1
|
Shen H, Chen L, Yang H. The critical role of aromatic residues in the binding of the SARS-CoV-2 fusion peptide to phospholipid bilayer membranes. Phys Chem Chem Phys 2024; 26:26342-26354. [PMID: 39385589 DOI: 10.1039/d4cp03045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Based on the SARS-CoV-2 fusion peptide (FP) structure determined from the NMR experiment, we created six FP models under different environmental conditions to explore the effects of salt and cholesterol on FP-membrane binding. The all-atom molecular dynamics (MD) simulation results indicated that ionic environments notably impact the FP structure as well as the stability of the helical elements within the peptide. Our findings highlighted the unpredictable influence of ions on the secondary structures and dynamics of the FP, emphasizing the complexity and sensitivity of the peptide's conformations to ionic conditions. When exploring the peptide's interaction with a cholesterol-free phospholipid bilayer membrane, we found that the helical elements of the FP remain stable irrespective of the salt type (Na+ or Ca2+). This result emphasizes the crucial role of phospholipid bilayer membranes in supporting the secondary structures of the FP. The MD simulation results showed that Ca2+ ions facilitated deeper membrane penetration than Na+ ions, highlighting the critical role of calcium ions in the FP-membrane binding. Our study indicates the essential role of the aromatic residues (such as Phe833 and Tyr837) in the FP-membrane binding process. Finally, we investigated the FP-membrane binding patterns in the presence of cholesterol. The MD simulation results demonstrated that the coupling of Ca2+ ions and cholesterol would also benefit the FP-membrane binding. Furthermore, our findings reveal that while the type of ion and cholesterol content exert varied and unpredictable influences on FP-membrane binding patterns, aromatic residues like tyrosine (Tyr) and phenylalanine (Phe) play an essential role in FP-membrane binding. In particular, deep mutational scanning (DMS) experiments have confirmed that mutating phenylalanine in the FP significantly decreases viral mutational fitness, emphasizing the pivotal role of phenylalanine residues in membrane fusion. This knowledge can aid in developing more effective therapeutic strategies targeting the viral fusion peptide and its key amino acids, ultimately contributing to developing treatments and vaccines against the virus.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Ling Chen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| |
Collapse
|
2
|
Li W, Tahiri N. Host-Virus Cophylogenetic Trajectories: Investigating Molecular Relationships between Coronaviruses and Bat Hosts. Viruses 2024; 16:1133. [PMID: 39066295 PMCID: PMC11281392 DOI: 10.3390/v16071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host-virus connections. Among the 69 host-virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520-680, 770-870, 2930-3070, and 4910-5080) exhibited the lowest Robinson-Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0-140, 60-180, 100-410, 360-550, and 630-730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360-1390, 550-1610, 680-1680, 700-1710, 2060-3090, and 2130-3250), and four within the spike protein (positions 10-510, 50-560, 170-710, and 230-730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.
Collapse
Affiliation(s)
| | - Nadia Tahiri
- Department of Computer Science, University of Sherbrooke, 2500 Bd University, Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
3
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jayawardhana HHACK, Jeong SH, Kwon HJ, Jeon YJ. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:280-297. [PMID: 38827130 PMCID: PMC11136918 DOI: 10.1007/s42995-023-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 06/04/2024]
Abstract
A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3 Canada
| | | | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
4
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
5
|
Zhang Y, Clarke SP, Wu H, Li W, Zhou C, Lin K, Wang J, Wang J, Liang Y, Wang X, Wang L. A comprehensive overview on the transmission, pathogenesis, diagnosis, treatment, and prevention of SARS-CoV-2. J Med Virol 2023; 95:e28776. [PMID: 37212261 DOI: 10.1002/jmv.28776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a single positive-strand RNA virus that is responsible for the current pandemic that the world has been facing since 2019. The primary route of transmission of SARS-CoV-2 is through respiratory tract transmission. However, other transmission routes such as fecal-oral, vertical transmission, and aerosol-eye also exist. In addition, it has been found that the pathogenesis of this virus involves the binding of the virus's S protein to its host cell surface receptor angiotensin-converting enzyme 2, which results in the subsequent membrane fusion that is required for SARS-CoV-2 to replicate and complete its entire life. The clinical symptoms of patients infected with SARS-CoV-2 can range from asymptomatic to severe. The most common symptoms seen include fever, dry cough, and fatigue. Once these symptoms are observed, a nucleic acid test is done using reverse transcription-polymerase chain reaction. This currently serves as the main confirmatory tool for COVID-19. Despite the fact that no cure has been found for SARS-CoV-2, prevention methods such as vaccines, specific facial mask, and social distancing have proven to be quite effective. It is imperative to have a complete understanding of the transmission and pathogenesis of this virus. To effectively develop new drugs as well as diagnostic tools, more knowledge about this virus would be needed.
Collapse
Affiliation(s)
- Yiting Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | | | - Huanwu Wu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenli Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chang Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Kang Lin
- Department of Basic Medical Sciences, Morphological Experimental Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiawen Wang
- Department of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jinzhi Wang
- Department of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ying Liang
- Department of The Second Clinical School of Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xin Wang
- Department of Chemistry, Anhui Medical University, Hefei, Anhui, China
| | - Linding Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Cai MJ, Lin J, Zhu JH, Dai Z, Lin YQ, Liang XM. Unspecific reactivity must be excluded in COVID-19 epidemiological analyses or virus tracing based on serologic testing: Analysis of 46,777 post-pandemic samples and 1,114 pre-pandemic samples. Front Med (Lausanne) 2022; 9:1018578. [DOI: 10.3389/fmed.2022.1018578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Serologic testing is complementary to nucleic acid screening to identify SARS-CoV-2. This study aimed to evaluate unspecific reactivity in SARS-CoV-2 serologic tests.Materials and methodsTotal anti-SARS-CoV-2 antibodies from 46,777 subjects who were screened for SARS-CoV-2 were retrospectively studied to evaluate the incidence and characteristics of the unspecific reactivity. A total of 1,114 pre-pandemic samples were also analysed to compare unspecific reactivity.ResultsThe incidence of unspecific reactivity in anti-SARS-CoV-2 total antibody testing was 0.361% in 46,777 post-pandemic samples, similar to the incidence of 0.359% (4/1,114) in 1,114 pre-pandemic samples (p = 0.990). Subjects ≥ 19 years old had a 2.753-fold [95% confidence interval (CI), 1.130–6.706] higher probability of unspecific reactivity than subjects < 19 years old (p = 0.026). There was no significant difference between the sexes. The unspecific reactivity was associated with 14 categories within the disease spectrum, with three tops being the skin and subcutaneous tissue diseases (0.93%), respiratory system diseases (0.78%) and neoplasms diseases (0.76%). The percentage of patients with a titer ≥ 13.87 cut-off index (COI) in the unspecific reactivity was 7.69%.ConclusionOur results suggest a unspecific reactivity incidence rate of 0.361% involving 14 categories on the disease spectrum. Unspecific reactivity needs to be excluded when performing serologic antibody testing in COVID-19 epidemiological analyses or virus tracing.
Collapse
|
8
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
9
|
Shen H, Wu Z. Effect of Disulfide Bridge on the Binding of SARS-CoV-2 Fusion Peptide to Cell Membrane: A Coarse-Grained Study. ACS OMEGA 2022; 7:36762-36775. [PMID: 36278087 PMCID: PMC9583636 DOI: 10.1021/acsomega.2c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present the parameterization of the CAVS coarse-grained (CG) force field for 20 amino acids, and our CG simulations show that the CAVS force field could accurately predict the amino acid tendency of the secondary structure. Then, we used the CAVS force field to investigate the binding of a severe acute respiratory syndrome-associated coronavirus fusion peptide (SARS-CoV-2 FP) to a phospholipid bilayer: a long FP (FP-L) containing 40 amino acids and a short FP (FP-S) containing 26 amino acids. Our CAVS CG simulations displayed that the binding affinity of the FP-L to the bilayer is higher than that of the FP-S. We found that the FP-L interacted more strongly with membrane cholesterol than the FP-S, which should be attributed to the stable helical structure of the FP-L at the C-terminus. In addition, we discovered that the FP-S had one major and two minor membrane-bound states, in agreement with previous all-atom molecular dynamics (MD) studies. However, we found that both the C-terminal and N-terminal amino acid residues of the FP-L can strongly interact with the bilayer membrane. Furthermore, we found that the disulfide bond formed between Cys840 and Cys851 stabilized the helices of the FP-L at the C-terminus, enhancing the interaction between the FP-L and the bilayer membrane. Our work indicates that the stable helical structure is crucial for binding the SARS-CoV-2 FP to cell membranes. In particular, the helical stability of FP should have a significant influence on the FP-membrane binding.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Zhenhua Wu
- Department
of Big Data and Artificial Intelligence, Guizhou Vocational Technology College of Electronics & Information, Kaili 556000, China
| |
Collapse
|
10
|
Chen CC, Zhuang ZJ, Wu CW, Tan YL, Huang CH, Hsu CY, Tsai EM, Hsieh TH. Venetoclax Decreases the Expression of the Spike Protein through Amino Acids Q493 and S494 in SARS-CoV-2. Cells 2022; 11:cells11121924. [PMID: 35741053 PMCID: PMC9221610 DOI: 10.3390/cells11121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The new coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been reported and spread globally. There is an urgent need to take urgent measures to treat and prevent further infection of this virus. Here, we use virtual drug screening to establish pharmacophore groups and analyze the ACE2 binding site of the spike protein with the ZINC drug database and DrugBank database by molecular docking and molecular dynamics simulations. Screening results showed that Venetoclax, a treatment drug for chronic lymphocytic leukemia, has a potential ability to bind to the spike protein of SARS-CoV-2. In addition, our in vitro study found that Venetoclax degraded the expression of the spike protein of SARS-CoV-2 through amino acids Q493 and S494 and blocked the interaction with the ACE2 receptor. Our results suggest that Venetoclax is a candidate for clinical prevention and treatment and deserves further research.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (C.-C.C.); (Z.-J.Z.); (Y.-L.T.)
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Zhi-Jie Zhuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (C.-C.C.); (Z.-J.Z.); (Y.-L.T.)
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (C.-H.H.)
| | - Yi-Ling Tan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (C.-C.C.); (Z.-J.Z.); (Y.-L.T.)
| | - Chen-Hsiu Huang
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (C.-H.H.)
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.); (E.-M.T.)
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.); (E.-M.T.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (C.-H.H.)
- Correspondence: ; Tel.: +886-7615-1100 (ext. 5072)
| |
Collapse
|
11
|
Shen H, Wu Z, Chen L. Different Binding Modes of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides to Cell Membranes: The Influence of Peptide Helix Length. J Phys Chem B 2022; 126:4261-4271. [PMID: 35658454 PMCID: PMC9195569 DOI: 10.1021/acs.jpcb.2c01295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Although the amino acid sequences of SARS-CoV-1 and SARS-CoV-2 fusion peptides (FPs) are highly conserved, the cryo-electron microscopy structures of the SARS-CoV-1 and SARS-CoV-2 spike proteins show that the helix length of SARS-CoV-1 FP is longer than that of SARS-CoV-2 FP. In this work, we simulated the membrane-binding models of SARS-CoV-1 and SARS-CoV-2 FPs and compared the binding modes of the FPs with the POPC/POPE/cholesterol bilayer membrane. Our simulation results show that the SARS-CoV-2 FP binds to the bilayer membrane more effectively than the SARS-CoV-1 FP. It is seen that the short N-terminal helix of SARS-CoV-2 FP is more favorable to insert into the target membrane than the long N-terminal helix of SARS-CoV-1 FP. Meanwhile, the potential of mean force calculations showed that the SARS-CoV-2 FP would prefer only one binding mode (N-terminal binding), whereas the SARS-CoV-1 FP has two favorable membrane-binding modes (C-terminal and N-terminal binding modes). Moreover, in the case of SARS-CoV-1 FP binding to the target membrane, the transition between the two binding modes is relatively fast. Finally, we discovered that the membrane-binding mode would influence the helix length of SARS-CoV-1 FP, while the helix length of SARS-CoV-2 FP could be stably maintained in the membrane-bound configurations. This work suggests that the short helix might endow the FP with high membrane-anchoring strength. In particular, the membrane-penetrating residues (Phe, Ile, and Leu) of short α-helix interact with the cell membrane more strongly than those of long α-helix.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Zhenhua Wu
- Department
of Computer Science, Guizhou Vocational
Technology College of Electronics & Information, Kaili 556000, China
| | - Ling Chen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
12
|
Duan Y, Yuan C, Suo X, Cao L, Kong X, Li X, Zheng H, Wang Q. TET2 is Required for Type I IFN-mediated Inhibition of Bat-Origin Swine Acute Diarrhea Syndrome Coronavirus. J Med Virol 2022; 94:3251-3256. [PMID: 35211991 DOI: 10.1002/jmv.27673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/07/2022]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered bat-origin coronavirus with fatal pathogenicity for neonatal piglets. There is no vaccine to prevent SADS-CoV infection or clinically approved drugs targeting SADS-CoV. Therefore, unraveling cellular factors that regulate SADS-CoV for cell entry is critical to understanding the viral transmission mechanism and provides a potential therapeutic target for SADS-CoV cure. Here, we showed that type I interferon (IFN-I) pretreatment potently blocks SADS-CoV entry into cells using lentiviral pseudo-virions as targets whose entry is driven by the SADS-CoV Spike glycoprotein. IFN-I-mediated inhibition of SADS-CoV entry and replication was dramatically impaired in the absence of TET2. These results suggest TET2 is found to serve as a checkpoint of IFN-I-meditated inhibition on the cell entry of SADS-CoV, and our discovery might constitute a novel treatment option to combat against SADS-CoV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yueyue Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Cong Yuan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Xuepeng Suo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Liyan Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Xiangyu Kong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Xiangtong Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, 600103, China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Chengdu National Agricultural Science and Technology Center, Chengdu, 600103, China
| |
Collapse
|
13
|
Reduction of Cell Fusion by Deletion in the Hypervariable Region of the Spike Protein of Mouse Hepatitis Virus. Viruses 2022; 14:v14020398. [PMID: 35215991 PMCID: PMC8876987 DOI: 10.3390/v14020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 01/27/2023] Open
Abstract
Deletions in the spike gene of mouse hepatitis virus (MHV) produce several variants with diverse biological characteristics, highlighting the significance of the spike gene in viral pathogenesis. In this study, we characterized the JHM-X strain, which has a deletion in the hypervariable region (HVR) of the spike gene, compared with the cl-2 strain, which has a full spike gene. Cytopathic effects (CPEs) induced by the two strains revealed that the size of the CPE produced by cl-2 is much greater than that produced by JHM-X in delayed brain tumor (DBT) cells. Thus, this finding explains the greater fusion activity of cl-2 than JHM-X in cultured cells, and we speculate that the deletion region of the spike protein is involved in the fusion activity differences. In contrast with the fusion activity, a comparison of the virus growth kinetics revealed that the titer of JHM-X was approximately 100 times higher than that of cl-2. We found that the deletion region of the spike protein was involved in fusion activity differences, whereas cl-2 produced significantly higher luciferase activity than JHM-X upon similar expression levels of the spike protein. However, the reason behind the growth difference is still unknown. Overall, we discovered that deletion in the HVR of the spike gene could be involved in the fusion activity differences between the two strains.
Collapse
|
14
|
Alefishat E, Jelinek HF, Mousa M, Tay GK, Alsafar HS. Immune response to SARS-CoV-2 Variants: A focus on severity, susceptibility, and preexisting immunity. J Infect Public Health 2022; 15:277-288. [PMID: 35074728 PMCID: PMC8757655 DOI: 10.1016/j.jiph.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
The heterogeneous phenotypes among patients with coronavirus disease 2019 (COVID-19) has drawn worldwide attention, especially those with severe symptoms without comorbid conditions. Immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of COVID-19, occur mainly by the innate immune response via the interferon (IFN)-mediated pathways, and the adaptive immunity via the T lymphocyte and the antibody mediated pathways. The ability of the original Wuhan SARS-CoV-2 strain, and possibly more so with new emerging variants, to antagonize IFN-mediated antiviral responses can be behind the higher early viral load, higher transmissibility, and milder symptoms compared to SARS-CoV and are part of the continued clinical evolution of COVID-19. Since it first emerged, several variants of SARS-CoV-2 have been circulating worldwide. Variants that have the potential to elude natural or vaccine-mediated immunity are variants of concern. This review focuses on the main host factors that may explain the immune responses to SARS-CoV-2 and its variants in the context of susceptibility, severity, and preexisting immunity.
Collapse
Affiliation(s)
- Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Discipline of Psychiatry, Medical School, the University of Western Australia, Perth WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Cattel L, Giordano S, Traina S, Lupia T, Corcione S, Angelone L, La Valle G, De Rosa FG, Cattel F. Vaccine development and technology for SARS-CoV-2: Current insight. J Med Virol 2021; 94:878-896. [PMID: 34713912 PMCID: PMC8662109 DOI: 10.1002/jmv.27425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 02/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is associated with a severe respiratory disease in China, that rapidly spread across continents. Since the beginning of the pandemic, available data suggested the asymptomatic transmission and patients were treated with specific drugs with efficacy and safety data not always satisfactory. The aim of this review is to describe the vaccines developed by three companies, Pfizer‐BioNTech, Moderna, and University of Oxford/AstraZeneca, in terms of both technological and pharmaceutical formulation, safety, efficacy, and immunogenicity. A critical analysis of Phases 1, 2, and 3 clinical trial results available was conducted, comparing the three vaccine candidates, underlining their similarities and differences. All candidates showed consistent efficacy and tolerability; although some differences can be noted, such as their technological formulation, temperature storage, which will be related to logistics and costs. Further studies will be necessary to evaluate long‐term effects and to assess the vaccine safety and efficacy in the general population. The rapid development of SARS‐CoV‐2 vaccines has been possible because in the last 20 years there have been rapid improvements in vaccine development in different scientific areas, such as molecular biology, genetic engineering, nano‐materials and lipid nanotechnology. The first three SARS‐CoV‐2 vaccines developed by Pfizer–BioNTech, Moderna and the University of Oxford/AstraZeneca are described, in terms of technology, pharmaceutical formulation, safety, efficacy and immunogenicity. The main detectable difference concerns the technological formulation, influencing logistics: two of these are mRNA‐based vaccines encapsulated in LNPs, whereas one is a DNA‐based vaccine encapsulated in viral vector. mRNA‐based vaccines have an advantage over DNA ones, because mRNA is directly translated in the cytoplasm form ribosomes once inside the cell. Technological and scientific advances allowed the encapsulation of mRNA into custom‐designed LNPs that mimic the structural features of a viral vector. Efficacy and safety studies of Pfizer–BioNTech, Moderna and the University of Oxford/AstraZeneca vaccines are reported, to report the massive pharmaceutical innovation brought.
Collapse
Affiliation(s)
- Luigi Cattel
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Susanna Giordano
- Department of Hospital Pharmacy, Città della Salute e della Scienza, Turin, Italy
| | - Sara Traina
- Department of Hospital Pharmacy, Città della Salute e della Scienza, Turin, Italy
| | - Tommaso Lupia
- Infectious Diseases Unit, Cardinal Massaia Hospital, Asti, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Medical Sciences, Infectious Diseases, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Lorenzo Angelone
- General Management, Città della Salute e della Scienza, Turin, Italy
| | - Giovanni La Valle
- General Management, Città della Salute e della Scienza, Turin, Italy
| | - Francesco G De Rosa
- Infectious Diseases Unit, Cardinal Massaia Hospital, Asti, Italy.,Department of Medical Sciences, Infectious Diseases, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Francesco Cattel
- Department of Hospital Pharmacy, Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
17
|
The roles of two major domains of the porcine deltacoronavirus spike subunit 1 in receptor binding and neutralization. J Virol 2021; 95:e0111821. [PMID: 34549985 PMCID: PMC8610578 DOI: 10.1128/jvi.01118-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Determination of the mechanisms of interspecies transmission is of great significance for the prevention of epidemic diseases caused by emerging coronaviruses (CoVs). Recently, porcine deltacoronavirus (PDCoV) was shown to exhibit broad host cell range mediated by surface expression of aminopeptidase N (APN), and humans have been reported to be at risk of PDCoV infection. In the present study, we first demonstrated overexpression of APN orthologues from various species, including mice and felines, in the APN-deficient swine small intestine epithelial cells permitted PDCoV infection, confirming that APN broadly facilitates PDCoV cellular entry and perhaps subsequent interspecies transmission. PDCoV was able to limitedly infect mice in vivo, distributing mainly in enteric and lymphoid tissues, suggesting that mice may serve as a susceptible reservoir of PDCoV. Furthermore, elements (two glycosylation sites and four aromatic amino acids) on the surface of domain B (S1B) of the PDCoV spike glycoprotein S1 subunit were identified to be critical for cellular surface binding of APN orthologues. However, both domain A (S1A) and domain B (S1B) were able to elicit potent neutralizing antibodies against PDCoV infection. The antibodies against S1A inhibited the hemagglutination activity of PDCoV using erythrocytes from various species, which might account for the neutralizing capacity of S1A antibodies partially through a blockage of sialic acid binding. The study reveals the tremendous potential of PDCoV for interspecies transmission and the role of two major PDCoV S1 domains in receptor binding and neutralization, providing a theoretical basis for development of intervention strategies. IMPORTANCE Coronaviruses exhibit a tendency for recombination and mutation, which enables them to quickly adapt to various novel hosts. Previously, orthologues of aminopeptidase N (APN) from mammalian and avian species were found to be associated with porcine deltacoronavirus (PDCoV) cellular entry in vitro. Here, we provide in vivo evidence that mice are susceptible to PDCoV limited infection. We also show that two major domains (S1A and S1B) of the PDCoV spike glycoprotein involved in APN receptor binding can elicit neutralizing antibodies, identifying two glycosylation sites and four aromatic amino acids on the surface of the S1B domain critical for APN binding and demonstrating that the neutralization activity of S1A antibodies is partially attributed to blockage of sugar binding activity. Our findings further implicate PDCoV’s great potential for interspecies transmission, and the data of receptor binding and neutralization may provide a basis for development of future intervention strategies.
Collapse
|
18
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
19
|
Badhe RV, Nipate SS. The use of negative oxygen ion clusters [O 2-(H 2O) n] and bicarbonate ions [HCO 3-] as the supportive treatment of COVID-19 infections: A possibility. Med Hypotheses 2021; 154:110658. [PMID: 34390895 PMCID: PMC8339564 DOI: 10.1016/j.mehy.2021.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The COVID-19 or novel coronavirus SARS-CoV-2 pandemic is challenging worldwide healthcare system and severely affecting global economy. Furious efforts to end the pandemic including prevention of spread of SARS-CoV-2, use of antiviral drugs, symptomatic treatments and vaccination are underway. But there are no effective treatments available to save the dying patient in stage 2 (pulmonary) and stage 3 (hyperinflammation) of the infection. The detailed genetic and phenotypical analysis of SARS-CoV-2 revealed that the spike protein (S1) has increased positive charges (compared to SARS-CoV) on them and are responsible for attachment to human angiotensin-converting enzyme 2 (ACE2) receptor and infection by the virus. In addition, it was also reported that the inflammation in the tissue rendered the lung environment more acidic supporting the fusion of SARS-CoV-2 with the cells. We hypothesize that the intermittent use of the oxygen ionizer generating negative oxygen ion clusters [O2-(H2O)n] and sodium bicarbonate nebulizer (generating HCO3-); when connected to ventilator inlet or oxygen concentrator will neutralize the spike protein of the virus in respiratory tract and lungs and change the lung environment to neutral/alkaline condition respectively facilitating improved oxygen pressure in blood. These physical changes can effectively reduce the viral burden and help the patient recover from the infection faster.
Collapse
Affiliation(s)
| | - Sonali S Nipate
- SidIra Laboratories, Moshi, Pune, Maharashtra, India; Pharmacology Department, Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| |
Collapse
|
20
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran;
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Kouass Sahbani Saloua
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran;
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
21
|
Najafi Fard S, Petrone L, Petruccioli E, Alonzi T, Matusali G, Colavita F, Castilletti C, Capobianchi MR, Goletti D. In Vitro Models for Studying Entry, Tissue Tropism, and Therapeutic Approaches of Highly Pathogenic Coronaviruses. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8856018. [PMID: 34239932 PMCID: PMC8221881 DOI: 10.1155/2021/8856018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/31/2022]
Abstract
Coronaviruses (CoVs) are enveloped nonsegmented positive-sense RNA viruses belonging to the family Coronaviridae that contain the largest genome among RNA viruses. Their genome encodes 4 major structural proteins, and among them, the Spike (S) protein plays a crucial role in determining the viral tropism. It mediates viral attachment to the host cell, fusion to the membranes, and cell entry using cellular proteases as activators. Several in vitro models have been developed to study the CoVs entry, pathogenesis, and possible therapeutic approaches. This article is aimed at summarizing the current knowledge about the use of relevant methodologies and cell lines permissive for CoV life cycle studies. The synthesis of this information can be useful for setting up specific experimental procedures. We also discuss different strategies for inhibiting the binding of the S protein to the cell receptors and the fusion process which may offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Saeid Najafi Fard
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Tonino Alonzi
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy
| |
Collapse
|
22
|
Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 2021; 177:1-9. [PMID: 33577820 PMCID: PMC7871800 DOI: 10.1016/j.ijbiomac.2021.02.071] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from China has become a global threat due to the continuous rise in cases of Coronavirus disease 2019 (COVID-19). The problem with COVID-19 therapeutics is due to complexity of the mechanism of the pathogenesis of this virus. In this review, an extensive analysis of genome architecture and mode of pathogenesis of SARS-CoV-2 with an emphasis on therapeutic approaches is performed. SARS-CoV-2 genome consists of a single, ~29.9 kb long RNA having significant sequence similarity to BAT-CoV, SARS-CoV and MERS-CoV genome. Two-third part of SARS-Cov-2 genome comprises of ORF (ORF1ab) resulting in the formation of 2 polyproteins, pp1a and pp1ab, later processed into 16 smaller non-structural proteins (NSPs). The four major structural proteins of SARS-CoV-2 are the spike surface glycoprotein (S), a small envelope (E), membrane (M), and nucleocapsid (N) proteins. S protein helps in receptor binding and membrane fusion and hence plays the most important role in the transmission of CoVs. Priming of S protein is done by serine 2 transmembrane protease and thus plays a key role in virus and host cell fusion. This review highlights the possible mechanism of action of SARS-CoV-2 to search for possible therapeutic options.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Samreen Amani
- Department of Biochemistry, F/O Life Science, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
23
|
The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS Pathog 2021; 17:e1009500. [PMID: 33886690 PMCID: PMC8061995 DOI: 10.1371/journal.ppat.1009500] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology. The devastating COVID-19 pandemic is caused by SARS-CoV-2, a novel virus that despite recent zoonotic introduction is already very well adapted to its human host. Its rapid spread is related to abundant replication in the upper airways, which is not observed for other highly pathogenic human coronaviruses. To understand the role of the viral spike protein in this airway adaptation, we constructed pseudoviruses of SARS-CoV-2 and other coronaviruses that cause severe pneumonia or, on the contrary, a mild common cold. The key findings were verified with authentic virus. We reveal features of the spike proteins, which optimize the coronavirus towards specific parts of the respiratory tract. Namely, we show that the spike proteins exhibit intrinsic temperature preference to precisely match the upper (~33°C) or lower (37°C) airways. We recognized which proteases of human airways activate the spike for virus entry, in particular one protease that may mediate coronavirus virulence. Finally, a link was perceived between spike stability and entry via endosomal proteases. We propose that these mechanisms of spike fine-tuning may have contributed to a global shift in SARS-CoV-2 epidemiology, from the early spike-D614 to the currently predominating G614 variant.
Collapse
|
24
|
El-Sayed A, Kamel M. Coronaviruses in humans and animals: the role of bats in viral evolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19589-19600. [PMID: 33655480 PMCID: PMC7924989 DOI: 10.1007/s11356-021-12553-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/14/2021] [Indexed: 04/15/2023]
Abstract
Bats act as a natural reservoir for many viruses, including coronaviruses, and have played a crucial epidemiological role in the emergence of many viral diseases. Coronaviruses have been known for 60 years. They are usually responsible for the induction of mild respiratory signs in humans. However, since 2002, the bat-borne virus started to induce fatal epidemics according to WHO reports. In this year, the first serious human coronavirus epidemic (severe acute respiratory syndrome; SARS) occurred (China, 8098 cases, 774 deaths [9.5% of the cases] in 17 countries). The case fatality was higher in elderly patients above 60 years and reached 50% of the cases. SARS epidemic was followed 10 years later by the emergence of the middle east respiratory syndrome (MERS) in Saudi Arabia (in 2012, 2260 cases, 803 deaths [35.5% of the cases] in 27 countries). Finally, in December 2019, a new epidemic in Wuhan, China, (corona virus disease 2019, COVID-19) emerged and could spread to 217 countries infecting more than 86,255,226 cases and killing 1,863,973 people by the end of 2020. There are many reasons why bats are ideal reservoir hosts for viral diseases such as the tolerance of their immune system to the invading viruses for several months. They can actively shed the viruses, although they develop no clinical signs (will be discussed in details later in the review). Bats were directly or indirectly involved in the three previous coronavirus epidemics. The indirect transmission takes place via intermediate hosts including civet cats for SARS and dromedary camels in the case of MERS. Although bats are believed to be the source of COVID-19 pandemic, direct pieces of evidence are still lacking. Therefore, coronaviruses' role in epidemics induction and the epidemiological role of bats are discussed. The current work also presents different evidence (phylogenetic data, animal experiments, bats artificial infection studies, and computerized models of SARS-CoV2 evolution) that underline the involvement of bats in the epidemiology of the pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Medicine and Infectious Diseases, Cairo University, Giza, 12211, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Medicine and Infectious Diseases, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
25
|
Peng X, Wang Y, Xi X, Jia Y, Tian J, Yu B, Tian J. Promising Therapy for Heart Failure in Patients with Severe COVID-19: Calming the Cytokine Storm. Cardiovasc Drugs Ther 2021; 35:231-247. [PMID: 33404925 PMCID: PMC7786163 DOI: 10.1007/s10557-020-07120-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
The coronavirus disease 19 (COVID-19) pandemic poses a serious global threat to human health and the economy. Based on accumulating evidence, its continuous progression involves not only pulmonary injury but also damage to the cardiovascular system due to intertwined pathophysiological risks. As a point of convergence in the pathophysiologic process between COVID-19 and heart failure (HF), cytokine storm induces the progression of COVID-19 in patients presenting pre-existing or new onset myocardial damage and even HF. Cytokine storm, as a trigger of the progression of HF in patients with COVID-19, has become a novel focus to explore therapies for target populations. In this review, we briefly introduce the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and illuminate the mechanism and links among COVID-19, cytokine storm, and HF. Furthermore, we discuss drugs and therapeutic targets for patients with COVID-19 and HF.
Collapse
Affiliation(s)
- Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, 541000, Guangxi, China.
| |
Collapse
|
26
|
Oguntuyo KY, Stevens CS, Hung CT, Ikegame S, Acklin JA, Kowdle SS, Carmichael JC, Chiu HP, Azarm KD, Haas GD, Amanat F, Klingler J, Baine I, Arinsburg S, Bandres JC, Siddiquey MNA, Schilke RM, Woolard MD, Zhang H, Duty AJ, Kraus TA, Moran TM, Tortorella D, Lim JK, Gamarnik AV, Hioe CE, Zolla-Pazner S, Ivanov SS, Kamil JP, Krammer F, Lee B. Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. mBio 2021; 12:e02492-20. [PMID: 33593976 PMCID: PMC8545089 DOI: 10.1128/mbio.02492-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/15/2021] [Indexed: 02/04/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week.IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.
Collapse
Affiliation(s)
- Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chuan Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas S Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - Ian Baine
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Suzanne Arinsburg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan C Bandres
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - Mohammed N A Siddiquey
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Hongbo Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Andrew J Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A Kraus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea V Gamarnik
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- COVIDAR Argentina Consortium, Buenos Aires, Argentina
| | - Catarina E Hioe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - Susan Zolla-Pazner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Larue RC, Xing E, Kenney AD, Zhang Y, Tuazon JA, Li J, Yount JS, Li PK, Sharma A. Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2. Bioconjug Chem 2021; 32:215-223. [PMID: 33356169 PMCID: PMC7784661 DOI: 10.1021/acs.bioconjchem.0c00664] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is a novel and highly pathogenic coronavirus and is the causative agent of the coronavirus disease 2019 (COVID-19). The high morbidity and mortality associated with COVID-19 and the lack of an approved drug or vaccine for SARS-CoV-2 underscores the urgent need for developing effective antiviral therapies. Therapeutics that target essential viral proteins are effective at controlling virus replication and spread. Coronavirus Spike glycoproteins mediate viral entry and fusion with the host cell, and thus are essential for viral replication. To enter host cells, the Spike proteins of SARS-CoV-2 and related coronavirus, SARS-CoV, bind the host angiotensin-converting enzyme 2 (ACE2) receptor through their receptor binding domains (RBDs). Here, we rationally designed a panel of ACE2-derived peptides based on the RBD-ACE2 binding interfaces of SARS-CoV-2 and SARS-CoV. Using SARS-CoV-2 and SARS-CoV Spike-pseudotyped viruses, we found that a subset of peptides inhibits Spike-mediated infection with IC50 values in the low millimolar range. We identified two peptides that bound Spike RBD in affinity precipitation assays and inhibited infection with genuine SARS-CoV-2. Moreover, these peptides inhibited the replication of a common cold causing coronavirus, which also uses ACE2 as its entry receptor. Results from the infection experiments and modeling of the peptides with Spike RBD identified a 6-amino-acid (Glu37-Gln42) ACE2 motif that is important for SARS-CoV-2 inhibition. Our work demonstrates the feasibility of inhibiting SARS-CoV-2 with peptide-based inhibitors. These findings will allow for the successful development of engineered peptides and peptidomimetic-based compounds for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ross C Larue
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Enming Xing
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adam D Kenney
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jasmine A Tuazon
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jacob S Yount
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amit Sharma
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Fouladirad S, Bach H. Development of Coronavirus Treatments Using Neutralizing Antibodies. Microorganisms 2021; 9:microorganisms9010165. [PMID: 33451069 PMCID: PMC7828509 DOI: 10.3390/microorganisms9010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2, was first reported in December 2019 in Wuhan, Hubei province, China. This virus has led to 61.8 million cases worldwide being reported as of December 1st, 2020. Currently, there are no definite approved therapies endorsed by the World Health Organization for COVID-19, focusing only on supportive care. Treatment centers around symptom management, including oxygen therapy or invasive mechanical ventilation. Immunotherapy has the potential to play a role in the treatment of SARS-CoV-2. Monoclonal antibodies (mAbs), in particular, is a relatively new approach in the world of infectious diseases and has the benefit of overcoming challenges with serum therapy and intravenous immunoglobulins preparations. Here, we reviewed the articles published in PubMed with the purpose of summarizing the currently available evidence for the use of neutralizing antibodies as a potential treatment for coronaviruses. Studies reporting in vivo results were summarized and analyzed. Despite promising data from some studies, none of them progressed to clinical trials. It is expected that neutralizing antibodies might offer an alternative for COVID-19 treatment. Thus, there is a need for randomized trials to understand the potential use of this treatment.
Collapse
Affiliation(s)
- Saman Fouladirad
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
| | - Horacio Bach
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6T 1Z, Canada
- Correspondence: ; Tel.: +1-604-727-9719; Fax: +1-604-875-4013
| |
Collapse
|
29
|
Xiong HL, Wu YT, Cao JL, Yang R, Liu YX, Ma J, Qiao XY, Yao XY, Zhang BH, Zhang YL, Hou WH, Shi Y, Xu JJ, Zhang L, Wang SJ, Fu BR, Yang T, Ge SX, Zhang J, Yuan Q, Huang BY, Li ZY, Zhang TY, Xia NS. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 2020; 9:2105-2113. [PMID: 32893735 PMCID: PMC7534347 DOI: 10.1080/22221751.2020.1815589] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable neutralization assay is very important for the development of vaccines and novel drugs. In this study, a G protein-deficient vesicular stomatitis virus (VSVdG) bearing a truncated spike protein (S with C-terminal 18 amino acid truncation) was compared to that bearing the full-length spike protein of SARS-CoV-2 and showed much higher efficiency. A neutralization assay was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and hACE2-overexpressing BHK21 cells (BHK21-hACE2 cells). The experimental results can be obtained by automatically counting the number of EGFP-positive cells at 12 h after infection, making the assay convenient and high-throughput. The serum neutralizing titer measured by the VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with that measured by the wild type SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 S protein were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.
Collapse
Affiliation(s)
- Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Jia-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ren Yang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Ying-Xia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Xiao-Yang Qiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Xiang-Yang Yao
- The First Hospital of Xiamen University, Xiamen, People’s Republic of China
| | - Bao-Hui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Wang-Heng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Yang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Jing-Jing Xu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fuzhou, People’s Republic of China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Bao-Rong Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ting Yang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fuzhou, People’s Republic of China
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Bao-Ying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Zhi-Yong Li
- The First Hospital of Xiamen University, Xiamen, People’s Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
30
|
Gupta SP. Progress in Studies on Structural and Remedial Aspects of Newly Born Coronavirus, SARS-CoV-2. Curr Top Med Chem 2020; 20:2362-2378. [PMID: 32962613 DOI: 10.2174/1568026620666200922112300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 01/12/2023]
Abstract
The article highlights an up-to-date progress in studies on structural and the remedial aspects of novel coronavirus 2019-nCoV, renamed as SARS-CoV-2, leading to the disease COVID-19, a pandemic. In general, all CoVs including SARS-CoV-2 are spherical positive single-stranded RNA viruses containing spike (S) protein, envelope (E) protein, nucleocapsid (N) protein, and membrane (M) protein, where S protein has a Receptor-binding Domain (RBD) that mediates the binding to host cell receptor, Angiotensin Converting Enzyme 2 (ACE2). The article details the repurposing of some drugs to be tried for COVID-19 and presents the status of vaccine development so far. Besides drugs and vaccines, the role of Convalescent Plasma (CP) therapy to treat COVID-19 is also discussed.
Collapse
Affiliation(s)
- Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India
| |
Collapse
|
31
|
Vogelzang EH, Loeff FC, Derksen NIL, Kruithof S, Ooijevaar-de Heer P, van Mierlo G, Linty F, Mok JY, van Esch W, de Bruin S, Vlaar APJ, Seppen B, Leeuw M, van Oudheusden AJG, Buiting AGM, Jim KK, Vrielink H, Swaneveld F, Vidarsson G, van der Schoot CE, Wever PC, Li W, van Kuppeveld F, Murk JL, Bosch BJ, Wolbink GJ, Rispens T. Development of a SARS-CoV-2 Total Antibody Assay and the Dynamics of Antibody Response over Time in Hospitalized and Nonhospitalized Patients with COVID-19. THE JOURNAL OF IMMUNOLOGY 2020; 205:3491-3499. [PMID: 33127820 DOI: 10.4049/jimmunol.2000767] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infections often cause only mild disease that may evoke relatively low Ab titers compared with patients admitted to hospitals. Generally, total Ab bridging assays combine good sensitivity with high specificity. Therefore, we developed sensitive total Ab bridging assays for detection of SARS-CoV-2 Abs to the receptor-binding domain (RBD) and nucleocapsid protein in addition to conventional isotype-specific assays. Ab kinetics was assessed in PCR-confirmed, hospitalized coronavirus disease 2019 (COVID-19) patients (n = 41) and three populations of patients with COVID-19 symptoms not requiring hospital admission: PCR-confirmed convalescent plasmapheresis donors (n = 182), PCR-confirmed hospital care workers (n = 47), and a group of longitudinally sampled symptomatic individuals highly suspect of COVID-19 (n = 14). In nonhospitalized patients, the Ab response to RBD is weaker but follows similar kinetics, as has been observed in hospitalized patients. Across populations, the RBD bridging assay identified most patients correctly as seropositive. In 11/14 of the COVID-19-suspect cases, seroconversion in the RBD bridging assay could be demonstrated before day 12; nucleocapsid protein Abs emerged less consistently. Furthermore, we demonstrated the feasibility of finger-prick sampling for Ab detection against SARS-CoV-2 using these assays. In conclusion, the developed bridging assays reliably detect SARS-CoV-2 Abs in hospitalized and nonhospitalized patients and are therefore well suited to conduct seroprevalence studies.
Collapse
Affiliation(s)
- Erik H Vogelzang
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, 1056 AB Reade, Amsterdam, the Netherlands.,Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Floris C Loeff
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands.,Biologics Laboratory, Sanquin Diagnostic Services, 1066 CX Amsterdam, the Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - Simone Kruithof
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Wim van Esch
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Sanne de Bruin
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Location Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Location Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | | | - Bart Seppen
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, 1056 AB Reade, Amsterdam, the Netherlands
| | - Maureen Leeuw
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, 1056 AB Reade, Amsterdam, the Netherlands
| | - Anne J G van Oudheusden
- Department of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, 5042 AD Tilburg, the Netherlands
| | - Anton G M Buiting
- Department of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, 5042 AD Tilburg, the Netherlands
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location Academic Medical Center, 1105 AZ Amsterdam, the Netherlands.,Departments of Medical Microbiology, Jeroen Bosch Hospital, 5223 GZ 's Hertogenbosch, the Netherlands
| | - Hans Vrielink
- Department of Transfusion Medicine, Sanquin Blood Bank, 1066 CX Amsterdam, the Netherlands
| | - Francis Swaneveld
- Department of Transfusion Medicine, Sanquin Blood Bank, 1066 CX Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands
| | - Peter C Wever
- Departments of Medical Microbiology, Jeroen Bosch Hospital, 5223 GZ 's Hertogenbosch, the Netherlands
| | - Wentao Li
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Frank van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Jean-Luc Murk
- Department of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, 5042 AD Tilburg, the Netherlands
| | - Berend Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Gerrit-Jan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, 1056 AB Reade, Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands.,Department of Rheumatology, OLVG Hospital, 1091 AC Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, 1066 CX Amsterdam, the Netherlands;
| |
Collapse
|
32
|
Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res 2020; 288:198141. [PMID: 32846196 PMCID: PMC7443330 DOI: 10.1016/j.virusres.2020.198141] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The recent outbreak of the betacoronavirus SARS-CoV-2 has become a significant concern to public health care worldwide. As of August 19, 2020, more than 22,140,472 people are infected, and over 781,135 people have died due to this deadly virus. In the USA alone, over 5,482,602 people are currently infected, and more than 171,823 people have died. SARS-CoV-2 has shown a higher infectivity rate and a more extended incubation period as compared to previous coronaviruses. SARS-CoV-2 binds much more strongly than SARS-CoV to the same host receptor, angiotensin-converting enzyme 2 (ACE2). Previously, several methods to develop a vaccine against SARS-CoV or MERS-CoV have been tried with limited success. Since SARS-CoV-2 uses the spike (S) protein for entry to the host cell, it is one of the most preferred targets for making vaccines or therapeutics against SARS-CoV-2. In this review, we have summarised the characteristics of the S protein, as well as the different approaches being used for the development of vaccines and/or therapeutics based on the S protein.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Antibody-Dependent Enhancement/drug effects
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/biosynthesis
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Anil M Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1 University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
33
|
Willows S, Alam SB, Sandhu JK, Kulka M. A Canadian perspective on severe acute respiratory syndrome coronavirus 2 infection and treatment: how prevalent underlying inflammatory disease contributes to pathogenesis. Biochem Cell Biol 2020; 99:173-194. [PMID: 33027600 DOI: 10.1139/bcb-2020-0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a serious respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a global pandemic. Canada reported its first case of COVID-19 on the 25th January 2020. By March 2020, the virus had spread within Canadian communities reaching the most frail and vulnerable elderly population in long-term care facilities. The majority of cases were reported in the provinces of Quebec, Ontario, Alberta, and British Columbia, and the highest mortality was seen among individuals aged 65 years or older. Canada has the highest prevalence and incidence rates of several chronic inflammatory diseases, such as multiple sclerosis, inflammatory bowel disease, and Parkinson's disease. Many elderly Canadians also live with comorbid medical illnesses, such as hypertension, diabetes, cardiovascular disease, and chronic lung disease, and are more likely to suffer from severe COVID-19 with a poor prognosis. It is becoming increasingly evident that underlying inflammatory disease contributes to the pathogenesis of SARS-CoV-2. Here, we review the mechanisms behind SARS-CoV-2 infection, and the host inflammatory responses that lead to resolution or progression to severe COVID-19 disease. Furthermore, we discuss the landscape of COVID-19 therapeutics that are currently in development in Canada.
Collapse
Affiliation(s)
- Steven Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2A3, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2A3, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2A3, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Patel CN, Kumar SP, Pandya HA, Rawal RM. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol Divers 2020; 25:421-433. [PMID: 32996011 PMCID: PMC7524381 DOI: 10.1007/s11030-020-10135-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Abstract The pandemic outbreak of the Corona viral infection has become a critical global health issue. Biophysical and structural evidence shows that spike protein possesses a high binding affinity towards host angiotensin-converting enzyme 2 and viral hemagglutinin-acetylesterase (HE) glycoprotein receptor. We selected HE as a target in this study to identify potential inhibitors using a combination of various computational approaches such as molecular docking, ADMET analysis, dynamics simulations and binding free energy calculations. Virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin as potential HE inhibitors with better binding energy. Furthermore, molecular dynamics simulations for 100 ns time scale revealed that most of the key HE contacts were retained throughout the simulations trajectories. Binding free energy calculations using MM/PBSA approach ranked the top-five potential NPACT compounds which can act as effective HE inhibitors. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10135-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Sivakumar Prasanth Kumar
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakesh M Rawal
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
35
|
Khavinson V, Linkova N, Dyatlova A, Kuznik B, Umnov R. Peptides: Prospects for Use in the Treatment of COVID-19. Molecules 2020; 25:E4389. [PMID: 32987757 PMCID: PMC7583759 DOI: 10.3390/molecules25194389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
There is a vast practice of using antimalarial drugs, RAS inhibitors, serine protease inhibitors, inhibitors of the RNA-dependent RNA polymerase of the virus and immunosuppressants for the treatment of the severe form of COVID-19, which often occurs in patients with chronic diseases and older persons. Currently, the clinical efficacy of these drugs for COVID-19 has not been proven yet. Side effects of antimalarial drugs can worsen the condition of patients and increase the likelihood of death. Peptides, given their physiological mechanism of action, have virtually no side effects. Many of them are geroprotectors and can be used in patients with chronic diseases. Peptides may be able to prevent the development of the pathological process during COVID-19 by inhibiting SARS-CoV-2 virus proteins, thereby having immuno- and bronchoprotective effects on lung cells, and normalizing the state of the hemostasis system. Immunomodulators (RKDVY, EW, KE, AEDG), possessing a physiological mechanism of action at low concentrations, appear to be the most promising group among the peptides. They normalize the cytokines' synthesis and have an anti-inflammatory effect, thereby preventing the development of disseminated intravascular coagulation, acute respiratory distress syndrome and multiple organ failure.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
- The Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of RAS, 199034 St. Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
- Department of Therapy, Geriatry, and Anti-Aging Medicine, Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, 125310 Moscow, Russia
- Department of Medical and Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
| | - Boris Kuznik
- Department of the normal physiology, Chita State Medical Academy, 672000 Chita, Russia;
| | - Roman Umnov
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
| |
Collapse
|
36
|
Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y, Chou CW, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Park J, Wang N, Amengor D, Lavinder JJ, Ippolito GC, Maynard JA, Finkelstein IJ, McLellan JS. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020. [PMID: 32703906 DOI: 10.1126/science:abd0826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to accelerated efforts to develop therapeutics and vaccines. A key target of these efforts is the spike (S) protein, which is metastable and difficult to produce recombinantly. We characterized 100 structure-guided spike designs and identified 26 individual substitutions that increased protein yields and stability. Testing combinations of beneficial substitutions resulted in the identification of HexaPro, a variant with six beneficial proline substitutions exhibiting higher expression than its parental construct (by a factor of 10) as well as the ability to withstand heat stress, storage at room temperature, and three freeze-thaw cycles. A cryo-electron microscopy structure of HexaPro at a resolution of 3.2 angstroms confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Jory A Goldsmith
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Andrea M DiVenere
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Kevin C Le
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Alison G Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Yutong Liu
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Christy K Hjorth
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Nicole V Johnson
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John Ludes-Meyers
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Annalee W Nguyen
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Dzifa Amengor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
37
|
Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y, Chou CW, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Park J, Wang N, Amengor D, Lavinder JJ, Ippolito GC, Maynard JA, Finkelstein IJ, McLellan JS. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020; 369:1501-1505. [PMID: 32703906 PMCID: PMC7402631 DOI: 10.1126/science.abd0826] [Citation(s) in RCA: 916] [Impact Index Per Article: 183.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to accelerated efforts to develop therapeutics and vaccines. A key target of these efforts is the spike (S) protein, which is metastable and difficult to produce recombinantly. We characterized 100 structure-guided spike designs and identified 26 individual substitutions that increased protein yields and stability. Testing combinations of beneficial substitutions resulted in the identification of HexaPro, a variant with six beneficial proline substitutions exhibiting higher expression than its parental construct (by a factor of 10) as well as the ability to withstand heat stress, storage at room temperature, and three freeze-thaw cycles. A cryo-electron microscopy structure of HexaPro at a resolution of 3.2 angstroms confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Jory A Goldsmith
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Andrea M DiVenere
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Kevin C Le
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Alison G Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Yutong Liu
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Christy K Hjorth
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Nicole V Johnson
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John Ludes-Meyers
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Annalee W Nguyen
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Dzifa Amengor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
38
|
Abd Ellah NH, Gad SF, Muhammad K, E Batiha G, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine (Lond) 2020; 15:2085-2102. [PMID: 32723142 PMCID: PMC7388682 DOI: 10.2217/nnm-2020-0247] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) puts the world in an unprecedented crisis, leaving behind huge human losses and deep socioeconomic damages. Due to the lack of specific treatment against SARS-CoV-2, effective vaccines and antiviral agents are urgently needed to properly restrain the COVID-19 pandemic. Repositioned drugs such as remdesivir have revealed a promising clinical efficacy against COVID-19. Interestingly, nanomedicine as a promising therapeutic approach could effectively help win the battle between coronaviruses (CoVs) and host cells. This review discusses the potential therapeutic approaches, in addition to the contribution of nanomedicine against CoVs in the fields of vaccination, diagnosis and therapy.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sheryhan F Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
- Department of Industrial & Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture & Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
- Department of Pharmacology & Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
39
|
Oguntuyo KY, Stevens CS, Hung CT, Ikegame S, Acklin JA, Kowdle SS, Carmichael JC, Chiu HP, Azarm KD, Haas GD, Amanat F, Klingler J, Baine I, Arinsburg S, Bandres JC, Siddiquey MNA, Schilke RM, Woolard MD, Zhang H, Duty AJ, Kraus TA, Moran TM, Tortorella D, Lim JK, Gamarnik AV, Hioe CE, Zolla-Pazner S, Ivanov SS, Kamil JP, Krammer F, Lee B. Quantifying absolute neutralization titers against SARS-CoV-2 by a standardized virus neutralization assay allows for cross-cohort comparisons of COVID-19 sera. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.13.20157222. [PMID: 32817961 PMCID: PMC7430605 DOI: 10.1101/2020.08.13.20157222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global COVID-19 pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the SARS-CoV-2 spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous BSL3 conditions which limits high throughput screening of patient and vaccine sera. Myriad BSL-2 compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making inter-group comparisons difficult. To address these limitations, we developed a standardized VNA using VSVΔG-based CoV-2-S pseudotyped particles (CoV2pp) that can be robustly produced at scale and generate accurate neutralizing titers within 18 hours post-infection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S ELISA and live virus neutralizations in confirmed convalescent patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n>120). Our data show that absolute (abs) IC50, IC80, and IC90 values can be legitimately compared across diverse cohorts, highlight the substantial but consistent variability in neutralization potency across these cohorts, and support the use of absIC80 as a more meaningful metric for assessing the neutralization potency of vaccine or convalescent sera. Lastly, we used our CoV2pp in a screen to identify ultra-permissive 293T clones that stably express ACE2 or ACE2+TMPRSS2. When used in combination with our CoV2pp, we can now produce CoV2pp sufficient for 150,000 standardized VNA/week.
Collapse
Affiliation(s)
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- James J. Peters VA Medical Center, Bronx, NY, 10468
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
- COVIDAR Argentina Consortium, Buenos Aires, Argentina
| | - Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shreyas S Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristopher D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- James J. Peters VA Medical Center, Bronx, NY, 10468
| | - Ian Baine
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Suzanne Arinsburg
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Juan C Bandres
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- James J. Peters VA Medical Center, Bronx, NY, 10468
| | - Mohammed N A Siddiquey
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
| | - Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
| | - Hongbo Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
| | - Andrew J Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Thomas A Kraus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Andrea V Gamarnik
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Catarina E Hioe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- James J. Peters VA Medical Center, Bronx, NY, 10468
| | - Susan Zolla-Pazner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, LA 71103
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
40
|
Tong PBV, Lin LY, Tran TH. Coronaviruses pandemics: Can neutralizing antibodies help? Life Sci 2020; 255:117836. [PMID: 32450171 PMCID: PMC7243778 DOI: 10.1016/j.lfs.2020.117836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
For the first time in Homo sapiens history, possibly, most of human activities is stopped by coronavirus disease 2019 (COVID-19). Nearly eight billion people of this world are facing a great challenge, maybe not "to be or not to be" yet, but unpredictable. What happens to other major pandemics in the past, and how human beings went through these hurdles? The human body is equipped with the immune system that can recognize, respond and fight against pathogens such as viruses. Following the innate response, immune system processes the adaptive response by which each pathogen is encoded and recorded in memory system. The humoral reaction containing cytokines and antibodies is expected to activate when the pathogens come back. Exploiting this nature of body protection, neutralizing antibodies have been investigated. Learning from past, in parallel to SARS-CoV-2, other coronaviruses SARS-CoV and MERS-CoV who caused previous pandemics, are recalled in this review. We here propose insights of origin and characteristics and perspective for the future of antibodies development.
Collapse
Affiliation(s)
- Phuoc-Bao-Viet Tong
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Li-Yun Lin
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
41
|
Valle C, Martin B, Touret F, Shannon A, Canard B, Guillemot JC, Coutard B, Decroly E. Drugs against SARS-CoV-2: What do we know about their mode of action? Rev Med Virol 2020; 30:1-10. [PMID: 32779326 PMCID: PMC7435512 DOI: 10.1002/rmv.2143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The health emergency caused by the recent Covid-19 pandemic highlights the need to identify effective treatments against the virus causing this disease (SARS-CoV-2). The first clinical trials have been testing repurposed drugs that show promising anti-SARS-CoV-2 effects in cultured cells. Although more than 2400 clinical trials are already under way, the actual number of tested compounds is still limited to approximately 20, alone or in combination. In addition, knowledge on their mode of action (MoA) is currently insufficient. Their first results reveal some inconsistencies and contradictory results and suggest that cohort size and quality of the control arm are two key issues for obtaining rigorous and conclusive results. Moreover, the observed discrepancies might also result from differences in the clinical inclusion criteria, including the possibility of early treatment that may be essential for therapy efficacy in patients with Covid-19. Importantly, efforts should also be made to test new compounds with a documented MoA against SARS-CoV-2 in clinical trials. Successful treatment will probably be based on multitherapies with antiviral compounds that target different steps of the virus life cycle. Moreover, a multidisciplinary approach that combines artificial intelligence, compound docking, and robust in vitro and in vivo assays will accelerate the development of new antiviral molecules. Finally, large retrospective studies on hospitalized patients are needed to evaluate the different treatments with robust statistical tools and to identify the best treatment for each Covid-19 stage. This review describes different candidate antiviral strategies for Covid-19, by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Coralie Valle
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| | | | - Franck Touret
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), Marseille, France
| | - Ashleigh Shannon
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| | - Bruno Canard
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| | | | - Bruno Coutard
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), Marseille, France
| | - Etienne Decroly
- Laboratoire AFMB, Aix Marseille Université, CNRS, UMR 7257, Marseille, France
| |
Collapse
|
42
|
Affiliation(s)
- R B McFee
- Dept. of Emergency and Family Medicine, Lincoln Memorial University - DeBusk College of Osteopathic Medicine, United States.
| |
Collapse
|
43
|
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K, Staniloae C, Williams M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol 2020; 219:108544. [PMID: 32707089 PMCID: PMC7374140 DOI: 10.1016/j.clim.2020.108544] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency facilitates human coronavirus infection due to glutathione depletion. G6PD deficiency may especially predispose to hemolysis upon coronavirus disease-2019 (COVID-19) infection when employing pro-oxidant therapy. However, glutathione depletion is reversible by N-acetylcysteine (NAC) administration. We describe a severe case of COVID-19 infection in a G6PD-deficient patient treated with hydroxychloroquine who benefited from intravenous (IV) NAC beyond reversal of hemolysis. NAC blocked hemolysis and elevation of liver enzymes, C-reactive protein (CRP), and ferritin and allowed removal from respirator and veno-venous extracorporeal membrane oxygenator and full recovery of the G6PD-deficient patient. NAC was also administered to 9 additional respirator-dependent COVID-19-infected patients without G6PD deficiency. NAC elicited clinical improvement and markedly reduced CRP in all patients and ferritin in 9/10 patients. NAC mechanism of action may involve the blockade of viral infection and the ensuing cytokine storm that warrant follow-up confirmatory studies in the setting of controlled clinical trials.
Collapse
Affiliation(s)
- Homam Ibrahim
- New York University Grossman School of Medicine, NY, New York, United States of America.
| | - Andras Perl
- Upstate Medical University Hospital, Syracuse, New York, United States of America.
| | - Deane Smith
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Tyler Lewis
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Zachary Kon
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Ronald Goldenberg
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Kinan Yarta
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Cezar Staniloae
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Mathew Williams
- New York University Grossman School of Medicine, NY, New York, United States of America
| |
Collapse
|
44
|
Lu X, Xiang Y, Du H, Wing-Kin Wong G. SARS-CoV-2 infection in children - Understanding the immune responses and controlling the pandemic. Pediatr Allergy Immunol 2020; 31:449-453. [PMID: 32330332 DOI: 10.1111/pai.13267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
In December 2019, a cluster of patients with severe pneumonia caused by a novel coronavirus (SARS-CoV-2) emerged in the city of Wuhan, China. The disease is now termed coronavirus disease 2019 (COVID-19). In the early reports, the patients were mainly middle-aged and elderly men, and children appeared to be less susceptible to this infection. With modern and efficient transportation, the disease quickly spread to almost all corners of the world and the mortality far exceeds that caused by severe acute respiratory syndrome (SARS) coronavirus or Middle East respiratory syndrome (MERS) coronavirus. As the number of children with COVID-19 gradually increases, the disease has been documented in premature babies, infants, children, and adolescents. Severe and fatal cases in children are relatively rare. The burden of disease in children has been relatively low, but the high proportions of asymptomatic or mildly symptomatic infections in children deserve careful attention. A clear understanding of the immune responses to the virus in children and the transmission potential of asymptomatic children is of paramount importance for the development of specific treatments and vaccine in order to effectively control the ongoing pandemic.
Collapse
Affiliation(s)
- Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xiang
- The Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
SARS-CoV-2: An Update on Potential Antivirals in Light of SARS-CoV Antiviral Drug Discoveries. Vaccines (Basel) 2020; 8:vaccines8020335. [PMID: 32585913 PMCID: PMC7350231 DOI: 10.3390/vaccines8020335] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are a group of RNA viruses that are associated with different diseases in animals, birds, and humans. Human CoVs (HCoVs) have long been known to be the causative agents of mild respiratory illnesses. However, two HCoVs associated with severe respiratory diseases are Severe Acute Respiratory Syndrome-CoV (SARS-CoV) and Middle East Respiratory Syndrome-CoV (MERS-CoV). Both viruses resulted in hundreds of deaths after spreading to several countries. Most recently, SARS-CoV-2 has emerged as the third HCoV causing severe respiratory distress syndrome and viral pneumonia (known as COVID-19) in patients from Wuhan, China, in December 2019. Soon after its discovery, SARS-CoV-2 spread to all countries, resulting in millions of cases and thousands of deaths. Since the emergence of SARS-CoV, many research groups have dedicated their resources to discovering effective antivirals that can treat such life-threatening infections. The rapid spread and high fatality rate of SARS-CoV-2 necessitate the quick discovery of effective antivirals to control this outbreak. Since SARS-CoV-2 shares 79% sequence identity with SARS-CoV, several anti-SARS-CoV drugs have shown promise in limiting SARS-CoV-2 replication in vitro and in vivo. In this review, we discuss antivirals described for SARS-CoV and provide an update on therapeutic strategies and antivirals against SARS-CoV-2. The control of the current outbreak will strongly depend on the discovery of effective and safe anti-SARS-CoV-2 drugs.
Collapse
|
46
|
Fam BS, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Genet Mol Biol 2020; 43:e20200104. [PMID: 32520981 PMCID: PMC7278419 DOI: 10.1590/1678-4685-gmb-2020-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The recent emergence of SARS-CoV-2 is responsible for the current pandemic of COVID-19, which uses the human membrane protein ACE2 as a gateway to host-cell infection. We performed a comparative genomic analysis of 70 ACE2 placental mammal orthologues to identify variations and contribute to the understanding of evolutionary dynamics behind this successful adaptation to infect humans. Our results reveal that 4% of the ACE2 sites are under positive selection, all located in the catalytic domain, suggesting possibly taxon-specific adaptations related to the ACE2 function, such as cardiovascular physiology. Considering all variable sites, we selected 30 of them located at the critical ACE2 binding sites to the SARS-CoV-like viruses for analysis in more detail. Our results reveal a relatively high diversity of ACE2 between placental mammal species, while showing no polymorphism within human populations, at least considering the 30 inter-species variable sites. A perfect scenario for natural selection favored this opportunistic new coronavirus in its trajectory of infecting humans. We suggest that SARS-CoV-2 became a specialist coronavirus for human hosts. Differences in the rate of infection and mortality could be related to the innate immune responses, other unknown genetic factors, as well as non-biological factors.
Collapse
Affiliation(s)
- Bibiana S.O. Fam
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Ribeirão Preto, SP, Brazil
| | | | - Vinicius A. Sortica
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, Le KC, Wrapp D, Lee AGW, Liu Y, Chou CW, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Park J, Wang N, Amengor D, Maynard JA, Finkelstein IJ, McLellan JS. Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.30.125484. [PMID: 32577660 PMCID: PMC7302215 DOI: 10.1101/2020.05.30.125484] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion protein that is metastable and difficult to produce recombinantly in large quantities. Here, we designed and expressed over 100 structure-guided spike variants based upon a previously determined cryo-EM structure of the prefusion SARS-CoV-2 spike. Biochemical, biophysical and structural characterization of these variants identified numerous individual substitutions that increased protein yields and stability. The best variant, HexaPro, has six beneficial proline substitutions leading to ~10-fold higher expression than its parental construct and is able to withstand heat stress, storage at room temperature, and multiple freeze-thaws. A 3.2 Å-resolution cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for SARS-CoV-2.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Jeffrey M. Schaub
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Andrea M. DiVenere
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Kevin C. Le
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Alison Gene-Wei Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Yutong Liu
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Christy K. Hjorth
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - John Ludes-Meyers
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Annalee W. Nguyen
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Juyeon Park
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Dzifa Amengor
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
48
|
Ikhlaq A, Bint-E-Riaz H, Bashir I, Ijaz F. Awareness and Attitude of Undergraduate Medical Students towards 2019-novel Corona virus. Pak J Med Sci 2020; 36:S32-S36. [PMID: 32582311 PMCID: PMC7306955 DOI: 10.12669/pjms.36.covid19-s4.2636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To assess the knowledge, awareness and attitudes of medical students towards recently discovered coronavirus disease-19 (COVID-19). Methods: This was a cross sectional study conducted on medical students in CMH Lahore Medical College,(LMC), Institute of Dentistry (IOD). A questionnaire containing demographic information, 14 knowledge and eight attitude items was completed by 384 participants. Results: Overall, >90% people were aware about the etiology, mode of transmission and possible symptoms; however, very few of them knew about the in-depth details. Knowledge score revealed that 80% of participants had sufficient knowledge about coronavirus. MBBS students and nursing Students had significantly better knowledge in comparison with other students. In terms of attitude, >80% of students showed positive attitudes among which the nursing students were dominant. Conclusion: The medical students of CMH LMC showed a satisfactory level of awareness and attitudes towards COVID-19 with an obvious difference with regard to disciplines. More educational efforts with periodic educational interventions are still needed about the current pandemic.
Collapse
Affiliation(s)
- Azal Ikhlaq
- Azal Ikhlaq, 2 year MBBS Medical Student, CMH LMC & IOD, Lahore, Pakistan
| | - Hunniya Bint-E-Riaz
- Hunniya Bint E Riaz, 2 year MBBS Medical Student, CMH LMC & IOD, Lahore, Pakistan
| | - Imtiaz Bashir
- Imtiaz Bashir, 2 year MBBS Medical Student, CMH LMC & IOD, Lahore, Pakistan
| | - Farhat Ijaz
- Dr. Farhat Ijaz, MPhil Department of Physiology CMH LMC & IOD, Lahore, Pakistan
| |
Collapse
|
49
|
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
Collapse
|
50
|
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Simon Schroeder
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sandra Erichsen
- Institute for Biomechanics, BG Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tobias S Schiergens
- Biobank of the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Nitsche
- Robert Koch Institute, ZBS 1 Highly Pathogenic Viruses, WHO Collaborating Centre for Emerging Infections and Biological Threats, Berlin, Germany
| | - Marcel A Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany.
| |
Collapse
|