determined using molecular methods represents needs to be further elucidated.
Collapse
Affiliation(s)
- Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bruno P Mmbando
- Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Hartmeyer GN, Hoegh SV, Skov MN, Kemp M. Use of Loop-Mediated Isothermal Amplification in a Resource-Saving Strategy for Primary Malaria Screening in a Non-Endemic Setting. Am J Trop Med Hyg 2020; 100:566-571. [PMID: 30675835 PMCID: PMC6402892 DOI: 10.4269/ajtmh.18-0496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malaria is traditionally diagnosed by blood smear microscopy, which requires continuous resource-demanding training. In areas with only a few cases of malaria, a simple and rapid test that can reliably exclude malaria could significantly reduce the need for microscopy and training. We evaluated whether loop-mediated isothermal amplification (LAMP) for screening malaria parasites could reduce the workload in the diagnosis of malaria. Loop-mediated isothermal amplification was used to analyze 38 ethylene-diamine-tetraacetic acid (EDTA) blood samples from 23 patients who had previously been tested for malaria by microscopy, antigen-based rapid diagnostic test (antigen-RDT), and in-house real-time polymerase chain reaction (RT-PCR). The samples included blood with low-level parasitaemia and samples with discrepancies between the results of the different methods. Loop-mediated isothermal amplification detected malaria parasites in 27 of 28 samples that were positive according to in-house RT-PCR. There were negative microscopy results in 10 of these and negative antigen-RDT results in 11. The sample with a negative LAMP result and positive in-house RT-PCR result was from a patient who had recently been treated for low-level Plasmodium falciparum malaria parasitaemia. We found LAMP to be reliable for malaria screening and suitable for replacing microscopy without loss of performance. The low number of LAMP-positive samples needing microscopy can be handled by a limited number of trained microscopists. The time saved on training and documentation was estimated to be 520 working hours yearly in our laboratory. Using LAMP for primary screening of patient samples, we have made a diagnostic workflow that ensures more reliable, faster, and less resource-demanding diagnosis of malaria.
Collapse
Affiliation(s)
- Gitte N Hartmeyer
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Microbiology, Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Silje V Hoegh
- Research Unit of Clinical Microbiology, Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Marianne N Skov
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Microbiology, Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Microbiology, Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Umunnakwe FA, Idowu ET, Ajibaye O, Etoketim B, Akindele S, Shokunbi AO, Otubanjo OA, Awandare GA, Amambua-Ngwa A, Oyebola KM. High cases of submicroscopic Plasmodium falciparum infections in a suburban population of Lagos, Nigeria. Malar J 2019; 18:433. [PMID: 31856852 PMCID: PMC6924037 DOI: 10.1186/s12936-019-3073-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asymptomatic malaria parasites are significant sources of infections for onward malaria transmission. Conventional tools for malaria diagnosis such as microscopy and rapid diagnostic test kits (RDT) have relatively low sensitivity, hence the need for alternative tools for active screening of such low-density infections. METHODS This study tested var acidic terminal sequence-based (varATS) quantitative polymerase chain reaction (qPCR) for screening asymptomatic Plasmodium falciparum infections among dwellers of a sub-urban community in Lagos, Nigeria. Clinically healthy participants were screened for malaria using microscopy, RDT and varATS qPCR techniques. Participants were stratified into three age groups: 1-5, 6-14 and > 14 years old. RESULTS Of the 316 participants screened for asymptomatic malaria infection, 78 (24.68%) were positive by microscopy, 99 (31.33%) were positive by RDT and 112 (35.44%) by varATS qPCR. Participants aged 6-14 years had the highest prevalence of asymptomatic malaria, with geometric means of ~ 116 parasites/µL and ~ 6689 parasites/µL as detected by microscopy and varATS, respectively. CONCLUSION This study has revealed high prevalence of asymptomatic malaria in the study population, with varATS detecting additional sub-microscopic infections. The highest concentration of asymptomatic malaria was observed among school-age children between 6 and 14 years old. A large-scale screening to identify other potential hotspots of asymptomatic parasites in the country is recommended.
Collapse
Affiliation(s)
- Florence A Umunnakwe
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Olusola Ajibaye
- Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Blessed Etoketim
- Medical Research Council at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Samuel Akindele
- Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Aminat O Shokunbi
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Olubunmi A Otubanjo
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Kolapo M Oyebola
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria. .,Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria. .,Medical Research Council at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia. .,West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
49
|
Nsanzabana C. Strengthening Surveillance Systems for Malaria Elimination by Integrating Molecular and Genomic Data. Trop Med Infect Dis 2019; 4:E139. [PMID: 31816974 PMCID: PMC6958499 DOI: 10.3390/tropicalmed4040139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Unprecedented efforts in malaria control over the last 15 years have led to a substantial decrease in both morbidity and mortality in most endemic settings. However, these progresses have stalled over recent years, and resurgence may cause dramatic impact on both morbidity and mortality. Nevertheless, elimination efforts are currently going on with the objective of reducing malaria morbidity and mortality by 90% and malaria elimination in at least 35 countries by 2030. Strengthening surveillance systems is of paramount importance to reach those targets, and the integration of molecular and genomic techniques into routine surveillance could substantially improve the quality and robustness of data. Techniques such as polymerase chain reaction (PCR) and quantitative PCR (qPCR) are increasingly available in malaria endemic countries, whereas others such as sequencing are already available in a few laboratories. However, sequencing, especially next-generation sequencing (NGS), requires sophisticated infrastructure with adequate computing power and highly trained personnel for data analysis that require substantial investment. Different techniques will be required for different applications, and cost-effective planning must ensure the appropriate use of available resources. The development of national and sub-regional reference laboratories could help in minimizing the resources required in terms of equipment and trained staff. Concerted efforts from different stakeholders at national, sub-regional, and global level are needed to develop the required framework to establish and maintain these reference laboratories.
Collapse
Affiliation(s)
- Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; ; Tel.: +41-61-284-82-52
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| |
Collapse
|
50
|
Tripura R, Peto TJ, Chea N, Chan D, Mukaka M, Sirithiranont P, Dhorda M, Promnarate C, Imwong M, von Seidlein L, Duanguppama J, Patumrat K, Huy R, Grobusch MP, Day NPJ, White NJ, Dondorp AM. A Controlled Trial of Mass Drug Administration to Interrupt Transmission of Multidrug-Resistant Falciparum Malaria in Cambodian Villages. Clin Infect Dis 2019. [PMID: 29522113 PMCID: PMC6117448 DOI: 10.1093/cid/ciy196] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The increase in multidrug-resistant Plasmodium falciparum in Southeast Asia suggests a need for acceleration of malaria elimination. We evaluated the effectiveness and safety of mass drug administration (MDA) to interrupt malaria transmission. Methods Four malaria-endemic villages in western Cambodia were randomized to 3 rounds of MDA (a 3-day course of dihydroartemisinin with piperaquine-phosphate), administered either early in or at the end of the study period. Comprehensive malaria treatment records were collected during 2014-2017. Subclinical parasite prevalence was estimated by ultrasensitive quantitative polymerase chain reaction quarterly over 12 months. Results MDA coverage with at least 1 complete round was 88% (1999/2268), ≥2 rounds 73% (1645/2268), and all 3 rounds 58% (1310/2268). Plasmodium falciparum incidence in intervention and control villages was similar over the 12 months prior to the study: 39 per 1000 person-years (PY) vs 45 per 1000 PY (P = .50). The primary outcome, P. falciparum incidence in the 12 months after MDA, was lower in intervention villages (1.5/1000 PY vs 37.1/1000 PY; incidence rate ratio, 24.5 [95% confidence interval], 3.4-177; P = .002). Following MDA in 2016, there were no clinical falciparum malaria cases over 12 months (0/2044 PY) in all 4 villages. Plasmodium vivax prevalence decreased markedly in intervention villages following MDA but returned to approximately half the baseline prevalence by 12 months. No severe adverse events were attributed to treatment. Conclusions Mass drug administrations achieved high coverage, were safe, and associated with the absence of clinical P. falciparum cases for at least 1 year. Clinical Trials Registration NCT01872702.
Collapse
Affiliation(s)
- Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nguon Chea
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Pasathorn Sirithiranont
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.,World-Wide Antimalarial Resistance Network, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Cholrawee Promnarate
- World-Wide Antimalarial Resistance Network, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Krittaya Patumrat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|