1
|
Yoon KW, Chu KB, Eom GD, Mao J, Heo SI, Quan FS. Dose sparing enabled by immunization with influenza vaccine using orally dissolving film. Int J Pharm 2024; 667:124945. [PMID: 39550013 DOI: 10.1016/j.ijpharm.2024.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Influenza vaccine delivered by orally dissolving film vaccine (ODFV) is a promising approach. In this study, we generated three ODFVs each comprising pulluan and trehalose with different doses of inactivated A/Puerto Rico/8/34, H1N1 virus (ODFV I, II, III) to evaluate their dose-sparing effect in mice. The ODFVs were placed on the tongues of mice to elicit immunization and after 3 immunizations at 4-week intervals, mice were challenged with a lethal dose of A/PR/8/34 to assess vaccine-induced protection. The 3 ODFVs containing 50, 250, or 750 μg of inactivated viruses elicited virus-specific antibody responses and virus neutralization in a dose-dependent manner. Dose-dependent antibody responses were also observed from the mucosal tissue samples, and also from antibody-secreting cells of the lungs and spleens. ODFV-induced cellular immunity, particularly germinal center B cells and T cells were also dose-dependent. Importantly, all 3 ODFVs evaluated in this study provided complete protection by strongly suppressing the pro-inflammatory cytokine production and lung virus titers. None of the immunized mice underwent noticeable weight loss nor succumbed to death, a phenomenon that was only observed in the infection challenge controls. These results indicated that the protection conferred by a low dose influenza vaccine formulated in ODF is comparable to that of a high-dose vaccine, thereby enabling vaccine dose sparing effect.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su In Heo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Qian H, Tian L, Liu W, Liu L, Li M, Zhao Z, Lei X, Zheng W, Zhao Z, Zheng X. Adenovirus type 5-expressing Gn induces better protective immunity than Gc against SFTSV infection in mice. NPJ Vaccines 2024; 9:194. [PMID: 39426985 PMCID: PMC11490641 DOI: 10.1038/s41541-024-00993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is caused by the SFTS virus (SFTSV) with high morbidity and mortality. The major immunodominant region of SFTSV surface glycoprotein (G) remains unclear. In this study, we constructed adenovirus type 5 (Ad5) vectored vaccine candidates expressing different regions of SFTSV G (Gn, Gc and Gn-Gc) and evaluated their immunogenicity and protective efficacy in mice. In wild-type mice, compared with Ad5-Gc or Ad5-Gn-Gc, Ad5-Gn recruited/activated more dendritic cells and B cells in lymph nodes or peripheral blood, causing Th1-/Th2-mediated responses in splenocytes and triggered a greater level of SFTSV-neutralizing antibodies. In IFNAR Ab-treated mice, immunization of Ad5-Gn exhibited better protection against SFTSV challenge than Ad5-Gc or Ad5-Gn-Gc. Furthermore, passive immunization revealed complete protective immunity of Gn-specific serum rather than Gc. Collectively, our data demonstrated that Gn is the immunodominant fragment of SFTSV G and could be a potential candidate for SFTSV vaccine development.
Collapse
Affiliation(s)
- Hua Qian
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Tian
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongxin Zhao
- Department of Laboratory Medicine, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoying Lei
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xuexing Zheng
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Yoon KW, Chu KB, Eom GD, Mao J, Kim SS, Quan FS. Orally dissolving film as a potential vaccine delivery carrier to prevent influenza virus infection. Antiviral Res 2024; 230:105979. [PMID: 39111639 DOI: 10.1016/j.antiviral.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Orally dissolving films (ODF) are designed to be dissolved on the tongue and absorbed in the mouth. It offers multiple advantages over the commonly used needle-based vaccines, especially in terms of convenience allowing safe, painless, and easy self-administration. As the efficacy of ODF-encapsulated influenza vaccines has not been demonstrated, we assessed the protection elicited by inactivated influenza virus (A/PR/8/34, H1N1) vaccine delivered using ODFs in mice. Trehalose and pullulan components of the ODF ensured that the HA antigens of the inactivated PR8 virus retained their stability while ensuring the rapid release of the vaccines upon exposure to murine saliva. Mice were immunized thrice by placing the PR8-ODF on the tongues of mice at 4-week intervals, and vaccine-induced protection was evaluated upon lethal homologous challenge infection. The PR8-ODF vaccination elicited virus-specific serum IgG and IgA antibody responses, hemagglutinin inhibition (HAI), and viral neutralization. Upon challenge infection, ODF vaccination showed higher levels of IgG and IgA antibody responses in the lungs and antibody-secreting cell (ASC) responses in both lung and spleen compared to unimmunized controls. These results corresponded with the enhanced T cell and germinal center B cell responses in the lungs and spleens. Importantly, ODF vaccination significantly reduced lung virus titers and inflammatory cytokines (IFN-γ, IL-6) production compared to unvaccinated control. ODF vaccination ensured 100% survival and prevented weight loss in mice. These findings suggest that influenza vaccine delivery through ODFs could be a promising approach for oral vaccine development.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
El-Husseiny MH, Pushko P, Tretyakova I, Hagag NM, Abdel-Mawgod S, Shabaan A, Bakry NR, Arafa AS. A Novel Application of Virus Like Particles in the Hemagglutination Inhibition Assay. Int J Mol Sci 2024; 25:8746. [PMID: 39201433 PMCID: PMC11354378 DOI: 10.3390/ijms25168746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The hemagglutination inhibition (HI) assay is a traditional laboratory procedure for detection and quantitation of serum antibodies of hemagglutinating viruses containing the hemagglutinin (HA) gene. The current study aimed to investigate the novel use of virus like particles (VLP) as an antigen for the HI assay. VLPs were prepared from a strain of H5N1 using a baculovirus expression system. The VLPs were characterized using the hemagglutination test, Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and transmission electron microscopy. The comparative HI assay was performed using three different seed antigens: A/chicken/Mexico/232/94 (H5N2), A/chicken/Egypt/18-H/09(H5N1) and A/goose/Guangdong/1/1996(H5N1). The HI assay of serum antibody titrations using homologous antigens to these vaccinal seeds were compared to the VLP's antigens for the same serum. The HI titers were logically relevant to the similarity between VLP antigens and vaccinal seeds, indicating the VLPs behave similarly to the standard HI assay which uses inactivated whole virus as an antigen. VLPs could be considered as an alternative to the HI assay antigen as they show a relatedness between the similarity with vaccinal seed and serum antibodies. Compared to typical entire H5N1 viral antigen prepared in SPF eggs that require proper inactivation to avoid any public health risk, VLPs prepared in tissue culture, plants or insect cells are a safe, inexpensive and scalable alternative to inactivated whole virus antigen.
Collapse
Affiliation(s)
- Mohamed H El-Husseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | | | | | - Naglaa M Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Sara Abdel-Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ahmed Shabaan
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Neveen R Bakry
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdel Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| |
Collapse
|
5
|
Wang Y, Li Q, Peng P, Zhang Q, Huang Y, Hu J, Hu Z, Liu X. Dual N-linked glycosylation at residues 133 and 158 in the hemagglutinin are essential for the efficacy of H7N9 avian influenza virus like particle vaccine in chickens and mice. Vet Microbiol 2024; 294:110108. [PMID: 38729093 DOI: 10.1016/j.vetmic.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.
Collapse
Affiliation(s)
- Yufei Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qun Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yalan Huang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Yoon KW, Chu KB, Eom GD, Mao J, Quan FS. Vaccine efficacy induced by virus-like particles containing Leishmania donovani surface glycoprotein GP63. PLoS Negl Trop Dis 2024; 18:e0012229. [PMID: 38857253 PMCID: PMC11164348 DOI: 10.1371/journal.pntd.0012229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Leishmania donovani surface glycoprotein 63 (GP63) is a major virulence factor involved in parasite escape and immune evasion. In this study, we generated virus-like particles (VLPs) expressing L. donovani GP63 using the baculovirus expression system. Mice were intramuscularly immunized with GP63-VLPs and challenged with L. donovani promastigotes. GP63-VLP immunization elicited higher levels of L. donovani antigen-specific serum antibodies and enhanced splenic B cell, germinal center B cell, CD4+, and CD8+ T cell responses compared to unimmunized controls. GP63-VLPs inhibited the influx of pro-inflammatory cytokines IFN-γ and IL-6 in the livers, as well as thwarting the development of splenomegaly in immunized mice. Upon L. donovani challenge infection, a drastic reduction in splenic parasite burden was observed in VLP-immunized mice. These results indicate that GP63-VLPs immunization conferred protection against L. donovani challenge infection by inducing humoral and cellular immunity in mice.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, Republic of Korea
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Mao J, Eom GD, Yoon KW, Kim MJ, Chu KB, Kang HJ, Quan FS. Crossprotection induced by virus-like particles containing influenza dual-hemagglutinin and M2 ectodomain. Nanomedicine (Lond) 2024; 19:741-754. [PMID: 38390688 DOI: 10.2217/nnm-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.
Collapse
Affiliation(s)
- Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
8
|
Yoon KW, Chu KB, Eom GD, Mao J, Kim MJ, Lee H, No JH, Quan FS. Protective Humoral Immune Response Induced by Recombinant Virus-like Particle Vaccine Expressing Leishmania donovani Surface Antigen. ACS Infect Dis 2023; 9:2583-2592. [PMID: 38014824 DOI: 10.1021/acsinfecdis.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To date, Leishmania spp. vaccine studies have mainly focused on cellular immunity induction, which plays a crucial role in host protection. In contrast, vaccine-induced humoral immunity is largely neglected. Virus-like particle (VLP) vaccines generated using the baculovirus expression system are well-known inducers of humoral immunity and would serve as a suitable platform for evaluating humoral immunity-mediated protection against visceral Leishmaniasis. In this study, we investigated the humoral immunity evoked through VLPs expressing the L. donovani promastigote surface antigen (PSA-VLPs) and assessed their contribution to protection in mice. PSA-VLPs vaccines were generated using the baculovirus expression system and used for mouse immunizations. Mice were intramuscularly immunized twice with PSA-VLPs and challenged with L. donovani to confirm vaccine-induced protective immunity. PSA-VLP immunization elicited parasite-specific antibody responses in the sera of mice, which were induced in a dose-dependent manner. B cell, germinal center B cell, and memory B cell responses in the spleen were found to be higher in vaccinated mice compared to unimmunized controls. PSA-VLP immunization diminished the production of pro-inflammatory cytokines IFN-γ and IL-6 in the liver. Overall, the PSA-VLPs conferred protection against L. donovani challenge infection by reducing the total parasite burden within the internal organs. These results suggest that PSA-VLPs induced protective immunity against the L. donovani challenge infection.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Kang HJ, Li J, Razzak MA, Eom GD, Yoon KW, Mao J, Chu KB, Jin H, Choi SS, Quan FS. Chitosan-Alginate Polymeric Nanocomposites as a Potential Oral Vaccine Carrier Against Influenza Virus Infection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903218 DOI: 10.1021/acsami.3c11756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Lessons from the recent COVID-19 pandemic underscore the importance of rapidly developing an efficacious vaccine and its immediate administration for prophylaxis. Oral vaccines are of particular interest, as the presence of healthcare professionals is not needed for this stress-free vaccination approach. In this study, we designed a chitosan (CH)-alginate (AL) complex carrier system encapsulating an inactivated influenza virus vaccine (A/PR/8/34, H1N1), and the efficacy of these orally administered nanocomposite vaccines was evaluated in mice. Interestingly, CH-AL complexes were able to load large doses of vaccine (≥90%) with a stable dispersion. The encapsulated vaccine was protected from gastric acid and successfully released from the nanocomposite upon exposure to conditions resembling those of the small intestines. Scanning electron microscopy of the CH-virus-AL complexes revealed that the connections between the lumps became loose and widened pores were visible on the nanocomposite's surface at pH 7.4, thereby increasing the chance of virus release into the surroundings. Orally inoculating CH-virus-AL into mice elicited higher virus-specific IgG compared to the unimmunized controls. CH-virus-AL immunization also enhanced CD4 and CD8 T cell responses while diminishing lung virus titer, inflammatory cytokine production, and body weight loss compared to the infection control group. These results suggest that chitosan-alginate polymeric nanocomposites could be promising delivery complexes for oral influenza vaccines.
Collapse
Affiliation(s)
- Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiaoyang Li
- Department of Energy Science and Technology, Myongji University, Yongin 17058, Republic of Korea
- The Natural Science Research Institute, Myongji University, Yongin 17058, Republic of Korea
| | - Md Abdur Razzak
- Department of Energy Science and Technology, Myongji University, Yongin 17058, Republic of Korea
- The Natural Science Research Institute, Myongji University, Yongin 17058, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hui Jin
- Department of Energy Science and Technology, Myongji University, Yongin 17058, Republic of Korea
| | - Shin Sik Choi
- Department of Energy Science and Technology, Myongji University, Yongin 17058, Republic of Korea
- The Natural Science Research Institute, Myongji University, Yongin 17058, Republic of Korea
- Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea
- elegslab Inc., Seoul 06083, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
11
|
Park BR, Bommireddy R, Chung DH, Kim KH, Subbiah J, Jung YJ, Bhatnagar N, Pack CD, Ramachandiran S, Reddy SJC, Selvaraj P, Kang SM. Hemagglutinin virus-like particles incorporated with membrane-bound cytokine adjuvants provide protection against homologous and heterologous influenza virus challenge in aged mice. Immun Ageing 2023; 20:20. [PMID: 37170231 PMCID: PMC10173218 DOI: 10.1186/s12979-023-00344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Current influenza vaccines deliver satisfactory results in young people but are less effective in the elderly. Development of vaccines for an ever-increasing aging population has been an arduous challenge due to immunosenescence that impairs the immune response in the aged, both quantitatively and qualitatively. RESULTS To potentially enhance vaccine efficacy in the elderly, we investigated the immunogenicity and cross-protection of influenza hemagglutinin virus-like particles (HA-VLP) incorporated with glycosylphosphatidylinositol (GPI)-anchored cytokine-adjuvants (GPI-GM-CSF and GPI-IL-12) via protein transfer in aged mice. Lung viral replication against homologous and heterologous influenza viruses was significantly reduced in aged mice after vaccination with cytokine incorporated VLPs (HA-VLP-Cyt) in comparison to HA-VLP alone. Enhanced IFN-γ+CD4+ and IFN-γ+CD8+ T cell responses were also observed in aged mice immunized with HA-VLP-Cyt when compared to HA-VLP alone. CONCLUSIONS Cytokine-adjuvanted influenza HA-VLP vaccine induced enhanced protective response against homologous influenza A virus infection in aged mice. Influenza HA-VLP vaccine with GPI-cytokines also induced enhanced T cell responses correlating with better protection against heterologous infection in the absence of neutralizing antibodies. The results suggest that a vaccination strategy using cytokine-adjuvanted influenza HA-VLPs could be used to enhance protection against influenza A virus in the elderly.
Collapse
Affiliation(s)
- Bo Ryoung Park
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David Hyunjung Chung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jeeva Subbiah
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Noopur Bhatnagar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | | | | | | | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
12
|
Menon I, Patil S, Bagwe P, Vijayanand S, Kale A, Braz Gomes K, Kang SM, D'Souza M. Dissolving Microneedles Loaded with Nanoparticle Formulation of Respiratory Syncytial Virus Fusion Protein Virus-like Particles (F-VLPs) Elicits Cellular and Humoral Immune Responses. Vaccines (Basel) 2023; 11:vaccines11040866. [PMID: 37112778 PMCID: PMC10144232 DOI: 10.3390/vaccines11040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis and pneumonia in children ages five years and below. Recent outbreaks of the virus have proven that RSV remains a severe burden on healthcare services. Thus, a vaccine for RSV is a need of the hour. Research on novel vaccine delivery systems for infectious diseases such as RSV can pave the road to more vaccine candidates. Among many novel vaccine delivery systems, a combined system with polymeric nanoparticles loaded in dissolving microneedles holds a lot of potential. In this study, the virus-like particles of the RSV fusion protein (F-VLP) were encapsulated in poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). These NPs were then loaded into dissolving microneedles (MNs) composed of hyaluronic acid and trehalose. To test the in vivo immunogenicity of the nanoparticle-loaded microneedles, Swiss Webster mice were immunized with the F-VLP NPs, both with and without adjuvant monophosphoryl lipid A (MPL) NPs loaded in the MN. The mice immunized with the F-VLP NP + MPL NP MN showed high immunoglobulin (IgG and IgG2a) levels both in the serum and lung homogenates. A subsequent analysis of lung homogenates post-RSV challenge revealed high IgA, indicating the generation of a mucosal immune response upon intradermal immunization. A flowcytometry analysis showed high CD8+ and CD4+ expression in the lymph nodes and spleens of the F-VLP NP + MPL NP MN-immunized mice. Thus, our vaccine elicited a robust humoral and cellular immune response in vivo. Therefore, PLGA nanoparticles loaded in dissolving microneedles could be a suitable novel delivery system for RSV vaccines.
Collapse
Affiliation(s)
- Ipshita Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Smital Patil
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sharon Vijayanand
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Akanksha Kale
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Keegan Braz Gomes
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
13
|
Wu F, Qin M, Wang H, Sun X. Nanovaccines to combat virus-related diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1857. [PMID: 36184873 DOI: 10.1002/wnan.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Smith T, O’Kennedy MM, Ross CS, Lewis NS, Abolnik C. The production of Newcastle disease virus-like particles in Nicotiana benthamiana as potential vaccines. FRONTIERS IN PLANT SCIENCE 2023; 14:1130910. [PMID: 36875611 PMCID: PMC9978804 DOI: 10.3389/fpls.2023.1130910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Newcastle disease (ND) is a highly contagious viral respiratory and neurological disease that has a severe impact on poultry production worldwide. In the present study, an expression platform was established for the transient production in N.bethamiana of ND virus-like particles (VLPs) for use as vaccines against ND. The expression of the ND Fusion (F) and/or Hemagglutinin-neuraminidase (HN) proteins of a genotype VII.2 strain formed ND VLPs in planta as visualized under the transmission electron microscope, and HN-containing VLPs agglutinated chicken erythrocytes with hemagglutination (HA) titres of up to 13 log2.The immunogenicity of the partially-purified ND VLPs was confirmed in specific-pathogen-free White leghorn chickens. Birds receiving a single intramuscular immunization with 1024 HA units (10 log2) of the F/HN ND VLPs administered with 20% [v/v] Emulsigen®-P adjuvant, seroconverted after 14 days with F- and HN-specific antibodies at ELISA titres of 5705.17 and HI geometric mean titres (GMTs) of 6.2 log2, respectively. Furthermore, these ND-specific antibodies successfully inhibited viral replication in vitro of two antigenically closely-related ND virus isolates, with virus-neutralization test GMTs of 3.47 and 3.4, respectively. Plant-produced ND VLPs have great potential as antigen-matched vaccines for poultry and other avian species that are highly immunogenic, cost-effective, and facilitate prompt updating to ensure improved protection against emerging ND field viruses.
Collapse
Affiliation(s)
- Tanja Smith
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Martha M. O’Kennedy
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Craig S. Ross
- Avian Virology Department, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, United Kingdom
| | - Nicola S. Lewis
- Avian Virology Department, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
| |
Collapse
|
15
|
Menon I, Kang SM, Braz Gomes K, Uddin MN, D'Souza M. Laser-assisted intradermal delivery of a microparticle vaccine for respiratory syncytial virus induces a robust immune response. Vaccine 2023; 41:1209-1222. [PMID: 36631361 DOI: 10.1016/j.vaccine.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/11/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Respiratory syncytial virus (RSV) is an infectious disease that poses a significant public health risk in young children. Vaccine studies conducted in the 1960s using an intramuscular injection of formalin-inactivated respiratory syncytial virus (Fi-RSV) resulted in an enhanced respiratory disease and led to the failure of the vaccine. Thus, the virus-like particles (VLP) of the RSV fusion (F) protein was used as the vaccine antigen in this study. The F-VLP was encapsulated in a microparticle (MP) matrix composed of cross-linked bovine serum albumin (BSA) to enhance the antigen presentation and uptake. Moreover, a painless vaccination method would be desirable for an infectious disease that mainly affects young children. Thus, an ablative laser device, Precise Laser Epidermal System (P.L.E.A.S.E), was utilized to create micropores on the skin for vaccine delivery. We observed enhanced antigen presentation of the vaccine microparticles (F-VLP MP) with and without the adjuvant monophosphoryl lipid A (MPL-A) MP in dendritic cells. Consequently, Swiss Webster mice were immunized with the adjuvanted vaccine microparticles using the P.L.E.A.S.E laser to study the in vivo immunogenicity. The immunized mice had high serum immunoglobulin (IgG, IgG2a) levels, indicating a Th1 response. Subsequent analysis of lung homogenates post- RSV challenge revealed high IgA, indicating generation of a mucosal immune response upon intradermal immunization. Flowcytometry analysis showed high CD8+, and CD4+ expression in the lymph node and spleen of the adjuvanted vaccine microparticle immunized mice. Increased expression of interferon gamma (IFN-γ) in the spleen cells further proved Th1 polarized immune response. Finally, an immune plaque assay indicated significantly low lung viral titer in the mice immunized with intradermal adjuvanted vaccine microparticles. Thus, ablative laser-assisted immunization with the F-VLP based adjuvanted vaccine microparticles could be a promising vaccine candidate for RSV.
Collapse
Affiliation(s)
- Ipshita Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Keegan Braz Gomes
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Mohammad N Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Martin D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
16
|
Ahmar Rauf M, Nisar M, Abdelhady H, Gavande N, Iyer AK. Nanomedicine approaches to reduce cytokine storms in severe infections. Drug Discov Today 2022; 27:103355. [PMID: 36099962 PMCID: PMC9465473 DOI: 10.1016/j.drudis.2022.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022]
Abstract
During a cytokine storm, dysregulated proinflammatory cytokines are produced in excess. Cytokine storms occur in multiple infectious diseases, including Coronavirus 2019 (COVID-19). Thus, eliminating cytokine storms to enhance patient outcomes is crucial. Given the numerous cytokines involved, individual therapies might have little effect. Traditional cytokines might be less effective than medicines that target malfunctioning macrophages. Nanomedicine-based therapeutics reduce cytokine production in animal models of proinflammatory illnesses. The unique physicochemical features and controlled nano-bio interactions of nanotechnology show promise in healthcare and could be used to treat several stages of this virus-induced sickness, including cytokine storm mortality. Macrophage-oriented nanomedicines can minimize cytokine storms and associated harmful effects, enhancing patient outcomes. Here, we also discuss engineering possibilities for enhancing macrophage efficacy with nanodrug carriers.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, Sylvester Comprehensive Cancer Centre, University of Miami, FL 33136, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Maryam Nisar
- Department of Biochemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Hosam Abdelhady
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77341, USA
| | - Navnath Gavande
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Pliasas VC, Menne Z, Aida V, Yin JH, Naskou MC, Neasham PJ, North JF, Wilson D, Horzmann KA, Jacob J, Skountzou I, Kyriakis CS. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front Immunol 2022; 13:915364. [PMID: 35874791 PMCID: PMC9300842 DOI: 10.3389/fimmu.2022.915364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Zach Menne
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Dylan Wilson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ioanna Skountzou
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| |
Collapse
|
18
|
Kang HJ, Chu KB, Yoon KW, Eom GD, Mao J, Quan FS. Cross-Protection Induced by Virus-like Particles Derived from the Influenza B Virus. Biomedicines 2022; 10:1618. [PMID: 35884922 PMCID: PMC9313027 DOI: 10.3390/biomedicines10071618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/16/2022] Open
Abstract
The mismatch between the circulating influenza B virus (IBV) and the vaccine strain contributes to the rapid emergence of IBV infection cases throughout the globe, which necessitates the development of effective vaccines conferring broad protection. Here, we generated influenza B virus-like particle (VLP) vaccines expressing hemagglutinin, neuraminidase, or both antigens derived from the influenza B virus (B/Washington/02/2019 (B/Victoria lineage)-like virus, B/Phuket/3073/2013 (B/Yamagata lineage)-like virus. We found that irrespective of the derived antigen lineage, immunizing mice with the IBV VLPs significantly reduced lung viral loads, minimized bodyweight loss, and ensured 100% survival upon Victoria lineage virus B/Colorado/06/2017 challenge infection. These results were closely correlated with the vaccine-induced antibody responses and HI titer in sera, IgG, IgA antibody responses, CD4+ and CD8+ T cell responses, germinal center B cell responses, and inflammatory cytokine responses in the lungs. We conclude that hemagglutinin, neuraminidase, or both antigen-expressing VLPs derived from these influenza B viruses that were circulating during the 2020/21 season provide cross-protections against mismatched Victoria lineage virus (B/Colorado/06/2017) challenge infections.
Collapse
Affiliation(s)
- Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
19
|
Mao J, Eom GD, Yoon KW, Kang HJ, Chu KB, Quan FS. Sublingual Vaccination with Live Influenza Virus Induces Better Protection Than Oral Immunization in Mice. Life (Basel) 2022; 12:life12070975. [PMID: 35888065 PMCID: PMC9321673 DOI: 10.3390/life12070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Both sublingual (SL) and oral vaccine administration modalities are convenient, easy, and safe. Here, we have investigated the differences in vaccine efficacy that are induced by oral and sublingual immunization with live influenza virus (A/Hong Kong/1/1968, H3N2) in mice. Intranasally administering a lethal dose of the influenza virus resulted in the deaths of the mice, whereas viral replication in the lungs did not occur upon SL or oral administration. At 30 days post-immunization through the SL or oral route, the mice were intranasally challenge-infected with the lethal dose of the homologous influenza virus. Both SL and oral immunizations with the influenza virus elicited significantly higher levels of virus-specific IgG and IgA antibody responses, as well as HAI titers in the sera. Upon challenge infection, the SL immunization elicited higher levels of pulmonary IgG antibody and CD8+ T cell responses than the oral immunization. Enhanced splenic germinal center B (GC B) and B cell proliferation were also detected from the SL immunization, both of which were significantly greater than those of the oral immunization. Importantly, compared to oral immunization, significantly lessened lung viral loads and bodyweight reductions were observed from the SL immunization and these parameters contributed to prolonging the survival of the immunized mice. These results indicate that both SL and oral administration could be effective routes in inducing protective immunity against influenza virus infection, with SL immunization being the better of the two delivery routes.
Collapse
Affiliation(s)
- Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.M.); (G.-D.E.); (K.-W.Y.); (H.-J.K.)
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.M.); (G.-D.E.); (K.-W.Y.); (H.-J.K.)
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.M.); (G.-D.E.); (K.-W.Y.); (H.-J.K.)
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.M.); (G.-D.E.); (K.-W.Y.); (H.-J.K.)
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
20
|
Bommireddy R, Stone S, Bhatnagar N, Kumari P, Munoz LE, Oh J, Kim KH, Berry JTL, Jacobsen KM, Jaafar L, Naing SH, Blackerby AN, der Gaag TV, Wright CN, Lai L, Pack CD, Ramachandiran S, Suthar MS, Kang SM, Kumar M, Reddy SJC, Selvaraj P. Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines (Basel) 2022; 10:944. [PMID: 35746552 PMCID: PMC9230705 DOI: 10.3390/vaccines10060944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Shannon Stone
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Noopur Bhatnagar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Pratima Kumari
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Luis E. Munoz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Judy Oh
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Jameson T. L. Berry
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Kristen M. Jacobsen
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Lahcen Jaafar
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Swe-Htet Naing
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Allison N. Blackerby
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Tori Van der Gaag
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Chloe N. Wright
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Yerkes Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.L.); (M.S.S.)
| | - Christopher D. Pack
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Sampath Ramachandiran
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.L.); (M.S.S.)
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Shaker J. C. Reddy
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| |
Collapse
|
21
|
Kong D, Chen T, Hu X, Lin S, Gao Y, Ju C, Liao M, Fan H. Supplementation of H7N9 Virus-Like Particle Vaccine With Recombinant Epitope Antigen Confers Full Protection Against Antigenically Divergent H7N9 Virus in Chickens. Front Immunol 2022; 13:785975. [PMID: 35265069 PMCID: PMC8898936 DOI: 10.3389/fimmu.2022.785975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
The continuous evolution of the H7N9 avian influenza virus suggests a potential outbreak of an H7N9 pandemic. Therefore, to prevent a potential epidemic of the H7N9 influenza virus, it is necessary to develop an effective crossprotective influenza vaccine. In this study, we developed H7N9 virus-like particles (VLPs) containing HA, NA, and M1 proteins derived from H7N9/16876 virus and a helper antigen HMN based on influenza conserved epitopes using a baculovirus expression vector system (BEVS). The results showed that the influenza VLP vaccine induced a strong HI antibody response and provided effective protection comparable with the effects of commercial inactivated H7N9 vaccines against homologous H7N9 virus challenge in chickens. Meanwhile, the H7N9 VLP vaccine induced robust crossreactive HI and neutralizing antibody titers against antigenically divergent H7N9 viruses isolated in wave 5 and conferred on chickens complete clinical protection against heterologous H7N9 virus challenge, significantly inhibiting virus shedding in chickens. Importantly, supplemented vaccination with HMN antigen can enhance Th1 immune responses; virus shedding was completely abolished in the vaccinated chickens. Our study also demonstrated that viral receptor-binding avidity should be taken into consideration in evaluating an H7N9 candidate vaccine. These studies suggested that supplementing influenza VLP vaccine with recombinant epitope antigen will be a promising strategy for the development of broad-spectrum influenza vaccines.
Collapse
Affiliation(s)
- Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaolong Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Kim MJ, Chu KB, Kang HJ, Yoon KW, Lee DH, Lee SH, Moon EK, Quan FS. Influenza virus-like particle vaccine containing both apical membrane antigen 1 and microneme-associated antigen proteins of Plasmodium berghei confers protection in mice. BMC Immunol 2022; 23:21. [PMID: 35468726 PMCID: PMC9040335 DOI: 10.1186/s12865-022-00494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Apical membrane antigen 1 (AMA1) and microneme-associated antigen (MIC) of Plasmodium parasites are important factors involved in host cell invasion. Methods In this study, influenza VLP vaccines containing both codon-optimized AMA1 and MIC were generated and the vaccine efficacy was evaluated in mice. Results VLPs vaccine immunization elicited higher levels of parasite-specific IgG and IgG2a antibody responses in sera. CD4+ and CD8+ T cells and germinal center B cells in blood, inguinal lymph nodes (ILN) and spleen were found to be significantly increased. Importantly, VLPs vaccination significantly reduced the levels of pro-inflammatory cytokines IFN-γ and TNF-α, decreased parasitemia in blood, resulting in lower body weight loss and longer survival time compared to control. Conclusion These results indicated that VLPs containing P. berghei AMA1 and MIC could be a candidate for malaria blood-stage vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00494-4.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea. .,Department of Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
23
|
Lu W, Zhao Z, Huang YW, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. Int J Biol Macromol 2022; 200:487-497. [PMID: 35065135 PMCID: PMC8769907 DOI: 10.1016/j.ijbiomac.2022.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Lu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Multiple Neuraminidase Containing Influenza Virus-Like Particle Vaccines Protect Mice from Avian and Human Influenza Virus Infection. Viruses 2022; 14:v14020429. [PMID: 35216022 PMCID: PMC8875606 DOI: 10.3390/v14020429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.
Collapse
|
25
|
Baculovirus-derived influenza virus-like particle confers complete protection against lethal H7N9 avian influenza virus challenge in chickens and mice. Vet Microbiol 2022; 264:109306. [DOI: 10.1016/j.vetmic.2021.109306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
|
26
|
Hu J, Peng P, Li J, Zhang Q, Li R, Wang X, Gu M, Hu Z, Hu S, Liu X, Jiao X, Peng D, Liu X. Single Dose of Bivalent H5 and H7 Influenza Virus-Like Particle Protects Chickens Against Highly Pathogenic H5N1 and H7N9 Avian Influenza Viruses. Front Vet Sci 2021; 8:774630. [PMID: 34859093 PMCID: PMC8632145 DOI: 10.3389/fvets.2021.774630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Both H5N1 and H7N9 subtype avian influenza viruses cause enormous economic losses and pose considerable threats to public health. Bivalent vaccines against both two subtypes are more effective in control of H5N1 and H7N9 viruses in poultry and novel egg-independent vaccines are needed. Herein, H5 and H7 virus like particle (VLP) were generated in a baculovirus expression system and a bivalent H5+H7 VLP vaccine candidate was prepared by combining these two antigens. Single immunization of the bivalent VLP or commercial inactivated vaccines elicited effective antibody immune responses, including hemagglutination inhibition, virus neutralizing and HA-specific IgG antibodies. All vaccinated birds survived lethal challenge with highly pathogenic H5N1 and H7N9 viruses. Furthermore, the bivalent VLP significantly reduced viral shedding and virus replication in chickens, which was comparable to that observed for the commercial inactivated vaccine. However, the bivalent VLP was better than the commercial vaccine in terms of alleviating pulmonary lesions caused by H7N9 virus infection in chickens. Therefore, our study suggests that the bivalent H5+H7 VLP vaccine candidate can serve as a critical alternative for the traditional egg-based inactivated vaccines against H5N1 and H7N9 avian influenza virus infection in poultry.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Rumeng Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Li Y, Xu M, Li Y, Gu W, Halimu G, Li Y, Zhang Z, Zhou L, Liao H, Yao S, Zhang H, Zhang C. A recombinant protein containing influenza viral conserved epitopes and superantigen induces broad-spectrum protection. eLife 2021; 10:e71725. [PMID: 34783655 PMCID: PMC8635977 DOI: 10.7554/elife.71725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/13/2021] [Indexed: 01/22/2023] Open
Abstract
Influenza pandemics pose public health threats annually for lacking vaccine that provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens that induce cross-protective antibody responses with epitopes that activate cross-protective T cell responses might be an attractive strategy for developing a universal vaccine. In this study, we constructed a recombinant protein named NMHC that consists of influenza viral conserved epitopes and a superantigen fragment. NMHC promoted the maturation of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, Th2, and Th17 subtypes. Mice vaccinated with NMHC produced high levels of immunoglobulins that cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtype) and group 2 (H3 subtype) influenza virus strains. Furthermore, purified anti-NMHC antibodies bound to multiple HAs with high affinities. NMHC vaccination effectively protected mice from infection and lung damage when exposed to two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T cell responses that cleared the virus from infected tissues and prevented virus spread. In conclusion, this study provides proof of concept that NMHC vaccination triggers B and T cell immune responses against multiple influenza virus infections. Therefore, NMHC might be a candidate universal broad-spectrum vaccine for the prevention and treatment of multiple influenza viruses.
Collapse
Affiliation(s)
- Yansheng Li
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Yuqi Li
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Libao Zhou
- Chengda Biotechnology Co. LtdLiaoningChina
| | - Hui Liao
- Chengda Biotechnology Co. LtdLiaoningChina
| | | | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| |
Collapse
|
28
|
Abstract
The SARS-CoV-2 infection spread rapidly throughout the world and appears to involve in both humoral and cell-mediated immunity. SARS-CoV-2 is attached to host cells via binding to the viral spike (S) proteins and its cellular receptors angiotensin-converting enzyme 2 (ACE2). Consequently, the S protein is primed with serine proteases TMPRSS2 and TMPRSS4, which facilitate the fusion of viral and cellular membranes result in the entry of viral RNA into the host cell. Vaccines are urgently required to combat the coronavirus disease 2019 (COVID-19) outbreak and aid in the recovery to pre-pandemic levels of normality. The long-term protective immunity is provided by the vaccine antigen (or pathogen)-specific immune effectors and the activation of immune memory cells that can be efficiently and rapidly reactivated upon pathogen exposure. Research efforts aimed towards the design and development of vaccines for SARS-CoV-2 are increasing. Numerous coronavirus disease 2019 (COVID-19) vaccines have passed late-stage clinical investigations with promising outcomes. This review focuses on the present state and future prospects of COVID-19 vaccines research and development, with a particular emphasis on immunological mechanisms of various COVID-19vaccines such as adenoviral vector-based vaccines, mRNA vaccines, and DNA vaccines that elicits immunological responses against SARS-CoV-2 infections in humans.
Collapse
|
29
|
Kim SH, Park YC, Song JM. Evaluation of the antigenic stability of influenza virus like particles after exposure to acidic or basic pH. Clin Exp Vaccine Res 2021; 10:252-258. [PMID: 34703808 PMCID: PMC8511596 DOI: 10.7774/cevr.2021.10.3.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Virus-like particles (VLPs) are being developed as a promising vaccine platform and therapeutic delivery. Various strategies for effectively constructing VLPs have been studied, but relatively few studies have been done on various factors affecting storage. In this study, we investigated the antigenic changes of VLPs in an acidic or basic pH environment using influenza VLPs as an experimental model. Materials and Methods Influenza VLPs containing hemagglutination and M1 proteins were generated and their antigenicity and protective immunity in vitro and in vivo were evaluated after exposure to acidic (pH 4 and 5) or basic (pH 9 and 10) pH buffers. Results VLP exposed to basic pH showed similar levels of antigenicity to those stored in neutral pH, while antigenicity of VLP exposed to acidic pH was found to be significantly reduced compared to those expose neutral or basic pH. All groups of mice responded effectively to low concentrations of virus infections; however, VLP vaccine groups exposed to acid pH were found not to induce sufficient protective immune responses when a high concentration of influenza virus infection. Conclusion In order for VLP to be used as a more powerful vaccine platform, it should be developed in a strategic way to respond well to external changes such as acidic pH conditions.
Collapse
Affiliation(s)
- So Hwa Kim
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Young Chan Park
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Jae Min Song
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea.,School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
30
|
Ftouh M, Kalboussi N, Abid N, Sfar S, Mignet N, Bahloul B. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Res 2021; 2021:6741290. [PMID: 34721558 PMCID: PMC8550859 DOI: 10.1155/2021/6741290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Center for Disease Control and Prevention (CDC), the coronavirus disease 2019, a respiratory viral illness linked to significant morbidity, mortality, production loss, and severe economic depression, was the third-largest cause of death in 2020. Respiratory viruses such as influenza, respiratory syncytial virus, SARS-CoV-2, and adenovirus, are among the most common causes of respiratory illness in humans, spreading as pandemics or epidemics throughout all continents. Nanotechnologies are particles in the nanometer range made from various compositions. They can be lipid-based, polymer-based, protein-based, or inorganic in nature, but they are all bioinspired and virus-like. In this review, we aimed to present a short review of the different nanoparticles currently studied, in particular those which led to publications in the field of respiratory viruses. We evaluated those which could be beneficial for respiratory disease-based viruses; those which already have contributed, such as lipid nanoparticles in the context of COVID-19; and those which will contribute in the future either as vaccines or antiviral drug delivery systems. We present a short assessment based on a critical selection of evidence indicating nanotechnology's promise in the prevention and treatment of respiratory infections.
Collapse
Affiliation(s)
- Mahdi Ftouh
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nesrine Kalboussi
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
- Sahloul University Hospital, Pharmacy Department, Sousse, Tunisia
| | - Nabil Abid
- Department of Biotechnology, High Institute of Biotechnology of Sidi Thabet, University of Manouba, BP-66, 2020 Ariana, Tunis, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia
| | - Souad Sfar
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nathalie Mignet
- University of Paris, INSERM, CNRS, UTCBS, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Badr Bahloul
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|
31
|
Neuraminidase in Virus-like Particles Contributes to the Protection against High Dose of Avian Influenza Virus Challenge Infection. Pathogens 2021; 10:pathogens10101291. [PMID: 34684240 PMCID: PMC8537550 DOI: 10.3390/pathogens10101291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Neuraminidase is an important target for influenza vaccination. In this study, we generated avian influenza VLPs, expressing hemagglutinin (HA), neuraminidase (NA), HA and NA co-expressed (HANA), to evaluate the protective role of NA against a high (10LD50) and low (2LD50) dose of avian influenza virus challenge infections. A single immunization with HANA VLPs elicited the highest level of virus-specific IgG, IgG1, and IgG2a responses from the sera post-vaccination and the lungs post-challenge-infection. Potent antibody-secreting cell responses were observed from the spleens and lungs of HANA-VLP-immunized mice post-challenge-infection. HANA VLPs induced the highest CD4+ T cell, CD8+ T cell, and germinal center B cells, while strongly limiting inflammatory cytokine production in the lungs compared to other VLP immunization groups. In correlation with these findings, the lowest bodyweight losses and lung virus titers were observed from HANA VLP immunization, and all of the immunized mice survived irrespective of the challenge dose. Contrastingly, VLPs expressing either HA or NA alone failed to elicit complete protection. These results indicated that NA in VLPs played a critical role in inducing protection against a high dose of the challenge infection.
Collapse
|
32
|
Respiratory virus deterrence induced by modified mask filter. PLoS One 2021; 16:e0257827. [PMID: 34591926 PMCID: PMC8483360 DOI: 10.1371/journal.pone.0257827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022] Open
Abstract
Airborne transmission of infectious respiratory pathogens is a significant health hazard for the general public as well as healthcare professionals. Face masks have been frequently utilized as safety measures to limit the transmission of these infectious aerosolized particles. However, the efficacy of face masks in reducing respiratory virus infectivity and pathogenicity is unknown. Improving the effectiveness of masks in blocking viruses is urgently needed. In this study, surgical mask filters were modified by coating the filters with 1, 3, or 5 M of sodium dihydrogen phosphate, and subsequently exposed to the aerosolized respiratory influenza viruses (A/H3N2, A/H5N1) generated by a nebulizer set. Mask filter modification significantly reduced the size and counts of filter pores, which enabled entrapment of 40-60% of aerosolized viruses (captured viruses) with more than 90% of the captured viruses losing their infectivity. Upon contact with the coated mask filters, both the captured viruses and the viruses that managed to bypass the filter pore (passed viruses) were found to be inactivated. Passed viruses demonstrated significantly reduced pathogenicity in mice as indicated by significantly reduced lung virus titers, bodyweight loss, and prolonged survival compared to bare control. These findings highlight the potential of modified mask filters for reducing viral activity and pathogenicity, which contributes to improving facial mask efficacy as well as limiting airborne pathogen transmission.
Collapse
|
33
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
34
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
35
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
36
|
Rauf MA, Tasleem M, Bhise K, Tatiparti K, Sau S, Iyer AK. Nano-therapeutic strategies to target coronavirus. VIEW 2021; 2:20200155. [PMID: 34766165 PMCID: PMC8250313 DOI: 10.1002/viw.20200155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The coronaviruses have caused severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS), and the more recent coronavirus pneumonia (COVID-19). The global COVID-19 pandemic requires urgent action to develop anti-virals, new therapeutics, and vaccines. In this review, we discuss potential therapeutics including human recombinant ACE2 soluble, inflammatory cytokine inhibitors, and direct anti-viral agents such as remdesivir and favipiravir, to limit their fatality. We also discuss the structure of the SARS-CoV-2, which is crucial to the timely development of therapeutics, and previous attempts to generate vaccines against SARS-CoV and MERS-CoV. Finally, we provide an overview of the role of nanotechnology in the development of therapeutics as well as in the diagnosis of the infection. This information is key for computational modeling and nanomedicine-based new therapeutics by counteracting the variable proteins in the virus. Further, we also try to effectively share the latest information about many different aspects of COVID-19 vaccine developments and possible management to further scientific endeavors.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Munazzah Tasleem
- Bioinformatics Infrastructure Facility, Department of Computer ScienceJamia Millia Islamia UniversityNew Delhi110025India
| | - Ketki Bhise
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Katyayani Tatiparti
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Samaresh Sau
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Arun K. Iyer
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
- Molecular Imaging ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichigan
| |
Collapse
|
37
|
Passive Immunity and Antibody Response Induced by Toxoplasma gondii VLP Immunization. Vaccines (Basel) 2021; 9:vaccines9050425. [PMID: 33922808 PMCID: PMC8146287 DOI: 10.3390/vaccines9050425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Passive immunity can provide immediate protection against infectious pathogens. To date, only a few studies have investigated the effect of passive immunization against Toxoplasma gondii, and the use of immune sera acquired from VLP-vaccinated mice for passive immunity assessment remains unreported. In this study, immune sera were produced by a single immunization with virus-like particles (VLPs) expressing the inner membrane complex (IMC), rhoptry protein 18 (ROP18), and microneme protein 8 (MIC8) of Toxoplasma gondii, with or without a CpG-ODN adjuvant. The passive immunization of immune sera conferred protection in mice, as indicated by their potent parasite-specific antibody response, lessened brain cyst counts, lower bodyweight loss, and enhanced survival. In order to confirm that the immune sera of the VLP-immunized mice were truly protective, the antibody responses and other immunological parameters were measured in the VLP-immunized mice. We found that VLP immunization induced higher levels of parasite-specific IgG, IgG subclass, and IgM antibody responses in the sera and intestines than in the controls. Enhanced Th1 and Th2-associated cytokines in the spleen, diminished brain cyst counts, and lessened body weight loss were found following T. gondii ME49 challenge infection. These results suggest that passive immunization with the immune sera acquired from VLP-vaccinated mice can confer adequate protection against T. gondii infection.
Collapse
|
38
|
Production of Multi-Subtype Influenza Virus-Like Particles by Molecular Fusion with BAFF or APRIL for Vaccine Development. Methods Mol Biol 2021. [PMID: 33185873 DOI: 10.1007/978-1-0716-1130-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virus-like particle (VLP) technology is an alternative platform for developing vaccines to combat seasonal and pandemic influenza. Influenza VLPs are non-infectious nanoparticles that can elicit effective vaccine immunogenicity in hosts. B-cell-activating factor (BAFF, or BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) superfamily of cytokines. Both BAFF and APRIL are homotrimers that interact with homotrimeric receptors. Here, we report a method of the production of influenza VLPs by molecular incorporation with BAFF or APRIL homotrimers to interact with their receptors. We engineered the VLPs by direct fusion of BAFF or APRIL to the transmembrane anchored domain of the hemagglutinin (HA) gene. We also describe procedures for the production of BAFF-VLPs containing H5H7 and H1H5H7 for multi-subtype vaccine development.
Collapse
|
39
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Jastrzębska AM, Vasilchenko AS. Smart and Sustainable Nanotechnological Solutions in a Battle against COVID-19 and Beyond: A Critical Review. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:601-622. [PMID: 34192094 PMCID: PMC7805306 DOI: 10.1021/acssuschemeng.0c06565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Indexed: 05/05/2023]
Abstract
The variety of available biocidal features make nanomaterials promising for fighting infections. To effectively battle COVID-19, categorized as a pandemic by the World Health Organization (WHO), materials scientists and biotechnologists need to combine their knowledge to develop efficient antiviral nanomaterials. By design, nanostructured materials (spherical, two-dimensional, hybrid) can express a diverse bioactivity and unique combination of specific, nonspecific, and mixed mechanisms of antiviral action. It can be related to the material's specific features and their multiple functionalization strategies. This is a complex guiding approach in which an interaction target is constantly moving and quickly changing. On the other hand, in such a rush, sustainability may be put aside. Therefore, to elucidate the most promising nanotechnological solutions, we critically review available data within the frame of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other types of viruses. We highlight solutions that are, or could be, more sustainable and less toxic. In this regard, reduction of the number of synthetic routes, organic solvents, byproducts, and residues is highly recommended. Such efficient, green solutions may be further used for the prevention of virion-host interactions, treatment of the already developed infection, reducing inflammation, and finally, protecting healthcare professionals with masks, fabrics, equipment, and in other associated areas. Further translation into the market needs putting on the fast track with respect to principles of green chemistry, feasibility, safety, and the environment.
Collapse
Affiliation(s)
- Agnieszka M. Jastrzębska
- Warsaw
University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
| | - Alexey S. Vasilchenko
- Institute
of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| |
Collapse
|
41
|
Protective cellular and mucosal immune responses following nasal administration of a whole gamma-irradiated influenza A (subtype H1N1) vaccine adjuvanted with interleukin-28B in a mouse model. Arch Virol 2021; 166:545-557. [PMID: 33409549 PMCID: PMC7787640 DOI: 10.1007/s00705-020-04900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
The use of gamma-irradiated influenza A virus (γ-Flu), retains most of the viral structural antigens, represent a promising option for vaccine development. However, despite the high effectiveness of γ-Flu vaccines, the need to incorporate an adjuvant to improve vaccine-mediated protection seems inevitable. Here, we examined the protective efficacy of an intranasal gamma-irradiated HIN1 vaccine co-administered with a plasmid encoding mouse interleukin-28B (mIL-28B) as a novel adjuvant in BALB/c mice. Animals were immunized intranasally three times at one-week intervals with γ-Flu, alone or in combination with the mIL-28B adjuvant, followed by viral challenge with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific antibody, cellular and mucosal responses, and the balance of cytokines in the spleen IFN-γ, IL-12, and IL-4) and in lung homogenates (IL-6 and IL-10) were measured by ELISA. The lymphoproliferative activity of restimulated spleen cells was also determined by MTT assay. Furthermore, virus production in the lungs of infected mice was estimated using the Madin-Darby canine kidney (MDCK)/hemagglutination assay (HA). Our data showed that intranasal immunization with adjuvanted γ-Flu vaccine efficiently promoted humoral, cellular, and mucosal immune responses and efficiently decreased lung virus titers, all of which are associated with protection against challenge. This combination also reduced IL-6 and IL-10 levels in lung homogenates. The results suggest that IL-28B can enhance the ability of the vaccine to elicit virus-specific immune responses and could potentially be used as an effective adjuvant.
Collapse
|
42
|
Lei L, Li Q, Xu S, Tian M, Zheng X, Bi Y, Huang B. Transplantation of Enterovirus 71 Virion Protein Particle Vaccine Protects Against Enterovirus 71 Infection in a Neonatal Mouse Model. Ann Transplant 2021; 26:e924461. [PMID: 33397838 PMCID: PMC7796071 DOI: 10.12659/aot.924461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the pathogen most likely to cause HFMD in young children (1–5 years old). A small number of virion protein (VP) vaccine candidates are considered as the protective molecules in EV71 models. This study aimed to observe comprehensive immunogenicity for a promising EV71 vaccine depending on VP1 in neonatal mouse EV71 models. Material/Methods VP1 was isolated from patients and associated peptides were synthesized. EV71 particles were inactivated and mixed with Freund’s complete adjuvant to prepare peptide vaccines. An EV71 vaccine was administered to establish the mouse model and the mice were infected with EV71. Hematoxylin and eosin staining was used to examine inflammatory response in EV71-infected neonatal mice. A semi-quantitative reverse transcription-polymerase chain reaction assay was performed to evaluate the levels of EV71 virus in skeletal muscle, small intestines, and brain tissues. Results Three peptides were selected from 20 VP1 peptides due to their exhibition of the highest immunogenicity. The peptide injection improved inflammation and decreased EV71 particle levels in muscle, small intestines, and brain tissues. The injection also decreased lesions in the small intestines of EV71-infected mice and protected brain tissues from the EV71 infection. Conclusions The present study confirmed the immuno-protective effects of VP1 vaccine transplantation in mice infected with EV71 virus. Our results provide valuable information that can be used in further studies investigating the specific mechanism of the anti-EV71 vaccine.
Collapse
Affiliation(s)
- Li Lei
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland).,Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Qing Li
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Shuhong Xu
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Mingyang Tian
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Xinghui Zheng
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Yunxia Bi
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Bo Huang
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| |
Collapse
|
43
|
Basak S, Kang HJ, Chu KB, Oh J, Quan FS. Simple and rapid plaque assay for recombinant baculoviruses expressing influenza hemagglutinin. Sci Prog 2021; 104:368504211004261. [PMID: 33787402 PMCID: PMC10454765 DOI: 10.1177/00368504211004261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recombinant baculoviruses (rBVs) have been extensively used to generate virus-like particles, and baculoviruses expressing antigenic proteins have become efficient tools for inducing protective immunity. However, current methods for generating baculoviruses are costly and inefficient. Thus, the development of a simple, rapid, and accurate method of baculovirus titration is critically important. We established a method of plaque assay using an immunostaining method by which plaques can be easily visualized in Sf9 cells under a light microscope. Sf9 cells were infected with recombinant baculoviruses expressing influenza hemagglutinin surface proteins from H1N1 (A/California/04/09) or rH5N1 (A/Vietnam/1203/04). The infected cells were incubated with anti-HA antibody and the plaques were visualized using the chromogen 3'3-diaminobenzidine (DAB). Plaques were observed from days 1 to 6 post-infection, and differences in Sf9 cell seeding densities resulted in variations in the final plaque quantification. Sf9 cells seeded at a concentration of 5.5 × 104 cells/well or 7.5 × 104 cells/well showed the higher plaque titers at days 3, 4, and 5 post-infection than those found at days 1, 2, and 6 post-infection. With 5.5 × 104 cells/well or 7.5 × 104 cells/well of cell concentrations, recombinant baculovirus for rBV-HA (H1N1) showed 6 × 107 pfu/ml of titer and rBVs for rBV-HA (rH5N1) showed 5.4 × 107 pfu/ml of titer. Three days of baculovirus incubation with a certain concentration of Sf9 cells seeded are required for a rapid, simple, and accurate plaque assay, which could significantly contribute to all baculovirus-related studies.
Collapse
Affiliation(s)
- Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Judy Oh
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. NANO TODAY 2020; 35:100961. [PMID: 32904707 PMCID: PMC7457919 DOI: 10.1016/j.nantod.2020.100961] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.000 people up to date. Recent evidences pointing towards mutations within the viral spike proteins of SARS-CoV-2 that are considered the cause for this rapid spread and currently around 300 clinical trials are running to find a treatment for SARS-CoV-2 infections. Nanomedicine, the application of nanocarriers to deliver drugs specifically to a target sites, has been applied for different diseases, such as cancer but also in viral infections. Nanocarriers can be designed to encapsulate vaccines and deliver them towards antigen presenting cells or function as antigen-presenting carriers themselves. Furthermore, drugs can be encapsulated into such carriers to directly target them to infected cells. In particular, virus-mimicking nanoparticles (NPs) such as self-assembled viral proteins, virus-like particles or liposomes, are able to replicate the infection mechanism and can not only be used as delivery system but also to study viral infections and related mechanisms. This review will provide a detailed description of the composition and replication strategy of CoVs, an overview of the therapeutics currently evaluated in clinical trials against SARS-CoV-2 and will discuss the potential of NP-based vaccines, targeted delivery of therapeutics using nanocarriers as well as using NPs to further investigate underlying biological processes in greater detail.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Byron Martina
- Artemis One Health Research Institute, 2629JD, Delft, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
45
|
Shin JI, Park YC, Song JM. Influence of temperature on the antigenic changes of virus-like particles. Clin Exp Vaccine Res 2020; 9:126-132. [PMID: 32864369 PMCID: PMC7445320 DOI: 10.7774/cevr.2020.9.2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose In this study, we investigated whether the antigenic changes of the virus-like particles (VLPs) are affected by the temperature during storage. Materials and Methods After exposing the recombinant influenza VLPs to various temperatures for a period, antigenic changes were examined through in vitro hemagglutination receptor binding assay and in vivo mouse experiments. Results Influenza VLPs were exposed at three different temperatures of low, middle, and high on a thermo-hygrostat. High temperature exposed influenza VLPs were showed significantly reduced HA activity and immunogenicity after mouse single immunization over time compared low and middle. When the VLPs exposed to the high temperature were inoculated once in the mice, it was found that the immunogenicity was significantly reduced compared to the VLPs exposed to the low temperature. However, these differences were almost neglected when mice were inoculated twice even with VLPs exposed to high temperatures. Conclusion This study suggests that similar protective effects can be expected by controlling the number of vaccination and storage conditions, although the antigenic change in the VLP vaccines occurred when exposed to high temperature.
Collapse
Affiliation(s)
- Jae-In Shin
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Young Chan Park
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Jae Min Song
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| |
Collapse
|
46
|
Lee SH, Chu KB, Kang HJ, Basak S, Kim MJ, Park H, Jin H, Moon EK, Quan FS. Virus-like particles expressing Plasmodium berghei MSP-8 induce protection against P. berghei infection. Parasite Immunol 2020; 42:e12781. [PMID: 32738150 DOI: 10.1111/pim.12781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
AIMS Merozoite surface protein 8 (MSP-8) of Plasmodium parasites plays an important role in erythrocyte invasion and is a potential malaria vaccine candidate. METHODS AND RESULTS In this study, virus-like particles (VLPs) expressing MSP-8 of Plasmodium berghei on the surface of influenza virus matrix protein 1 (M1) core protein were generated for vaccine efficacy assessment. Mice were intramuscularly (IM) immunized with MSP-8 VLPs twice and challenge-infected with P. berghei. We found that VLP vaccination elicited higher levels of P. berghei-specific IgG antibody response in the sera, along with blood CD4+ and CD8+ T-cell response enhancement compared to the naïve control mice. CD4+ and CD8+ effector memory T-cell and memory B-cell responses in the spleen were found to be higher in VLP-immunized mice compared to control mice. VLP vaccination significantly reduced inflammatory cytokine (IFN-γ) response in the spleen and parasitemia levels in blood compared to naïve control mice. CONCLUSIONS These results indicate that MSP-8 containing virus-like particles could be a vaccine candidate for blood-stage vaccine design.
Collapse
Affiliation(s)
- Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Hui Jin
- Health Park Co., Ltd., Seoul, Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea.,Department of Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Korea
| |
Collapse
|
47
|
Zhao Z, Zheng W, Yan L, Sun P, Xu T, Zhu Y, Liu L, Tian L, He H, Wei Y, Zheng X. Recombinant Human Adenovirus Type 5 Co-expressing RABV G and SFTSV Gn Induces Protective Immunity Against Rabies Virus and Severe Fever With Thrombocytopenia Syndrome Virus in Mice. Front Microbiol 2020; 11:1473. [PMID: 32695091 PMCID: PMC7339961 DOI: 10.3389/fmicb.2020.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/05/2020] [Indexed: 01/18/2023] Open
Abstract
Both severe fever with thrombocytopenia syndrome (SFTS) and rabies are severe zoonotic diseases. As co-hosts of rabies virus (RABV) and SFTS virus (SFTSV), dogs and cats could not only be infected but also transmit the virus to human. Hence, developing a bivalent vaccine against both SFTS and rabies is urgently needed. In this study, we generated a recombinant replication-deficient human adenovirus type 5 (Ad5) co-expressing RABV G and SFTSV Gn (Ad5-G-Gn) and evaluated its immunogenicity and efficacy in mice. Ad5-G-Gn immunization activated more dendritic cells (DCs) and B cells in lymph nodes (LNs) and induced Th1-/Th2-mediated responses in splenocytes, leading to robust production of neutralizing antibodies against SFTSV and RABV. In addition, single dose of Ad5-G-Gn conferred mice complete protection against lethal RABV challenge and significantly reduced splenic SFTS viral load. Therefore, our data support further development of Ad5-G-Gn as a potential bivalent vaccine candidate against SFTS and rabies for dog and cat use.
Collapse
Affiliation(s)
- Zhongxin Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lina Yan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peilu Sun
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Tong Xu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yelei Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin He
- Department of Biological Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yurong Wei
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
48
|
|
49
|
Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS, Mitropoulos AC, Mokarrar MH, Kyzas GZ. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E852. [PMID: 32354113 PMCID: PMC7712148 DOI: 10.3390/nano10050852] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making the situation more dangerous and currently available medical care futile. This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.
Collapse
Affiliation(s)
| | - Akhilash M. Pillai
- Department of Chemistry, University College, Thiruvananthapuram, Kerala 695034, India;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98615538, Iran
| | - Anumol P. Sobha
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India;
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | | | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| |
Collapse
|
50
|
Smith T, O'Kennedy MM, Wandrag DB, Adeyemi M, Abolnik C. Efficacy of a plant-produced virus-like particle vaccine in chickens challenged with Influenza A H6N2 virus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:502-512. [PMID: 31350931 PMCID: PMC6953208 DOI: 10.1111/pbi.13219] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
The efficacy, safety, speed, scalability and cost-effectiveness of producing hemagglutinin-based virus-like particle (VLP) vaccines in plants are well-established for human influenza, but untested for the massive poultry influenza vaccine market that remains dominated by traditional egg-grown oil-emulsion whole inactivated virus vaccines. For optimal efficacy, a vaccine should be closely antigenically matched to the field strain, requiring that influenza A vaccines be updated regularly. In this study, an H6 subtype VLP transiently expressed in Nicotiana benthamiana was formulated into a vaccine and evaluated for efficacy in chickens against challenge with a heterologous H6N2 virus. A single dose of the plant-produced H6 VLP vaccine elicited an immune response comparable to two doses of a commercial inactivated H6N2 vaccine, with mean hemagglutination inhibition titres of 9.3 log2 and 8.8 log2 , respectively. Compared to the non-vaccinated control, the H6 VLP vaccine significantly reduced the proportion of shedders and the magnitude of viral shedding by >100-fold in the oropharynx and >6-fold in the cloaca, and shortened oropharyngeal viral shedding by at least a week. Despite its potency, the cost of the antigenic mismatch between the inactivated H6N2 vaccine and challenge strain was evident not only in this vaccine's failure to reduce viral shedding compared to the non-vaccinated group, but its apparent exacerbation of oropharyngeal viral shedding until 21 days post-challenge. We estimate that a kilogram of plant leaf material can produce H6 VLP vaccines sufficient for between 5000 and 30 000 chickens, depending on the effective dose and whether one or two immunizations are administered.
Collapse
Affiliation(s)
- Tanja Smith
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- BiosciencesCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Martha M. O'Kennedy
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- BiosciencesCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Daniel B.R. Wandrag
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Modupeore Adeyemi
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Celia Abolnik
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|