1
|
Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity. J Virol 2016; 90:7778-88. [PMID: 27334593 DOI: 10.1128/jvi.00896-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. IMPORTANCE Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus (PIV5), a region of the HN stalk that has not had its structure determined by X-ray crystallography. Our data suggest that the MPSR influences receptor binding and neuraminidase activity via an indirect mechanism. Moreover, the receptor binding head group stabilizes the 4HB stalk as part of the general mechanism to fine-tune F-activation.
Collapse
|
2
|
Robach JG, Lamb RA. Analysis of parainfluenza virus-5 hemagglutinin-neuraminidase protein mutants that are blocked in internalization and degradation. Virology 2010; 406:189-201. [PMID: 20684967 DOI: 10.1016/j.virol.2010.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/09/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
The PIV-5 hemagglutinin-neuraminidase (HN) protein is a multifunctional protein with sialic acid binding, neuraminidase and fusion promotion activity. HN is internalized by clathrin-mediated endocytosis and degraded. HN lacks internalization signals in its cytoplasmic tail but a single glutamic acid present at residue 37 at the putative transmembrane/ectodomain boundary is critical. We rescued rPIV-5 with mutations E37D or E37K, which have been shown to impair or abolish HN internalization, respectively. These viruses exhibited growth properties similar to wild-type (wt) virus but are impaired for fitness in tissue culture. Biochemical analysis of HN activities showed differences between HN E37D and HN E37K in fusion promotion and incorporation of HN and F into virions. Furthermore, oligomeric analyses indicate that HN E37 mutants perturb the tetrameric organization of HN, probably by destabilizing the dimer-of-dimers interface.
Collapse
Affiliation(s)
- Jessica G Robach
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
3
|
Bissonnette MLZ, Donald JE, DeGrado WF, Jardetzky TS, Lamb RA. Functional analysis of the transmembrane domain in paramyxovirus F protein-mediated membrane fusion. J Mol Biol 2009; 386:14-36. [PMID: 19121325 PMCID: PMC2750892 DOI: 10.1016/j.jmb.2008.12.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/07/2023]
Abstract
To enter cells, enveloped viruses use fusion-mediating glycoproteins to facilitate the merger of the viral and host cell membranes. These glycoproteins undergo large-scale irreversible refolding during membrane fusion. The paramyxovirus parainfluenza virus 5 mediates membrane merger through its fusion protein (F). The transmembrane (TM) domains of viral fusion proteins are typically required for fusion. The TM domain of F is particularly interesting in that it is potentially unusually long; multiple calculations suggest a TM helix length between 25 and 48 residues. Oxidative cross-linking of single-cysteine substitutions indicates the F TM trimer forms a helical bundle within the membrane. To assess the functional role of the paramyxovirus parainfluenza virus 5 F protein TM domain, alanine scanning mutagenesis was performed. Two residues located in the outer leaflet of the bilayer are critical for fusion. Multiple amino acid substitutions at these positions indicate the physical properties of the side chain play a critical role in supporting or blocking fusion. Analysis of intermediate steps in F protein refolding indicated that the mutants were not trapped at the open stalk intermediate or the prehairpin intermediate. Incorporation of a known F protein destabilizing mutation that causes a hyperfusogenic phenotype restored fusion activity to the mutants. Further, altering the curvature of the lipid bilayer by addition of oleic acid promoted fusion of the F protein mutants. In aggregate, these data indicate that the TM domain plays a functional role in fusion beyond merely anchoring the protein in the viral envelope and that it can affect the structures and steady-state concentrations of the various conformational intermediates en route to the final postfusion state. We suggest that the unusual length of this TM helix might allow it to serve as a template for formation of or specifically stabilize the lipid stalk intermediate in fusion.
Collapse
Key Words
- f, fusion protein
- tm, transmembrane
- piv5, paramyxovirus parainfluenza virus 5
- hn, hemagglutinin neuraminidase
- ha, hemagglutinin
- fp, fusion peptide
- hr, heptad repeat
- 6-hb, six-helix bundle
- vsv, vesicular stomatitis virus
- cryoem, cryoelectron microscopy
- cup, cu(ii)(1,10-phenanthroline)3
- 6-cf, 6-carboxyfluorescein
- rbc, red blood cell
- pab, polyclonal antibody
- ltr, long terminal repeat
- lpc, lysophosphatidylcholine
- oa, oleic acid
- cpz, chlorpromazine
- dmem, dulbecco's modified eagle's medium
- fbs, fetal bovine serum
- p.t., posttransfection
- pbs, phosphate-buffered saline
- ripa, radioimmunoprecipitation assay
- viral membrane fusion
- transmembrane domain function
- protein refolding intermediates
- oxidative cross-linking
- modeling a transmembrane domain
Collapse
Affiliation(s)
- Mei Lin Z. Bissonnette
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | - Jason E. Donald
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University, Palo Alto, CA 94305-5126, USA
| | - Robert A. Lamb
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, USA
| |
Collapse
|
4
|
Yuan P, Thompson TB, Wurzburg BA, Paterson RG, Lamb RA, Jardetzky TS. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 2005; 13:803-15. [PMID: 15893670 DOI: 10.1016/j.str.2005.02.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/31/2005] [Accepted: 02/24/2005] [Indexed: 12/01/2022]
Abstract
The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | | | |
Collapse
|
5
|
Shihmanter E, Panshin A, Lipkind M. Nucleotide sequence of the matrix protein gene of avian paramyxovirus, serotype 3b: evidence on another member of the suggested new genus of the subfamily Paramyxovirinae. Comp Immunol Microbiol Infect Dis 2005; 28:37-51. [PMID: 15563952 DOI: 10.1016/j.cimid.2004.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 11/25/2022]
Abstract
The complete nucleotide sequence of the gene encoding the matrix protein (M) of the avian paramyxovirus, serotype 3b (APMV-3b), has been determined by means of the direct sequencing of viral RNA using reverse transcriptase reaction. The adjacent portions of the neighboring phosphoprotein (P) and fusion (F) protein genes were also sequenced that permitted to determine the consensus sequence of the viral genome, the poly(A) tract, downstream and upstream non-coding portions of the P and F genes, respectively, as well as the corresponding intergenic regions. The gene is 1478 nucleotides long with a protein-coding sequence of 1194 nucleotides. The deduced protein consists of 398 amino acids with a calculated MW 44,465. According to the multalignment and phylogenetic analyses, the APMV-3b M protein has shown the closest relatedness towards Newcastle disease virus (NDV) which has recently been suggested to be excluded from the Rubulavirus genus and assigned (together with APMV-6) to a new Avulavirus genus within the subfamily Paramyxovirinae of the Paramyxoviridae family. On the basis of the M protein genetic multalignment, phylogenetic relationships, bipartite nuclear localization signal identification in combination with the cysteine residues distribution, and by the degree of intrageneric heterogeneity, the APMV-3b is proposed to be another member (together with NDV and APMV-6) of the new genus.
Collapse
|
6
|
Melanson VR, Iorio RM. Amino acid substitutions in the F-specific domain in the stalk of the newcastle disease virus HN protein modulate fusion and interfere with its interaction with the F protein. J Virol 2004; 78:13053-61. [PMID: 15542657 PMCID: PMC525001 DOI: 10.1128/jvi.78.23.13053-13061.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus mediates attachment to sialic acid receptors, as well as cleavage of the same moiety. HN also interacts with the other viral glycoprotein, the fusion (F) protein, to promote membrane fusion. The ectodomain of the HN spike consists of a stalk and a terminal globular head. The most conserved part of the stalk consists of two heptad repeats separated by a nonhelical intervening region (residues 89 to 95). Several amino acid substitutions for a completely conserved proline residue in this region not only impair fusion and the HN-F interaction but also decrease neuraminidase activity in the globular domain, suggesting that the substitutions may alter HN structure. Substitutions for L94 also interfere with fusion and the HN-F interaction but have no significant effect on any other HN function. Amino acid substitutions at other positions in the intervening region also modulate only fusion. In all cases, diminished fusion correlates with a decreased ability of the mutated HN protein to interact with F at the cell surface. These findings indicate that the intervening region is critical to the role of HN in the promotion of fusion and may be directly involved in its interaction with the homologous F protein.
Collapse
Affiliation(s)
- Vanessa R Melanson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655-0122, USA
| | | |
Collapse
|
7
|
Tong S, Li M, Vincent A, Compans RW, Fritsch E, Beier R, Klenk C, Ohuchi M, Klenk HD. Regulation of fusion activity by the cytoplasmic domain of a paramyxovirus F protein. Virology 2002; 301:322-333. [PMID: 12359434 DOI: 10.1006/viro.2002.1594] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SER virus is a member of the family Paramyxoviridae, genus Rubulavirus, which has been isolated from pigs. It is very closely related to SV5 virus serologically, in protein profile, and in nucleotide sequence. However, unlike SV5, SER induces minimal syncytium formation in infected CV-1 or BHK cells. Fluorescence transfer experiments between labeled erythrocytes and infected MDBK cells revealed that SER also induces hemifusion and pore formation with reduced efficiency. The virion polypeptide profiles of SER and SV5 are very similar, except that the SER F1 subunit shows an apparent molecular weight that is about 2 kDa higher than that of SV5. Comparison of the deduced amino acid sequences revealed the SER F (551 aa) to be longer than SV5 F (529 aa) by 22 residues in the cytoplasmic tail (CT) domain. The HN and M gene sequences of the viruses were found to be very similar. The SER F showed minimal fusion activity when coexpressed with either SV5 or SER HN. In contrast, SV5 F was highly fusogenic when coexpressed with either HN protein, indicating that the restricted fusion capacity of SER virus is a property of its F protein. Truncation in the CT of SER F by 22 residues completely rescued its ability to cause syncytium formation, whereas other truncations rescued syncytium formation partially. These results demonstrate that an elongated CT of a paramyxovirus F protein suppresses its membrane fusion activity.
Collapse
Affiliation(s)
- S Tong
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gray PM, Parks GD, Alexander-Miller MA. A novel CD8-independent high-avidity cytotoxic T-lymphocyte response directed against an epitope in the phosphoprotein of the paramyxovirus simian virus 5. J Virol 2001; 75:10065-72. [PMID: 11581375 PMCID: PMC114581 DOI: 10.1128/jvi.75.21.10065-10072.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adoptive transfer studies have shown that cytotoxic T lymphocytes (CTL) of high avidity, capable of recognizing low levels of peptide-MHC I molecules, are more efficient at reducing viral titers than are low-avidity CTL, thus establishing CTL avidity as a critical parameter for the ability of a CTL to clear virus in vivo. It has been well documented that CTL of high avidity are relatively CD8 independent, whereas low-avidity CTL require CD8 engagement in order to become activated. In this study we have analyzed the antiviral CTL response elicited following infection with the paramyxovirus simian virus 5 (SV5). We have identified the immunodominant and subdominant CTL responses and subsequently assessed the avidity of these responses by their CD8 dependence. This is the first study in which the relationship between immunodominance and CTL avidity has been investigated. The immunodominant response was directed against an epitope present in the viral M protein, and subdominant responses were directed against epitopes present in the P, F, and HN proteins. Similarly to other CTL responses we have analyzed, the immunodominant response and the subdominant F and HN responses were comprised of both high- and low-avidity CTL. However, the subdominant response directed against the epitope present in the P protein is novel, as it is exclusively high avidity. This high-avidity response is independent of both the route of infection and expression by recombinant SV5. A further understanding of the inherent properties of P that elicit only high-avidity CTL may allow for the design of more efficacious vaccine vectors that preferentially elicit high-avidity CTL in vivo.
Collapse
Affiliation(s)
- P M Gray
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
9
|
Dutch RE, Lamb RA. Deletion of the cytoplasmic tail of the fusion protein of the paramyxovirus simian virus 5 affects fusion pore enlargement. J Virol 2001; 75:5363-9. [PMID: 11333918 PMCID: PMC114942 DOI: 10.1128/jvi.75.11.5363-5369.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fusion (F) protein of the paramxyovirus simian parainfluenza virus 5 (SV5) promotes virus-cell and cell-cell membrane fusion. Previous work had indicated that removal of the SV5 F protein cytoplasmic tail (F Tail- or FDelta19) caused a block in fusion promotion at the hemifusion stage. Further examination has shown that although the F Tail- mutant is severely debilitated in promotion of fusion as measured by using two reporter gene assays and is debilitated in the formation of syncytia relative to the wild-type F protein, the F Tail- mutant is capable of promoting the transfer of small aqueous dyes. These data indicate that F Tail- is fully capable of promoting formation of small fusion pores. However, enlargement of fusion pores is debilitated, suggesting that either the cytoplasmic tail of the F protein plays a direct role in pore expansion or that it interacts with other components which control pore growth.
Collapse
Affiliation(s)
- R E Dutch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
10
|
Parks GD, Ward KR, Rassa JC. Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis. J Virol 2001; 75:2213-23. [PMID: 11160725 PMCID: PMC114805 DOI: 10.1128/jvi.75.5.2213-2223.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant simian virus 5 (rSV5) mutants containing substitutions in the M-F intergenic region were generated to determine the effect of increased readthrough transcription on the paramyxovirus growth cycle. We have previously shown, using an SV5 dicistronic minigenome, that replacement of the 22-base M-F intergenic region with a foreign sequence results in a template (Rep22) that directs very high levels of M-F readthrough transcription. An rSV5 containing the Rep22 substitution grew slower and to final titers that were 50- to 80-fold lower than those of wild-type (WT) rSV5. Cells infected with the Rep22 virus produced very low levels of monocistronic M and F mRNA, consistent with the M-F readthrough phenotype. Surprisingly, Rep22 virus-infected cells also displayed a global decrease in the accumulation of viral mRNA from genes located upstream and downstream of the M-F junction, and overall viral protein synthesis was reduced. Second-site revertants of the Rep22 virus that had regained WT transcription and growth properties contained a single base substitution that increased the M gene end U tract from four to eight residues, suggesting that the growth defects originated from higher-than-normal M-F readthrough transcription. Thus, the primary growth defect for the Rep22 virus appears to be in viral RNA synthesis and not in morphogenesis. A second rSV5 virus (G14), which contained a different foreign M-F intergenic sequence, grew to similar or slightly higher titers than WT rSV5 in some cell types and produced ~1.5- to 2-fold more mRNA and viral protein. The data support the hypothesis that inhibition of Rep22 virus growth is due to increased access by the polymerase to the 5' end of the genome and to the resulting overexpression of L protein. We propose that the elevated naturally occurring M-F readthrough which is characteristic of many paramyxoviruses serves as a mechanism to fine-tune the level of polymerase that is optimal for virus growth.
Collapse
Affiliation(s)
- G D Parks
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| | | | | |
Collapse
|
11
|
Paterson RG, Russell CJ, Lamb RA. Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology 2000; 270:17-30. [PMID: 10772976 DOI: 10.1006/viro.2000.0267] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fusion (F) protein of the paramyxovirus SV5 strain W3A causes syncytium formation without coexpression of the SV5 hemagglutinin-neuraminidase (HN) glycoprotein, whereas the F protein of the SV5 strain WR requires coexpression of HN for fusion activity. SV5 strains W3A and WR differ by three amino acid residues at positions 22, 443, and 516. The W3A F protein residues P22, S443, and V516 were changed to amino acids found in the WR F protein (L22, P443, and A516, respectively). Three single-mutants, three double-mutants, and the triple-mutant were constructed, expressed, and assayed for fusion using three different assays. Mutant P22L did not cause fusion under physiological conditions, but fusion was activated at elevated temperatures. Compared with the W3A F protein, mutant S443P enhanced the fusion kinetics with a faster rate and greater extent, and had a lower activation temperature. Mutant V516A had little effect on F protein-mediated fusion. The double-mutant P22L,S443P was capable of causing fusion, suggesting that the two mutations have opposing effects on fusion activation. The WR F protein requires coexpression of HN to cause fusion at 37 degrees C, and does not cause fusion at 37 degrees C when coexpressed with influenza virus hemagglutinin (HA); however, at elevated temperatures coexpression of WR F protein with HA resulted in fusion activation. In the crystal structure of the core trimer of the SV5 F protein (Baker, K. A., Dutch, R. E., Lamb, R.A., and Jardetzky, T. S. (1999). Mol. Cell 3, 309-319), S443 is the last residue (with interpretable electron density) in an extended chain region and the temperature factor for S443 is high, suggesting conformational flexibility at this point. Thus, the presence of prolines at residues 22 and 443 may destabilize the F protein and thereby decrease the energy required to trigger the presumptive conformational change to the fusion-active state.
Collapse
Affiliation(s)
- R G Paterson
- Department of Biochemistry, Molecular Biology, and Cell Biology, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
12
|
Pitt JJ, Da Silva E, Gorman JJ. Determination of the disulfide bond arrangement of Newcastle disease virus hemagglutinin neuraminidase. Correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins. J Biol Chem 2000; 275:6469-78. [PMID: 10692451 DOI: 10.1074/jbc.275.9.6469] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disulfide bonds stabilize the structure and functions of the hemagglutinin neuraminidase attachment glycoprotein (HN) of Newcastle disease virus. Until this study, the disulfide linkages of this HN and structurally similar attachment proteins of other members of the paramyxoviridae family were undefined. To define these linkages, disulfide-linked peptides were produced by peptic digestion of purified HN ectodomains of the Queensland strain of Newcastle disease virus, isolated by reverse phase high performance liquid chromatography, and analyzed by mass spectrometry. Analysis of peptides containing a single disulfide bond revealed Cys(531)-Cys(542) and Cys(172)-Cys(196) linkages and that HN ectodomains dimerize via Cys(123). Another peptide, with a chain containing Cys(186) linked to a chain containing Cys(238), Cys(247), and Cys(251), was cleaved at Met(249) with cyanogen bromide. Subsequent tandem mass spectrometry established Cys(186)-Cys(247) and Cys(238)-Cys(251) linkages. A glycopeptide with a chain containing Cys(344) linked to a chain containing Cys(455), Cys(461), and Cys(465) was treated sequentially with peptide-N-glycosidase F and trypsin. Further treatment of this peptide by one round of manual Edman degradation or tandem mass spectrometry established Cys(344)-Cys(461) and Cys(455)-Cys(465) linkages. These data, establishing the disulfide linkages of all thirteen cysteines of this protein, are consistent with published predictions that the paramyxoviridae HN forms a beta-propeller structural fold.
Collapse
Affiliation(s)
- J J Pitt
- Biomolecular Research Institute, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
13
|
Leser GP, Ector KJ, Ng DT, Shaughnessy MA, Lamb RA. The signal for clathrin-mediated endocytosis of the paramyxovirus SV5 HN protein resides at the transmembrane domain-ectodomain boundary region. Virology 1999; 262:79-92. [PMID: 10489343 DOI: 10.1006/viro.1999.9890] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hemagglutinin-neuraminidase (HN) glycoprotein of the paramyxovirus SV5 is internalized from the cell surface via clathrin-coated pits. However, the cytoplasmic domain of SV5 HN does not contain a previously characterized internalization motif. A cell-surface-expressed chimeric protein (APK), consisting of the cytoplasmic tail, transmembrane (TM) domain, and 12 residues of the ectodomain of HN joined to the cytoplasmic protein pyruvate kinase is internalized, indicating that the N-terminal region of HN contains an internalization signal. Although SV5 HN is internalized at a rate similar to that of influenza virus hemagglutinin (HA) mutant Y543, which contains a degenerate tyrosine-based signal in its cytoplasmic tail, the elimination of the majority of the HN cytoplasmic tail, or substitution of the HN TM domain with leucine residues, did not affect the rate of HN internalization. The HN protein of the closely related virus, Newcastle disease virus (NDV), is not internalized from the cell surface. Working under the usual convention that the TM domain consists of the hydrophobic residues bounded by two charged residues, analysis of internalization of mutant and chimeric NDV HN molecules indicates that the first seven SV5 HN ectodomain residues are critical for internalization of HN. A glutamic acid residue (E37) that abuts this presumptive HN TM domain/ectodomain boundary is important for SV5 HN internalization.
Collapse
Affiliation(s)
- G P Leser
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | |
Collapse
|
14
|
Mziaut H, Korza G, Hand AR, Gerard C, Ozols J. Targeting proteins to the lumen of endoplasmic reticulum using N-terminal domains of 11beta-hydroxysteroid dehydrogenase and the 50-kDa esterase. J Biol Chem 1999; 274:14122-9. [PMID: 10318829 DOI: 10.1074/jbc.274.20.14122] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies identified two intrinsic endoplasmic reticulum (ER) proteins, 11beta-hydroxysteroid dehydrogenase, isozyme 1 (11beta-HSD) and the 50-kDa esterase (E3), sharing some amino acid sequence motifs in their N-terminal transmembrane (TM) domains. Both are type II membrane proteins with the C terminus projecting into the lumen of the ER. This finding implied that the N-terminal TM domains of 11beta-HSD and E3 may constitute a lumenal targeting signal (LTS). To investigate this hypothesis we created chimeric fusions using the putative targeting sequences and the reporter gene, Aequorea victoria green fluorescent protein. Transfected COS cells expressing LTS-green fluorescent protein chimeras were examined by fluorescent microscopy and electron microscopic immunogold labeling. The orientation of expressed chimeras was established by immunocytofluorescent staining of selectively permeabilized COS cells. In addition, protease protection assays of membranes in the presence and absence of detergents was used to confirm lumenal or the cytosolic orientation of the constructed chimeras. To investigate the general applicability of the proposed LTS, we fused the N terminus of E3 to the N terminus of the NADH-cytochrome b5 reductase lacking the myristoyl group and N-terminal 30-residue membrane anchor. The orientation of the cytochrome b5 reductase was reversed, from cytosolic to lumenal projection of the active domain. These observations establish that an amino acid sequence consisting of short basic or neutral residues at the N terminus, followed by a specific array of hydrophobic residues terminating with acidic residues, is sufficient for lumenal targeting of single-pass proteins that are structurally and functionally unrelated.
Collapse
Affiliation(s)
- H Mziaut
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | | | | | |
Collapse
|
15
|
Rassa JC, Parks GD. Highly diverse intergenic regions of the paramyxovirus simian virus 5 cooperate with the gene end U tract in viral transcription termination and can influence reinitiation at a downstream gene. J Virol 1999; 73:3904-12. [PMID: 10196285 PMCID: PMC104168 DOI: 10.1128/jvi.73.5.3904-3912.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dicistronic minigenome containing the M-F gene junction was used to determine the role of the simian virus 5 (SV5) intergenic regions in transcription. The M-F junction differs from the other SV5 junctions by having a short M gene end U tract of only four residues (U4 tract) and a 22-base M-F intergenic sequence between the M gene end and F gene start site. Replacing the 22-base M-F intergenic region with nonviral sequences resulted in a minigenome template (Rep 22) that was defective in termination at the end of the M gene. Efficient M gene termination could be restored to the mutant Rep 22 template in either of two ways: by increasing the U tract length from four to six residues or by restoring a G residue immediately downstream of the wild-type (WT) U4 tract. In a dicistronic SH-HN minigenome, a U4-G combination was functionally equivalent to the naturally occurring SH U6-A gene end in directing SH transcription termination. In addition to affecting termination, the M-F intergenic region also influenced polymerase reinitiation. In the context of the WT U4-G M gene end, substituting nonviral sequences into the M-F intergenic region had a differential effect on F gene reinitiation, where some but not all nonviral sequences inhibited reinitiation. The inhibition of F gene reinitiation correlated with foreign sequences having a high C content. Deleting 6 bases or inserting 18 additional nucleotides into the middle of the 22-base M-F intergenic segment did not influence M gene termination or F gene reinitiation, indicating that M-F intergenic length per se is not a important factor modulating the SV5 polymerase activity. Our results suggest that the sequence diversity at an SV5 gene junction reflects specific combinations which may differentially affect SV5 gene expression and provide an additional level of transcriptional control beyond that which results from the distance of a gene from the 3' end promoter.
Collapse
Affiliation(s)
- J C Rassa
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
16
|
He B, Leser GP, Paterson RG, Lamb RA. The paramyxovirus SV5 small hydrophobic (SH) protein is not essential for virus growth in tissue culture cells. Virology 1998; 250:30-40. [PMID: 9770417 DOI: 10.1006/viro.1998.9354] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SH gene of the paramyxovirus SV5 is located between the genes for the glycoproteins, fusion protein (F) and hemagglutinin-neuraminidase (HN), and the SH gene encodes a small 44-residue hydrophobic integral membrane protein (SH). The SH protein is expressed in SV5-infected cells and is oriented in membranes with its N terminus in the cytoplasm. To study the function of the SH protein in the SV5 virus life cycle, the SH gene was deleted from the infectious cDNA clone of the SV5 genome. By using the recently developed reverse genetics system for SV5, it was found that an SH-deleted SV5 (rSV5DeltaSH) could be recovered, indicating the SH protein was not essential for virus viability in tissue culture. Analysis of properties of rSV5DeltaSH indicated that lack of expression of SH protein did not alter the expression level of the other virus proteins, the subcellular localization of F and HN, or fusion competency as measured by lipid mixing assays and a new content mixing assay that did not require the use of vaccinia virus. The growth rate, infectivity, and plaque size of rSV5 and rSV5DeltaSH were found to be very similar. Although SH is shown to be a component of purified virions by immunoblotting, examination of purified rSV5DeltaSH by electron microscopy did not show an altered morphology from SV5. Thus in tissue culture cells the lack of the SV5 SH protein does not confer a recognizable phenotype.
Collapse
Affiliation(s)
- B He
- Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, 60208-3500, USA
| | | | | | | |
Collapse
|
17
|
Dutch RE, Joshi SB, Lamb RA. Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J Virol 1998; 72:7745-53. [PMID: 9733810 PMCID: PMC110082 DOI: 10.1128/jvi.72.10.7745-7753.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane fusion reaction promoted by the paramyxovirus simian virus 5 (SV5) and human parainfluenza virus type 3 (HPIV-3) fusion (F) proteins and hemagglutinin-neuraminidase (HN) proteins was characterized when the surface densities of F and HN were varied. Using a quantitative content mixing assay, it was found that the extent of SV5 F-mediated fusion was dependent on the surface density of the SV5 F protein but independent of the density of SV5 HN protein, indicating that HN serves only a binding function in the reaction. However, the extent of HPIV-3 F protein promoted fusion reaction was found to be dependent on surface density of HPIV-3 HN protein, suggesting that the HPIV-3 HN protein is a direct participant in the fusion reaction. Analysis of the kinetics of lipid mixing demonstrated that both initial rates and final extents of fusion increased with rising SV5 F protein surface densities, suggesting that multiple fusion pores can be active during SV5 F protein-promoted membrane fusion. Initial rates and extent of lipid mixing were also found to increase with increasing influenza virus hemagglutinin protein surface density, suggesting parallels between the mechanism of fusion promoted by these two viral fusion proteins.
Collapse
Affiliation(s)
- R E Dutch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
18
|
Rassa JC, Parks GD. Molecular basis for naturally occurring elevated readthrough transcription across the M-F junction of the paramyxovirus SV5. Virology 1998; 247:274-86. [PMID: 9705920 DOI: 10.1006/viro.1998.9266] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the paramyxovirus RNA genome is thought to involve a sequential stop-start mechanism whereby monocistronic mRNAs are produced by polyadenylation and termination of 3' upstream gene followed by reinitiation at the downstream start site. For a number of paramyxoviruses, transcription across the M-F gene junction results in the synthesis of high levels of a dicistronic M-F readthrough RNA. In cells infected with the paramyxovirus SV5, 15% or less of the transcripts from the viral P, M, SH, HN, and L genes were detected as readthrough products with the 3' proximal gene. By contrast, approximately 40% of the SV5 F mRNA was detected as a dicistronic M-F transcript. A comparison of the individual SV5 gene junctions showed that elevated M-F readthrough transcription correlate with the M gene end having the shortest U tract for directing polyadenylation and a gene end sequence that differs from the consensus sequence. We have tested the hypothesis that elevated M-F readthrough transcription results from an inefficient termination signal at the end of the M gene. A reverse genetics system was established whereby SV5 transcription was reconstituted in transfected cells using cDNA-derived polymerase components and dicistronic minigenomes that encoded either the SV5 M-F or the SH-HN gene junction. Chimeric SV5 minigenomes were constructed to contain exchanges of a 10 base gene end sequence and the U tract from the M-F (approximately 40% readthrough) and SH-HN (approximately 15% readthrough) junctions. Northern blot analysis of RNA synthesized from these altered templates showed that, in the context of the M-F intergenic region, increasing the length of the M gene end U tract from four residues to six or eight U residues did not decrease M-F readthrough transcription. In contrast, chimeric minigenomes that contained the 10 base region from the end of the SH gene directed very efficient gene termination and a corresponding decrease in readthrough transcription. Mutational analysis showed that a single G to A substitution located five bases 3' to the M gene U tract was sufficient to convert the M gene end region to an efficient signal for polyadenylation-termination. These results demonstrate a role for the gene end region located immediately 3' to the U tract as a major determinant of transcription termination in the paramyxovirus genome. The possible role of M-F readthrough transcription in the paramyxovirus growth cycle is discussed.
Collapse
Affiliation(s)
- J C Rassa
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
19
|
Cleverley DZ, Lenard J. The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci U S A 1998; 95:3425-30. [PMID: 9520382 PMCID: PMC19852 DOI: 10.1073/pnas.95.7.3425] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1997] [Accepted: 01/21/1998] [Indexed: 02/06/2023] Open
Abstract
The transmembrane (TM) domains of viral fusion proteins are required for fusion, but their precise role is unknown. G protein, the fusion protein of vesicular stomatitis virus, was previously shown to lose syncytia-forming ability if six residues (GLIIGL) were deleted from its TM domain. The 20-residue TM domain of wild-type (TM20) G protein was thus changed into a TM domain of 14 residues (TM14). To assess possible sequence specificity for this loss of function, the two Gly residues in TM20 were replaced with either Ala or Leu. Both mutations resulted in complete loss of fusion activity, as measured by fusion-dependent reporter gene transfer. Single substitutions decreased activity by about half. TM14 was weakly active (15%) but reintroduction of a Gly residue into TM14 by a single Ile --> Gly substitution increased activity to 80%. All mutants retained normal hemifusion activity, i.e., lipid mixing between the outer leaflets of the reacting membranes. Thus, at least one TM Gly residue is required for a late step in fusion mediated by G protein. Gly residues were significantly (2.6-fold; P = 0.004) more abundant in the TM domains of viral fusion proteins than in those of nonfusion proteins and were distributed differently within the TM domain. Thus, Gly residues in the TM domain of other viral fusion proteins may also prove to be important for fusion activity.
Collapse
Affiliation(s)
- D Z Cleverley
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway NJ 08854-5635, USA
| | | |
Collapse
|
20
|
Zhou J, Dutch RE, Lamb RA. Proper spacing between heptad repeat B and the transmembrane domain boundary of the paramyxovirus SV5 F protein is critical for biological activity. Virology 1997; 239:327-39. [PMID: 9434724 DOI: 10.1006/viro.1997.8917] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The paramyxovirus, simian virus 5, fusion (F) protein contains seven amino acids between heptad repeat B (a domain required for a biologically active fusion protein) and the presumptive boundary of the transmembrane (TM) domain. The role of the seven membrane proximal residues in stability and fusion promotion was examined by construction of a series of insertion, substitution, and deletion mutants, as manipulation of this region to enable proteolytic cleavage would facilitate production of a soluble F protein. The majority of the mutant F proteins both oligomerized and had kinetics of intracellular transport similar to those of wild-type (wt) F protein. All mutant F proteins were expressed at the cell surface at or near the same level as the wt F protein. However, by using both a qualitative lipid mixing assay and a quantitative content mixing assay for membrane fusion, it was found that mutant F proteins containing insertions in the region between heptad repeat B and the TM domain were unable to induce fusion, whereas the mutant F proteins containing substitutions in this region, together with three of the four mutants with deletions in this region, could induce fusion. Four of the F protein mutants contained a Factor Xa cleavage site, IEGR; however, Factor Xa treatment of cell surfaces released either none or only very small amounts (< 1% of total protein) of the soluble heterodimer F1 + F2. As an alternative method of generating soluble F protein, a glycosyl phosphatidylinositol (GPI) anchor was added to the F protein at three membrane-proximal positions. The highest level of surface expression was observed when the final molecule did not contain a significant insertion of amino acids into the membrane proximal region. Two F-GPI mutants reached the surface at approximately 20% of the levels seen with the wt F protein, and approximately 25% of the cell surface population of these mutants could be cleaved with phosphatidylinositol phospholipase C (PI-PLC) to yield soluble F protein. However, all the F-GPI mutants oligomerized aberrantly and failed to promote fusion. Taken together, these data indicate that the spacing of the region immediately adjacent to the presumptive boundary of the TM domain is extremely important for the fusogenic activity of the SV5 F protein.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
21
|
Ito M, Nishio M, Kawano M, Kusagawa S, Komada H, Ito Y, Tsurudome M. Role of a single amino acid at the amino terminus of the simian virus 5 F2 subunit in syncytium formation. J Virol 1997; 71:9855-8. [PMID: 9371660 PMCID: PMC230304 DOI: 10.1128/jvi.71.12.9855-9858.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The fusion (F) protein of simian virus 5 (strain W3A) induced extensive cell fusion in BHK cells when expressed alone, while that of strain WR did not. Mutational analysis demonstrated that the fusing activity can be transferred to the WR F protein by a proline residue at position 22 of subunit W3A F2.
Collapse
Affiliation(s)
- M Ito
- Department of Microbiology, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang XF, Compans RW, Chen S, Lamb RA, Arvan P. Polarized apical targeting directed by the signal/anchor region of simian virus 5 hemagglutinin-neuraminidase. J Biol Chem 1997; 272:27598-604. [PMID: 9346896 DOI: 10.1074/jbc.272.44.27598] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine the possibility of independent cytoplasmic/transmembrane domain-based apical sorting, we have investigated paramyxovirus SV5 hemagglutinin-neuraminidase (HN), a type II membrane protein with a small N-terminal signal/anchor region. In SV5-infected Madin-Darby canine kidney (MDCK) cells, >90% of HN is found on the apical surface. We have expressed chimeric proteins in which the N terminus of HN, including its signal/anchor region, is attached to a (normally cytosolic) reporter pyruvate kinase (PK). PK itself expressed immediately downstream from a cleavable signal peptide was converted to a 58-kDa N-linked glycosylated form, which was secreted predominantly (80%) to the basolateral surface of MDCK cells. By contrast, stably expressed PK chimeras, now anchored as type II membrane proteins with either the first 48 or 72 amino acids of HN, received similar N-linked glycosylation, yet exhibited polarized transport with a preferentially (75%) apical distribution. These results suggest that the N-terminal signal/anchor region of HN contains independent sorting information for apical specific targeting in MDCK cells.
Collapse
Affiliation(s)
- X F Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35209, USA
| | | | | | | | | |
Collapse
|
23
|
He B, Paterson RG, Ward CD, Lamb RA. Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 1997; 237:249-60. [PMID: 9356337 DOI: 10.1006/viro.1997.8801] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A complete cDNA clone of the genome (15,246 nucleotides) of the paramyxovirus SV5 was constructed from cDNAs such that an anti-genome RNA could be transcribed by T7 RNA polymerase and the correct 3' end generated by cleavage using hepatitis delta virus ribozyme. The plasmid encoding the antigenome sequence was transfected into cells previously infected with recombinant vaccinia virus that expressed T7 RNA polymerase, together with helper plasmids that expressed the viral replication proteins, NP, P, and L, under the control of the T7 polymerase promoter. Rescue of the RNA genome from DNA was demonstrated by recovering SV5 with the tag restriction sites introduced into the DNA clone, using RT-PCR of the genome RNA and nucleotide sequencing. Rescue of SV5 from DNA did not require expression of the viral V protein as a helper plasmid, suggesting that V protein is not essential for initial replication. The infectious cDNA of SV5 was also manipulated to express green fluorescent protein (GFP) under the control of SV5 transcriptional start and stop signals introduced between the HN and L genes. The amount of GFP that was expressed varied depending on the nature of the newly introduced transcription signals.
Collapse
Affiliation(s)
- B He
- Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|
24
|
Parks GD. Differential effects of changes in the length of a signal/anchor domain on membrane insertion, subunit assembly, and intracellular transport of a type II integral membrane protein. J Biol Chem 1996; 271:7187-95. [PMID: 8636156 DOI: 10.1074/jbc.271.12.7187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The length requirement for a functional uncleaved signal/anchor (S/A) domain of the paramyxovirus hemagglutinin-neuraminidase (HN) type II glycoprotein was analyzed. HN mutants with progressive NH2-terminal S/A deletions or insertions were expressed in HeLa cells, and the membrane targeting, folding, tetramer assembly, and intracellular transport of the proteins were examined. Changing the length of the S/A by two residues resulted in HN mutants that displayed aberrant endoplasmic reticulum (ER) membrane targeting or translocation. This phenotype did not simply reflect upper or lower limitations on the size of a functional S/A, because normal signaling was restored by further alterations involving three or four residues. Likewise, ER-to-Golgi transport of mutants containing deletions of one or two S/A residues was delayed (approximately 30% of WT) or blocked, but transport was restored for a mutant with a total of three deleted residues. HN mutants with S/A insertions of three or four Leu residues differed from wild-type HN by having heterogeneous Golgi-specific carbohydrate modifications. Differences in ER-to-Golgi transport of the mutants did not strictly correlate with defects in either native folding of the ectodomain or the assembly of two dimers into a tetramer. Together, these data suggest that efficient entry into and exit from the ER are sensitive to changes in the HN S/A that may reflect alterations to a structural requirement along one side of an alpha-helix.
Collapse
Affiliation(s)
- G D Parks
- Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157-1064, USA
| |
Collapse
|
25
|
Leser GP, Ector KJ, Lamb RA. The paramyxovirus simian virus 5 hemagglutinin-neuraminidase glycoprotein, but not the fusion glycoprotein, is internalized via coated pits and enters the endocytic pathway. Mol Biol Cell 1996; 7:155-72. [PMID: 8741847 PMCID: PMC278620 DOI: 10.1091/mbc.7.1.155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins of the paramyxovirus simian virus 5 (SV5) are expressed on the surface of virus-infected cells. Although the F protein was found to be expressed stably, the HN protein was internalized from the plasma membrane. HN protein lacks known internalization signals in its cytoplasmic domain that are common to many integral membrane proteins that are internalized via clathrin-coated pits. Thus, the cellular pathway of HN protein internalization was examined. Biochemical analysis indicated that HN was lost from the cell surface with a t1/2 of approximately 45-50 min and turned over with a t1/2 of approximately 2 h. Immunofluorescent analysis showed internalized SV5 HN in vesicle-like structures in a juxtanuclear pattern coincident with the localization of ovalbumin. In contrast the SV5 F glycoprotein and the HN glycoprotein of the highly related parainfluenza virus 3 (hPIV-3) were found only on the cell surface. Immunogold staining of HN on the surface of SV5-infected CV-1 cells and examination using electron microscopy, showed heavy surface labeling that gradually decreased with time. Concomitantly, gold particles were detected in the endosomal system and with increasing time, gold-labeled structures having the morphology of lysosomes were observed. On the plasma membrane approximately 5% of the gold-labeled HN was found in coated pits. The inhibition of the pinching-off of coated pits from the plasma membrane by cytosol acidification significantly reduced HN internalization. Internalized HN was co-localized with gold-conjugated transferrin, a marker for the early endosomal compartments, and with gold-conjugated bovine serum albumin, a marker for late endosomal compartments. Taken together, these data strongly suggest that the HN glycoprotein is internalized via clathrin-coated pits and delivered to the endocytic pathway.
Collapse
Affiliation(s)
- G P Leser
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
26
|
Abstract
Parainfluenza virus types 1 to 4 (PIV1 to PIV4) are important human pathogens that cause upper and lower respiratory tract infections, especially in infants and children. PIV1, PIV2, and PIV3 are second only to respiratory syncytial virus as a cause of croup in young children. Although some clinical symptoms are typical of PIVs, etiologic diagnosis always requires detection of infectious virus, viral components, or an antibody response. PIVs are typical paramyxoviruses, causing a syncytial cytopathic effect in cell cultures; virus growth can be confirmed either by hemadsorption or by using immunological reagents. Currently, PIV is most often diagnosed by demonstrating viral antigens in clinical specimens by rapid and highly sensitive immunoassays. More recently, PCR has been used for the detection of PIVs. Serological diagnosis is made by detecting a rising titer of immunoglobulin G or by demonstrating immunoglobulin M antibodies. PIVs infect species other than humans, and animal models are used to study the pathogenesis of PIV infections and to test candidate vaccines. Accumulating knowledge on the molecular structure and mechanisms of replication of PIVs has accelerated research on prevention and treatment. Several strategies for vaccine development, such as the use of live attenuated, inactivated, recombinant, and subunit vaccines, have been investigated, and it may become possible to prevent PIV infections in the near future.
Collapse
Affiliation(s)
- R Vainionpää
- Department of Virology, University of Turku, Finland
| | | |
Collapse
|
27
|
Ertel C, Millar NS, Emmerson PT, Schirrmacher V, von Hoegen P. Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. Eur J Immunol 1993; 23:2592-6. [PMID: 8405059 DOI: 10.1002/eji.1830231032] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In attempt to increase the induction of peptide-specific cytolytic T cells (CTL) we investigated the effect of the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) gene product on the activation of peptide-specific CTL. Spleen cells of CH3 mice immunized against the influenza nucleoprotein peptide 50-63 (NP 50-63) were restimulated in vitro (i) with peptide-pulsed syngeneic fibroblast cells (Ltk-) as antigen-presenting cells, which were in addition (ii) infected with NDV or (iii) stably transfected with the HN cDNA of NDV. A greater than sixfold increase in peptide-specific CTL responses was observed in cultures restimulated with peptide-pulsed Ltk- cells which co-expressed viral hemagglutinin due to either infection or transfection. A similar augmentation was seen in CTL responses against other types of antigen (major histocompatibility complex alloantigens, minor histocompatibility antigens or tumor antigens) when suboptimal cultures were stimulated with the respective antigen-presenting cells modified by NDV infection. These findings suggest that NDV or viral HN expressed on antigen-presenting cells or tumor cells can exert a T cell co-stimulatory function.
Collapse
Affiliation(s)
- C Ertel
- Tumor Immunology Program, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
28
|
Parks G, Lamb R. Role of NH2-terminal positively charged residues in establishing membrane protein topology. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46740-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Colman PM, Hoyne PA, Lawrence MC. Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol 1993; 67:2972-80. [PMID: 8497041 PMCID: PMC237633 DOI: 10.1128/jvi.67.6.2972-2980.1993] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A model is proposed for the three-dimensional structure of the paramyxovirus hemagglutinin-neuraminidase (HN) protein. The model is broadly similar to the structure of the influenza virus neuraminidase and is based on the identification of invariant amino acids among HN sequences which have counterparts in the enzyme-active center of influenza virus neuraminidase. The influenza virus enzyme-active site is constructed from strain-invariant functional and framework residues, but in this model of HN, it is primarily the functional residues, i.e., those that make direct contact with the substrate sialic acid, which have identical counterparts in neuraminidase. The framework residues of the active site are different in HN and in neuraminidase and appear to be less strictly conserved within HN sequences than within neuraminidase sequences.
Collapse
Affiliation(s)
- P M Colman
- Biomolecular Research Institute, Parkville, Victoria, Australia
| | | | | |
Collapse
|
30
|
Baty DU, Randall RE. Multiple amino acid substitutions in the HN protein of the paramyxovirus, SV5, are selected for in monoclonal antibody resistant mutants. Arch Virol 1993; 131:217-24. [PMID: 8392321 DOI: 10.1007/bf01379094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monoclonal antibody resistant (MAR) mutants (which escaped antibody-mediated neutralization) were selected from simian (W 3) and human (LN) isolates of simian virus 5 (SV 5), using monoclonal antibodies (MAbs) specific for antigenic sites 4 and 5 on the HN glycoprotein. Resistance correlated with an inability of the selecting antibody to bind with the respective MAR mutants. Sequence comparisons between parental and mutant HN proteins revealed multiple non-adjacent amino acid substitutions in the majority of MAR mutants. The same multiple substitutions were identified in mutants selected from both the LN and W 3 isolates of SV 5. Furthermore, different mutations on the primary sequence of the HN protein conferred resistance to the same MAb.
Collapse
Affiliation(s)
- D U Baty
- School of Biological and Medical Sciences, University of St. Andrews, Scotland
| | | |
Collapse
|
31
|
Sundqvist A, Berg M, Moreno-López J, Linné T. The haemagglutinin-neuraminidase glycoprotein of the porcine paramyxovirus LPMV: comparison with other paramyxoviruses revealed the closest relationship to simian virus 5 and mumps virus. Arch Virol 1992; 122:331-40. [PMID: 1731697 DOI: 10.1007/bf01317194] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The complete nucleotide sequence of the haemagglutinin-neuraminidase (HN) gene of the porcine paramyxovirus LPMV, was determined from cDNA derived from viral genomic RNA. The gene was 1906 nucleotides long including a putative gene end and poly A signal. One long open reading frame was found encoding a protein of 576 amino acids with a calculated molecular weight of 63,324. The protein contains four potential N-glycosylation sites and a major hydrophobic region near the N-terminal, suggesting a membrane anchor domain. Comparison of the deduced amino acid sequence of the LPMV HN protein with that of other paramyxovirus HN proteins, revealed the highest amino acid identity to simian virus 5 of 43% and mumps virus of 41%.
Collapse
Affiliation(s)
- A Sundqvist
- Department of Veterinary Microbiology, Swedish University of Agricultural Sciences, Uppsala
| | | | | | | |
Collapse
|
32
|
Parks GD, Ward CD, Lamb RA. Molecular cloning of the NP and L genes of simian virus 5: identification of highly conserved domains in paramyxovirus NP and L proteins. Virus Res 1992; 22:259-79. [PMID: 1320792 DOI: 10.1016/0168-1702(92)90057-g] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have molecularly cloned and determined the nucleotide sequence of the 3' and 5' regions of the genomic RNA of the paramyxovirus simian virus 5 (SV5), including the 3' leader sequence, nucleocapsid protein (NP) gene, large (L) protein gene, and 5' anti-genomic leader (trailer) sequence. The vRNA 3' proximal leader sequence contains 55 nucleotides. The NP gene is 1725 nucleotides in length and encodes a negatively charged protein consisting of 509 residues (MW 56,534). A comparison of the amino acid sequences of 10 paramyxovirus NP proteins indicates a region of high sequence identity near the middle of the protein, and a C-terminal region which is enriched in negatively charged residues. Overall, the SV5 NP protein showed the highest degree of sequence identity with the NP proteins of parainfluenza type 2 virus (58%) and mumps virus (56%). The L gene extends 6804 nucleotides and encodes a positively charged protein consisting of 2255 residues (MW 255,923). The 5' proximal region of the vRNA consists of a 31 nucleotide trailer RNA. The SV5 L protein sequence showed 62% overall identity with the parainfluenza type 2 L protein. Although little overall sequence identity was found between the SV5 and other paramyxovirus L protein sequences, short stretches of extensive amino acid identity were found near the middle of each of the known paramyxovirus L protein sequences, and these common regions may represent sites important for enzymatic activity.
Collapse
Affiliation(s)
- G D Parks
- Howard Hughes Medical Institute, Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | | | | |
Collapse
|
33
|
Ng DT, Watowich SS, Lamb RA. Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene. Mol Biol Cell 1992; 3:143-55. [PMID: 1550958 PMCID: PMC275514 DOI: 10.1091/mbc.3.2.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER)-localized chaperone protein, GRP78-BiP, is involved in the folding and oligomerization of secreted and membrane proteins, including the simian virus 5 hemagglutinin-neuraminidase (HN) glycoprotein. To understand this interaction better, we have constructed a series of HN mutants in which specific portions of the extracytoplasmic domain have been deleted. Analysis of these mutant polypeptides expressed in CV-1 cells have indicated that GRP78-BiP binds to selective sequences in HN and that there exists more than a single site of interaction. Mutant polypeptides have been characterized that are competent and incompetent for association with GRP78-BiP. These mutants have been used to show that the induction of GRP78-BiP synthesis due to the presence of nonnative protein molecules in the ER is dependent on GRP78-BiP complex formation with its substrates. These studies have implications for the function of the GRP78-BiP protein and the mechanism by which the gene is regulated.
Collapse
Affiliation(s)
- D T Ng
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | |
Collapse
|
34
|
Sakaguchi M, Tomiyoshi R, Kuroiwa T, Mihara K, Omura T. Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proc Natl Acad Sci U S A 1992; 89:16-9. [PMID: 1729684 PMCID: PMC48165 DOI: 10.1073/pnas.89.1.16] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The signal sequence of secretory proteins and the signal-anchor sequence of type II membrane proteins initiate the translocation of the following polypeptide segments, whereas the signal-anchor sequence of cytochrome P-450-type membrane proteins mediates the membrane insertion of the polypeptide via a signal-recognition particle-dependent mechanism but does not lead to the translocation of the following C-terminal sequences. To establish the structural requirements for the function of signal and signal-anchor sequences, we constructed chimeric proteins containing artificial topogenic sequences in which the N-terminal net charge and the length of the hydrophobic segment were systematically altered. Utilizing an in vitro translation-translocation system, we found that hydrophobic segments consisting of 7-10 leucine residues functioned as signal sequences whereas segments with 12-15 leucine residues showed different topogenic functions, behaving as signal sequences or P-450-type signal-anchor sequences, depending on the N-terminal charge. From these observations, we propose that the function of N-terminal topogenic sequences depends on a balance between the N-terminal charge and the length of the following hydrophobic segment.
Collapse
Affiliation(s)
- M Sakaguchi
- Department of Molecular Biology, Graduate School of Medical Science, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
35
|
Iorio RM, Syddall RJ, Sheehan JP, Bratt MA, Glickman RL, Riel AM. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. J Virol 1991; 65:4999-5006. [PMID: 1651419 PMCID: PMC248963 DOI: 10.1128/jvi.65.9.4999-5006.1991] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monoclonal antibodies (MAbs) to the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus delineate seven overlapping antigenic sites which form a continuum on the surface of the molecule. Antibodies to five of these sites neutralize viral infectivity principally by preventing attachment of the virion to cellular receptors. Through the identification of single amino acid substitutions in variants which escape neutralization by MAbs to these five antigenic sites, a neutralization map of HN was constructed, identifying several residues that contribute to the epitopes recognized by MAbs which block the attachment function of the molecule. These epitopes are defined, at least in part, by three domains on HN: residues 193 to 201; 345 to 353 (which include the only linear epitope we have identified in HN); and a C-terminal domain composed of residues 494, 513 to 521, and 569. To identify HN residues directly involved in receptor recognition, each of the variants was tested for its ability to agglutinate periodate-modified chicken erythrocytes. One variant with a single amino acid substitution at residue 193 was 2.5- to 3-fold more resistant to periodate treatment of erythrocytes than the wild-type virus, suggesting that this residue influences the binding of virus to a sialic acid-containing receptor(s) on the cell surface.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | |
Collapse
|
36
|
Sheshberadaran H, Lamb RA. Simian virus 5 membrane protein maturation: expression in virus-infected cells and from a eukaryotic vector. Virology 1991; 183:803-9. [PMID: 1853577 DOI: 10.1016/0042-6822(91)91015-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Properties of the membrane protein (M) of the paramyxovirus simian virus 5 (SV5) isolated from purified SV5 virions, in SV5-infected cells or when expressed from cDNA using a eukaryotic vector (SV40-M) were examined. Kinetic (pulse-chase radiolabeling) studies showed that M protein expressed in SV5-infected and SV40-M recombinant virus-infected cells underwent maturation, detectable as time-dependent acquisition of reactivity with anti-M protein monoclonal antibodies. Kinetic studies using radiolabeled phosphate and studies with the alkylating agent N-ethylmaleimide indicated that the antigenic maturation of the M protein was not due to phosphorylation or disulfide bond formation, respectively. Immunofluorescent antibody staining studies showed a significant difference in staining patterns between SV40-M recombinant virus-infected cells and SV5-infected cells. SV40-M recombinant virus-infected cells exhibited an intensely staining cytoplasmic fibrillar network, whereas in SV5-infected cells, villar and some small granular structures were the only strongly staining structures.
Collapse
Affiliation(s)
- H Sheshberadaran
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
37
|
Watowich SS, Morimoto RI, Lamb RA. Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene. J Virol 1991; 65:3590-7. [PMID: 2041085 PMCID: PMC241361 DOI: 10.1128/jvi.65.7.3590-3597.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cellular glucose-regulated protein GRP78-BiP is a member of the HSP70 stress family of gene products, and the protein is a resident component of the endoplasmic reticulum, where it is thought to play a role in the folding and oligomerization of secretory and membrane-bound proteins. GRP78-BiP also binds to malfolded proteins, and this may be one mechanism for preventing their intracellular transport. An induction in synthesis of the GRP78-BiP protein occurs in cells infected with paramyxoviruses (R. W. Peluso, R. A. Lamb, and P. W. Choppin, Proc. Natl. Acad. Sci. USA 75:6120-6124, 1978). We have studied the expression and activity of the GRP78-BiP gene and synthesis of the GRP78-BiP protein during infection with the paramyxovirus simian virus 5 (SV5). We wished to identify the viral component capable of causing activation of GRP78-BiP since GRP78-BiP interacts specifically and transiently with the SV5 hemagglutinin-neuraminidase (HN) glycoprotein during HN folding (D. T. W. Ng, R. E. Randall, and R. A. Lamb, J. Cell Biol. 109:3273-3289, 1989). Expression of cDNAs of the SV5 wild-type HN glycoprotein and a mutant form of HN that is malfolded but not the SV5 F glycoprotein or SV5 cytoplasmic proteins P, V, and M caused increased amounts of GRP78-BiP mRNA to accumulate, as detected by nuclease S1 protection assays. As unfolded or malfolded forms of HN cannot be detected to accumulate during SV5 infection, the data suggest that the flux of HN through the ER in SV5-infected cells can cause activation of GRP78-BiP transcription.
Collapse
Affiliation(s)
- S S Watowich
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | |
Collapse
|
38
|
Hughes J, Yusoff K, Hardy R, McCartney H, Emmerson PT, Samson AC. Sequence analysis of temperature sensitive and "neuraminidase-tolerant" mutants of Newcastle disease virus (strain Beaudette C). Arch Virol 1991; 119:141-6. [PMID: 1863220 DOI: 10.1007/bf01314330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J Hughes
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, Medical School, U.K
| | | | | | | | | | | |
Collapse
|
39
|
Parks GD, Lamb RA. Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain. Cell 1991; 64:777-87. [PMID: 1997206 DOI: 10.1016/0092-8674(91)90507-u] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have tested the role of different charged residues flanking the sides of the signal/anchor (S/A) domain of a eukaryotic type II (N(cyt)C(exo)) integral membrane protein in determining its topology. The removal of positively charged residues on the N-terminal side of the S/A yields proteins with an inverted topology, while the addition of positively charged residues to only the C-terminal side has very little effect on orientation. Expression of chimeric proteins composed of domains from a type II protein (HN) and the oppositely oriented membrane protein M2 indicates that the HN N-terminal domain is sufficient to confer a type II topology and that the M2 N-terminal ectodomain can direct a type II topology when modified by adding positively charged residues. These data suggest that eukaryotic membrane protein topology is governed by the presence or absence of an N-terminal signal for retention in the cytoplasm that is composed in part of positive charges.
Collapse
Affiliation(s)
- G D Parks
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
40
|
Abstract
Nonsegmented negative strand RNA viruses comprise major human and animal pathogens in nature. This class of viruses is ubiquitous and infects vertebrates, invertebrates, and plants. Our laboratory has been working on the gene expression of two prototype nonsegmented negative strand RNA viruses, vesicular stomatitis virus (a rhabdovirus) and human parainfluenza virus 3 (a paramyxovirus). An RNA-dependent RNA polymerase (L and P protein) is packaged within the virion which faithfully copies the genome RNA in vitro and in vivo; this enzyme complex, in association with the nucleocapsid protein (N), is also involved in the replication process. In this review, we have presented up-to-date information of the structure and function of the RNA polymerases of these two viruses, the mechanisms of transcription and replication, and the role of host proteins in the life-cycle of the viruses. These detailed studies have led us to a better understanding of the roles of viral and cellular proteins in the viral gene expression.
Collapse
Affiliation(s)
- A K Banerjee
- Department of Molecular Biology, Cleveland Clinic Foundation, OH 44195
| | | | | |
Collapse
|
41
|
Affiliation(s)
- M S Galinski
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| |
Collapse
|
42
|
Parks GD, Lamb RA. Folding and oligomerization properties of a soluble and secreted form of the paramyxovirus hemagglutinin-neuraminidase glycoprotein. Virology 1990; 178:498-508. [PMID: 2219705 DOI: 10.1016/0042-6822(90)90347-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The paramyxovirus SV5 hemagglutinin-neuraminidase (HN) glycoprotein (a type II integral membrane protein) was converted into a soluble and secreted form (HN-F) by replacing the HN signal/anchor domain with a hydrophobic domain that can act as a cleavable signal sequence. Approximately 40% of the HN-F synthesized was secreted from cells (t1/2 approximately 2.5-3 hr). The extracellular HN-F molecules were identified as disulfide-linked dimers and the majority of the population of molecules were resistant to endoglycosidase H digestion. Examination of the oligomeric form of the secreted HN-F, by sucrose density gradient sedimentation, indicated that under conditions where HN was a tetramer, HN-F was found to be a dimer, and no extracellular HN-F monomeric species could be detected. Secreted HN-F was fully reactive with conformation-specific monoclonal antibodies and was enzymatically active as shown by HN-F having neuraminidase activity. Examination of the intracellular HN-F species indicated that HN-F monomers were slowly converted to the disulfide-linked form and that under the sucrose density gradient sedimentation conditions used the HN-F monomers aggregated. Some of the HN-F monomers were degraded intracellularly. These data are discussed in relationship to the seemingly different folding and oligomerization requirements for the intracellular transport of soluble and membrane bound forms of a glycoprotein. The soluble and biologically active form of HN may be suitable for further structural and enzymatic studies.
Collapse
Affiliation(s)
- G D Parks
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
43
|
Parks GD, Lamb RA. Defective assembly and intracellular transport of mutant paramyxovirus hemagglutinin-neuraminidase proteins containing altered cytoplasmic domains. J Virol 1990; 64:3605-16. [PMID: 2164588 PMCID: PMC249653 DOI: 10.1128/jvi.64.8.3605-3616.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) integral membrane protein of paramyxoviruses is expressed at the cell surface as a tetramer consisting of a pair of disulfide-linked dimers. HN has a large C-terminal ectodomain, a 19-residue uncleaved signal-anchor domain, and a 17-residue N-terminal cytoplasmic tail. Various mutant HN genes were constructed to examine the role of residues flanking the signal-anchor domain, including the cytoplasmic tail, on assembly and intracellular transport of the HN glycoprotein. Expression of the altered genes showed that by 90 min after synthesis the majority of the mutant HN proteins were in a conformationally mature form as assayed by their reactivity with conformation-specific monoclonal antibodies. However, the mutant proteins showed varied endoplasmic reticulum-to-Golgi apparatus transport rates, ranging from that of wild-type HN (t1/2 approximately 90 min) to slowly transported molecules (t1/2 approximately 5 h) and to molecules in which transport was not detected. Pulse-chase experiments indicated that the altered HN molecules had a specific and transient interaction with the resident endoplasmic reticulum protein GRP78-BiP, and thus the altered HN molecules were not retained in the endoplasmic reticulum by a prolonged interaction with GRP78-BiP. Sucrose density gradient sedimentation analysis of the mutant HN molecules indicated that they all had an oligomeric form that differed from that of wild-type HN; most of the molecules were found as disulfide-linked dimers rather than as tetramers. These data suggest that the HN cytoplasmic tail may function in the assembly of the final transport-competent oligomeric form of HN and that mutant HN molecules with seemingly properly folded ectodomains are retained in the endoplasmic reticulum by an as yet unidentified mechanism. The possible role of the HN cytoplasmic tail as a signal for intracellular transport is discussed.
Collapse
Affiliation(s)
- G D Parks
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
44
|
Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemagglutinin-neuraminidase. Mol Cell Biol 1990. [PMID: 2183015 DOI: 10.1128/mcb.10.5.1989] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of N-linked glycosylation in protein maturation and transport has been studied by using the simian virus 5 hemagglutinin-neuraminidase (HN) protein, a model class II integral membrane glycoprotein. The sites of N-linked glycosylation on HN were identified by eliminating each of the potential sites for N-linked glycosylation by oligonucleotide-directed mutagenesis on a cDNA clone. Expression of the mutant HN proteins in eucaryotic cells indicated that four sites are used in the HN glycoprotein for the addition of N-linked oligosaccharide chains. These functional glycosylation sites were systematically eliminated in various combinations from HN to form a panel of mutants in which the roles of individual carbohydrate chains and groups of carbohydrate chains could be analyzed. Alterations in the normal glycosylation pattern resulted in the impairment of HN protein folding and assembly which, in turn, affected the intracellular transport of HN. The severity of the consequences on HN maturation depended on both the number of deleted carbohydrate sites and their position in the HN molecule. Analysis of the reactivity pattern of HN conformation-specific monoclonal antibodies with the mutant HN proteins indicated that one specific carbohydrate chain plays a major role in promoting the correct folding of HN. Another carbohydrate chain, which is not essential for the initial folding of HN was found to play a role in preventing the aggregation of HN oligomers. The HN molecules which were misfolded, owing to their altered glycosylation pattern, were retained in the endoplasmic reticulum. Double-label immunofluorescence experiments indicate that misfolded HN and folded HN are segregated in the same cell. Misfolded HN forms disulfide-linked aggregates and is stably associated with the resident endoplasmic reticulum protein, GRP78-BiP, whereas wild-type HN forms a specific and transient complex with GRP78-BiP during its folding process.
Collapse
|
45
|
Sheshberadaran H, Lamb RA. Sequence characterization of the membrane protein gene of paramyxovirus simian virus 5. Virology 1990; 176:234-43. [PMID: 2330672 DOI: 10.1016/0042-6822(90)90248-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete nucleotide sequence of the membrane (M) protein gene of the paramyxovirus simian virus 5 (SV5) was determined from cDNA clones of viral mRNAs. The M gene boundaries were determined by (i) primer extension sequencing on M mRNA; (ii) nuclease S1 analysis; and (iii) primer extension sequencing on viral genomic RNA. The M gene mRNA consisted of 1371 templated nucleotides. It contains a single large open reading frame that can encode a protein of 377 amino acids with a predicted Mr = 42,253. The authenticity of the predicted M protein coding sequence was confirmed by synthesis of the M protein from mRNA synthesized from cDNA. The predicted M amino acid sequence indicated it is an overall hydrophobic protein carrying a net positive charge. Alignment of the SV5 protein amino acid sequence with the M protein sequences of other paramyxoviruses indicated that these viruses fall into the following two groups: (1) SV5, mumps virus, and Newcastle disease virus; or (2) Sendai, parainfluenza virus type 3, measles virus, and canine distemper virus, with mumps virus M sequence being the most closely related to SV5.
Collapse
Affiliation(s)
- H Sheshberadaran
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
46
|
Ng DT, Hiebert SW, Lamb RA. Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemagglutinin-neuraminidase. Mol Cell Biol 1990; 10:1989-2001. [PMID: 2183015 PMCID: PMC360545 DOI: 10.1128/mcb.10.5.1989-2001.1990] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of N-linked glycosylation in protein maturation and transport has been studied by using the simian virus 5 hemagglutinin-neuraminidase (HN) protein, a model class II integral membrane glycoprotein. The sites of N-linked glycosylation on HN were identified by eliminating each of the potential sites for N-linked glycosylation by oligonucleotide-directed mutagenesis on a cDNA clone. Expression of the mutant HN proteins in eucaryotic cells indicated that four sites are used in the HN glycoprotein for the addition of N-linked oligosaccharide chains. These functional glycosylation sites were systematically eliminated in various combinations from HN to form a panel of mutants in which the roles of individual carbohydrate chains and groups of carbohydrate chains could be analyzed. Alterations in the normal glycosylation pattern resulted in the impairment of HN protein folding and assembly which, in turn, affected the intracellular transport of HN. The severity of the consequences on HN maturation depended on both the number of deleted carbohydrate sites and their position in the HN molecule. Analysis of the reactivity pattern of HN conformation-specific monoclonal antibodies with the mutant HN proteins indicated that one specific carbohydrate chain plays a major role in promoting the correct folding of HN. Another carbohydrate chain, which is not essential for the initial folding of HN was found to play a role in preventing the aggregation of HN oligomers. The HN molecules which were misfolded, owing to their altered glycosylation pattern, were retained in the endoplasmic reticulum. Double-label immunofluorescence experiments indicate that misfolded HN and folded HN are segregated in the same cell. Misfolded HN forms disulfide-linked aggregates and is stably associated with the resident endoplasmic reticulum protein, GRP78-BiP, whereas wild-type HN forms a specific and transient complex with GRP78-BiP during its folding process.
Collapse
Affiliation(s)
- D T Ng
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | |
Collapse
|
47
|
Bando H, Kondo K, Kawano M, Komada H, Tsurudome M, Nishio M, Ito Y. Molecular cloning and sequence analysis of human parainfluenza type 4A virus HN gene: its irregularities on structure and activities. Virology 1990; 175:307-12. [PMID: 2155512 DOI: 10.1016/0042-6822(90)90213-b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We cloned the cDNA of human parainfluenza type 4A virus (PIV-4A) HN gene by reverse-transcription of virus-specific mRNAs and genomic RNA, and determined the complete nucleotide sequence of the HN gene. The predicted HN protein sequence of PIV-4A showed significant relatedness with those of other paramyxoviruses, SV5, NDV, MuV, PIV-3, BPIV-3, indicating a common ancestor. The homologies between the viruses suggested that PIV-4A is more closely related to NDV, SV5, and MuV than to the parainfluenza viruses, PIV-3, bovine parainfluenza type 3 virus (BPIV-3), and Sendai virus (SV). Sixty amino acids were commonly conserved among the viruses, other than PIV-4A. Two of these amino acids were substituted in PIV-4A HN and are predicted to be located near the active site of the neuraminidase. The analysis of neuraminidase of PIV-4 revealed that the activity is hardly detectable, suggesting the significant effect of the substituted amino acid sites on neuraminidase activity.
Collapse
Affiliation(s)
- H Bando
- Department of Microbiology, Mie University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Kawano M, Bando H, Yuasa T, Kondo K, Tsurudome M, Komada H, Nishio M, Ito Y. Sequence determination of the hemagglutinin-neuraminidase (HN) gene of human parainfluenza type 2 virus and the construction of a phylogenetic tree for HN proteins of all the paramyxoviruses that are infectious to humans. Virology 1990; 174:308-13. [PMID: 2152995 DOI: 10.1016/0042-6822(90)90081-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotide sequence of the hemagglutinin-neuraminidase (HN) gene of human parainfluenza type 2 virus (PIV-2) was determined. The PIV-2 HN gene was 2112 nucleotides excluding poly(A) tail. There was a single large open reading frame in the mRNA which encoded a protein of 571 amino acids with a calculated molecular weight of 63,262. Analysis of the deduced amino acid sequence revealed that there were fourteen potential glycosylation sites and a major hydrophobic region near the N-terminus, which would anchor the protein in the viral membrane. Comparisons of the HN protein sequences of PIV-2 with those of Simian virus 5 (SV5), Sendai virus (SV, parainfluenza virus type 1), human parainfluenza virus type 3 (PIV-3), type 4 (PIV-4), bovine parainfluenza virus type 3 (BPIV-3), mumps virus (MuV), and Newcastle disease virus (NDV) showed definite amino acid sequence relatedness, indicating a common ancestor for these viruses. Furthermore, statistical analysis of the protein sequences suggested a possible evolutionary relatedness among the paramyxoviruses. This is the first time that a phylogenetic tree has been constructed for all the parainfluenza viruses and mumps virus which are infectious to humans. In addition, amino acid sequences involved in hemagglutinating and neuraminidase activities of paramyxovirus were discussed.
Collapse
Affiliation(s)
- M Kawano
- Department of Microbiology, Mie University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ng DT, Randall RE, Lamb RA. Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. J Cell Biol 1989; 109:3273-89. [PMID: 2557352 PMCID: PMC2115940 DOI: 10.1083/jcb.109.6.3273] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hemagglutinin-neuraminidase (HN) glycoprotein of the paramyxovirus SV5 is a type II integral membrane protein that is expressed at the infected cell surface. The intracellular assembly and transport of HN in CV1 cells was examined using conformation-specific HN mAbs and sucrose density sedimentation analysis. HN was found to oligomerize with a t1/2 of 25-30 min and these data suggest the oligomer is a tetramer consisting primarily of two noncovalently associated disulfide-linked dimers. As HN oligomers could be found that were sensitive to endoglycosidase H digestion and oligomers formed in the presence of the ER to the Golgi complex transport inhibitor, carbonylcyanide m-chlorophenylhydrazone (CCCP), these data are consistent with HN oligomerization occurring in the ER. Unfolded or immature HN molecules that could not be recognized by conformation-specific antibodies were found to specifically associate with the resident ER protein GRP78-BiP. Immunoprecipitation of BiP-HN complexes with an immunoglobulin heavy-chain binding protein (BiP) antibody indicated that newly synthesized HN associated and dissociated from GRP78-BiP (t1/2 20-25 min) in an inverse correlation with the gain in reactivity with a HN conformation-specific antibody, suggesting that the transient association of GRP78-BiP with immature HN is part of the normal HN maturation pathway. After pulse-labeling of HN in infected cells, it was found that HN is rapidly turned over in cells (t1/2 2-2.5 h). This led to the finding that the vast majority of HN expressed at the cell surface, rather than being incorporated into budding virions, is internalized and degraded after localization to endocytic vesicles and lysosomes.
Collapse
Affiliation(s)
- D T Ng
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | |
Collapse
|
50
|
Iorio RM, Syddall RJ, Glickman RL, Riel AM, Sheehan JP, Bratt MA. Identification of amino acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle disease virus. Virology 1989; 173:196-204. [PMID: 2479168 DOI: 10.1016/0042-6822(89)90235-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (MAbs) to three overlapping antigenic sites (designated 12, 2, and 23) on the hemagglutinin-neuraminidase glycoprotein (HN) of Newcastle disease virus (NDV) were previously shown to inhibit neuraminidase activity (NA) on neuraminlactose (R. M. Iorio and M. A. Bratt, 1984a, J. Immunol. 133, 2215-2219; R. M. Iorio et al., 1989, Virus Res. 13, 245-262). However, a competitive inhibitor of NA blocks the binding of only MAbs to site 23, suggesting that the domain they recognize may be closely related to the NA site. Antigenic variants selected with site 23 MAbs have single amino acid substitutions at HN residues 192, 193, or 200. Virions of variants, which have a substitution at residue 193 or 200, have alterations in NA which are not attributable to a commensurate change in HN content. A revertant of a temperature-sensitive mutant, which has markedly diminished NA relative to the wild type, has an amino acid substitution at residue 175. A second step revertant having partially restored NA has an additional substitution at residue 192 identical to that in one of the site 23 variants, which, in turn, also makes the revertant resistant to neutralization by site 23 MAbs. Thus, an amino acid substitution at residue 175, 193, or 200 of the HN of NDV can have marked effects on the NA of the protein. The amino acids in the region around residue 175 are highly conserved between the HNs of NDV and other paramyxoviruses, suggesting that this domain is important to the integrity of the NA site in this group of viruses.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | |
Collapse
|