1
|
Cao Z, Yang Y, Zhang S, Zhang T, Lü P, Chen K. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Colloids Surf B Biointerfaces 2025; 246:114385. [PMID: 39561518 DOI: 10.1016/j.colsurfb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biomacromolecules, as a widespread cellular functional mechanism, is closely related to life processes, and is also commonly present in the lifecycle of viruses. Viral infection often leads to the recombination and redistribution of intracellular components to form biomacromolecule condensates assembled from viral replication-related proteins and intracellular components, which plays an important role in the process of viral infection. In this review, the key and influencing factors of LLPS are generalized, which mainly depend on various molecular interactions and environmental conditions in solution. Meanwhile, some examples of viruses utilizing LLPS are summarized, which are conducive to further understanding the subtle and complex biological regulatory processes between phase condensation and viruses. Finally, some representative antiviral drugs targeting phase separation that have been discovered are also outlined. In conclusion, in-depth study of the role of LLPS in viral infection is helpful to understand the mechanisms of virus-related diseases from a new perspective, and also provide a new therapeutic strategy for future treatments.
Collapse
Affiliation(s)
- Zhaoxiao Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Simeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Tiancheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Hidalgo P, Torres A, Jean Beltran PM, López-Leal G, Bertzbach LD, Dobner T, Flint SJ, Cristea IM, González RA. The protein composition of human adenovirus replication compartments. mBio 2025; 16:e0214424. [PMID: 39611842 PMCID: PMC11708036 DOI: 10.1128/mbio.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored. In this study, we isolated adenovirus RC-enriched fractions from infected cells at different times post-infection and employed a tandem mass tag-based quantitative mass spectrometry approach to identify proteins associated with RCs (data available via ProteomeXchange identifier PXD051745). These findings reveal an elaborate network of host and viral proteins potentially relevant for RC formation and function. To validate the RC-protein components identified by mass spectrometry, we employed immunofluorescence and immunoblotting techniques. Proteins previously described to colocalize in RCs in infected cells were identified in the isolated subnuclear fractions. In addition, we validated newly identified proteins associated with RCs, including the high mobility group box 1 (HMGB1), the SET nuclear proto-oncogene, the structure-specific recognition protein 1 (SSRP1), the CCCTC-binding protein (CTCF), and sirtuin 6 (SIRT6). We identified HMGB1 as a protein that binds to the viral DNA binding protein (DBP). Using shRNA knockdowns and inhibitors, we demonstrated that HMGB1 acts as a proviral factor, promoting efficient viral DNA synthesis and progeny production. Our data further suggest potential candidate targets for therapeutic intervention and provide mechanistic insights into the molecular basis of virus-host interactions.IMPORTANCEHuman adenoviruses serve as models for studying respiratory viruses and have provided critical insights into viral genome replication and gene expression, as well as the control of virus-host interactions. These processes are coordinated within virus-induced subnuclear microenvironments known as RCs. We conducted quantitative proteome analyses of RC-enriched subnuclear fractions at different times post-infection with human adenovirus species C type 5, revealing a multifaceted network of proteins that participate in the regulation of gene expression, DNA damage response, RNA metabolism, innate immunity, and other cellular antiviral defense mechanisms. Furthermore, we validated the localization of several host proteins to viral RCs using immunofluorescence microscopy and immunoblotting and identified cellular HMGB1 as a proviral factor late during infection. These findings represent the first analysis of the proteomes of isolated RCs and not only enhance our understanding of nuclear organization during infection but also shed light on the complex interplay between viral and host factors within RCs.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Amada Torres
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Gamaliel López-Leal
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
3
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
4
|
Duan Y, Liu Z, Zang N, Cong B, Shi Y, Xu L, Jiang M, Wang P, Zou J, Zhang H, Feng Z, Feng L, Ren L, Liu E, Li Y, Zhang Y, Xie Z. Landscape of respiratory syncytial virus. Chin Med J (Engl) 2024; 137:2953-2978. [PMID: 39501814 PMCID: PMC11706595 DOI: 10.1097/cm9.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is an enveloped, negative-sense, single-stranded RNA virus of the Orthopneumovirus genus of the Pneumoviridae family in the order Mononegavirales. RSV can cause acute upper and lower respiratory tract infections, sometimes with extrapulmonary complications. The disease burden of RSV infection is enormous, mainly affecting infants and older adults aged 75 years or above. Currently, treatment options for RSV are largely supportive. Prevention strategies remain a critical focus, with efforts centered on vaccine development and the use of prophylactic monoclonal antibodies. To date, three RSV vaccines have been approved for active immunization among individuals aged 60 years and above. For children who are not eligible for these vaccines, passive immunization is recommended. A newly approved prophylactic monoclonal antibody, Nirsevimab, which offers enhanced neutralizing activity and an extended half-life, provides exceptional protection for high-risk infants and young children. This review provides a comprehensive and detailed exploration of RSV's virology, immunology, pathogenesis, epidemiology, clinical manifestations, treatment options, and prevention strategies.
Collapse
Affiliation(s)
- Yuping Duan
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Zimeng Liu
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Na Zang
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - Bingbing Cong
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuqing Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Mingyue Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Peixin Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Jing Zou
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Han Zhang
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lili Ren
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Enmei Liu
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - You Li
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| |
Collapse
|
5
|
Wang Z, Zhou L, Zhong X, Jiang Y, Zhang Z, Li W. Liquid-liquid separation in gut immunity. Front Immunol 2024; 15:1505123. [PMID: 39720729 PMCID: PMC11666445 DOI: 10.3389/fimmu.2024.1505123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Gut immunity is essential for maintaining intestinal health. Recent studies have identified that intracellular liquid-liquid phase separation (LLPS) may play a significant role in regulating gut immunity, however, the underlying mechanisms remain unclear. LLPS refers to droplet condensates formed through intracellular molecular interactions, which are crucial for the formation of membraneless organelles and biomolecules. LLPS can contribute to the formation of tight junctions between intestinal epithelial cells and influence the colonization of probiotics in the intestine, thereby protecting the intestinal immune system by maintaining the integrity of the intestinal barrier and the stability of the microbiota. Additionally, LLPS can affect the microclusters on the plasma membrane of T cells, resulting in increased density and reduced mobility, which in turn influences T cell functionality. The occurrence of intracellular LLPS is intricately associated with the initiation and progression of gut immunity. This review introduces the mechanism of LLPS in gut immunity and analyzes future research directions and potential applications of this phenomenon.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Department of Gastrointestinal Surgery, Huadu District People’s Hospital, Guangzhou, China
- Biology, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lili Zhou
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiaolan Zhong
- Department of Gastroenterology, Huadu District People’s Hospital, Guangzhou, China
| | - Yiguo Jiang
- Biology, School of Public Health, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Zhentao Zhang
- Obstetrics and Gynecology Department, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wanglin Li
- Department of Gastrointestinal Surgery, Huadu District People’s Hospital, Guangzhou, China
- Department of Gastroenterology, Huadu District People’s Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Subedi S, Nag N, Shukla H, Padhi AK, Tripathi T. Comprehensive analysis of liquid-liquid phase separation propensities of HSV-1 proteins and their interaction with host factors. J Cell Biochem 2024; 125:e30480. [PMID: 37796176 DOI: 10.1002/jcb.30480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
In recent years, it has been shown that the liquid-liquid phase separation (LLPS) of virus proteins plays a crucial role in their life cycle. It promotes the formation of viral replication organelles, concentrating viral components for efficient replication and facilitates the assembly of viral particles. LLPS has emerged as a crucial process in the replication and assembly of herpes simplex virus-1 (HSV-1). Recent studies have identified several HSV-1 proteins involved in LLPS, including the myristylated tegument protein UL11 and infected cell protein 4; however, a complete proteome-level understanding of the LLPS-prone HSV-1 proteins is not available. We provide a comprehensive analysis of the HSV-1 proteome and explore the potential of its proteins to undergo LLPS. By integrating sequence analysis, prediction algorithms and an array of tools and servers, we identified 10 HSV-1 proteins that exhibit high LLPS potential. By analysing the amino acid sequences of the LLPS-prone proteins, we identified specific sequence motifs and enriched amino acid residues commonly found in LLPS-prone regions. Our findings reveal a diverse range of LLPS-prone proteins within the HSV-1, which are involved in critical viral processes such as replication, transcriptional regulation and assembly of viral particles. This suggests that LLPS might play a crucial role in facilitating the formation of specialized viral replication compartments and the assembly of HSV-1 virion. The identification of LLPS-prone proteins in HSV-1 opens up new avenues for understanding the molecular mechanisms underlying viral pathogenesis. Our work provides valuable insights into the LLPS landscape of HSV-1, highlighting potential targets for further experimental validation and enhancing our understanding of viral replication and pathogenesis.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
7
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
8
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
9
|
Biligiri KK, Sharma NR, Mohanty A, Sarkar DP, Vemula PK, Rampalli S. A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication. PLoS Biol 2024; 22:e3002871. [PMID: 39509467 PMCID: PMC11575796 DOI: 10.1371/journal.pbio.3002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/19/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Protein lysine methyltransferases (PKMTs) methylate histone and non-histone proteins to regulate biological outcomes such as development and disease including viral infection. While PKMTs have been extensively studied for modulating the antiviral responses via host gene regulation, their role in methylation of proteins encoded by viruses and its impact on host-pathogen interactions remain poorly understood. In this study, we discovered distinct nucleo-cytoplasmic form of euchromatic histone methyltransferase 1 (EHMT1N/C), a PKMT, that phase separates into viral inclusion bodies (IBs) upon cytoplasmic RNA-virus infection (Sendai Virus). EHMT1N/C interacts with cytoplasmic EHMT2 and methylates SeV-Nucleoprotein upon infection. Elevated nucleoprotein methylation during infection correlated with coalescence of small IBs into large mature platforms for efficient replication. Inhibition of EHMT activity by pharmacological inhibitors or genetic depletion of EHMT1N/C reduced the size of IBs with a concomitant reduction in replication. Additionally, we also found that EHMT1 condensation is not restricted to SeV alone but was also seen upon pathogenic RNA viral infections caused by Chandipura and Dengue virus. Collectively, our work elucidates a new mechanism by which cytoplasmic EHMT1 acts as proviral host factor to regulate host-pathogen interaction.
Collapse
Affiliation(s)
- Kriti Kestur Biligiri
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad; India
| | - Nishi Raj Sharma
- Department of Education and Research, AERF, Artemis Hospitals, Gurugram, India
| | - Abhishek Mohanty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| | - Debi Prasad Sarkar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| | - Shravanti Rampalli
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad; India
| |
Collapse
|
10
|
Glon D, Léonardon B, Guillemot A, Albertini A, Lagaudrière-Gesbert C, Gaudin Y. Biomolecular condensates with liquid properties formed during viral infections. Microbes Infect 2024; 26:105402. [PMID: 39127089 DOI: 10.1016/j.micinf.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.
Collapse
Affiliation(s)
- Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Benjamin Léonardon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ariane Guillemot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
11
|
BenDavid E, Yang C, Zhou Y, Pfaller CK, Samuel CE, Ma D. Host WD repeat-containing protein 5 inhibits protein kinase R-mediated integrated stress response during measles virus infection. J Virol 2024; 98:e0102024. [PMID: 39194235 PMCID: PMC11406981 DOI: 10.1128/jvi.01020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Chuyuan Yang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Yuqin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
12
|
Wang J, Wu M, Magupalli VG, Dahlberg PD, Wu H, Jensen GJ. Human NLRP3 inflammasome activation leads to formation of condensate at the microtubule organizing center. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612739. [PMID: 39314395 PMCID: PMC11419111 DOI: 10.1101/2024.09.12.612739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The NLRP3 inflammasome is a multi-protein molecular machine that mediates inflammatory responses in innate immunity. Its dysregulation has been linked to a large number of human diseases. Using cryogenic fluorescence-guided focused-ion-beam (cryo-FIB) milling and electron cryo-tomography (cryo-ET), we obtained 3-D images of the NLRP3 inflammasome in situ at various stages of its activation at macromolecular resolution. The cryo-tomograms unexpectedly reveal dense condensates of the human macrophage NLRP3 inflammasome that form within and around the microtubule organizing center (MTOC). We also find that following activation, the trans-Golgi network disperses and 50-nm NLRP3-associated vesicles appear which likely ferry NLRP3 to the MTOC. At later time points after activation, the electron-dense condensates progressively solidify and the cells undergo pyroptosis with widespread damaged mitochondria and autophagasomal structures.
Collapse
Affiliation(s)
- Jue Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Man Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Venkat G Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Peter D Dahlberg
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Grant J Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
13
|
Fischer AAM, Robertson HB, Kong D, Grimm MM, Grether J, Groth J, Baltes C, Fliegauf M, Lautenschläger F, Grimbacher B, Ye H, Helms V, Weber W. Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311834. [PMID: 38573961 DOI: 10.1002/smll.202311834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 21a, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hanah B Robertson
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Merlin M Grimm
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Jakob Grether
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Biberach University of Applied Sciences, Karlstraße 6-11, 88400, Biberach an der Riß, Germany
| | - Johanna Groth
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Carsten Baltes
- Department of Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- DZIF - German Center for Infection Research, Deutsches Zentrum für Infektionsforschung e.V., Inhoffenstr. 7, 38124, Braunschweig, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 21a, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Department of Materials Science and Engineering, Campus D2 2, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
14
|
Dudek I, Czerkies M, Kwiatek A. Differential expression of cytokines and elevated levels of MALAT1 - Long non-coding RNA in response to non-structural proteins of human respiratory syncytial virus. Virology 2024; 597:110127. [PMID: 38850893 DOI: 10.1016/j.virol.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Human Respiratory Syncytial Virus (hRSV), a prevalent respiratory pathogen affecting various age groups, can trigger prolonged and intense inflammation in humans. The severity and outcome of hRSV infection correlate with elevated levels of pro-inflammatory agents, yet the underlying reasons for this immune system overstimulation remain elusive. We focused on the impact of hRSV non-structural proteins, NS1 and NS2, on immune response within epithelial cells. Available data indicates that these proteins impair the interferon pathway. We reinforce that NS1 and NS2 induce heightened secretion of the pro-inflammatory cytokines IL-6 and CXCL8. We also indicate that hRSV non-structural proteins provoke differential gene expression of human host FosB and long non-coding RNAs (MALAT1, RP11-510N19.5). It suggests an impact of NS molecules beyond IFN pathways. Thus, new light is shed on the interplay between hRSV and host cells, uncovering unexplored avenues of viral interference, especially the NS2 role in cytokine expression and immune modulation.
Collapse
Affiliation(s)
- Inga Dudek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
15
|
Wignall-Fleming EB, Carlos TS, Randall RE. Liquid-liquid phase inclusion bodies in acute and persistent parainfluenaza virus type 5 infections. J Gen Virol 2024; 105. [PMID: 39264707 PMCID: PMC11392044 DOI: 10.1099/jgv.0.002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cytoplasmic inclusion bodies (IBs) are a common feature of single-stranded, non-segmented, negative-strand RNA virus (Mononegavirales) infections and are thought to be regions of active virus transcription and replication. Here we followed the dynamics of IB formation and maintenance in cells infected with persistent and lytic/acute variants of the paramyxovirus, parainfluenza virus type 5 (PIV5). We show that there is a rapid increase in the number of small inclusions bodies up until approximately 12 h post-infection. Thereafter the number of inclusion bodies decreases but they increase in size, presumably due to the fusion of these liquid organelles that can be disrupted by osmotically shocking cells. No obvious differences were observed at these times between inclusion body formation in cells infected with lytic/acute and persistent viruses. IBs are also readily detected in cells persistently infected with PIV5, including in cells in which there is little or no ongoing virus transcription or replication. In situ hybridization shows that genomic RNA is primarily located in IBs, whilst viral mRNA is more diffusely distributed throughout the cytoplasm. Some, but not all, IBs show incorporation of 5-ethynyl-uridine (5EU), which is integrated into newly synthesized RNA, at early times post-infection. These results strongly suggest that, although genomic RNA is present in all IBs, IBs are not continuously active sites of virus transcription and replication. Disruption of IBs by osmotically shocking persistently infected cells does not increase virus protein synthesis, suggesting that in persistently infected cells most of the virus genomes are in a repressed state. The role of IBs in PIV5 replication and the establishment and maintenance of persistence is discussed.
Collapse
Affiliation(s)
- E B Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - T S Carlos
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
- Present address: Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - R E Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
16
|
Viñán Garcés AE, Cáceres E, Gómez JO, Martín-Loeches I, Reyes LF. Inflammatory response to SARS-CoV 2 and other respiratory viruses. Expert Rev Anti Infect Ther 2024; 22:725-738. [PMID: 39228288 DOI: 10.1080/14787210.2024.2400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.
Collapse
Affiliation(s)
- André Emilio Viñán Garcés
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Young VL, McSweeney AM, Edwards MJ, Ward VK. The Disorderly Nature of Caliciviruses. Viruses 2024; 16:1324. [PMID: 39205298 PMCID: PMC11360831 DOI: 10.3390/v16081324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA viruses, containing a relatively small genome of 7.6-8.6 kb and have a broad host range. Many viral proteins are known to contain IDRs, which benefit smaller viral genomes by expanding the functional proteome through the multifunctional nature of the IDR. The percentage of intrinsically disordered residues within the total proteome for each calicivirus type species can range between 8 and 23%, and IDRs have been experimentally identified in NS1-2, VPg and RdRP proteins. The IDRs within a protein are not well conserved across the genera, and whether this correlates to different activities or increased tolerance to mutations, driving virus adaptation to new selection pressures, is unknown. The function of norovirus NS1-2 has not yet been fully elucidated but includes involvement in host cell tropism, the promotion of viral spread and the suppression of host interferon-λ responses. These functions and the presence of host cell-like linear motifs that interact with host cell caspases and VAPA/B are all found or affected by the disordered region of norovirus NS1-2. The IDRs of calicivirus VPg are involved in viral transcription and translation, RNA binding, nucleotidylylation and cell cycle arrest, and the N-terminal IDR within the human norovirus RdRP could potentially drive liquid-liquid phase separation. This review identifies and summarises the IDRs of proteins within the Caliciviridae family and their importance during viral replication and subsequent host interactions.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
Kerkhofs K, Guydosh NR, Bayfield MA. Respiratory Syncytial Virus (RSV) optimizes the translational landscape during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606199. [PMID: 39131278 PMCID: PMC11312563 DOI: 10.1101/2024.08.02.606199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Viral infection often triggers eukaryotic initiator factor 2α (eIF2α) phosphorylation, leading to global 5'-cap-dependent translation inhibition. RSV encodes messenger RNAs (mRNAs) mimicking 5'-cap structures of host mRNAs and thus inhibition of cap-dependent translation initiation would likely also reduce viral translation. We confirmed that RSV limits widespread translation initiation inhibition and unexpectedly found that the fraction of ribosomes within polysomes increases during infection, indicating higher ribosome loading on mRNAs during infection. We found that AU-rich host transcripts that are less efficiently translated under normal conditions become more efficient at recruiting ribosomes, similar to RSV transcripts. Viral transcripts are transcribed in cytoplasmic inclusion bodies, where the viral AU-rich binding protein M2-1 has been shown to bind viral transcripts and shuttle them into the cytoplasm. We further demonstrated that M2-1 is found on polysomes, and that M2-1 might deliver host AU-rich transcripts for translation.
Collapse
Affiliation(s)
- Kyra Kerkhofs
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| | - Nicholas R. Guydosh
- Section on mRNA Regulation and Translation, Laboratory of Biochemistry & Genetics. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A. Bayfield
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| |
Collapse
|
19
|
Liu D, Yang J, Cristea IM. Liquid-liquid phase separation in innate immunity. Trends Immunol 2024; 45:454-469. [PMID: 38762334 PMCID: PMC11247960 DOI: 10.1016/j.it.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Intrinsic and innate immune responses are essential lines of defense in the body's constant surveillance of pathogens. The discovery of liquid-liquid phase separation (LLPS) as a key regulator of this primal response to infection brings an updated perspective to our understanding of cellular defense mechanisms. Here, we review the emerging multifaceted role of LLPS in diverse aspects of mammalian innate immunity, including DNA and RNA sensing and inflammasome activity. We discuss the intricate regulation of LLPS by post-translational modifications (PTMs), and the subversive tactics used by viruses to antagonize LLPS. This Review, therefore, underscores the significance of LLPS as a regulatory node that offers rapid and plastic control over host immune signaling, representing a promising target for future therapeutic strategies.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Terhüja M, Siddappa M, Lamichhane P, Meshram CD, Snider TA, Ritchey JW, Oomens AGP. Intranasal Vaccination with a Respiratory-Syncytial-Virus-Based Virus-like Particle Displaying the G Protein Conserved Region Induces Severe Weight Loss and Pathology upon Challenge with Wildtype Respiratory Syncytial Virus. Viruses 2024; 16:843. [PMID: 38932136 PMCID: PMC11209524 DOI: 10.3390/v16060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory tract disease worldwide, and a pediatric vaccine is not available. We generated a filamentous RSV-based virus-like particle (VLP) that presents the central conserved region of the attachment protein G. This was achieved by co-expressing the matrix protein, phosphoprotein, nucleoprotein, and a hybrid fusion protein in which the F ectodomain was replaced with the G central region (GCR). The latter is relatively conserved and contains a receptor binding site and hence is a logical vaccine target. The immunogenicity and efficacy of the resulting VLP, termed VLP-GCR, were examined in mice using intranasal application without adjuvant. VLP-GCR induced substantial anti-N antibody levels but very low anti-G antibody levels, even after three vaccinations. In contrast, a VLP presenting prefusion-stabilized fusion (preF) protein instead of GCR induced both high anti-F and anti-nucleoprotein antibody levels, suggesting that our GCR antigen was poorly immunogenic. Challenge of VLP-GCR-vaccinated mice caused increased weight loss and lung pathology, and both VLPs induced mucus in the lungs. Thus, neither VLP is suitable as a vaccine for RSV-naive individuals. However, VLP-preF enhanced the proportion of preF antibodies and could serve as a multi-antigen mucosal booster vaccine in the RSV-experienced population.
Collapse
Affiliation(s)
- Megolhubino Terhüja
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Manjunath Siddappa
- Department of Veterinary Sciences and Animal Husbandry, Chitradurga 577502, Karnataka, India
| | - Pramila Lamichhane
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy, Immunology, and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chetan D. Meshram
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Timothy A. Snider
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Antonius G. P. Oomens
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| |
Collapse
|
21
|
Jobe F, Kelly JT, Simpson J, Wells J, Armstrong SD, Spick M, Lacey E, Logan L, Geifman N, Hawes P, Bailey D. Viral PIC-pocketing: RSV sequestration of translational preinitiation complexes into bi-phasic biomolecular condensates. J Virol 2024; 98:e0015324. [PMID: 38421168 PMCID: PMC10949503 DOI: 10.1128/jvi.00153-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.
Collapse
Affiliation(s)
| | | | | | - Joanna Wells
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Stuart D. Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Matt Spick
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Emily Lacey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Leanne Logan
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| |
Collapse
|
22
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Martin EW, Iserman C, Olety B, Mitrea DM, Klein IA. Biomolecular Condensates as Novel Antiviral Targets. J Mol Biol 2024; 436:168380. [PMID: 38061626 DOI: 10.1016/j.jmb.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.
Collapse
|
24
|
Zhang C, Wu H, Feng H, Zhang YA, Tu J. Grass carp reovirus VP56 and VP35 induce formation of viral inclusion bodies for replication. iScience 2024; 27:108684. [PMID: 38188516 PMCID: PMC10767200 DOI: 10.1016/j.isci.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Viral inclusion bodies (VIBs) are subcellular structures required for efficient viral replication. How type II grass carp reovirus (GCRV-II), the mainly prevalent strain, forms VIBs is unknown. In this study, we found that GCRV-II infection induced punctate VIBs in grass carp ovary (GCO) cells and that non-structural protein 38 (NS38) functioned as a participant in VIB formation. Furthermore, VP56 and VP35 induced VIBs and recruited other viral proteins via the N-terminal of VP56 and the middle domain of VP35. Additionally, we found that the newly synthesized viral RNAs co-localized with VP56 and VP35 in VIBs during infection. Taken together, VP56 and VP35 induce VIB formation and recruit other viral proteins and viral RNAs to the VIBs for viral replication, which helps identify new targets for developing anti-GCRV-II drugs to disrupt viral replication.
Collapse
Affiliation(s)
- Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
27
|
Wu C, Wagner ND, Moyle AB, Feng A, Sharma N, Stubbs SH, Donahue C, Davey RA, Gross ML, Leung DW, Amarasinghe GK. Disruption of Ebola NP 0VP35 Inclusion Body-like Structures reduce Viral Infection. J Mol Biol 2023; 435:168241. [PMID: 37598728 PMCID: PMC11312838 DOI: 10.1016/j.jmb.2023.168241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Callie Donahue
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
28
|
Jain J, Chaudhary Y, Gaur SK, Tembhurne P, Sekar SC, Dhanavelu M, Sehrawat S, Kaul R. Peste des petits ruminants virus non-structural V and C proteins interact with the NF-κB p65 subunit and modulate pro-inflammatory cytokine gene induction. J Gen Virol 2023; 104. [PMID: 37831061 DOI: 10.1099/jgv.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is known to induce transient immunosuppression in infected small ruminants by modulating several cellular pathways involved in the antiviral immune response. Our study shows that the PPRV-coded non-structural proteins C and V can interact with the cellular NF-κB p65 subunit. The PPRV-C protein interacts with the transactivation domain (TAD) while PPRV-V interacts with the Rel homology domain (RHD) of the NF-κB p65 subunit. Both viral proteins can suppress the NF-κB transcriptional activity and NF-κB-mediated transcription of cellular genes. PPRV-V protein expression can significantly inhibit the nuclear translocation of NF-κB p65 upon TNF-α stimulation, whereas PPRV-C does not affect it. The NF-κB-mediated pro-inflammatory cytokine gene expression is significantly downregulated in cells expressing PPRV-C or PPRV-V protein. Our study provides evidence suggesting a role of PPRV non-structural proteins V and C in the modulation of NF-κB signalling through interaction with the NF-κB p65 subunit.
Collapse
Affiliation(s)
- Juhi Jain
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | | | | | | | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Mohali, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
29
|
Diot C, Richard CA, Risso-Ballester J, Martin D, Fix J, Eléouët JF, Sizun C, Rameix-Welti MA, Galloux M. Hardening of Respiratory Syncytial Virus Inclusion Bodies by Cyclopamine Proceeds through Perturbation of the Interactions of the M2-1 Protein with RNA and the P Protein. Int J Mol Sci 2023; 24:13862. [PMID: 37762166 PMCID: PMC10531356 DOI: 10.3390/ijms241813862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral nucleoprotein N and the phosphoprotein P. We recently demonstrated that cyclopamine (CPM) inhibits RSV multiplication by disorganizing and hardening IBs. Although a single mutation in the viral transcription factor M2-1 induced resistance to CPM, the mechanism of action of CPM still remains to be characterized. Here, using FRAP experiments on reconstituted pseudo-IBs both in cellula and in vitro, we first demonstrated that CPM activity depends on the presence of M2-1 together with N and P. We showed that CPM impairs the competition between P and RNA binding to M2-1. As mutations on both P and M2-1 induced resistance against CPM activity, we suggest that CPM may affect the dynamics of the M2-1-P interaction, thereby affecting the relative mobility of the proteins contained in RSV IBs. Overall, our results reveal that stabilizing viral protein-protein interactions is an attractive new antiviral approach. They pave the way for the rational chemical optimization of new specific anti-RSV molecules.
Collapse
Affiliation(s)
- Cédric Diot
- Institut Pasteur, Université Paris Cité, M3P, F-75015 Paris, France;
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
| | - Charles-Adrien Richard
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jennifer Risso-Ballester
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
| | - Davy Martin
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jenna Fix
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jean-François Eléouët
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France;
| | - Marie-Anne Rameix-Welti
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
- Laboratoire de Microbiologie, Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, DMU15, F-75015 Paris, France
| | - Marie Galloux
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| |
Collapse
|
30
|
陈 一, 凌 晓, 于 浩, 丁 俊. [Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:857-862. [PMID: 37866939 PMCID: PMC10579061 DOI: 10.12182/20230960302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Liquid-liquid phase separation (LLPS), a novel mechanism of the organization and formation of cellular structures, plays a vital role in regulating cell fate transitions and disease pathogenesis and is gaining widespread attention. LLPS may lead to the assemblage of cellular structures with liquid-like fluidity, such as germ granules, stress granules, and nucleoli, which are classic membraneless organelles. These structures are typically formed through the high-concentration liquid aggregation of biomacromolecules driven by weak multivalent interactions. LLPS is involved in regulating various intracellular life activities and its dysregulation may cause the disruption of cellular functions, thereby contributing to the pathogenesis and development of neurodegenerative diseases, infectious diseases, cancers, etc. Herein, we summarized published findings on the LLPS dynamics of membraneless organelles in physiological and pathological cell fate transition, revealing their crucial roles in cell differentiation, development, and various pathogenic processes. This paper provides a fresh theoretical framework and potential therapeutic targets for LLPS-related studies, opening new avenues for future research.
Collapse
Affiliation(s)
- 一龙 陈
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 晓茹 凌
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
| | - 浩澎 于
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 俊军 丁
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
32
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
33
|
Fang J, Castillon G, Phan S, McArdle S, Hariharan C, Adams A, Ellisman MH, Deniz AA, Saphire EO. Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories. Nat Commun 2023; 14:4159. [PMID: 37443171 PMCID: PMC10345124 DOI: 10.1038/s41467-023-39821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Scripps Research, La Jolla, CA, USA
| | - Guillaume Castillon
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Aiyana Adams
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | | | |
Collapse
|
34
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|
35
|
Aljabali AAA, Obeid MA, El-Tanani M, Tambuwala MM. Respiratory Syncytial Virus: An Overview. Future Virol 2023; 18:595-609. [DOI: 10.2217/fvl-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/26/2023] [Indexed: 01/11/2025]
Affiliation(s)
- Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, UK
| |
Collapse
|
36
|
Li Z, Zheng M, He Z, Qin Y, Chen M. Morphogenesis and functional organization of viral inclusion bodies. CELL INSIGHT 2023; 2:100103. [PMID: 37193093 PMCID: PMC10164783 DOI: 10.1016/j.cellin.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/18/2023]
Abstract
Eukaryotic viruses are obligate intracellular parasites that rely on the host cell machinery to carry out their replication cycle. This complex process involves a series of steps, starting with virus entry, followed by genome replication, and ending with virion assembly and release. Negative strand RNA and some DNA viruses have evolved to alter the organization of the host cell interior to create a specialized environment for genome replication, known as IBs, which are precisely orchestrated to ensure efficient viral replication. The biogenesis of IBs requires the cooperation of both viral and host factors. These structures serve multiple functions during infection, including sequestering viral nucleic acids and proteins from innate immune responses, increasing the local concentration of viral and host factors, and spatially coordinating consecutive replication cycle steps. While ultrastructural and functional studies have improved our understanding of IBs, much remains to be learned about the precise mechanisms of IB formation and function. This review aims to summarize the current understanding of how IBs are formed, describe the morphology of these structures, and highlight the mechanism of their functions. Given that the formation of IBs involves complex interactions between the virus and the host cell, the role of both viral and cellular organelles in this process is also discussed.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Miaomiao Zheng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Zhicheng He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
37
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
39
|
Becker N, Maisner A. Nipah Virus Impairs Autocrine IFN Signaling by Sequestering STAT1 and STAT2 into Inclusion Bodies. Viruses 2023; 15:554. [PMID: 36851768 PMCID: PMC9967463 DOI: 10.3390/v15020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism.
Collapse
Affiliation(s)
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| |
Collapse
|
40
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
41
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
42
|
Ma H, Liu M, Fu R, Feng J, Ren H, Cao J, Shi M. Phase separation in innate immune response and inflammation-related diseases. Front Immunol 2023; 14:1086192. [PMID: 36860877 PMCID: PMC9970293 DOI: 10.3389/fimmu.2023.1086192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Inflammation induced by nonspecific pathogenic or endogenous danger signals is an essential mechanism of innate immune response. The innate immune responses are rapidly triggered by conserved germline-encoded receptors that recognize broad patterns indicative of danger, with subsequent signal amplification by modular effectors, which have been the subject of intense investigation for many years. Until recently, however, the critical role of intrinsic disorder-driven phase separation in facilitating innate immune responses went largely unappreciated. In this review, we discuss emerging evidences that many innate immune receptors, effectors, and/or interactors function as "all-or-nothing" switch-like hubs to stimulate acute and chronic inflammation. By concentrating or relegating modular signaling components to phase-separated compartments, cells construct flexible and spatiotemporal distributions of key signaling events to ensure rapid and effective immune responses to a myriad of potentially harmful stimuli.
Collapse
Affiliation(s)
- Huihui Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mingxi Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rao Fu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jia Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haoran Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
43
|
Hu HY, Liu YJ. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119360. [PMID: 36087810 DOI: 10.1016/j.bbamcr.2022.119360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to native-state structures, biomolecules often form condensed supramolecular assemblies or cellular membraneless organelles that are critical for cell life. These biomolecular assemblies, generally including liquid-like droplets (condensates) and amyloid-like aggregates, can sequester or recruit their interacting partners, so as to either modulate various cellular behaviors or even cause disorders. This review article summarizes recent advances in the sequestration of native factors by biomolecular assemblies and discusses their potential consequences on cellular function, homeostasis, and disease pathology.
Collapse
Affiliation(s)
- Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
44
|
Li H, Ernst C, Kolonko-Adamska M, Greb-Markiewicz B, Man J, Parissi V, Ng BWL. Phase separation in viral infections. Trends Microbiol 2022; 30:1217-1231. [PMID: 35902318 DOI: 10.1016/j.tim.2022.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Viruses rely on the reprogramming of cellular processes to enable efficient viral replication; this often requires subcompartmentalization within the host cell. Liquid-liquid phase separation (LLPS) has emerged as a fundamental principle to organize and subdivide cellular processes, and plays an important role in viral life cycles. Despite substantial advances in the field, elucidating the exact organization and function of these organelles remains a major challenge. In this review, we summarize the biochemical basis of condensate formation, the role of LLPS during viral infection, and interplay of LLPS with innate immune responses. Finally, we discuss possible strategies and molecules to modulate LLPS during viral infections.
Collapse
Affiliation(s)
- Haohua Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christina Ernst
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marta Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jackie Man
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Faculty of Medicine, Imperial College, London, UK
| | - Vincent Parissi
- Microbiologie Fondamentale et Pathogénicité Laboratory (MPF), UMR 5234, « Mobility of pathogenic genomes and chromatin dynamics » team (MobilVIR), CNRS-University of Bordeaux, Bordeaux, France
| | - Billy Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
45
|
BenDavid E, Pfaller CK, Pan Y, Samuel CE, Ma D. Host 5'-3' Exoribonuclease XRN1 Acts as a Proviral Factor for Measles Virus Replication by Downregulating the dsRNA-Activated Kinase PKR. J Virol 2022; 96:e0131922. [PMID: 36300942 PMCID: PMC9683022 DOI: 10.1128/jvi.01319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Many negative-sense RNA viruses, including measles virus (MeV), are thought to carry out much of their viral replication in cytoplasmic membraneless foci known as inclusion bodies (IBs). The mechanisms by which IBs facilitate efficient viral replication remain largely unknown but may involve an intricate network of regulation at the host-virus interface. Viruses are able to modulate such interactions by a variety of strategies including adaptation of their genomes and "hijacking" of host proteins. The latter possibility broadens the molecular reservoir available for a virus to enhance its replication and/or antagonize host antiviral responses. Here, we show that the cellular 5'-3' exoribonuclease, XRN1, is a host protein hijacked by MeV. We found that upon MeV infection, XRN1 is translocated to cytoplasmic IBs where it acts in a proviral manner by preventing the accumulation of double-stranded RNA (dsRNA) within the IBs. This leads to the suppression of the dsRNA-induced innate immune responses mediated via the protein kinase R (PKR)-integrated stress response (ISR) pathway. IMPORTANCE Measles virus remains a major global health threat due to its high transmissibility and significant morbidity in children and immunocompromised individuals. Although there is an effective vaccine against MeV, a large population in the world remains without access to the vaccine, contributing to more than 7,000,000 measles cases and 60,000 measles deaths in 2020 (CDC). For negative-sense RNA viruses including MeV, one active research area is the exploration of virus-host interactions occurring at cytoplasmic IBs where viral replication takes place. In this study we present evidence suggesting a model in which MeV IBs antagonize host innate immunity by recruiting XRN1 to reduce dsRNA accumulation and subsequent PKR kinase activation/ISR induction. In the absence of XRN1, the increased dsRNA level acts as a potent activator of the antiviral PKR/ISR pathway leading to suppression of global cap-dependent mRNA translation and inhibition of viral replication.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| | | | - Yue Pan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Charles E. Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
46
|
Wen Y, Ma J. Phase separation drives the formation of biomolecular condensates in the immune system. Front Immunol 2022; 13:986589. [PMID: 36439121 PMCID: PMC9685520 DOI: 10.3389/fimmu.2022.986589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 08/12/2023] Open
Abstract
When the external conditions change, such as the temperature or the pressure, the multi-component system sometimes separates into several phases with different components and structures, which is called phase separation. Increasing studies have shown that cells condense related biomolecules into independent compartments in order to carry out orderly and efficient biological reactions with the help of phase separation. Biomolecular condensates formed by phase separation play a significant role in a variety of cellular processes, including the control of signal transduction, the regulation of gene expression, and the stress response. In recent years, many phase separation events have been discovered in the immune response process. In this review, we provided a comprehensive and detailed overview of the role and mechanism of phase separation in the innate and adaptive immune responses, which will help the readers to appreciate the advance and importance of this field.
Collapse
Affiliation(s)
- Yuqing Wen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
47
|
Wu C, Holehouse AS, Leung DW, Amarasinghe GK, Dutch RE. Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annu Rev Virol 2022; 9:285-306. [PMID: 35709511 PMCID: PMC11331907 DOI: 10.1146/annurev-virology-093020-013659] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses frequently carry out replication in specialized compartments within cells. The effect of these structures on virus replication is poorly understood. Recent research supports phase separation as a foundational principle for organization of cellular components with the potential to influence viral replication. In this review, phase separation is described in the context of formation of viral replication centers, with an emphasis on the nonsegmented negative-strand RNA viruses. Consideration is given to the interplay between phase separation and the critical processes of viral transcription and genome replication, and the role of these regions in pathogen-host interactions is discussed. Finally, critical questions that must be addressed to fully understand how phase separation influences viral replication and the viral life cycle are presented, along with information about new approaches that could be used to make important breakthroughs in this emerging field.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Science and Engineering Living Systems, Washington University, St. Louis, Missouri, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA;
| |
Collapse
|
48
|
Huang N, Dong H, Shao B. Phase separation in immune regulation and immune-related diseases. J Mol Med (Berl) 2022; 100:1427-1440. [PMID: 36085373 PMCID: PMC9462646 DOI: 10.1007/s00109-022-02253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Phase separation is an emerging paradigm for understanding the biochemical interactions between proteins, DNA, and RNA. Research over the past decade has provided mounting evidence that phase separation modulates a great variety of cellular activities. Particularly, phase separation is directly relevant to immune signaling, immune cells, and immune-related diseases like cancer, neurodegenerative diseases, and even SARS-CoV-2. In this review, we summarized current knowledge of phase separation in immunology and emerging findings related to immune responses as they enable possible treatment approaches.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and State Key Laboratory of Biotherapy, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and State Key Laboratory of Biotherapy, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and State Key Laboratory of Biotherapy, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
50
|
Wei W, Bai L, Yan B, Meng W, Wang H, Zhai J, Si F, Zheng C. When liquid-liquid phase separation meets viral infections. Front Immunol 2022; 13:985622. [PMID: 36016945 PMCID: PMC9395683 DOI: 10.3389/fimmu.2022.985622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic cells have both membranous and membraneless organelles. While the formation mechanism of membranous organelles is well understood, the formation mechanism of membraneless organelles remains unknown. Many biomolecules in the cytoplasm transition from the liquid phase to the agglutinated phase are known as liquid-liquid phase separation (LLPS). The biomolecular agglomerates’ physical properties enable them to function as dynamic compartments that respond to external pressures and stimuli. Scientists have gradually recognized the importance of phase separation during viral infections. LLPS provides a powerful new framework for understanding the viral life cycle from viral replication to evasion of host immune surveillance. As a result, this review focuses on the progress of LLPS research in viral infection and immune regulation to provide clues for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lu Bai
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bing Yan
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weiquan Meng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| |
Collapse
|