1
|
Feng K, Bendiwhobel Ushie B, Zhang H, Li S, Deng F, Wang H, Ning YJ. Pathogenesis and virulence of Heartland virus. Virulence 2024; 15:2348252. [PMID: 38712703 PMCID: PMC11085952 DOI: 10.1080/21505594.2024.2348252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Heartland virus (HRTV), an emerging tick-borne pathogenic bunyavirus, has been a concern since 2012, with an increasing incidence, expanding geographical distribution, and high pathogenicity in the United States. Infection from HRTV results in fever, thrombocytopenia, and leucopenia in humans, and in some cases, symptoms can progress to severe outcomes, including haemorrhagic disease, multi-organ failure, and even death. Currently, no vaccines or antiviral drugs are available for treatment of the HRTV disease. Moreover, little is known about HRTV-host interactions, viral replication mechanisms, pathogenesis and virulence, further hampering the development of vaccines and antiviral interventions. Here, we aimed to provide a brief review of HRTV epidemiology, molecular biology, pathogenesis and virulence on the basis of published article data to better understand this virus and provide clues for further study.
Collapse
Affiliation(s)
- Kuan Feng
- Hubei Jiangxia Laboratory, Wuhan, China
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Virology and Biosafety and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Benjamin Bendiwhobel Ushie
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Virology and Biosafety and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shu Li
- Department of Clinical Laboratory, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Virology and Biosafety and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Virology and Biosafety and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- Hubei Jiangxia Laboratory, Wuhan, China
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Virology and Biosafety and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Cheng M, Zhang R, Li J, Ma W, Li L, Jiang N, Liu B, Wu J, Zheng N, Wu Z. MβCD inhibits SFTSV entry by disrupting lipid raft structure of the host cells. Antiviral Res 2024; 231:106004. [PMID: 39265655 DOI: 10.1016/j.antiviral.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), recently named as Dabie bandavirus, belongs to the family Phenuiviridae of the order Bunyavirales, is a newly-identified bunyavirus with a case fatality rate of up to 30%, posing a serious threat to public health. Lipid rafts on plasm membranes are important for the entry of enveloped viruses; however, the role of lipid rafts in bunyavirus entry remains unclear. In this study, we found that methyl-beta-cyclodextrin (MβCD), a drug that disrupts cholesterol in lipid rafts of cell membranes, inhibits SFTSV infection. Additionally, there is a back-complementary effect of SFTSV infection upon the addition of cholesterol. Moreover, the concentration of SFTSV particles in lipid rafts during entry directly indicated the role of lipid rafts as a gateway, whereas MβCD could inhibit SFTSV entry by affecting the structure of lipid rafts. In an in vivo study, MβCD also reduced the susceptibility of mice to SFTSV infection. Our results suggest that SFTSV can interact with Talin1 proteins on lipid rafts to enter host cells by endocytosis of lipid rafts and reveal the potential therapeutic value of MβCD for SFTSV infection.
Collapse
Affiliation(s)
- Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jianshu Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Wenyuan Ma
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Linrun Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
3
|
Shimojima M, Sugimoto S, Taniguchi S, Maeki T, Yoshikawa T, Kurosu T, Tajima S, Lim CK, Ebihara H. N-glycosylation of viral glycoprotein is a novel determinant for the tropism and virulence of highly pathogenic tick-borne bunyaviruses. PLoS Pathog 2024; 20:e1012348. [PMID: 39008518 PMCID: PMC11271937 DOI: 10.1371/journal.ppat.1012348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/25/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.
Collapse
Affiliation(s)
- Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| |
Collapse
|
4
|
Chang Z, Gao D, Liao L, Sun J, Zhang G, Zhang X, Wang F, Li C, Oladejo BO, Li S, Chai Y, Hu Y, Lu X, Xiao H, Qi J, Chen Z, Gao F, Wu Y. Bispecific antibodies targeting two glycoproteins on SFTSV exhibit synergistic neutralization and protection in a mouse model. Proc Natl Acad Sci U S A 2024; 121:e2400163121. [PMID: 38830098 PMCID: PMC11181109 DOI: 10.1073/pnas.2400163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high fatality rate of up to 30% caused by SFTS virus (SFTSV). However, no specific vaccine or antiviral therapy has been approved for clinical use. To develop an effective treatment, we isolated a panel of human monoclonal antibodies (mAbs). SF5 and SF83 are two neutralizing mAbs that recognize two viral glycoproteins (Gn and Gc), respectively. We found that their epitopes are closely located, and we then engineered them as several bispecific antibodies (bsAbs). Neutralization and animal experiments indicated that bsAbs display more potent protective effects than the parental mAbs, and the cryoelectron microscopy structure of a bsAb3 Fab-Gn-Gc complex elucidated the mechanism of protection. In vivo virus passage in the presence of antibodies indicated that two bsAbs resulted in less selective pressure and could efficiently bind to all single parental mAb-escape mutants. Furthermore, epitope analysis of the protective mAbs against SFTSV and RVFV indicated that they are all located on the Gn subdomain I, where may be the hot spots in the phleboviruses. Collectively, these data provide potential therapeutic agents and molecular basis for the rational design of vaccines against SFTSV infection.
Collapse
Affiliation(s)
- Zhen Chang
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Dan Gao
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Liying Liao
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Junqing Sun
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi030801, China
| | - Gen Zhang
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Xue Zhang
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Feiran Wang
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Chunrui Li
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Babayemi Olawale Oladejo
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Department of Microbiology, Federal University of Technology, PMB704, Akure, Nigeria
| | - Shihua Li
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Yan Chai
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Yongfei Hu
- College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing102206, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing100015, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| |
Collapse
|
5
|
Jia Y, Li F, Liu Z, Liu S, Huang M, Gao X, Su X, Wang Z, Wang T. Interaction between the SFTSV envelope glycoprotein Gn and STING inhibits the formation of the STING-TBK1 complex and suppresses the NF-κB signaling pathway. J Virol 2024; 98:e0181523. [PMID: 38421179 PMCID: PMC10949458 DOI: 10.1128/jvi.01815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.
Collapse
Affiliation(s)
- Yupei Jia
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Feifei Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoning Gao
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xin Su
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Du S, Peng R, Xu W, Qu X, Wang Y, Wang J, Li L, Tian M, Guan Y, Wang J, Wang G, Li H, Deng L, Shi X, Ma Y, Liu F, Sun M, Wei Z, Jin N, Liu W, Qi J, Liu Q, Liao M, Li C. Cryo-EM structure of severe fever with thrombocytopenia syndrome virus. Nat Commun 2023; 14:6333. [PMID: 37816705 PMCID: PMC10564799 DOI: 10.1038/s41467-023-41804-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
The severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne human-infecting bunyavirus, which utilizes two envelope glycoproteins, Gn and Gc, to enter host cells. However, the structure and organization of these glycoproteins on virion surface are not yet known. Here we describe the structure of SFTSV determined by single particle reconstruction, which allows mechanistic insights into bunyavirus assembly at near-atomic resolution. The SFTSV Gn and Gc proteins exist as heterodimers and further assemble into pentameric and hexameric peplomers, shielding the Gc fusion loops by both intra- and inter-heterodimer interactions. Individual peplomers are associated mainly through the ectodomains, in which the highly conserved glycans on N914 of Gc play a crucial role. This elaborate assembly stabilizes Gc in the metastable prefusion conformation and creates some cryptic epitopes that are only accessible in the intermediate states during virus entry. These findings provide an important basis for developing vaccines and therapeutic drugs.
Collapse
Affiliation(s)
- Shouwen Du
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Ruchao Peng
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyun Qu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yuhang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Jiamin Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yudong Guan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Jigang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Wang
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingcong Deng
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoshuang Shi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yidan Ma
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fengting Liu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Minhua Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhengkai Wei
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Quan Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Foshan University, Foshan, China.
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| | - Chang Li
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
7
|
Han X, Clark JJ, Sharma P, Bentley EG, Kipar A, Alsayer M, Ren X, Robinson A, Alaidarous S, Mu Y, Sun Y, Hiscox JA, Zhou EM, Stewart JP, Zhao Q. Amino acids 1811-1960 of myosin heavy chain 9 is involved in murine gammaherpesvirus 68 infection. Virology 2023; 587:109849. [PMID: 37515945 DOI: 10.1016/j.virol.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Myosin heavy chain 9 (MYH9) has been identified as a crucial factor in gammaherpesvirus infection. Murine gammaherpesvirus 68 (MHV-68) was used as an appropriate viral model for investigating gammaherpesviruses in vivo and developing antiviral treatments. However, the roles of MYH9 in MHV-68 infection have not been documented. In the study, the relationship between the expression of MYH9 and MHV-68 infection and MYH9 as the antiviral target were analyzed. The results revealed that MYH9 was enriched on the cell surface and co-localized with MHV-68 upon viral infection. Knocking down MYH9 with siRNA or using the specific inhibitor of MYH9 activity, Blebbistatin, resulted in the decreasing of MHV-68 infection. Furthermore, polyclonal antibodies against MYH9 reduced infection by approximately 74% at a dose of 100 μg/ml. The study determined that MYH9 contributes to MHV-68 infection by interacting with viral glycoprotein 150 (gp150) in the BHK-21 cell membrane. The specific region of MYH9, amino acids 1811-1960 (C-150), was identified as the key domain involved in the interaction with MHV-68 gp150 and was found to inhibit MHV-68 infection. Moreover, C-150 was also shown to decrease HSV-1 infection in Vero cells by approximately 73%. Both C-150 and Blebbistatin were found to inhibit MHV-68 replication and reduce histopathological lesions in vivo in C57BL/6J mice. Taken together, these findings suggested that MYH9 is crucial for MHV-68 infection through its interaction with viral gp150 and that C-150 may be a promising antiviral target for inhibiting MHV-68 infection in vitro and in vivo.
Collapse
Affiliation(s)
- Ximeng Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Jordan J Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Eleanor G Bentley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom; Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Mohammed Alsayer
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Xiaolei Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Amy Robinson
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Sondus Alaidarous
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Julian A Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China.
| | - James P Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China.
| |
Collapse
|
8
|
Park JY, Sivasankar C, Kirthika P, Prabhu D, Lee JH. Non-Structural Protein-W61 as a Novel Target in Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV): An In-Vitro and In-Silico Study on Protein-Protein Interactions with Nucleoprotein and Viral Replication. Viruses 2023; 15:1963. [PMID: 37766369 PMCID: PMC10535573 DOI: 10.3390/v15091963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. Here, we investigated the significance of the association between NSs and NP during viral infection through in-silico and in-vitro analyses. Through in-silico analysis, three possible binding sites were predicted, at positions C6S (Cystein at 6th position to Serine), W61Y (Tryptophan 61st to Tyrosine), and S207T (Serine 207th to Threonine), three mutants of NSs were developed by site-directed mutagenesis and tested for NP interaction by co-immunoprecipitation. NSsW61Y failed to interact with the nucleoprotein, which was substantiated by the conformational changes observed in the structural analyses. Additionally, molecular docking analysis corroborated that the NSW61Y mutant protein does not interact well compared to wild-type NSs. Over-expression of wild-type NSs in HeLa cells increased the SFTSV replication by five folds, but NSsW61Y exhibited 1.9-folds less viral replication than wild-type. We demonstrated that the W61Y alteration was implicated in the reduction of NSs-NP interaction and viral replication. Thus, the present study identified a critical NSs site, which could be targeted for development of therapeutic regimens against SFTSV.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea (P.K.)
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea (P.K.)
| | - Perumalraja Kirthika
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea (P.K.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dhamodharan Prabhu
- Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea (P.K.)
| |
Collapse
|
9
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
10
|
Kim EH, Park SJ. Emerging Tick-Borne Dabie bandavirus: Virology, Epidemiology, and Prevention. Microorganisms 2023; 11:2309. [PMID: 37764153 PMCID: PMC10536723 DOI: 10.3390/microorganisms11092309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by Dabie bandavirus (SFTSV), is an emerging infectious disease first identified in China. Since its discovery, infections have spread throughout East Asian countries primarily through tick bites but also via transmission between animals and humans. The expanding range of ticks, the primary vectors for SFTSV, combined with migration patterns of tick-carrying birds, sets the stage for the global spread of this virus. SFTSV rapidly evolves due to continuous mutation and reassortment; currently, no approved vaccines or antiviral drugs are available. Thus, the threat this virus poses to global health is unmistakable. This review consolidates the most recent research on SFTSV, including its molecular characteristics, transmission pathways through ticks and other animals, as well as the progress in antiviral drug and vaccine development, encompassing animal models and clinical trials.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Center for Study of Emerging and Re-Emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea;
| | - Su-Jin Park
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Lee K, Seok JH, Kim H, Park S, Lee S, Bae JY, Jeon K, Kang JG, Yoo JR, Heo ST, Cho NH, Lee KH, Kim K, Park MS, Kim JI. Genome-informed investigation of the molecular evolution and genetic reassortment of severe fever with thrombocytopenia syndrome virus. PLoS Negl Trop Dis 2023; 17:e0011630. [PMID: 37713429 PMCID: PMC10529592 DOI: 10.1371/journal.pntd.0011630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is a viral pathogen causing significant clinical signs from mild fever with thrombocytopenia to severe hemorrhages. World Health Organization has paid special attention to the dramatic increase in human SFTS cases in China, Japan, and South Korea since the 2010s. The present study investigated the molecular evolution and genetic reassortment of SFTSVs using complete genomic sequences. METHODS/PRINCIPAL FINDING We collected the complete genome sequences of SFTSVs globally isolated until 2019 (L segment, n = 307; M segment, n = 326; and S segment, n = 564) and evaluated the evolutionary profiles of SFTSVs based on phylogenetic and molecular selection pressure analyses. By employing a time-scaled Bayesian inference method, we found the geographical heterogeneity of dominant SFTSV genotypes in China, Japan, and South Korea around several centuries before and locally spread by tick-born spillover with infrequent long-distance transmission. Purifying selection predominated the molecular evolution of SFTSVs with limited gene reassortment and fixed substitution, but almost all three gene segments appeared to harbor at least one amino acid residue under positive selection. Specifically, the nonstructural protein and glycoprotein (Gn/Gc) genes were preferential selective targets, and the Gn region retained the highest number of positively selected residues. CONCLUSION/SIGNIFICANCE Here, the large-scale genomic analyses of SFTSVs improved prior knowledge of how this virus emerged and evolved in China, Japan, and South Korea. Our results highlight the importance of SFTSV surveillance in both human and non-human reservoirs at the molecular level to fight against fatal human infection with the virus.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyunbeen Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sohyun Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Laboratory for Vector Borne Disease, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Li YH, Wang XH, Huang WW, Tian RR, Pang W, Zheng YT. Severe fever with thrombocytopenia syndrome virus induces platelet activation and apoptosis via a reactive oxygen species-dependent pathway. Redox Biol 2023; 65:102837. [PMID: 37544244 PMCID: PMC10428115 DOI: 10.1016/j.redox.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV) and with a high fatality rate. Thrombocytopenia is a major clinical manifestation observed in SFTS patients, but the underlying mechanism remains largely unclear. Here, we explored the effects of SFTSV infection on platelet function in vivo in severely infected SFTSV IFNar-/- mice and on mouse and human platelet function in vitro. Results showed that SFTSV-induced platelet clearance acceleration may be the main reason for thrombocytopenia. SFTSV-potentiated platelet activation and apoptosis were also observed in infected mice. Further investigation showed that SFTSV infection induced platelet reactive oxygen species (ROS) production and mitochondrial dysfunction. In vitro experiments revealed that administration of SFTSV or SFTSV glycoprotein (Gn) increased activation, apoptosis, ROS production, and mitochondrial dysfunction in separated mouse platelets, which could be effectively ameliorated by the application of antioxidants (NAC (N-acetyl-l-cysteine), SKQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) and resveratrol). In vivo experiments showed that the antioxidants partially rescued SFTSV infection-induced thrombocytopenia by improving excessive ROS production and mitochondrial dysfunction and down-regulating platelet apoptosis and activation. Furthermore, while SFTSV and Gn directly potentiated human platelet activation, it was completely abolished by antioxidants. This study revealed that SFTSV and Gn can directly trigger platelet activation and apoptosis in an ROS-MAPK-dependent manner, which may contribute to thrombocytopenia and hemorrhage during infection, but can be abolished by antioxidants.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Hui Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Department of Pediatric Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wen-Wu Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Office of Science and Technology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wei Pang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
13
|
Zhang L, Peng X, Wang Q, Li J, Lv S, Han S, Zhang L, Ding H, Wang CY, Xiao G, Du X, Peng K, Li H, Liu W. CCR2 is a host entry receptor for severe fever with thrombocytopenia syndrome virus. SCIENCE ADVANCES 2023; 9:eadg6856. [PMID: 37531422 PMCID: PMC10396298 DOI: 10.1126/sciadv.adg6856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus causing a high fatality rate of up to 30%. To date, the receptor mediating SFTSV entry remained uncharacterized, hindering the understanding of disease pathogenesis. Here, C-C motif chemokine receptor 2 (CCR2) was identified as a host receptor for SFTSV based on a genome-wide CRISPR-Cas9 screen. Knockout of CCR2 substantially reduced viral binding and infection. CCR2 enhanced SFTSV binding through direct binding to SFTSV glycoprotein N (Gn), which is mediated by its N-terminal extracellular domain. Depletion of CCR2 in C57BL/6J mouse model attenuated SFTSV replication and pathogenesis. The peripheral blood primary monocytes from elderly individuals or subjects with underlying diabetes mellitus showed higher CCR2 surface expression and supported stronger binding and replication of SFTSV. Together, these data indicate that CCR2 is a host entry receptor for SFTSV infection and a novel target for developing anti-SFTSV therapeutics.
Collapse
Affiliation(s)
- Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei 430200, China
| | - Xuefang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qingxing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shouming Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shuo Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lingyu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heng Ding
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cong-Yi Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430040, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
14
|
Park JY, Hewawaduge C, Sivasankar C, Lloren KKS, Oh B, So MY, Lee JH. An mRNA-Based Multiple Antigenic Gene Expression System Delivered by Engineered Salmonella for Severe Fever with Thrombocytopenia Syndrome and Assessment of Its Immunogenicity and Protection Using a Human DC-SIGN-Transduced Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15051339. [PMID: 37242581 DOI: 10.3390/pharmaceutics15051339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Currently, there are no commercial vaccines or therapeutics against severe fever with thrombocytopenia syndrome (SFTS) virus. This study explored an engineered Salmonella as a vaccine carrier to deliver a eukaryotic self-mRNA replicating vector, pJHL204. This vector expresses multiple SFTS virus antigenic genes for the nucleocapsid protein (NP), glycoprotein precursor (Gn/Gc), and nonstructural protein (NS) to induce host immune responses. The engineered constructs were designed and validated through 3D structure modeling. Western blot and qRT-PCR analyses of transformed HEK293T cells confirmed the delivery and expression of the vaccine antigens. Significantly, mice immunized with these constructs demonstrated a cell-mediated and humoral response as balanced Th1/Th2 immunity. The JOL2424 and JOL2425 delivering NP and Gn/Gc generated strong immunoglobulin IgG and IgM antibodies and high neutralizing titers. To further examine the immunogenicity and protection, we utilized a human DC-SIGN receptor transduced mouse model for SFTS virus infection by an adeno-associated viral vector system. Among the SFTSV antigen constructs, the construct with full-length NP and Gn/Gc and the construct with NP and selected Gn/Gc epitopes induced robust cellular and humoral immune responses. These were followed by adequate protection based on viral titer reduction and reduced histopathological lesions in the spleen and liver. In conclusion, these data indicate that recombinant attenuated Salmonella JOL2424 and JOL2425 delivering NP and Gn/Gc antigens of SFTSV are promising vaccine candidates that induce strong humoral and cellular immune responses and protection against SFTSV. Moreover, the data proved that the hDC-SIGN transduced mice as a worthy tool for immunogenicity study for SFTSV.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Khristine Kaith S Lloren
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Byungkwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Mi Young So
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
15
|
Liu B, Zhu J, He T, Zhang Z. Genetic variants of Dabie bandavirus: classification and biological/clinical implications. Virol J 2023; 20:68. [PMID: 37060090 PMCID: PMC10103499 DOI: 10.1186/s12985-023-02033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus (DBV), a novel Bandavirus in the family Phenuiviridae. The first case of SFTS was reported in China, followed by cases in Japan, South Korea, Taiwan and Vietnam. With clinical manifestations including fever, leukopenia, thrombocytopenia, and gastrointestinal symptoms, SFTS has a fatality rate of approximately 10%. In recent years, an increasing number of viral strains have been isolated and sequenced, and several research groups have attempted to classify the different genotypes of DBV. Additionally, accumulating evidence indicates certain correlations between the genetic makeup and biological/clinical manifestations of the virus. Here, we attempted to evaluate the genetic classification of different groups, align the genotypic nomenclature in different studies, summarize the distribution of different genotypes, and review the biological and clinical implications of DBV genetic variations.
Collapse
Affiliation(s)
- Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China
| | - Tengfei He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China.
| |
Collapse
|
16
|
Park JY, Chandran S, Hewawaduge C, Lee JH. Development and evaluation of a mouse model susceptible to severe fever with thrombocytopenia syndrome virus by rAAV-based exogenous human DC-SIGN expression. Microb Pathog 2023; 178:106079. [PMID: 36966885 DOI: 10.1016/j.micpath.2023.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.
Collapse
Affiliation(s)
- Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Sivasankar Chandran
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
17
|
Xia T, Wu X, Hong E, Jung K, Lai CJ, Kwak MJ, Seo H, Kim S, Jiang Z, Cha I, Jung JU. Glucosylceramide is essential for Heartland and Dabie bandavirus glycoprotein-induced membrane fusion. PLoS Pathog 2023; 19:e1011232. [PMID: 36920967 PMCID: PMC10016662 DOI: 10.1371/journal.ppat.1011232] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Due to climate changes, there has been a large expansion of emerging tick-borne zoonotic viruses, including Heartland bandavirus (HRTV) and Dabie bandavirus (DBV). As etiologic agents of hemorrhagic fever with high fatality, HRTV and DBV have been recognized as dangerous viral pathogens that likely cause future wide epidemics. Despite serious health concerns, the mechanisms underlying viral infection are largely unknown. HRTV and DBV Gn and Gc are viral surface glycoproteins required for early entry events during infection. Glycosphingolipids, including galactosylceramide (GalCer), glucosylceramide (GlcCer) and lactosylceramide (LacCer), are a class of membrane lipids that play essential roles in membrane structure and viral lifecycle. Here, our genome-wide CRISPR/Cas9 knockout screen identifies that glycosphingolipid biosynthesis pathway is essential for HRTV and DBV infection. The deficiency of UDP-glucose ceramide glucosyltransferase (UGCG) that produces GlcCer resulted in the loss of infectivity of recombinant viruses pseudotyped with HRTV or DBV Gn/Gc glycoproteins. Conversely, exogenous supplement of GlcCer, but not GalCer or LacCer, recovered viral entry of UGCG-deficient cells in a dose-dependent manner. Biophysical analyses showed that GlcCer targeted the lipid-head-group binding pocket of Gc to form a stable protein-lipid complex, which allowed the insertion of Gc protein into host lysosomal membrane lipid bilayers for viral fusion. Mutagenesis showed that D841 residue at the Gc lipid binding pocket was critical for GlcCer interaction and thereby, viral entry. These findings reveal detailed mechanism of GlcCer glycosphingolipid in HRTV and DBV Gc-mediated membrane fusion and provide a potential therapeutic target for tickborne virus infection.
Collapse
Affiliation(s)
- Tian Xia
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Xin Wu
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eunjin Hong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, California, United States of America
| | - Kyle Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Chih-Jen Lai
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mi-Jeong Kwak
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Hogyu Seo
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Stephanie Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Zhongyi Jiang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Inho Cha
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jae U. Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
18
|
Xu J, Liu Y, Zhang F, Wang X, Huang W, Wu Y, Li B, Zhuang J, Bing Y, Wang Y, Qiao Y. Analysis of cross neutralizing activity of antibodies from sera of severe fever with thrombocytopenia syndrome patients to deal with different genotype strains. Front Microbiol 2022; 13:1020545. [DOI: 10.3389/fmicb.2022.1020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSevere fever with thrombocytopenia syndrome bunyavirus (SFTSV) is a tick-borne virus that causes severe communicable fever with thrombocytopenia syndrome (SFTS) with an average case fatality rate of 10%. In the study, we aimed to identify the cross-neutralizing antibody (nAb) against different genotype strains from sera of SFTSV infected patients.MethodsFirstly the genotype of SFTSV was identified by constructing a phylogenetic tree based on the M segments epidemic in the Jiaodong area of Shandong province, then different sera of subjects cross reactive with recombinant Gn (rGn-Fc) or recombinant Gc (rGc-Fc) of 0921 strain were examined. The levels of polyclonal nAbs from sera of 25 convalescents were measured by a pseudovirus-based neutralizing experiment.ResultsWe found local endemic strains were mainly C2 and C3 isolates of SFTSV. 14 of 15 sera from donors reacted with 0921 rGn-Fc, and 9 of 15 sera from donors reacted with 0921 rGc-Fc. Cross nAbs were produced by 10 of 25 sera from donors during the period of 2019–2021. Among these, five nAbs (A2, A4, A5, L9, and L10) neutralized the pseudoviruses of HB29, Gangwon, HN13, HN20, SPL030A, and SD4 strains.ConclusionOur data suggested that epidemic strains showed relatively stable heredity. Some blood sources from patients produced cross nAbs that could neutralize all of the strains examined. These findings highlight the important role played by humoral immunity in combatting SFTSV.
Collapse
|
19
|
Ye N, Wang B, Feng W, Tang D, Zeng Z. PRRS virus receptors and an alternative pathway for viral invasion. Virus Res 2022; 320:198885. [PMID: 35948131 DOI: 10.1016/j.virusres.2022.198885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a highly restricted cell tropism, which is closely related to the specific receptors associated with PRRSV infection. At least nine cellular molecules have been identified as putative receptors for PRRSV, including CD163, a cysteine-rich scavenger receptor. With the participation of the CD163 receptor and other cofactors, PRRSV invades cells via low pH-dependent clathrin-mediated endocytosis. In addition, PRRSV utilizes viral apoptotic mimicry to infect cells though macropinocytosis as an alternative pathway. In this review, we discuss recent advances in the studies on receptors and pathways that play an important role in PRRSV invasion, and simultaneously explore the use of specific antibodies, small molecules, and blockers targeting receptor-ligand interactions, as a potential strategy for controlling PRRSV infection. Novel antiviral strategies against PRRSV could be developed by identifying the interaction between receptors and ligands.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Wang M, Tan W, Li J, Fang L, Yue M. The Endless Wars: Severe Fever With Thrombocytopenia Syndrome Virus, Host Immune and Genetic Factors. Front Cell Infect Microbiol 2022; 12:808098. [PMID: 35782112 PMCID: PMC9240209 DOI: 10.3389/fcimb.2022.808098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/10/2022] [Indexed: 01/10/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging arboviral infectious disease with a high rate of lethality in susceptible humans and caused by severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). Currently, neither vaccine nor specific antiviral drugs are available. In recent years, given the fact that both the number of SFTS cases and epidemic regions are increasing year by year, SFTS has become a public health problem. SFTSV can be internalized into host cells through the interaction between SFTSV glycoproteins and cell receptors and can activate the host immune system to trigger antiviral immune response. However, SFTSV has evolved multiple strategies to manipulate host factors to create an optimal environment for itself. Not to be discounted, host genetic factors may be operative also in the never-ending winning or losing wars. Therefore, the identifications of SFTSV, host immune and genetic factors, and their interactions are critical for understanding the pathogenic mechanisms of SFTSV infection. This review summarizes the updated pathogenesis of SFTS with regard to virus, host immune response, and host genetic factors to provide some novel perspectives of the prevention, treatment, as well as drug and vaccine developments.
Collapse
Affiliation(s)
- Min Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weilong Tan
- Department of Infection Disease, Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liqun Fang
- State Key Lab Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Liqun Fang, ; Ming Yue,
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Liqun Fang, ; Ming Yue,
| |
Collapse
|
21
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Li L, Sun W, Hu Q, Wang T, Zhu G, Zhao Q, Zhou EM. Identification of MYH9 Key Domain Involved in the Entry of PRRSV Into Permissive Cells. Front Microbiol 2022; 13:865343. [PMID: 35694306 PMCID: PMC9174932 DOI: 10.3389/fmicb.2022.865343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge losses economically to the pig industry worldwide. Previous research suggested that receptor dependence is necessary for PRRSV infection. MYH9 and CD163 are indispensable for PRRSV entry into a porcine alveolar macrophage. In the present study, human MYH9 (hMYH9) and mouse MYH9 (mMYH9), similar to swine MYH9, could also accelerate PRRSV infection in pCD163-mediated cell lines. Knockdown of MYH9 activity using the specific small interfering RNA or inhibitor (blebbistatin) concomitantly decreased PRRSV infection. C-terminal fragment of MYH9 (PRA) proteins from different mammalian species contains a conserved binding domain (aa1676-1791) for PRRSV binding, since the recombinant MYH91676−1791protein could inhibit the PRRSV infection significantly. Furthermore, the specific polyclonal antibody of MYH91676−1791 could block PRRSV infection in host cells. These data strongly supported that MYH9, a very important cofactor, participated in PRRSV entry into target cells, which may facilitate the development of a new therapeutic agent to control PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Liangliang Li
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - Qifan Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Guang Zhu
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A and F University, Xianyang, China
| |
Collapse
|
23
|
Feng T, Zhang J, Chen Z, Pan W, Chen Z, Yan Y, Dai J. Glycosylation of viral proteins: Implication in virus-host interaction and virulence. Virulence 2022; 13:670-683. [PMID: 35436420 PMCID: PMC9037552 DOI: 10.1080/21505594.2022.2060464] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycans are among the most important cell molecular components. However, given their structural diversity, their functions have not been fully explored. Glycosylation is a vital post-translational modification for various proteins. Many bacteria and viruses rely on N-linked and O-linked glycosylation to perform critical biological functions. The diverse functions of glycosylation on viral proteins during viral infections, including Dengue, Zika, influenza, and human immunodeficiency viruses as well as coronaviruses have been reported. N-linked glycosylation is the most common form of protein modification, and it modulates folding, transportation and receptor binding. Compared to N-linked glycosylation, the functions of O-linked viral protein glycosylation have not been comprehensively evaluated. In this review, we summarize findings on viral protein glycosylation, with particular attention to studies on N-linked glycosylation in viral life cycles. This review informs the development of virus-specific vaccines or inhibitors.
Collapse
Affiliation(s)
- Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jinyu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhiqian Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wen Pan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Han XH, Ma Y, Liu HY, Li D, Wang Y, Jiang FH, Gao QT, Jiang F, Liu BS, Shen GS, Chen ZL. Identification of severe fever with thrombocytopenia syndrome virus genotypes in patients and ticks in Liaoning Province, China. Parasit Vectors 2022; 15:120. [PMID: 35379310 PMCID: PMC8981814 DOI: 10.1186/s13071-022-05237-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS), caused by the SFTS virus (SFTSV), is an acute infectious disease transmitted by ticks that has recently been identified. There are no reports of epidemic serotypes in Liaoning Province, PR China. The aim of this study was, therefore, to identify genotypes of SFTSV in this province. Methods In 2019, quantitative PCR testing was performed on 17 patients suspected of being infected with SFTS in Liaoning Province and on 492 ticks from the counties and cities surrounding the patients’ residences. Four samples were subjected to virus isolation and whole-genome amplification. Results Molecular diagnostic results confirmed SFTSV infection in five of the 17 suspected cases of SFTS and in 12 of the 492 ticks, with a prevalence of 2.4%. Four strains of SFTSV were successfully isolated from patients’ blood and ticks. Phylogenetic analysis after whole-genome amplification and sequencing showed that they all belonged to genotype A of SFTSV. Conclusions This study is the first to determine the genotype of SFTSV in patients and ticks in Liaoning Province, PR China. The results deepen our understanding of the SFTS epidemic and provide information on the variability in mortality rate among genotypes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05237-3.
Collapse
Affiliation(s)
- Xiao-Hu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, People's Republic of China
| | - Yue Ma
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, People's Republic of China
| | - Hong-Yan Liu
- The Sixth People's Hospital of Shenyang, Shenyang, Liaoning Province, 110866, People's Republic of China
| | - Dan Li
- The Sixth People's Hospital of Shenyang, Shenyang, Liaoning Province, 110866, People's Republic of China
| | - Yan Wang
- The Sixth People's Hospital of Shenyang, Shenyang, Liaoning Province, 110866, People's Republic of China
| | - Feng-Hua Jiang
- Dandong Service Center of Agricultural and Rural Development, Dandong, Liaoning Province, 118000, People's Republic of China
| | - Qing-Tian Gao
- Dandong Service Center of Agricultural and Rural Development, Dandong, Liaoning Province, 118000, People's Republic of China
| | - Feng Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, People's Republic of China
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, People's Republic of China.
| | - Guo-Shun Shen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, People's Republic of China.
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, People's Republic of China.
| |
Collapse
|
25
|
Understanding the key functions of Myosins in viral infection. Biochem Soc Trans 2022; 50:597-607. [PMID: 35212367 DOI: 10.1042/bst20211239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Myosins, a class of actin-based motor proteins existing in almost any organism, are originally considered only involved in driving muscle contraction, reshaping actin cytoskeleton, and anchoring or transporting cargoes, including protein complexes, organelles, vesicles. However, accumulating evidence reveals that myosins also play vital roles in viral infection, depending on viral species and infection stages. This review systemically summarizes the described various myosins, the performed functions, and the involved mechanisms or molecular pathways during viral infection. Meanwhile, the existing issues are also discussed. Additionally, the important technologies or agents, including siRNA, gene editing, and myosin inhibitors, would facilitate dissecting the actions and mechanisms for described and undescribed myosins, which could be adopted to prevent or control viral infection are also characterized.
Collapse
|
26
|
Chung H, Kim E, Kwon B, Cho YG, Bae S, Jung J, Kim MJ, Chong YP, Kim SH, Lee SO, Choi SH, Kim YS. Kinetics of Glycoprotein-Specific Antibody Response in Patients with Severe Fever with Thrombocytopenia Syndrome. Viruses 2022; 14:v14020256. [PMID: 35215849 PMCID: PMC8880780 DOI: 10.3390/v14020256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tickborne disease in East Asia that is causing high mortality. The Gn glycoprotein of the SFTS virus (SFTSV) has been considered to be an essential target for virus neutralization. However, data on anti-Gn glycoprotein antibody kinetics are limited. Therefore, we investigated the kinetics of Gn-specific antibodies compared to those of nucleocapsid protein (NP)-specific antibodies. A multicenter prospective study was performed in South Korea from January 2018 to September 2021. Adult patients with SFTS were enrolled. Anti-Gn-specific IgM and IgG were measured using an enzyme-linked immunosorbent assay. A total of 111 samples from 34 patients with confirmed SFTS were analyzed. Anti-Gn-specific IgM was detected at days 5–9 and peaked at day 15–19 from symptom onset, whereas the anti-NP-specific IgM titers peaked at days 5–9. Median seroconversion times of both anti-Gn- and NP-specific IgG were 7.0 days. High anti-Gn-specific IgG titers were maintained until 35–39 months after symptom onset. Only one patient lost their anti-Gn-specific antibodies at 41 days after symptom onset. Our data suggested that the anti-Gn-specific IgM titer peaked later than anti-NP-specific IgM, and that anti-Gn-specific IgG remain for at least 3 years from symptom onset.
Collapse
Affiliation(s)
- Hyemin Chung
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Eunsil Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.K.); (Y.-G.C.)
| | - Bomin Kwon
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Yeong-Geon Cho
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.K.); (Y.-G.C.)
| | - Seongman Bae
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Jiwon Jung
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Min-Jae Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Yong-Pil Chong
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Sung-Han Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Sang-Oh Lee
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Sang-Ho Choi
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
| | - Yang-Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.C.); (B.K.); (S.B.); (J.J.); (M.-J.K.); (Y.-P.C.); (S.-H.K.); (S.-O.L.); (S.-H.C.)
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.K.); (Y.-G.C.)
- Correspondence:
| | | |
Collapse
|
27
|
Li S, Ye M, Chen Y, Zhang Y, Li J, Liu W, Li H, Peng K. Screening of a Small Molecule Compound Library Identifies Toosendanin as an Inhibitor Against Bunyavirus and SARS-CoV-2. Front Pharmacol 2021; 12:735223. [PMID: 34858173 PMCID: PMC8632254 DOI: 10.3389/fphar.2021.735223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus causing serious infectious disease with a high case-fatality of up to 50% in severe cases. Currently, no effective drug has been approved for the treatment of SFTSV infection. Here, we performed a high-throughput screening of a natural extracts library for compounds with activities against SFTSV infection. Three hit compounds, notoginsenoside Ft1, punicalin, and toosendanin were identified for displaying high anti-SFTSV efficacy, in which, toosendanin showed the highest inhibition potency. Mechanistic investigation indicated that toosendanin inhibited SFTSV infection at the step of virus internalization. The anti-viral effect of toosendanin against SFTSV was further verified in mouse infection models, and the treatment with toosendanin significantly reduced viral load and histopathological changes in vivo. The antiviral activity of toosendanin was further expanded to another bunyavirus and the emerging SARS-CoV-2. This study revealed a broad anti-viral effect of toosendanin and indicated its potential to be developed as an anti-viral drug for clinical use.
Collapse
Affiliation(s)
- Shufen Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Meidi Ye
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanqiao Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiachen Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Moming A, Shi S, Shen S, Qiao J, Yue X, Wang B, Ding J, Hu Z, Deng F, Zhang Y, Sun S. Fine mapping epitope on Glycoprotein-Gn from Severe Fever with Thrombocytopenia Syndrome Virus. PLoS One 2021; 16:e0248005. [PMID: 33651850 PMCID: PMC7924767 DOI: 10.1371/journal.pone.0248005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) was recently identified as a tick-borne pathogen that threat to human health. Since 2010, many countries including China, South Korea, and Japan have reported Human SFTS caused by SFTSV infection. The glycoprotein encoded by the SFTSV M gene is the major antigenic component on the viral surface, and responsible for the viral entry, which makes it an important viral antigen and a clinical diagnostic target. The present study aimed to map linear B cell epitopes (BCEs) on the N-terminal glycoprotein (Gn) from SFTSV strain WCH/97/HN/China/2011 using the modified biosynthetic peptide method. Five fine epitopes (E1, 196FSQSEFPD203; E2, 232GHSHKII238; E3, 256VCYKEGTGPC265; E4, 285FCKVAG290, and E5, 316SYGGM320) were identified using the rabbit antisera. Western blot analysis showed that all the five epitopes interacted with the positive serum of sheep that had been naturally infected with SFTSV. Three-dimensional structural modeling analysis showed that all identified BCEs were located on the surface of the SFTSV-Gn and contained flexible loops. The sequence alignment revealed high conservation of the identified BCEs among 13 SFTSV strains from different lineage. These mapped epitopes will escalate the understanding of the epitope distribution and pathogenic mechanism of SFTSV, and could provide a basis for the development of a SFTSV multi-epitope detection antigen.
Collapse
Affiliation(s)
- Abulimiti Moming
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shen Shi
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Qiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xihong Yue
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Bo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (FD); (YZ); (SS)
| | - Yujiang Zhang
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
- * E-mail: (FD); (YZ); (SS)
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- * E-mail: (FD); (YZ); (SS)
| |
Collapse
|
29
|
Hulswit RJG, Paesen GC, Bowden TA, Shi X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021; 13:353. [PMID: 33672327 PMCID: PMC7926653 DOI: 10.3390/v13020353] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.
Collapse
Affiliation(s)
- Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
30
|
Liu JW, Chu M, Jiao YJ, Zhou CM, Qi R, Yu XJ. SFTSV Infection Induced Interleukin-1β Secretion Through NLRP3 Inflammasome Activation. Front Immunol 2021; 12:595140. [PMID: 33708197 PMCID: PMC7940371 DOI: 10.3389/fimmu.2021.595140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes hemorrhagic fever. Previous studies showed that SFTSV-infected patients exhibited elevated levels of pro-inflammatory cytokines like interleukin-1β (IL-1β), indicating that SFTSV infection may activate inflammasomes. However, the detailed mechanism remains poorly understood. Herein, we found that SFTSV could stimulate the IL-1β secretion in the infected human peripheral blood mononuclear cells (PBMCs), human macrophages, and C57/BL6 mice. We demonstrate that the maturation and secretion of IL-1β during SFTSV infection is mediated by the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 (NLRP3) inflammasome. This process is dependent on protease caspase-1, a component of the NLRP3 inflammasome complex. For the first time, our study discovered the role of NLRP3 in response to SFTSV infection. This finding may lead to the development of novel drugs to impede the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Jian-Wei Liu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Min Chu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yong-Jun Jiao
- Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Rui Qi
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Entry of Phenuiviruses into Mammalian Host Cells. Viruses 2021; 13:v13020299. [PMID: 33672975 PMCID: PMC7918600 DOI: 10.3390/v13020299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Phenuiviridae is a large family of arthropod-borne viruses with over 100 species worldwide. Several cause severe diseases in both humans and livestock. Global warming and the apparent geographical expansion of arthropod vectors are good reasons to seriously consider these viruses potential agents of emerging diseases. With an increasing frequency and number of epidemics, some phenuiviruses represent a global threat to public and veterinary health. This review focuses on the early stage of phenuivirus infection in mammalian host cells. We address current knowledge on each step of the cell entry process, from virus binding to penetration into the cytosol. Virus receptors, endocytosis, and fusion mechanisms are discussed in light of the most recent progress on the entry of banda-, phlebo-, and uukuviruses, which together constitute the three prominent genera in the Phenuiviridae family.
Collapse
|
32
|
Baseline mapping of severe fever with thrombocytopenia syndrome virology, epidemiology and vaccine research and development. NPJ Vaccines 2020; 5:111. [PMID: 33335100 PMCID: PMC7746727 DOI: 10.1038/s41541-020-00257-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly emergent tick-borne bunyavirus first discovered in 2009 in China. SFTSV is a growing public health problem that may become more prominent owing to multiple competent tick-vectors and the expansion of human populations in areas where the vectors are found. Although tick-vectors of SFTSV are found in a wide geographic area, SFTS cases have only been reported from China, South Korea, Vietnam, and Japan. Patients with SFTS often present with high fever, leukopenia, and thrombocytopenia, and in some cases, symptoms can progress to severe outcomes, including hemorrhagic disease. Reported SFTSV case fatality rates range from ~5 to >30% depending on the region surveyed, with more severe disease reported in older individuals. Currently, treatment options for this viral infection remain mostly supportive as there are no licensed vaccines available and research is in the discovery stage. Animal models for SFTSV appear to recapitulate many facets of human disease, although none of the models mirror all clinical manifestations. There are insufficient data available on basic immunologic responses, the immune correlate(s) of protection, and the determinants of severe disease by SFTSV and related viruses. Many aspects of SFTSV virology and epidemiology are not fully understood, including a detailed understanding of the annual numbers of cases and the vertebrate host of the virus, so additional research on this disease is essential towards the development of vaccines and therapeutics.
Collapse
|
33
|
Mo Q, Xu Z, Deng F, Wang H, Ning YJ. Host restriction of emerging high-pathogenic bunyaviruses via MOV10 by targeting viral nucleoprotein and blocking ribonucleoprotein assembly. PLoS Pathog 2020; 16:e1009129. [PMID: 33284835 PMCID: PMC7746268 DOI: 10.1371/journal.ppat.1009129] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/17/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Bunyavirus ribonucleoprotein (RNP) that is assembled by polymerized nucleoproteins (N) coating a viral RNA and associating with a viral polymerase can be both the RNA synthesis machinery and the structural core of virions. Bunyaviral N and RNP thus could be assailable targets for host antiviral defense; however, it remains unclear which and how host factors target N/RNP to restrict bunyaviral infection. By mass spectrometry and protein-interaction analyses, we here show that host protein MOV10 targets the N proteins encoded by a group of emerging high-pathogenic representatives of bunyaviruses including severe fever with thrombocytopenia syndrome virus (SFTSV), one of the most dangerous pathogens listed by World Health Organization, in RNA-independent manner. MOV10 that was further shown to be induced specifically by SFTSV and related bunyaviruses in turn inhibits the bunyaviral replication in infected cells in series of loss/gain-of-function assays. Moreover, animal infection experiments with MOV10 knockdown corroborated the role of MOV10 in restricting SFTSV infection and pathogenicity in vivo. Minigenome assays and additional functional and mechanistic investigations demonstrate that the anti-bunyavirus activity of MOV10 is likely achieved by direct impact on viral RNP machinery but independent of its helicase activity and the cellular interferon pathway. Indeed, by its N-terminus, MOV10 binds to a protruding N-arm domain of N consisting of only 34 amino acids but proving important for N function and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study not only advances the understanding of bunyaviral replication and host restriction mechanisms but also presents novel paradigms for both direct antiviral action of MOV10 and host targeting of viral RNP machinery. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging high-pathogenic bunyavirus listed by the World Health Organization as a top priority pathogen for research and development. Although SFTSV and related bunyaviruses emerging globally have raised serious public health concerns, specific antivirals or vaccines are currently unavailable and little is known on the virus-host interactions and viral replication mechanism. The nucleoprotein (N) is essential for bunyavirus replication by driving assembly of ribonucleoprotein (RNP), the RNA synthesis machinery and structural core of virions. Here we show that N proteins of SFTSV and related bunyaviruses can be targeted by host factor MOV10 in RNA-independent manner. Further, MOV10 can be induced specifically by the bunyaviruses and in turn restrict the viral replication and pathogenicity in vitro and in vivo. The anti-bunyavirus activity of MOV10 is independent of its helicase region and cellular interferon pathway. Instead, by its N-terminus, MOV10 binds to a protruding N-arm domain of N and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study provides a delicate model for host targeting of viral RNP machinery and sheds light on bunyaviral replication and host restriction mechanisms, which may promote specific antiviral therapy development.
Collapse
Affiliation(s)
- Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HW); (Y-JN)
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HW); (Y-JN)
| |
Collapse
|
34
|
Li J, Li S, Yang L, Cao P, Lu J. Severe fever with thrombocytopenia syndrome virus: a highly lethal bunyavirus. Crit Rev Microbiol 2020; 47:112-125. [PMID: 33245676 DOI: 10.1080/1040841x.2020.1847037] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel bunyavirus. Since 2007, SFTS disease has been reported in China with high fatality rate up to 30%, which drew high attention from Centre for Disease Control and Prevention and government. SFTSV is endemic in the centra l and eastern China, Korea and Japan. There also have been similar cases reported in Vietnam. The number of SFTSV infection cases has a steady growth in these years. As SFTSV could transmitted from person to person, it will expose the public to infectious risk. In 2018 annual review of the Blueprint list of priority diseases, World Health Organisation has listed SFTSV infection as prioritised diseases for research and development in emergency contexts. However, the pathogenesis of SFTSV remains largely unclear. Currently, there are no specific therapeutics or vaccines to combat infections of SFTSV. This review discusses recent findings of epidemiology, transmission pathway, pathogenesis and treatments of SFTS disease.
Collapse
Affiliation(s)
- Jing Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
35
|
Kimura M, Egawa K, Ozawa T, Kishi H, Shimojima M, Taniguchi S, Fukushi S, Fujii H, Yamada H, Tan L, Sano K, Katano H, Suzuki T, Morikawa S, Saijo M, Tani H. Characterization of pseudotyped vesicular stomatitis virus bearing the heartland virus envelope glycoprotein. Virology 2020; 556:124-132. [PMID: 33561699 DOI: 10.1016/j.virol.2020.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
The heartland virus (HRTV) is a novel phlebovirus that causes severe infections in the USA and closely related to the severe fever thrombocytopenia syndrome virus (SFTSV), a causative agent for SFTS in Asia. The entry mechanisms of HRTV remain unclear. Here, we developed the pseudotyped vesicular stomatitis virus bearing the HRTV glycoprotein (GP) (HRTVpv), and the antigenicity and the entry mechanisms of HRTV were analyzed. HRTVpv was neutralized by anti-SFTSV Gc antibody, but not the anti-SFTSV Gn antibodies. Entry of HRTVpv to cells was inhibited by bafilomycin A1 and dynasore, and but it was enhanced in cells overexpressed with C-type lectins. Production of infectious HRTVpv and SFTSVpv was reduced by Nn-DNJ, α-glucosidase inhibitor. The entry of HRTV occurs via pH- and dynamin-dependent endocytosis. Furthermore, Nn-DNJ may be a possible therapeutic agent against HRTV and SFTSV.
Collapse
Affiliation(s)
- Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kazutaka Egawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Hiroshi Yamada
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Long Tan
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan; Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Tani
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
36
|
Zhang D, Kinloch AJ, Srinath A, Shenkar R, Girard R, Lightle R, Moore T, Koskimäki J, Mohsin A, Carrión-Penagos J, Romanos S, Shen L, Clark MR, Shi C, Awad IA. Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu. J Autoimmun 2020; 113:102469. [PMID: 32362501 PMCID: PMC7483292 DOI: 10.1016/j.jaut.2020.102469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/21/2023]
Abstract
Previous studies have reported robust inflammatory cell infiltration, synthesis of IgG, B-cell clonal expansion, deposition of immune complexes and complement within cerebral cavernous malformation (CCM) lesions. B-cell depletion has also been shown to reduce the maturation of CCM in murine models. We hypothesize that antigen(s) within the lesional milieu perpetuate the pathogenetic immune responses in CCMs. This study aims to identify those putative antigen(s) using monoclonal antibodies (mAbs) derived from plasma cells found in surgically removed human CCM lesions. We produced human mAbs from laser capture micro-dissected plasma cells from four CCM patients, and also germline-reverted versions. CCM mAbs were assayed using immunofluorescence on central nervous system (CNS) tissues and immunocytochemistry on human primary cell lines. Antigen characterization was performed using a combination of confocal microscopy, immunoprecipitation and mass spectrometry. Affinity was determined by enzyme-linked immunosorbent assay, and specificity by multi-color confocal microscopy and quantitative co-localization. CCM mAbs bound CNS tissue, especially endothelial cells and astrocytes. Non-muscle myosin heavy chain IIA (NMMHCIIA), vimentin and tubulin are three cytoskeleton proteins that were commonly targeted. Selection of cytoskeleton proteins by plasma cells was supported by a high frequency of immunoglobulin variable region somatic hypermutations, high affinity and selectivity of mAbs in their affinity matured forms, and profoundly reduced affinity and selectivity in the germline reverted forms. Antibodies produced by plasma cells in CCM lesions commonly target cytoplasmic and cytoskeletal autoantigens including NMMHCIIA, vimentin and tubulin that are abundant in endothelial cells and astrocytes. Binding to, and selection on autoantigen(s) in the lesional milieu likely perpetuates the pathogenetic immune response in CCMs. Blocking this in situ autoimmune response may yield a novel treatment for CCM.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China; Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Andrew J Kinloch
- Department of Medicine, Section of Rheumatology, The University of Chicago, Gwen Knapp Center for Lupus and Immunology Research, 5841 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Azam Mohsin
- Department of Medicine, Section of Rheumatology, The University of Chicago, Gwen Knapp Center for Lupus and Immunology Research, 5841 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Le Shen
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, The University of Chicago, Gwen Knapp Center for Lupus and Immunology Research, 5841 S. Maryland Ave, Chicago, IL, 60637, United States
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5842 S. Maryland Ave, Chicago, IL, 60637, United States.
| |
Collapse
|
37
|
Activation of platelet-derived growth factor receptor β in the severe fever with thrombocytopenia syndrome virus infection. Antiviral Res 2020; 182:104926. [PMID: 32882323 DOI: 10.1016/j.antiviral.2020.104926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), an emerging viral infectious disease with a high case fatality rate, is caused by the SFTS virus (SFTSV). Although several cellular molecules involved in viral entry have been identified, the entry mechanisms of SFTSV remain unclear. In this study, we screened the protein kinase inhibitors in inhibitory effects on the infection of Vero cells with SFTSV using InhibitorSelect™ Protein Kinase Library Series (Merck & Co., Inc., Kenilworth, NJ, USA). Several types of inhibitors targeted to platelet-derived growth factor receptor β (PDGFRβ) inhibited the infection of Vero, Huh7, and NIH3T3 cells with SFTSV in a dose-dependent manner within the noncytotoxic range. In addition, these protein kinase inhibitors also inhibited the infection of the target cells with SFTSV glycoprotein (SFTSV-GP) pseudotyped virus (SFTSVpv). Activation of PDGFRβ phosphorylation was detected in SFTSV-treated cells. The infectivities of SFTSVpv were specifically decreased not only in NIH3T3 cells treated with siRNA for PDGFRβ but also in NIH3T3 cells treated with anti-PDGFRβ neutralizing antibody in a dose-dependent manner. SFTSV growth and entry of SFTSVpv were also inhibited by Akt inhibitors. Activation of Akt phosphorylation was also detected in SFTSV-treated cells. These data indicate that PDGFRβ is one of the important host factors in the entry steps of SFTSV.
Collapse
|
38
|
Chen J, Longnecker R. Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol Rev 2020; 43:674-683. [PMID: 31584659 DOI: 10.1093/femsre/fuz023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr Virus (EBV) is etiologically associated with multiple human malignancies including Burkitt lymphoma and Hodgkin disease as well as nasopharyngeal and gastric carcinoma. Entry of EBV into target cells is essential for virus to cause disease and is mediated by multiple viral envelope glycoproteins and cell surface associated receptors. The target cells of EBV include B cells and epithelial cells. The nature and mechanism of EBV entry into these cell types are different, requiring different glycoprotein complexes to bind to specific receptors on the target cells. Compared to the B cell entry mechanism, the overall mechanism of EBV entry into epithelial cells is less well known. Numerous receptors have been implicated in this process and may also be involved in additional processes of EBV entry, transport, and replication. This review summarizes EBV glycoproteins, host receptors, signal molecules and transport machinery that are being used in the epithelial cell entry process and also provides a broad view for related herpesvirus entry mechanisms.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Tandem Mass Tag (TMT)-based quantitative proteomics reveals potential targets associated with onset of Sub-clinical Mastitis in cows. Sci Rep 2020; 10:9321. [PMID: 32518370 PMCID: PMC7283279 DOI: 10.1038/s41598-020-66211-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bovine milk is vital for infant nutrition and is a major component of the human diet. Bovine mastitis is a common inflammatory disease of mammary gland in cattle. It alters the immune profile of the animal and lowers the quality and yield of milk causing huge economic losses to dairy industry. The incidence of sub-clinical mastitis (SCM) is higher (25-65% worldwide) than clinical mastitis (CM) (>5%), and frequently progresses to clinical stage due to lack of sensitive and specific detection method. We used quantitative proteomics to identify changes in milk during sub-clinical mastitis, which may be potential biomarkers for developing rapid, non-invasive, sensitive detection methods. We performed comparative proteome analysis of the bovine milk, collected from the Indian hybrid cow Karan Fries. The differential proteome in the milk of Indian crossbred cows during sub-acute and clinical intramammary gland infection has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins, we identified a total of 1459 and 1358 proteins in biological replicates, out of which 220 and 157 proteins were differentially expressed between normal and infected samples. A total of 82 proteins were up-regulated and 27 proteins were down-regulated, having fold changes of ≥2 and ≤0.8 respectively. Among these proteins, overexpression of CHI3L1, LBP, GSN, GCLC, C4 and PIGR proteins was positively correlated with the events that elicit host defence system, triggering production of cytokines and inflammatory molecules. The appearance of these potential biomarkers in milk may be used to segregate affected cattle from the normal herd and may support mitigation measures for prevention of SCM and CM.
Collapse
|
40
|
Efficient functional screening of a cellular cDNA library to identify severe fever with thrombocytopenia syndrome virus entry factors. Sci Rep 2020; 10:5996. [PMID: 32265454 PMCID: PMC7138800 DOI: 10.1038/s41598-020-62876-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/18/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of host cell factors for virus entry is useful for the molecular explanation of viral tropisms and often leads to a more profound understanding of virus-induced diseases. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus. No countermeasures against the disease exist. In this report, we show an efficient method using virus-like particles for the functional screening of a cellular cDNA library to identify SFTS virus entry factors. Two variants encoding dendritic cell-specific ICAM-3 grabbing non-integrin related (DC-SIGNR), a calcium-dependent lectin known to enhance SFTS virus infection, were successfully identified from a human liver cDNA library. We will discuss applications for yet unidentified factor(s) for SFTS virus entry and for entry factor(s) for other viruses related to SFTS virus.
Collapse
|
41
|
Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway. J Virol 2020; 94:JVI.01684-19. [PMID: 31852783 DOI: 10.1128/jvi.01684-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) dissociates from its inhibitor, Keap1, upon stress signals and subsequently induces an antioxidant response that critically controls the viral life cycle and pathogenesis. Besides intracellular Fc receptor function, tripartite motif 21 (TRIM21) E3 ligase plays an essential role in the p62-Keap1-Nrf2 axis pathway for redox homeostasis. Specifically, TRIM21-mediated p62 ubiquitination abrogates p62 oligomerization and sequestration activity and negatively regulates the Keap1-Nrf2-mediated antioxidant response. A number of viruses target the Nrf2-mediated antioxidant response to generate an optimal environment for their life cycle. Here we report that a nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) interacts with and inhibits TRIM21 to activate the Nrf2 antioxidant signal pathway. Mass spectrometry identified TRIM21 to be a binding protein for NSs. NSs bound to the carboxyl-terminal SPRY subdomain of TRIM21, enhancing p62 stability and oligomerization. This facilitated p62-mediated Keap1 sequestration and ultimately increased Nrf2-mediated transcriptional activation of antioxidant genes, including those for heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and CD36. Mutational analysis found that the NSs-A46 mutant, which no longer interacted with TRIM21, was unable to increase Nrf2-mediated transcriptional activation. Functionally, the NS wild type (WT), but not the NSs-A46 mutant, increased the surface expression of the CD36 scavenger receptor, resulting in an increase in phagocytosis and lipid uptake. A combination of reverse genetics and assays with Ifnar -/- mouse models revealed that while the SFTSV-A46 mutant replicated similarly to wild-type SFTSV (SFTSV-WT), it showed weaker pathogenic activity than SFTSV-WT. These data suggest that the activation of the p62-Keap1-Nrf2 antioxidant response induced by the NSs-TRIM21 interaction contributes to the development of an optimal environment for the SFTSV life cycle and efficient pathogenesis.IMPORTANCE Tick-borne diseases have become a growing threat to public health. SFTSV, listed by the World Health Organization as a prioritized pathogen, is an emerging phlebovirus, and fatality rates among those infected with this virus are high. Infected Haemaphysalis longicornis ticks are the major source of human SFTSV infection. In particular, the recent spread of this tick to over 12 states in the United States has increased the potential for outbreaks of this disease beyond Far East Asia. Due to the lack of therapies and vaccines against SFTSV infection, there is a pressing need to understand SFTSV pathogenesis. As the Nrf2-mediated antioxidant response affects viral life cycles, a number of viruses deregulate Nrf2 pathways. Here we demonstrate that the SFTSV NSs inhibits the TRIM21 function to upregulate the p62-Keap1-Nrf2 antioxidant pathway for efficient viral pathogenesis. This study not only demonstrates the critical role of SFTSV NSs in viral pathogenesis but also suggests potential future therapeutic approaches to treat SFTSV-infected patients.
Collapse
|
42
|
Wang W, Shin WJ, Zhang B, Choi Y, Yoo JS, Zimmerman MI, Frederick TE, Bowman GR, Gross ML, Leung DW, Jung JU, Amarasinghe GK. The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell Rep 2020; 30:153-163.e5. [PMID: 31914382 PMCID: PMC7214099 DOI: 10.1016/j.celrep.2019.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (IC50) of ∼100 nM in enzyme inhibition and an EC50 value of ∼250 nM against SFTSV and HRTV in plaque assays. Together, our data support sNSV endonucleases as an antiviral target.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ji-Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daisy W Leung
- Division of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
[Molecular mechanisms of highly pathogenic viruses' replication and their applications for a novel drug discovery]. Uirusu 2020; 70:69-82. [PMID: 33967116 DOI: 10.2222/jsv.70.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.
Collapse
|
44
|
Li L, Zhang L, Hu Q, Zhao L, Nan Y, Hou G, Chen Y, Han X, Ren X, Zhao Q, Tao H, Sun Z, Zhang G, Wu C, Wang J, Zhou EM. MYH9 Key Amino Acid Residues Identified by the Anti-Idiotypic Antibody to Porcine Reproductive and Respiratory Syndrome Virus Glycoprotein 5 Involve in the Virus Internalization by Porcine Alveolar Macrophages. Viruses 2019; 12:v12010040. [PMID: 31905776 PMCID: PMC7019770 DOI: 10.3390/v12010040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
MYH9 has been identified as an indispensable cellular protein for porcine reproductive and respiratory syndrome virus (PRRSV) entry into permissive cells using the monoclonal anti-idiotypic antibody (Mab2-5G2) recognizing an antibody that specifically interacts with PRRSV glycoprotein 5 (GP5). More recently, we found that Mab2-5G2 interacted with the MYH9 C-terminal domain, designated PRA, which is required for PRRSV internalization. In this study, we demonstrate that blocking of MYH9 with Mab2-5G2 significantly diminished PRRSV internalization by porcine alveolar macrophage (PAM) via interruption of direct interaction between GP5 and MYH9, and thus remarkably inhibited subsequent infection of PAMs by PRRSV-2 isolates. Moreover, the three-dimensional structure of the Mab2-5G2 Fab-PRA complex determined via homology modeling predicted potential docking sites required for PRRSV internalization. Further analysis of Mab2-5G2-binding sites within PRA highlighted that the amino acids E1670, K1673, E1679, and I1683 in PRA are the key Mab2-5G2-binding residues. Notably, recombinant PRA protein blocked the interaction between PRRSV GP5 and cellular MYH9 by preventing translocation of MYH9 from the cytoplasm to the cell membrane, an essential step for PRRSV virion internalization. Meanwhile, porcine cell line permissive for PRRSV bearing point mutation of E1670A in MYH9 demonstrated reduced susceptibility for PRRSV infection. In conclusion, this work increases understanding of both PRRSV pathogenesis and the mechanistic role played by MYH9 in PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Qifan Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Liang Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Gaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Ximeng Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Xiaolei Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
| | - Hu Tao
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Zhenzhao Sun
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 100193, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
- Correspondence: (C.W.); (J.W.); (E.-M.Z.)
| | - Jingfei Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 100193, China
- Correspondence: (C.W.); (J.W.); (E.-M.Z.)
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.L.); (L.Z.); (Y.N.); (G.H.); (Y.C.); (X.R.); (Q.Z.)
- Correspondence: (C.W.); (J.W.); (E.-M.Z.)
| |
Collapse
|
45
|
Xue B, Hou G, Zhang G, Huang J, Li L, Nan Y, Mu Y, Wang L, Zhang L, Han X, Ren X, Zhao Q, Wu C, Wang J, Zhou EM. MYH9 Aggregation Induced by Direct Interaction With PRRSV GP5 Ectodomain Facilitates Viral Internalization by Permissive Cells. Front Microbiol 2019; 10:2313. [PMID: 31649651 PMCID: PMC6794372 DOI: 10.3389/fmicb.2019.02313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Prevention and control of infection by porcine reproductive and respiratory syndrome virus (PRRSV) remains a challenge, due to our limited understanding of the PRRSV invasion mechanism. Our previous study has shown that PRRSV glycoprotein GP5 interacts with MYH9 C-terminal domain protein (PRA). Here we defined that the first ectodomain of GP5 (GP5-ecto-1) directly interacted with PRA and this interaction triggered PRA and endogenous MYH9 to form filament assembly. More importantly, MYH9 filament assembly was also formed in GP5-ecto-1-transfected MARC-145 cells. Notably, PRRSV infection of MARC-145 cells and porcine alveolar macrophages also induced endogenous MYH9 aggregation and polymerization that were required for subsequent PRRSV internalization. Moreover, overexpression of S100A4, a MYH9-specific disassembly inducer, in MARC-145 cells significantly resulted in diminished MYH9 aggregation and marked inhibition of subsequent virion internalization and infection by both PRRSV-1 and PRRSV-2 isolates. The collective results of this work reveal a novel molecular mechanism employed by MYH9 that helps PRRSV gain entry into permissive cells.
Collapse
Affiliation(s)
- Biyun Xue
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Gaopeng Hou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Guixi Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingjing Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Liangliang Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yang Mu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ximeng Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaolei Ren
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chunyan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
46
|
Liu T, Li J, Liu Y, Qu Y, Li A, Li C, Zhang Q, Wu W, Li J, Liu Y, Li D, Wang S, Liang M. SNX11 Identified as an Essential Host Factor for SFTS Virus Infection by CRISPR Knockout Screening. Virol Sin 2019; 34:508-520. [PMID: 31215001 PMCID: PMC6814687 DOI: 10.1007/s12250-019-00141-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 01/23/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic tick-borne bunyavirus that causes lethal infectious disease and severe fever with thrombocytopenia syndrome (SFTS) in humans. The molecular mechanisms and host cellular factors required for SFTSV infection remain uncharacterized. Using a genome-wide CRISPR-based screening strategy, we identified a host cellular protein, sorting nexin 11 (SNX11) which is involved in the intracellular endosomal trafficking pathway, as an essential cell factor for SFTSV infection. An SNX11-KO HeLa cell line was established, and SFTSV replication was significantly reduced. The glycoproteins of SFTSV were detected and remained in later endosomal compartments but were not detectable in the endoplasmic reticulum (ER) or Golgi apparatus. pH values in the endosomal compartments of the SNX11-KO cells increased compared with the pH of normal HeLa cells, and lysosomal-associated membrane protein 1 (LAMP1) expression was significantly elevated in the SNX11-KO cells. Overall, these results indicated that penetration of SFTSV from the endolysosomes into the cytoplasm of host cells was blocked in the cells lacking SNX11. Our study for the first time provides insight into the important role of the SNX11 as an essential host factor in the intracellular trafficking and penetrating process of SFTSV infection via potential regulation of viral protein sorting, membrane fusion, and other endocytic machinery.
Collapse
Affiliation(s)
- Tiezhu Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiajia Li
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yang Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanyuan Qu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Aqian Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Chuan Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Quanfu Zhang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wei Wu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiandong Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yan Liu
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Dexin Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shiwen Wang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, 430071, China.
| | - Mifang Liang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, 430071, China.
| |
Collapse
|
47
|
Immune Modulation and Immune-Mediated Pathogenesis of Emerging Tickborne Banyangviruses. Vaccines (Basel) 2019; 7:vaccines7040125. [PMID: 31547199 PMCID: PMC6963857 DOI: 10.3390/vaccines7040125] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
In the last decade, the emergence of several, novel tickborne viruses have caused significant disease in humans. Of interest are the tickborne banyangviruses: Severe fever with thrombocytopenia syndrome virus (SFTSV), Heartland virus (HRTV), and Guertu virus (GTV). SFTSV and HRTV infection in humans cause viral hemorrhagic fever-like disease leading to mortality rates ranging from 6–30% of the cases. The systemic inflammatory response syndrome (SIRS) associated with SFTSV infection is hypothesized to contribute significantly to pathology seen in patients. Despite the severe disease caused by HRTV and SFTSV, there are no approved therapeutics or vaccines. Investigation of the immune response during and following infection is critical to the generation of fully protective vaccines and/or supportive treatments, and overall understanding of viral immune evasion mechanisms may aid in the development of a new class of therapeutics.
Collapse
|
48
|
Lau SKP, Zhang L, Luk HKH, Xiong L, Peng X, Li KSM, He X, Zhao PSH, Fan RYY, Wong ACP, Ahmed SS, Cai JP, Chan JFW, Sun Y, Jin D, Chen H, Lau TCK, Kok RKH, Li W, Yuen KY, Woo PCY. Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding. J Infect Dis 2019; 218:197-207. [PMID: 29346682 PMCID: PMC7107427 DOI: 10.1093/infdis/jiy018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Hayes K H Luk
- Department of Microbiology The University of Hong Kong, China
| | - Lifeng Xiong
- Department of Microbiology The University of Hong Kong, China
| | - Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Kenneth S M Li
- Department of Microbiology The University of Hong Kong, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | | | - Rachel Y Y Fan
- Department of Microbiology The University of Hong Kong, China
| | | | | | - Jian-Piao Cai
- Department of Microbiology The University of Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Dongyan Jin
- School of Biomedical Sciences, The University of Hong Kong, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Terrence C K Lau
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Raven K H Kok
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| |
Collapse
|
49
|
Hou G, Xue B, Li L, Nan Y, Zhang L, Li K, Zhao Q, Hiscox JA, Stewart JP, Wu C, Wang J, Zhou EM. Direct Interaction Between CD163 N-Terminal Domain and MYH9 C-Terminal Domain Contributes to Porcine Reproductive and Respiratory Syndrome Virus Internalization by Permissive Cells. Front Microbiol 2019; 10:1815. [PMID: 31447818 PMCID: PMC6691103 DOI: 10.3389/fmicb.2019.01815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a highly restricted tropism for cells of the monocyte-macrophage lineage, including porcine alveolar macrophages (PAMs). PRRSV entry into permissive cells involves several mediators in addition to two required host cell receptors, CD163 and MYH9. It is unknown whether CD163 directly interacts and/or cooperates with MYH9 to facilitate PRRSV infection. In this study, CD163 and MYH9 were co-immunoprecipitated from PAMs regardless of PRRSV infection status. Further truncation analysis indicated that the CD163 N-terminal region, containing scavenger receptor cysteine-rich domains 1 to 4 (SRCR1-4), directly interacts with the MYH9 C-terminal domain region without involvement of other adaptor proteins. Meanwhile, non-permissive HEK293T cells that stably expressed truncated swine CD163 SRCR1-4 domain did not support virus attachment. However, virus attachment to cells stably expressing SRCR5-CT domain was demonstrated to occur without appreciable virus internalization. The involvement of the SRCR1-4 domain in virus internalization was further demonstrated by the fact that incubation of recombinant SRCR1-4 protein with PAMs abolished subsequent virus internalization by permissive cells. These results demonstrated that CD163 SRCR1-4 interacts with the MYH9 C–terminal domain to facilitate PRRSV virion internalization in permissive cells, thus expanding our understanding of PRRSV cell-invasion mechanisms.
Collapse
Affiliation(s)
- Gaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kuokuo Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
50
|
Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. mBio 2019; 10:mBio.00574-19. [PMID: 31064828 PMCID: PMC6509187 DOI: 10.1128/mbio.00574-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NMHC-IIA, a subunit of nonmuscle myosin IIA (NM-IIA), takes part in diverse physiological processes, including cell movement, cell shape maintenance, and signal transduction. Recently, NMHC-IIA has been demonstrated to be a receptor or factor contributing to viral infections. Here, we identified that NMHC-IIA recognizes sialic acids on sialylated RNA viruses, vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome virus (PRRSV). Upon recognition, NMHC-IIA associates with the transmembrane region of DAP12 to recruit Syk. Activation of the DAP12-Syk pathway impairs the host antiviral proinflammatory cytokine production and signaling cascades. More importantly, sialic acid mimics and sialylated RNA viruses enable the antagonism of LPS-triggered proinflammatory responses through engaging the NMHC-IIA–DAP12-Syk pathway. These results actually support that NMHC-IIA is involved in negative modulation of the host innate immune system, which provides a molecular basis for prevention and control of the sialylated RNA viruses and treatment of inflammatory diseases. Viral infections induce proinflammatory signaling cascades and inflammatory cytokine production, which is precisely regulated for host benefits. In the current study, we unravel a previously unappreciated role of nonmuscle myosin heavy chain IIA (NMHC-IIA) as a negative regulator in inflammatory responses. We identified that cell surface NMHC-IIA recognized sialic acids on sialylated RNA viruses during early infections and interacted with an immune adaptor DNAX activation protein of 12 kDa (DAP12) to recruit downstream spleen tyrosine kinase (Syk), leading to suppressed virus-triggered proinflammatory responses. More importantly, recognition of sialylated RNA viruses or sialic acid mimics by NMHC-IIA was shown to inhibit lipopolysaccharide (LPS)-induced proinflammatory responses via the DAP12-Syk pathway. These findings uncover a novel negative regulation mechanism of proinflammatory responses and provide a molecular basis to design anti-inflammatory drugs.
Collapse
|