1
|
Xiong Y, Tao K, Li T, Zhou Y, Zhang Z, Ou W, Wang Z, Wang S, Hou Y, Cao P, Ji J. Both chebulagic acid and punicalagin inhibit respiratory syncytial virus entry via multi-targeting glycoprotein and fusion protein. J Virol 2024; 98:e0153624. [PMID: 39508604 DOI: 10.1128/jvi.01536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections, with no currently available small-molecule drugs that are both safe and effective. A major obstacle in antiviral drug development is the rapid emergence of drug-resistant viral strains. Targeting multiple viral compounds may help mitigate the development of resistance. Herein, we conducted a drug screening using the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to identify compounds that simultaneously target the RSV fusion (F) protein, glycoprotein (G), and the host heparan sulfate proteoglycans (HSPGs). From this screening, 10 candidate compounds were identified for their ability to interact with all three targets. Among these 10 candidates, chebulagic acid (CHLA) and punicalagin (PUG) demonstrated the most potent inhibition of RSV replication. In vitro dose-response assays confirmed the antiviral efficacy of CHLA (IC50: 0.07864 µM) and PUG (IC50: 0.08065 µM). Further experiments revealed both CHLA and PUG disrupt RSV attachment and membrane fusion by targeting the RSV-F and G proteins, rather than HSPG. Notably, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with docking assays predicting their binding sites at cysteines 176 and 182. Additionally, CHLA enhanced the conformational stability of the RSV-F protein before fusion. In an in vivo study, both CHLA and PUG were shown to alleviate RSV-induced pulmonary pathology by reducing viral titers, mitigating lung injury, and suppressing the inflammatory responses in the lungs. Our findings suggest that CHLA and PUG hold potential as therapeutic agents for RSV infection.IMPORTANCEA significant challenge in developing anti-respiratory syncytial virus (RSV) agents is the rapid emergence of resistant viral strains. Designing drugs that target multiple viral components can effectively reduce the likelihood of developing resistant strains. In this study, we screened compounds from the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to simultaneously targe the RSV fusion (F) protein, glycoprotein (G), and host heparan sulfate proteoglycans (HSPGs). Our findings revealed that chebulagic acid (CHLA) and punicalagin (PUG) significantly inhibited RSV replication both in vitro and in vivo and interacted with all three targets. Both CHLA and PUG were able to disrupt RSV attachment and membrane fusion. Mechanistically, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with CHLA also enhancing the conformational stability of the RSV-F protein before fusion. In conclusion, our study suggests that CHLA and PUG hold promise as therapeutic agents against RSV infection.
Collapse
Affiliation(s)
- Yingcai Xiong
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keyu Tao
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Li
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaowei Zhang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Afliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
3
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
4
|
Vanetti C, Saulle I, Artusa V, Moscheni C, Cappelletti G, Zecchini S, Strizzi S, Garziano M, Fenizia C, Tosoni A, Broggiato M, Ogno P, Nebuloni M, Clerici M, Trabattoni D, Limanaqi F, Biasin M. A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:353-367. [PMID: 39421150 PMCID: PMC11486504 DOI: 10.15698/mic2024.10.838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an in vitro co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Valentina Artusa
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Antonella Tosoni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Martina Broggiato
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Pasquale Ogno
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Manuela Nebuloni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
- Department of Biomedical and Clinical Sciences, Fondazione Don Carlo Gnocchi, IRCCSMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| |
Collapse
|
5
|
Okuducu YK, Mall MA, Yonker LM. COVID-19 in Pediatric Populations. Clin Chest Med 2024; 45:675-684. [PMID: 39069330 DOI: 10.1016/j.ccm.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic reshaped the landscape of respiratory viral illnesses, causing common viruses to fade as SARS-CoV-2 took precedence. By 2023, more than 96% of the children in the United States were estimated to have been infected with SARS-CoV-2, with certain genetic predispositions and underlying health conditions posing risk factors for severe disease in children. Children, in general though, exhibit immunity advantages, protecting against aspects of the SARS-CoV-2 infection known to drive increased severity in older adults. Post-COVID-19 complications such as multisystem inflammatory syndrome in children and long COVID have emerged, underscoring the importance of vaccination. Here, we highlight the risks of severe pediatric COVID-19, age-specific immunoprotection, comparisons of SARS-CoV-2 with other respiratory viruses, and factors contributing to post-COVID-19 complications in children.
Collapse
Affiliation(s)
- Yanki K Okuducu
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin Augustenburger Platz 1, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany; German Center for Lung Research (DZL), Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lael M Yonker
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Madi N, Sadeq M, Safar HA, Al-Adwani A, Al-Turab M. Circulation of new lineages of RSV-A and RSV-B in Kuwait shows high diversity in the N- and O-linked glycosylation sites in the G protein between 2020 and 2022. Front Cell Infect Microbiol 2024; 14:1445115. [PMID: 39220282 PMCID: PMC11362131 DOI: 10.3389/fcimb.2024.1445115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The human respiratory syncytial virus (RSV) is a significant health concern, particularly for infants, young children, and the elderly. This virus is known to evolve continuously due to environmental factors and herd immunity. In light of this, our study aimed to analyze the genetic variability of the G protein in RSV-A and RSV-B genotypes in Kuwait from 2020 to 2022. Between January 2020 and September 2022, we collected 490 respiratory samples from hospitalized patients with acute respiratory tract infections. These samples were tested and confirmed positive for RSV using multiplex Real-Time PCR. Subsequently, the samples underwent nucleic acid sequencing using the advanced Nanopore sequencing technology to analyze the full-length G gene. Sequence analysis showed that 64 isolates (76%) were RSV-A, and 20 isolates (24%) were RSV-B. The G genes of RSV-A belonged to genotype GA2.3.5, while all the RSV-B genotypes belonged to GB5.0.5a. New lineages and sub-lineages of RSV-A and RSV-B were detected, indicating the circulation of new strains in Kuwait. Many unique and new amino acid changes, including insertions, were found in the G proteins of Kuwaiti isolates, with the highest variability in the second hypervariable region. An increased number of N and O-linked glycosylation sites were also identified in the G protein, which could speculate to alter the antigenicity of RSV. The identified changes in the G protein of RSV-A and RSV-B genotypes might result from immune pressure and could affect the antigenic characteristics of circulating strains in Kuwait. This could potentially lead to new RSV variants that can evade the immune response. Our in-depth analysis of the G proteins of both RSV-A and RSV-B could aid in the development of more potent treatments and vaccines.
Collapse
Affiliation(s)
- Nada Madi
- Virology Unit, Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Sadeq
- Jaber Al-Ahmad Armed Forces Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Hussain A. Safar
- Research Core Facility and OMICS Research Unit, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anfal Al-Adwani
- Virology Unit, Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mariam Al-Turab
- Virology Unit, Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
7
|
Yamaue R, Torikai M, Terashima M, Mori H. KD-409, a Respiratory Syncytial Virus FG Chimeric Protein without the CX3C Chemokine Motif, Is an Efficient Respiratory Syncytial Virus Vaccine Preparation for Passive and Active Immunization in Mice. Vaccines (Basel) 2024; 12:753. [PMID: 39066391 PMCID: PMC11281633 DOI: 10.3390/vaccines12070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Although respiratory syncytial virus (RSV) vaccine development initiatives have existed for half a century, no candidate has been approved for application at all ages from neonates to children. Developing an effective and safe RSV vaccine for pediatric use is challenging owing to RSV-associated disease and vaccine-enhanced disease (VED). We aimed to design an RSV vaccine, KD-409, by structurally incorporating the F ectodomain and G protein central conserved domain without the CX3C chemokine motif and test its efficacy and safety. KD-409 formed rosette particles or trimmers. KD-409 immunization of mice mainly induced anti-RSV F protein IgG. The induced anti-F antibodies had a higher IgG2a/IgG1 ratio than pre-fusion F, suggesting that they induced Th1-dominant immunity. Active and passive immunities were assessed by analyzing the viral titers in BALB/c mice intranasally challenged with RSV after intramuscular KD-409 immunization and pups derived from mothers who were intramuscularly vaccinated with KD-409 twice, respectively. KD-409 was more effective than post-fusion F and had a lower minimum effective dose than pre-fusion F. Thus, KD-409 demonstrated great potential as a novel RSV vaccine candidate, outperforming existing RSV F-based candidates. Our findings provide a promising strategy to overcome RSV-associated acute lower respiratory infections without the risk of VED associated with traditional approaches.
Collapse
Affiliation(s)
| | - Masaharu Torikai
- KM Biologics Co., Ltd., Kikuchi Research Center, 1314-1 Kyokushi Kawabe, Kikuchi-shi 869-1298, Japan; (R.Y.); (M.T.)
| | | | | |
Collapse
|
8
|
Terhüja M, Siddappa M, Lamichhane P, Meshram CD, Snider TA, Ritchey JW, Oomens AGP. Intranasal Vaccination with a Respiratory-Syncytial-Virus-Based Virus-like Particle Displaying the G Protein Conserved Region Induces Severe Weight Loss and Pathology upon Challenge with Wildtype Respiratory Syncytial Virus. Viruses 2024; 16:843. [PMID: 38932136 PMCID: PMC11209524 DOI: 10.3390/v16060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory tract disease worldwide, and a pediatric vaccine is not available. We generated a filamentous RSV-based virus-like particle (VLP) that presents the central conserved region of the attachment protein G. This was achieved by co-expressing the matrix protein, phosphoprotein, nucleoprotein, and a hybrid fusion protein in which the F ectodomain was replaced with the G central region (GCR). The latter is relatively conserved and contains a receptor binding site and hence is a logical vaccine target. The immunogenicity and efficacy of the resulting VLP, termed VLP-GCR, were examined in mice using intranasal application without adjuvant. VLP-GCR induced substantial anti-N antibody levels but very low anti-G antibody levels, even after three vaccinations. In contrast, a VLP presenting prefusion-stabilized fusion (preF) protein instead of GCR induced both high anti-F and anti-nucleoprotein antibody levels, suggesting that our GCR antigen was poorly immunogenic. Challenge of VLP-GCR-vaccinated mice caused increased weight loss and lung pathology, and both VLPs induced mucus in the lungs. Thus, neither VLP is suitable as a vaccine for RSV-naive individuals. However, VLP-preF enhanced the proportion of preF antibodies and could serve as a multi-antigen mucosal booster vaccine in the RSV-experienced population.
Collapse
Affiliation(s)
- Megolhubino Terhüja
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Manjunath Siddappa
- Department of Veterinary Sciences and Animal Husbandry, Chitradurga 577502, Karnataka, India
| | - Pramila Lamichhane
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy, Immunology, and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chetan D. Meshram
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Timothy A. Snider
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Antonius G. P. Oomens
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| |
Collapse
|
9
|
Picavet LW, van Vroonhoven ECN, Scholman RC, Smits YTH, Banerjee R, Besteman SB, Viveen MC, van der Vlist MM, Tanenbaum ME, Lebbink RJ, Vastert SJ, van Loosdregt J. m 6A Reader YTHDC1 Impairs Respiratory Syncytial Virus Infection by Downregulating Membrane CX3CR1 Expression. Viruses 2024; 16:778. [PMID: 38793659 PMCID: PMC11125786 DOI: 10.3390/v16050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the most prevalent cause of acute lower respiratory infection in young children. Currently, the first RSV vaccines are approved by the FDA. Recently, N6-methyladenosine (m6A) RNA methylation has been implicated in the regulation of the viral life cycle and replication of many viruses, including RSV. m6A methylation of RSV RNA has been demonstrated to promote replication and prevent anti-viral immune responses by the host. Whether m6A is also involved in viral entry and whether m6A can also affect RSV infection via different mechanisms than methylation of viral RNA is poorly understood. Here, we identify m6A reader YTH domain-containing protein 1 (YTHDC1) as a novel negative regulator of RSV infection. We demonstrate that YTHDC1 abrogates RSV infection by reducing the expression of RSV entry receptor CX3C motif chemokine receptor 1 (CX3CR1) on the cell surface of lung epithelial cells. Altogether, these data reveal a novel role for m6A methylation and YTHDC1 in the viral entry of RSV. These findings may contribute to the development of novel treatment options to control RSV infection.
Collapse
Affiliation(s)
- Lucas W. Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Ellen C. N. van Vroonhoven
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Rianne C. Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Yesper T. H. Smits
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Rupa Banerjee
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.T.)
- Oncode Institute, 3584 CX Utrecht, The Netherlands
| | - Sjanna B. Besteman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Mattheus C. Viveen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Michiel M. van der Vlist
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
- Oncode Institute, 3584 CX Utrecht, The Netherlands
| | - Marvin E. Tanenbaum
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.T.)
- Oncode Institute, 3584 CX Utrecht, The Netherlands
- Department of Bionanoscience, Delft University of Technology, 2600 AA Delft, The Netherlands
| | - Robert J. Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| |
Collapse
|
10
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
11
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
12
|
Wang Y, Zhang Y, Wang P, Jing T, Hu Y, Chen X. Research Progress on Antiviral Activity of Heparin. Curr Med Chem 2024; 31:7-24. [PMID: 36740803 DOI: 10.2174/0929867330666230203124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2023]
Abstract
Heparin, as a glycosaminoglycan, is known for its anticoagulant and antithrombotic properties for several decades. Heparin is a life-saving drug and is widely used for anticoagulation in medical practice. In recent years, there have been extensive studies that heparin plays an important role in non-anticoagulant diseases, such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, anti-metastatic effects, and so on. Clinical observation and in vitro experiments indicate that heparin displays a potential multitarget effect. In this brief review, we will summarize heparin and its derivative's recently studied progress for the treatment of various viral infections. The aim is to maximize the benefits of drugs through medically targeted development, to meet the unmet clinical needs of serious viral diseases.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Yanqing Zhang
- Shandong VeriSign Test Detection Co., LTD, Jinan, China
| | - Ping Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Tianyuan Jing
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Hu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiushan Chen
- Zhenjiang Runjing High Purity Chemical Technology Co., Ltd., Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Avadhanula V, Agustinho DP, Menon VK, Chemaly RF, Shah DP, Qin X, Surathu A, Doddapaneni H, Muzny DM, Metcalf GA, Cregeen SJ, Gibbs RA, Petrosino JF, Sedlazeck FJ, Piedra PA. Inter and intra-host diversity of RSV in hematopoietic stem cell transplant adults with normal and delayed viral clearance. Virus Evol 2023; 10:vead086. [PMID: 38361816 PMCID: PMC10868550 DOI: 10.1093/ve/vead086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Vipin Kumar Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimpy P Shah
- Department of Population Health Sciences, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Surathu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
15
|
Feng J, Nie C, Xie E, Thongrom B, Reiter-Scherer V, Block S, Herrmann A, Quaas E, Sieben C, Haag R. Sulfated Polyglycerol-Modified Hydrogels for Binding HSV-1 and RSV. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903283 DOI: 10.1021/acsami.3c09553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide on the surface of mammalian cells and in the extracellular matrix and has been found to be important for virus binding and infection. In this work, we designed synthetic hydrogels with viral binding and deactivation activities through the postfunctionalization of an HS-mimicking polyelectrolyte and alkyl chains. Three polyglycerol-based hydrogels were prepared as substrates and postfunctionalized by sulfated linear polyglycerol (lPGS) via thiol-ene click reaction. The viral binding properties were studied using herpes simplex virus type 1 (HSV-1) and respiratory syncytial virus (RSV). The effect of hydrogel types and molecular weight (Mw) of conjugated lPGS on viral binding properties was also assessed, and promising binding activities were observed in all lPGS-functionalized samples. Further coupling of 11 carbons long alkyl chains to the hydrogel revealed virucidal properties caused by destruction of the viral envelope, as shown by atomic force microscopy (AFM) imaging.
Collapse
Affiliation(s)
- Jun Feng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Boonya Thongrom
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Valentin Reiter-Scherer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a,14195 Berlin, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
- Institute of Genetics, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
16
|
Lakerveld AJ, van Erp EA, van Kasteren PB. Binding of respiratory syncytial virus particles to platelets does not result in their degranulation in vitro. Access Microbiol 2023; 5:acmi000481.v3. [PMID: 37601435 PMCID: PMC10436017 DOI: 10.1099/acmi.0.000481.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infection in infants and the elderly. The mechanisms behind severe RSV disease are incompletely understood, but a dysregulated immune response probably plays an important role. Platelets are increasingly being recognized as immune cells and are involved in the pathology of several viruses. The release of chemokines from platelets upon activation may attract, for example, neutrophils to the site of infection, which is a hallmark of RSV pathology. In addition, since RSV infections are sometimes associated with cardiovascular events and platelets express several known RSV receptors, we investigated the effect of RSV exposure on platelet degranulation. Washed human platelets were incubated with sucrose-purified RSV particles. P-selectin and CD63 surface expression and CCL5 secretion were measured to assess platelet degranulation. We found that platelets bind and internalize RSV particles, but this does not result in degranulation. Our results suggest that platelets do not play a direct role in RSV pathology by releasing chemokines to attract inflammatory cells.
Collapse
Affiliation(s)
- Anke J. Lakerveld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A. van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Puck B. van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
17
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
18
|
Lauster D, Osterrieder K, Haag R, Ballauff M, Herrmann A. Respiratory viruses interacting with cells: the importance of electrostatics. Front Microbiol 2023; 14:1169547. [PMID: 37440888 PMCID: PMC10333706 DOI: 10.3389/fmicb.2023.1169547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
The COVID-19 pandemic has rekindled interest in the molecular mechanisms involved in the early steps of infection of cells by viruses. Compared to SARS-CoV-1 which only caused a relatively small albeit deadly outbreak, SARS-CoV-2 has led to fulminant spread and a full-scale pandemic characterized by efficient virus transmission worldwide within a very short time. Moreover, the mutations the virus acquired over the many months of virus transmission, particularly those seen in the Omicron variant, have turned out to result in an even more transmissible virus. Here, we focus on the early events of virus infection of cells. We review evidence that the first decisive step in this process is the electrostatic interaction of the spike protein with heparan sulfate chains present on the surface of target cells: Patches of cationic amino acids located on the surface of the spike protein can interact intimately with the negatively charged heparan sulfate chains, which results in the binding of the virion to the cell surface. In a second step, the specific interaction of the receptor binding domain (RBD) within the spike with the angiotensin-converting enzyme 2 (ACE2) receptor leads to the uptake of bound virions into the cell. We show that these events can be expressed as a semi-quantitative model by calculating the surface potential of different spike proteins using the Adaptive Poison-Boltzmann-Solver (APBS). This software allows visualization of the positive surface potential caused by the cationic patches, which increased markedly from the original Wuhan strain of SARS-CoV-2 to the Omicron variant. The surface potential thus enhanced leads to a much stronger binding of the Omicron variant as compared to the original wild-type virus. At the same time, data taken from the literature demonstrate that the interaction of the RBD of the spike protein with the ACE2 receptor remains constant within the limits of error. Finally, we briefly digress to other viruses and show the usefulness of these electrostatic processes and calculations for cell-virus interactions more generally.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Pharmazie, Biopharmazeutika, Freie Universität Berlin, Berlin, Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Bergeron HC, Murray J, Arora A, Nuñez Castrejon AM, DuBois RM, Anderson LJ, Kauvar LM, Tripp RA. Immune Prophylaxis Targeting the Respiratory Syncytial Virus (RSV) G Protein. Viruses 2023; 15:1067. [PMID: 37243153 PMCID: PMC10221658 DOI: 10.3390/v15051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The respiratory syncytial virus (RSV) causes significant respiratory disease in young infants and the elderly. Immune prophylaxis in infants is currently limited to palivizumab, an anti-RSV fusion (F) protein monoclonal antibody (mAb). While anti-F protein mAbs neutralize RSV, they are unable to prevent aberrant pathogenic responses provoked by the RSV attachment (G) protein. Recently, the co-crystal structures of two high-affinity anti-G protein mAbs that bind the central conserved domain (CCD) at distinct non-overlapping epitopes were solved. mAbs 3D3 and 2D10 are broadly neutralizing and block G protein CX3C-mediated chemotaxis by binding antigenic sites γ1 and γ2, respectively, which is known to reduce RSV disease. Previous studies have established 3D3 as a potential immunoprophylactic and therapeutic; however, there has been no similar evaluation of 2D10 available. Here, we sought to determine the differences in neutralization and immunity to RSV Line19F infection which recapitulates human RSV infection in mouse models making it useful for therapeutic antibody studies. Prophylactic (24 h prior to infection) or therapeutic (72 h post-infection) treatment of mice with 3D3, 2D10, or palivizumab were compared to isotype control antibody treatment. The results show that 2D10 can neutralize RSV Line19F both prophylactically and therapeutically, and can reduce disease-causing immune responses in a prophylactic but not therapeutic context. In contrast, 3D3 was able to significantly (p < 0.05) reduce lung virus titers and IL-13 in a prophylactic and therapeutic regimen suggesting subtle but important differences in immune responses to RSV infection with mAbs that bind distinct epitopes.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Aakash Arora
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ana M. Nuñez Castrejon
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.M.N.C.)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.M.N.C.)
| | - Larry J. Anderson
- Division of Pediatric Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Shi D, He P, Song Y, Linhardt RJ, Dordick JS, Chi L, Zhang F. Interactions of heparin with key glycoproteins of human respiratory syncytial virus. Front Mol Biosci 2023; 10:1151174. [PMID: 37122559 PMCID: PMC10140432 DOI: 10.3389/fmolb.2023.1151174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: The unexpected surge of respiratory syncytial virus (RSV) cases following pandemic phase of COVID-19 has drawn much public attention. Drawing on the latest antiviral research, revisiting this heightened annual outbreak of respiratory disease could lead to new treatments. The ability of sulfated polysaccharides to compete for a variety of viruses binding to cell surface heparan sulfate, suggests several drugs that might have therapeutic potential for targeting RSV-glycosaminoglycan interactions. Methods: In the current study, the binding affinity and kinetics of two RSV glycoproteins (RSV-G protein and RSV-F protein) to heparin were investigated by surface plasmon resonance. Furthermore, solution competition studies using heparin oligosaccharides of different lengths indicated that the binding of RSV-G protein to heparin is size-dependent, whereas RSV-F protein did not show any chain length preference. Results and discussion: The two RSV glycoproteins have slightly different preferences for heparin sulfation patterns, but the N-sulfo group in heparin was most critical for the binding of heparin to both RSV-G protein and RSV-F protein. Finally, pentosan polysulfate and mucopolysaccharide polysulfate were evaluated for their inhibition of the RSV-G protein and RSV-F protein-heparin interaction, and both highly negative compounds showed strong inhibition.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Peng He
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yuefan Song
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S. Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
21
|
Chen W, Chen YH, Liao YC, Huang XW, Lu TJ, Shih SR. Effect of hot water extracts of Arthrospira maxima (spirulina) against respiratory syncytial virus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154611. [PMID: 36580819 DOI: 10.1016/j.phymed.2022.154611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Spirulina (Arthrospira maxima) hot water extracts such as calcium spirulan (Ca-SP) have demonstrated antiviral effects against herpes simplex virus (HSV), human immunodeficiency virus-1 (HIV-1), and influenza virus infections. There is no prior evidence suggesting the anti-viral activity of the spirulina hot water extract against respiratory syncytial virus (RSV). PURPOSE There are currently no effective antivirals available to treat RSV infection. Therefore, the development of safe and novel anti-RSV drugs is urgent and necessary. The aim of this work was to demonstrate the anti-RSV activity of spirulina hot water extracts and determine the potential mechanism of action. METHODS Cytotoxicity and anti-RSV activity of spirulina hot water extracts were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutralization assays, respectively. Potential mechanisms and components were assessed using time of addition, attachment, internalization, pull-down assays, and composition analysis. RESULTS The polysaccharide-enriched high-molecular weight fraction (>100 kDa, SHD1) had a high total sugar content, with rhamnose accounting for approximately 60 mol% of total monosaccharides. The main glycosyl linkages included 3-, 4-, and 2,3-rhamnopyranosyl linkages. All spirulina hot water extracts showed no toxicity toward human epithelial type 2 (HEp-2) cells but demonstrated anti-RSV activity. The SHD1 had a half maximal effective concentration (EC50) of 0.0915 mg/ml and a selective index (SI) of >261.5 against RSV. SHD1 significantly reduced viral yield in a dose-dependent manner during the RSV attachment stage. SHD1 disrupted RSV internalization and inhibited RSV attachment (G) protein binding to heparan sulfate receptors on the host cell surface, thus preventing RSV attachment and entry. CONCLUSION SHD1 serves as an effective candidate for novel drug development against RSV infection.
Collapse
Affiliation(s)
- Wei Chen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsiang Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chun Liao
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Xin-Wen Huang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Jang Lu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
23
|
Sugrue RJ, Tan BH. Defining the Assembleome of the Respiratory Syncytial Virus. Subcell Biochem 2023; 106:227-249. [PMID: 38159230 DOI: 10.1007/978-3-031-40086-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
24
|
Conselheiro JA, Barone GT, Miyagi SAT, de Souza Silva SO, Agostinho WC, Aguiar J, Brandão PE. Evolution of Rabies Virus Isolates: Virulence Signatures and Effects of Modulation by Neutralizing Antibodies. Pathogens 2022; 11:pathogens11121556. [PMID: 36558890 PMCID: PMC9782306 DOI: 10.3390/pathogens11121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lyssavirus rabies (RABV) is an RNA virus and, therefore, is subject to mutations due to low RNA polymerase replication fidelity, forming a population structure known as a viral quasispecies, which is the core of RNA viruses' adaptive strategy. Under new microenvironmental conditions, the fittest populations are selected, and the study of this process on the molecular level can help determine molecular signatures related to virulence. Our aim was to survey gene signatures on nucleoprotein and glycoprotein genes that might be involved in virulence modulation during the in vitro evolution of RABV lineages after serial passages in a neuronal cell system with or without the presence of neutralizing antibodies based on replicative fitness, in vivo neurotropism and protein structure and dynamics. The experiments revealed that amino acids at positions 186 and 188 of the glycoprotein are virulence factors of Lyssavirus rabies, and site 186 specifically might allow the attachment to heparan as a secondary cell receptor, while polymorphism at position 333 might allow the selection of escape mutants under suboptimal neutralizing antibodies titers.
Collapse
Affiliation(s)
- Juliana Amorim Conselheiro
- Laboratory of Diagnostics of Zoonosis and Vector-borne Diseases (LabZoo), Zoonosis Surveillance Division, Health Surveillance Coordination, Municipal Health Department, São Paulo 02031-020, SP, Brazil
- Correspondence:
| | - Gisely Toledo Barone
- Laboratory of Diagnostics of Zoonosis and Vector-borne Diseases (LabZoo), Zoonosis Surveillance Division, Health Surveillance Coordination, Municipal Health Department, São Paulo 02031-020, SP, Brazil
| | - Sueli Akemi Taniwaki Miyagi
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Sheila Oliveira de Souza Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Washington Carlos Agostinho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Joana Aguiar
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Paulo Eduardo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
25
|
Zhao X, Wang C, Jiang H, Zhang H, Fang F, Chen M, Yuan Z, Teng Z, Liu J, Zhang X. Analysis of circulating respiratory syncytial virus A strains in Shanghai, China identified a new and increasingly prevalent lineage within the dominant ON1 genotype. Front Microbiol 2022; 13:966235. [PMID: 36033866 PMCID: PMC9403419 DOI: 10.3389/fmicb.2022.966235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus A (RSV-A) is one of the commonest pathogens causing acute respiratory tract infections in infants and children globally. The currently dominant circulating genotype of RSV-A, ON1, was first detected in Shanghai, China in 2011, but little data are available regarding its subsequent circulation and clinical impact here. In this work, we analyzed RSV-A infection in a cohort of patients hospitalized for acute respiratory infections in Shanghai Children’s Hospital, and RSV-A was detected in ~10% of these cases. RSV-A G gene sequencing revealed that all successfully sequenced strains belonged to ON1 genotype, but in phylogenetic analysis, the majority of these sequences formed a clade separate from the four previously established lineages within ON1. The new lineage, denoted ON1-5, was supported by phylogenetic analyses using additional G gene sequences from RSV-A strains isolated in Shanghai and elsewhere. ON1-5 first appeared in 2015 in China and the Netherlands, and has since spread to multiple continents and gained dominance in Asia. In our cohort, ON1-5 was not associated with markedly different clinical presentations compared to other ON1 lineages. ON1-5 strains are characterized by four amino acid variations in the two mucin-like regions of G protein, and one variation (N178G) within the highly conserved CCD domain that is involved in receptor binding. These data highlight the continuous evolution of RSV-A, and suggest the possibility of the virus acquiring variations in domains traditionally considered to be conserved for fitness gain.
Collapse
Affiliation(s)
- Xue Zhao
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Jiang
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanghao Fang
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zheng Teng
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- *Correspondence: Zheng Teng,
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/MOH/CAMS) and Shanghai Key Laboratory of Medical Epigenetics, Department of Microbiology and Parasitology and Institutes of Biomedical Sciences, School of Basic Medical Sciences and Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
- Jing Liu,
| | - Xi Zhang
- Virus Testing Laboratory, Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- Xi Zhang,
| |
Collapse
|
26
|
Mittal A, Chauhan A. Aspects of Biological Replication and Evolution Independent of the Central Dogma: Insights from Protein-Free Vesicular Transformations and Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:185-209. [PMID: 35333977 PMCID: PMC8951669 DOI: 10.1007/s00232-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Biological membrane remodeling is central to living systems. In spite of serving as “containers” of whole-living systems and functioning as dynamic compartments within living systems, biological membranes still find a “blue collar” treatment compared to the “white collar” nucleic acids and proteins in biology. This may be attributable to the fact that scientific literature on biological membrane remodeling is only 50 years old compared to ~ 150 years of literature on proteins and a little less than 100 years on nucleic acids. However, recently, evidence for symbiotic origins of eukaryotic cells from data only on biological membranes was reported. This, coupled with appreciation of reproducible amphiphilic self-assemblies in aqueous environments (mimicking replication), has already initiated discussions on origins of life beyond nucleic acids and proteins. This work presents a comprehensive compilation and meta-analyses of data on self-assembly and vesicular transformations in biological membranes—starting from model membranes to establishment of Influenza Hemagglutinin-mediated membrane fusion as a prototypical remodeling system to a thorough comparison between enveloped mammalian viruses and cellular vesicles. We show that viral membrane fusion proteins, in addition to obeying “stoichiometry-driven protein folding”, have tighter compositional constraints on their amino acid occurrences than general-structured proteins, regardless of type/class. From the perspective of vesicular assemblies and biological membrane remodeling (with and without proteins) we find that cellular vesicles are quite different from viruses. Finally, we propose that in addition to pre-existing thermodynamic frameworks, kinetic considerations in de novo formation of metastable membrane structures with available “third-party” constituents (including proteins) were not only crucial for origins of life but also continue to offer morphological replication and/or functional mechanisms in modern life forms, independent of the central dogma.
Collapse
Affiliation(s)
- Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India. .,Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Akanksha Chauhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
27
|
Feng Z, Xu L, Xie Z. Receptors for Respiratory Syncytial Virus Infection and Host Factors Regulating the Life Cycle of Respiratory Syncytial Virus. Front Cell Infect Microbiol 2022; 12:858629. [PMID: 35281439 PMCID: PMC8913501 DOI: 10.3389/fcimb.2022.858629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections and responsible for a large proportion of mortality in children and the elderly. There are no licensed vaccines available to date. Prophylaxis and therapeutic RSV-specific antibodies are limited to populations at high risk owing to high cost and uncertain clinical value. Receptors and host factors are two determinants important for virus entry and establishment of infection in vivo. The identification and understanding of viral receptors and host factors can help us to gain insight into the pathogenesis of RSV infection. Herein, we reviewed receptors and host factors that have been reported thus far. RSV could bind to CX3C chemokine receptor 1 and heparan sulfate proteoglycans via the G protein, and to nucleolin, insulin-like growth factor-1 receptor, epidermal growth factor, and intercellular adhesion molecule-1 via the F protein. Seven host restriction factors and 13 host factors essential for RSV infection were reviewed. We characterized the functions and their roles in the life cycle of RSV, trying to provide an update on the information of RSV-related receptors and host factors.
Collapse
Affiliation(s)
- Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Lili Xu,
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
29
|
Mutation in the CX3C Motif of G Protein Disrupts Its Interaction with Heparan Sulfate: A Calorimetric, Spectroscopic, and Molecular Docking Study. Int J Mol Sci 2022; 23:ijms23041950. [PMID: 35216066 PMCID: PMC8880246 DOI: 10.3390/ijms23041950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in children and infants. To date, there is no effective vaccine available against RSV. Heparan sulfate is a type of glycosaminoglycan that aids in the attachment of the RSV to the host cell membrane via the G protein. In the present study, the effect of amino acid substitution on the structure and stability of the ectodomain G protein was studied. Further, it was investigated whether mutation (K117A) in the CX3C motif of G protein alters the binding with heparan sulfate. The point mutation significantly affects the conformational stability of the G protein. The mutant protein showed a low binding affinity with heparan sulfate as compared to the wild-type G protein, as determined by fluorescence quenching, isothermal titration calorimetry (ITC), and molecular docking studies. The low binding affinity and decreased stability suggested that this mutation may play an important role in prevention of attachment of virion to the host cell receptors. Collectively, this investigation suggests that mutation in the CX3C motif of G protein may likely improve the efficacy and safety of the RSV vaccine.
Collapse
|
30
|
Fujikane A, Sakamoto A, Fujikane R, Nishi A, Ishino Y, Hiromatsu K, Nabeshima S. Ephedrae Herba and Cinnamomi Cortex interactions with G glycoprotein inhibit respiratory syncytial virus infectivity. Commun Biol 2022; 5:94. [PMID: 35079103 PMCID: PMC8789818 DOI: 10.1038/s42003-022-03046-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Although respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in children, no effective therapies are available. Recently, RSV G, the attachment glycoprotein, has become a major focus in the development of therapeutic strategies against RSV infection. Treatment of RSV-infected cultured cells with maoto, a traditional herbal medicine for acute febrile diseases, significantly reduced the viral RNA and titers. RSV attachment to the cell surface was inhibited both in the presence of maoto and when RSV particles were pre-treated with maoto. We demonstrated that maoto components, Ephedrae Herba (EH) and Cinnamomi Cortex (CC), specifically interacted with the central conserved domain (CCD) of G protein, and also found that this interaction blocked viral attachment to the cellular receptor CX3CR1. Genetic mutation of CX3C motif on the CCD, the epitope for CX3CR1, decreased the binding capacity to EH and CC, suggesting that CX3C motif was the target for EH and CC. Finally, oral administration of maoto for five days to RSV-infected mice significantly reduced the lung viral titers. These experiments clearly showed the anti-RSV activity of EH and CC mixed in maoto. Taken together, this study provides insights for the rational design of therapies against RSV infection.
Collapse
Affiliation(s)
- Aya Fujikane
- General Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Atsuhiko Sakamoto
- General Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Hiromatsu
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
31
|
Bergeron HC, Tripp RA. Breakthrough therapy designation of nirsevimab for the prevention of lower respiratory tract illness caused by respiratory syncytial virus infections (RSV). Expert Opin Investig Drugs 2021; 31:23-29. [PMID: 34937485 DOI: 10.1080/13543784.2022.2020248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of serious lower respiratory tract infection (LRTI) in infants and young children. Palivizumab is an RSV-specific prophylactic for use in high-risk infants but treatment requires monthly injections and only modestly reduces hospitalization. Thus, new immunoprophylactic candidates are under development. Nirsevimab (MEDI8897) is a monoclonal antibody with an extended half-life developed to protect infants for an entire RSV season with a single dose. AREAS COVERED This review summarizes clinical trial data on nirsevimab. The authors introduce RSV and surface viral proteins involved in infection, then discuss the development and achievements of nirsevimab in clinical trials concluding with expert opinion. Information was compiled from PubMed, clinicaltrials.gov, and press releases from AstraZeneca and Sanofi. EXPERT OPINION Nirsevimab (MEDI8897) is an RSV F protein monoclonal antibody and the next-generation RSV medicine having an extended half-life developed for the prevention of LRTI caused by RSV. Nirsevimab will supplant the current standard of care for RSV prevention. Importantly, nirsevimab requires a single dose to last the entire RSV season and may be given to term, preterm, and high-risk infants. However, even with nirsevimab approval there remains a need for an efficacious RSV vaccine and treatments.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
32
|
Wellemans V, Benhassou HA, Fuselier E, Bellesort F, Dury S, Lebargy F, Dormoy V, Fichel C, Naour RL, Gounni AS, Lamkhioued B. Role of CCR3 in respiratory syncytial virus infection of airway epithelial cells. iScience 2021; 24:103433. [PMID: 34917892 PMCID: PMC8646169 DOI: 10.1016/j.isci.2021.103433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the principal cause of severe lower respiratory tract disease and accounts for a significant risk for developing asthma later in life. Clinical studies have shown an increase in airway responsiveness and a concomitant Th2 response in the lungs of RSV-infected patients. These indications suggest that RSV may modulate aspects of the immune response to promote virus replication. Here, we show that CCR3 facilitates RSV infection of airway epithelial cells, an effect that was inhibited by eotaxin-1/CCL11 or upon CCR3 gene silencing. Mechanistically, cellular entry of RSV is mediated by binding of the viral G protein to CCR3 and selective chemotaxis of Th2 cells and eosinophils. In vivo, mice lacking CCR3 display a significant reduction in RSV infection, airway inflammation, and mucus production. Overall, RSV G protein-CCR3 interaction may participate in pulmonary infection and inflammation by enhancing eosinophils' recruitment and less potent antiviral Th2 cells. CCR3 mediates RSV infection of human airway epithelial cells Eotaxin-1 blocks RSV-G binding to CCR3 and significantly decreases RSV infection RSV-G secreted protein (sG) attracts human eosinophils and Th2 cells through CCR3 RSV infection of mice lacking CCR3 exhibited reduced inflammation and mucus secretion
Collapse
Affiliation(s)
| | - Hassan Ait Benhassou
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Eloise Fuselier
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Sandra Dury
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France.,Service des Maladies Respiratoires et Allergiques. Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - François Lebargy
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France.,Service des Maladies Respiratoires et Allergiques. Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S 1250, Pathologies Pulmonaires et Plasticité Cellulaire (P3Cell). Université de Reims Champagne-Ardenne, Reims, France
| | - Caroline Fichel
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Bouchaib Lamkhioued
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
33
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
34
|
Structural Characterization of Ectodomain G Protein of Respiratory Syncytial Virus and Its Interaction with Heparan Sulfate: Multi-Spectroscopic and In Silico Studies Elucidating Host-Pathogen Interactions. Molecules 2021; 26:molecules26237398. [PMID: 34885979 PMCID: PMC8658883 DOI: 10.3390/molecules26237398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023] Open
Abstract
The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) ↔ denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host–pathogen interaction.
Collapse
|
35
|
Anderson LJ, Jadhao SJ, Paden CR, Tong S. Functional Features of the Respiratory Syncytial Virus G Protein. Viruses 2021; 13:1214. [PMID: 34372490 PMCID: PMC8310105 DOI: 10.3390/v13071214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in children <5 years of age worldwide and repeated infections throughout life leading to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary systems. The disease burden has made it a high priority for vaccine and antiviral drug development but without success except for immune prophylaxis for certain young infants. Two RSV proteins are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug development. Several features of the G protein suggest it could also be an important to vaccine or antiviral drug target design. We review features of G that effect biology of infection, the host immune response, and disease associated with infection. Though it is not clear how to fit these together into an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection, modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes to many of these effects. These features of G and the ability to block the effects with antibody, suggest G has substantial potential in vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Samadhan J. Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| |
Collapse
|
36
|
Rodriguez-Izquierdo I, Ceña-Diez R, Serramia MJ, Rodriguez-Fernández R, Martínez I, Muñoz-Fernández M. Role of G2-S16 Polyanionic Carbosilane Dendrimer in the Prevention of Respiratory Syncytial Virus Infection In Vitro and In Vivo in Mice. Polymers (Basel) 2021; 13:polym13132141. [PMID: 34209827 PMCID: PMC8271643 DOI: 10.3390/polym13132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The respiratory syncytial virus (RSV) causes respiratory infection and bronchiolitis, requiring hospitalization mainly in infants. The interaction between RSV, envelope glycoproteins G and F, and cell surface heparan sulfate proteoglycans (HSPG) is required for binding and entry into the host cells. A G2-S16 polyanionic carbosilane dendrimer was identified as a possible RSV inhibitor. We speculated that the G2-S16 dendrimer adheres to the host cell-surface HSPG, acts through binding to HS receptors, and prevents further RSV infection. The G2-S16 dendrimer was non-toxic when applied intranasally to Balb/c mice, and interestingly enough, this G2-S16 dendrimer inhibits 85% RSV. Therefore, our G2-S16 dendrimer could be a candidate for developing a new possible therapy against RSV infection.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Izquierdo
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Rafael Ceña-Diez
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
| | - Maria Jesús Serramia
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Rosa Rodriguez-Fernández
- Hospital de Pediatría, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28007 Madrid, Spain;
| | - Mariángeles Muñoz-Fernández
- Immunology Section, Head Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain; (I.R.-I.); (R.C.-D.); (M.J.S.)
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-462-4684
| |
Collapse
|
37
|
Hamza A, Shafat Z, Parray ZA, Hisamuddin M, Khan WH, Ahmed A, Almajhdi FN, Farrag MA, Mohammed AA, Islam A, Parveen S. Structural Characterization and Binding Studies of the Ectodomain G Protein of Respiratory Syncytial Virus Reveal the Crucial Role of pH with Possible Implications in Host-Pathogen Interactions. ACS OMEGA 2021; 6:10403-10414. [PMID: 34056193 PMCID: PMC8153753 DOI: 10.1021/acsomega.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading viral pathogen causing acute lower respiratory tract infection in children. The G protein of RSV is involved in attachment with the host cell. It is a neutralizing antigen and thus a vaccine candidate. Heparan sulfate is a type of glycosaminoglycan (GAG) present on the host cell membrane that is involved in attachment with the G protein of RSV. We describe a novel approach for efficient expression and purification of the ectodomain G protein in the prokaryotic system and its biophysical characterization. The native ectodomain G protein was purified using a two-step process by Ni-NTA and DEAE weak anion-exchange chromatography through the supernatant obtained after cell lysis. In addition, the denatured form of the protein was also purified from the solubilized inclusion bodies (IBs) by Ni-NTA affinity chromatography with a higher yield. Dynamic light scattering (DLS) was performed to confirm the homogeneity of the purified protein. The effect of pH on the stability and structure of the purified protein was studied by circular dichroism (CD), fluorescence, and absorbance spectroscopy techniques. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) were exploited to demonstrate the interaction of heparan sulfate with the ectodomain G protein. The dynamic light scattering results showed that the purified protein was homogenic and had a well-folded native conformation. Biophysical characterization of the protein revealed that it was stable and had intact secondary and tertiary structures at pH 7.5. CD analysis revealed that the protein showed a loss in the secondary structure at pH values 5.5 and 3.5, while absorbance spectroscopy suggested a stable tertiary structure at pH values 7.5 and 5.5 with a probable aggregation pattern at pH 3.5. This loss in the structure of the ectodomain G protein at low pH can be correlated with its physiological activity. A slight change in pH might play a crucial role in host-pathogen interactions. The fluorescence intensity of the protein decreased on moving toward a lower pH with no spectral shift in emission maxima. In addition, isothermal titration calorimetry and microscale thermophoresis results showed strong binding affinity of the ectodomain G protein with heparan sulfate. The binding of heparan sulfate with protein was probably due to the electrostatic interaction of positively charged amino acid residues of the heparin-binding domain of the protein and the negatively charged group of GAGs. Future studies may involve the development of possible therapeutic agents interacting with the G protein and affecting the overall charge and pH that might hinder the host-pathogen interaction.
Collapse
Affiliation(s)
- Abu Hamza
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zoya Shafat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Malik Hisamuddin
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Wajihul Hasan Khan
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Anwar Ahmed
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad N. Almajhdi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Farrag
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arif Ahmed Mohammed
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Parveen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
38
|
King T, Mejias A, Ramilo O, Peeples ME. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog 2021; 17:e1009469. [PMID: 33831114 PMCID: PMC8057581 DOI: 10.1371/journal.ppat.1009469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.
Collapse
Affiliation(s)
- Tiffany King
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
39
|
Shilovskiy IP, Yumashev KV, Nikolsky AA, Vishnyakova LI, Khaitov MR. Molecular and Cellular Mechanisms of Respiratory Syncytial Viral Infection: Using Murine Models to Understand Human Pathology. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:290-306. [PMID: 33838630 PMCID: PMC7957450 DOI: 10.1134/s0006297921030068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe pathology of the lower respiratory tract in infants, immunocompromised people, and elderly. Despite decades of research, there is no licensed vaccine against RSV, and many therapeutic drugs are still under development. Detailed understanding of molecular and cellular mechanisms of the RSV infection pathology can accelerate the development of efficacious treatment. Current studies on the RSV pathogenesis are based on the analysis of biopsies from the infected patients; however deeper understanding of molecular and cellular mechanisms of the RSV pathology could be achieved using animal models. Mice are the most often used model for RSV infection because they exhibit manifestations similar to those observed in humans (bronchial obstruction, mucous hypersecretion, and pulmonary inflammation mediated by lymphocytes, macrophages, and neutrophils). Additionally, the use of mice is economically feasible, and many molecular tools are available for studying RSV infection pathogenesis at the molecular and cellular levels. This review summarizes new data on the pathogenesis of RSV infection obtained in mouse models, which demonstrated the role of T cells in both the antiviral defense and the development of lung immunopathology. T cells not only eliminate the infected cells, but also produce significant amounts of the proinflammatory cytokines TNFα and IFNγ. Recently, a new subset of tissue-resident memory T cells (TRM) was identified that provide a strong antiviral defense without induction of lung immunopathology. These cells accumulate in the lungs after local rather than systemic administration of RSV antigens, which suggests new approaches to vaccination. The studies in mouse models have revealed a minor role of interferons in the anti-RSV protection, as RSV possesses mechanisms to escape the antiviral action of type I and III interferons, which may explain the low efficacy of interferon-containing drugs. Using knockout mice, a significant breakthrough has been achieved in understanding the role of many pro-inflammatory cytokines in lung immunopathology. It was found that in addition to TNFα and IFNγ, the cytokines IL-4, IL-5, IL-13, IL-17A, IL-33, and TSLP mediate the major manifestations of the RSV pathogenesis, such as bronchial obstruction, mucus hyperproduction, and lung infiltration by pro-inflammatory cells, while IL-6, IL-10, and IL-27 exhibit the anti-inflammatory effect. Despite significant differences between the mouse and human immune systems, mouse models have made a significant contribution to the understanding of molecular and cellular mechanisms of the pathology of human RSV infection.
Collapse
Affiliation(s)
- Igor P Shilovskiy
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia.
| | - Kirill V Yumashev
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - Alexandr A Nikolsky
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - Liudmila I Vishnyakova
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| |
Collapse
|
40
|
Respiratory Syncytial Virus (RSV) G Protein Vaccines With Central Conserved Domain Mutations Induce CX3C-CX3CR1 Blocking Antibodies. Viruses 2021; 13:v13020352. [PMID: 33672319 PMCID: PMC7926521 DOI: 10.3390/v13020352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause bronchiolitis, pneumonia, morbidity, and some mortality, primarily in infants and the elderly, for which no vaccine is available. The RSV attachment (G) protein contains a central conserved domain (CCD) with a CX3C motif implicated in the induction of protective antibodies, thus vaccine candidates containing the G protein are of interest. This study determined if mutations in the G protein CCD would mediate immunogenicity while inducing G protein CX3C-CX3CR1 blocking antibodies. BALB/c mice were vaccinated with structurally-guided, rationally designed G proteins with CCD mutations. The results show that these G protein immunogens induce a substantial anti-G protein antibody response, and using serum IgG from the vaccinated mice, these antibodies are capable of blocking the RSV G protein CX3C-CX3CR1 binding while not interfering with CX3CL1, fractalkine.
Collapse
|
41
|
A Respiratory Syncytial Virus Attachment Gene Variant Associated with More Severe Disease in Infants Decreases Fusion Protein Expression, Which May Facilitate Immune Evasion. J Virol 2020; 95:JVI.01201-20. [PMID: 33115881 DOI: 10.1128/jvi.01201-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.
Collapse
|
42
|
Yi M, Lin S, Zhang B, Jin H, Ding L. Antiviral potential of natural products from marine microbes. Eur J Med Chem 2020; 207:112790. [PMID: 32937282 PMCID: PMC7457942 DOI: 10.1016/j.ejmech.2020.112790] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Humans have been suffered from viral infections over the centuries, such as influenza, HSV, and HIV, which have killed millions of people worldwide. However, the availability of effective treatments for infectious diseases remains limited until now, as most of the viral pathogens resisted to many medical treatments. Marine microbes are currently one of the most copious sources of pharmacologically active natural products, which have constantly provided promising antivirus agents. To date, a large number of marine microbial secondary metabolites with antiviral activities have been widely reported. In this review, we have summarized the potential antivirus compounds from marine microorganisms over the last decade. In addition, the structures, bioactivities, and origins of these compounds were discussed as well.
Collapse
Affiliation(s)
- Mengqi Yi
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Sixiao Lin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
43
|
Han Z, Rao J, Xie Z, Wang C, Xu B, Qian S, Wang Y, Zhu J, Yang B, Xu F, Lei X, Guo F, Zhao Z, Ren L, Wang J. Chemokine (C-X-C Motif) Ligand 4 Is a Restrictor of Respiratory Syncytial Virus Infection and an Indicator of Clinical Severity. Am J Respir Crit Care Med 2020; 202:717-729. [PMID: 32543879 DOI: 10.1164/rccm.201908-1567oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Respiratory syncytial virus (RSV) is the leading cause of childhood respiratory infections worldwide; however, no vaccine is available, and treatment options are limited. Identification of host factors pivotal to viral replication may inform the development of novel therapies, prophylaxes, or diagnoses.Objectives: To identify host factors involved in RSV replication and to evaluate their potential for disease management.Methods: A gain-of-function screening was performed on the basis of a genome-wide human complementary DNA library screen for host factors involved in RSV replication. The antiviral mechanism of CXCL4 (chemokine [C-X-C motif] ligand 4) was analyzed. Its clinical role was evaluated via nasopharyngeal aspirates and plasma samples from patients with RSV infection and different disease severities.Measurements and Main Results: Forty-nine host factors restricting RSV replication were identified by gain-of-function screening, with CXCL4 showing the strongest antiviral effect, which was secretion dependent. CXCL4 blocked viral attachment through binding to the RSV main receptor heparan sulfate, instead of through interacting with RSV surface proteins. Intranasal pretreatment with CXCL4 alleviated inflammation in RSV-infected mice, as shown by decreased concentrations of tumor necrosis factor and viral load in BAL fluid samples as well as by viral nucleocapsid protein histological staining in lungs. Compared with non-RSV infections, RSV infections induced elevated CXCL4 concentrations both in plasma and airway samples from mice and pediatric patients. The airway CXCL4 concentration was correlated with viral load and disease severity in patients (P < 0.001).Conclusions: Our results suggest that CXCL4 is an RSV restriction factor that can block viral entry and serve as an indicator of clinical severity in RSV infections.
Collapse
Affiliation(s)
- Zibo Han
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Rao
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases.,Key Laboratory of Major Diseases in Children, Ministry of Education, and.,Laboratory of Infection and Virology, Beijing Pediatric Research Institute, National Clinical Research Center for Respiratory Diseases and National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China; and.,Research Unit of Critical Infection in Children and
| | - Conghui Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Baoping Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases.,Key Laboratory of Major Diseases in Children, Ministry of Education, and.,Laboratory of Infection and Virology, Beijing Pediatric Research Institute, National Clinical Research Center for Respiratory Diseases and National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China; and.,Research Unit of Critical Infection in Children and
| | - Suyun Qian
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases.,Key Laboratory of Major Diseases in Children, Ministry of Education, and.,Laboratory of Infection and Virology, Beijing Pediatric Research Institute, National Clinical Research Center for Respiratory Diseases and National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China; and.,Research Unit of Critical Infection in Children and
| | - Yingying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Junlin Zhu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bin Yang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fengwen Xu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and
| | - Xiaobo Lei
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fei Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and
| | - Zhendong Zhao
- National Health Commission Key Laboratory of Systems Biology of Pathogens and
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
44
|
Host Retromer Protein Sorting Nexin 2 Interacts with Human Respiratory Syncytial Virus Structural Proteins and is Required for Efficient Viral Production. mBio 2020; 11:mBio.01869-20. [PMID: 32994321 PMCID: PMC7527724 DOI: 10.1128/mbio.01869-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study contributes new knowledge to understand HRSV assembly by providing evidence that nonglycosylated structural proteins M and N interact with elements of the secretory pathway, shedding light on their intracellular traffic. To the best of our knowledge, the present contribution is important given the scarcity of studies about the traffic of HRSV nonglycosylated proteins, especially by pointing to the involvement of SNX2, a retromer component, in the HRSV assembly process. Human respiratory syncytial virus (HRSV) envelope glycoproteins traffic to assembly sites through the secretory pathway, while nonglycosylated proteins M and N are present in HRSV inclusion bodies but must reach the plasma membrane, where HRSV assembly happens. Little is known about how nonglycosylated HRSV proteins reach assembly sites. Here, we show that HRSV M and N proteins partially colocalize with the Golgi marker giantin, and the glycosylated F and nonglycosylated N proteins are closely located in the trans-Golgi, suggesting their interaction in that compartment. Brefeldin A compromised the trafficking of HRSV F and N proteins and inclusion body sizes, indicating that the Golgi is important for both glycosylated and nonglycosylated HRSV protein traffic. HRSV N and M proteins colocalized and interacted with sorting nexin 2 (SNX2), a retromer component that shapes endosomes in tubular structures. Glycosylated F and nonglycosylated N HRSV proteins are detected in SNX2-laden aggregates with intracellular filaments projecting from their outer surfaces, and VPS26, another retromer component, was also found in inclusion bodies and filament-shaped structures. Similar to SNX2, TGN46 also colocalized with HRSV M and N proteins in filamentous structures at the plasma membrane. Cell fractionation showed enrichment of SNX2 in fractions containing HRSV M and N proteins. Silencing of SNX1 and 2 was associated with reduction in viral proteins, HRSV inclusion body size, syncytium formation, and progeny production. The results indicate that HRSV structural proteins M and N are in the secretory pathway, and SNX2 plays an important role in the traffic of HRSV structural proteins toward assembly sites.
Collapse
|
45
|
Evaluation of the respiratory syncytial virus G-directed neutralizing antibody response in the human airway epithelial cell model. Virology 2020; 550:21-26. [PMID: 32866728 DOI: 10.1016/j.virol.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022]
Abstract
Human respiratory syncytial virus (RSV) is a major cause of serious respiratory tract infections in infants and the elderly. Recently it was shown that the RSV G glycoprotein mediates attachment to cells using CX3CR1 as a receptor, and that G-specific neutralizing antibodies can be detected using human airway epithelial (HAE) cell cultures. To investigate the contributions of G-specific antibodies to RSV neutralization, we performed HAE neutralization assays on sera from RSV G-immunized mice or RSV-infected infants. We confirmed that G-specific neutralization using serum from mice or humans could only be detected on HAE cultures. We also found that RSV G-specific antibodies in infants were either subgroup specific or cross-neutralizing. Altogether, our results suggest that G is an important target for generating neutralizing antibodies and would be beneficial to include in an RSV vaccine. Further, inclusion of G antigens from both RSV subgroups may enhance the vaccine cross protection potency.
Collapse
|
46
|
Ajamian F, Ilarraza R, Wu Y, Morris K, Odemuyiwa SO, Moqbel R, Adamko DJ. CCL5 persists in RSV stocks following sucrose-gradient purification. J Leukoc Biol 2020; 108:169-176. [PMID: 32450617 DOI: 10.1002/jlb.4ma0320-621r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is associated with bronchiolitis in infancy and the later development of asthma. Research on RSV in vitro requires preparation of a purified RSV stock. The objective for this work was to develop best methods for RSV purification, while monitoring the samples for potential contaminating proinflammatory mediators. Using polyethylene glycol concentration, and sucrose-gradient ultracentrifugation, we collected samples at each step of purification and measured the values of RSV titer, total protein (µg/mL), and proinflammatory cytokines (ELISA). We analyzed the efficacy of each step in the purification procedure. In so doing, we also determined that despite optimal purification methods, a well-known chemokine in the field of allergic disease, CCL5 (RANTES), persisted within the virus preparations, whereas other cytokines did not. We suggest that researchers should be aware that CCL5 appears to co-purify with RSV. Despite reasonable purification methods, a significant level of CCL5 (RANTES) persists in the virus preparation. This is relevant to the study of RSV-induced allergic disease.
Collapse
Affiliation(s)
- Farnam Ajamian
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ramses Ilarraza
- Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Yingqi Wu
- Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Katherine Morris
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Redwan Moqbel
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darryl J Adamko
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Departments of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
47
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Conformational Flexibility in Respiratory Syncytial Virus G Neutralizing Epitopes. J Virol 2020; 94:JVI.01879-19. [PMID: 31852779 DOI: 10.1128/jvi.01879-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in infants and the elderly. Currently, no vaccine or effective treatment exists for RSV. The RSV G glycoprotein mediates viral attachment to cells and contributes to pathogenesis by modulating host immunity through interactions with the human chemokine receptor CX3CR1. Antibodies targeting the RSV G central conserved domain are protective in both prophylactic and postinfection animal models. Here, we describe the crystal structure of the broadly neutralizing human monoclonal antibody 3G12 bound to the RSV G central conserved domain. Antibody 3G12 binds to a conformational epitope composed of highly conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G complexed with 3G12 adopts a distinct conformation not observed in previously described RSV G-antibody structures. Comparison to other structures reveals that the RSV G central conserved domain is flexible and can adopt multiple conformations in the regions flanking the cysteine noose. We also show that restriction of RSV G flexibility with a proline mutation abolishes binding to antibody 3G12 but not antibody 3D3, which recognizes a different conformation of RSV G. Our studies provide new insights for rational vaccine design, indicating the importance of preserving both the global structural integrity of antigens and local conformational flexibility at antigenic sites, which may elicit a more diverse antibody response and broader protection against infection and disease.IMPORTANCE Respiratory syncytial virus (RSV) causes severe respiratory infections in infants, young children, and the elderly, and currently, no licensed vaccine exists. In this study, we describe the crystal structure of the RSV surface glycoprotein G in complex with a broadly neutralizing human monoclonal antibody. The antibody binds to RSV G at a highly conserved region stabilized by two disulfide bonds, but it captures RSV G in a conformation not previously observed, revealing that this region is both structured and flexible. Importantly, our findings provide insight for the design of vaccines that elicit diverse antibodies, which may provide broad protection from infection and disease.
Collapse
|
49
|
Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory syncytial virus. Expert Opin Investig Drugs 2020; 29:285-294. [PMID: 32096420 DOI: 10.1080/13543784.2020.1735349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes lower respiratory tract infections and can lead to morbidity and mortality in the infant, elderly and immunocompromised. There is no vaccine and therapeutic interventions are limited. RSV disease research has yielded the development of several prophylactic and therapeutic treatments. Several promising candidates are currently under investigation.Areas covered: Small and large molecule approaches to RSV treatment were examined and categorized by their mechanism of action using data from PubMed, clinicaltrials.gov, and from the sponsoring organizations publicly available pipeline information. These results are prefaced by an overview of RSV to provide the context for rational therapy development.Expert opinion: While small molecule drugs show promise for RSV treatment, we believe that large molecule therapy using anti-RSV G and F protein monoclonal antibodies (mAbs) will most efficaciously and safely ameliorate RSV disease.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
50
|
Isolation and Characterization of Clinical RSV Isolates in Belgium during the Winters of 2016-2018. Viruses 2019; 11:v11111031. [PMID: 31698728 PMCID: PMC6893609 DOI: 10.3390/v11111031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is a very important viral pathogen in children, immunocompromised and cardiopulmonary diseased patients and the elderly. Most of the published research with RSV was performed on RSV Long and RSV A2, isolated in 1956 and 1961, yet recent RSV isolates differ from these prototype strains. Additionally, these viruses have been serially passaged in cell culture, which may result in adaptations that affect virus–host interactions. We have isolated RSV from mucosal secretions of 12 patients in the winters 2016–2017 and 2017–2018, of which eight RSV-A subtypes and four RSV-B subtypes. Passage 3 of the isolates was assessed for viral replication kinetics and infectious virus production in HEp-2, A549 and BEAS-2B cells, thermal stability at 37 °C, 32 °C and 4 °C, syncytia formation, neutralization by palivizumab and mucin mRNA expression in infected A549 cells. We observed that viruses isolated in one RSV season show differences on the tested assays. Furthermore, comparison with RSV A2 and RSV B1 reveals for some RSV isolates differences in viral replication kinetics, thermal stability and fusion capacity. Major differences are, however, not observed and differences between the recent isolates and reference strains is, overall, similar to the observed variation in between the recent isolates. One clinical isolate (BE/ANT-A11/17) replicated very efficiently in all cell lines, and remarkably, even better than RSV A2 in the HEp-2 cell line.
Collapse
|