1
|
Park K, Kim J, Noh J, Kim SG, Cho HK, Kim K, Seo YR, Lim T, Lee S, Lee J, Lim SI, Joo YH, Lee B, Yun SH, Park C, Kim WK, Song JW. Epidemiological surveillance and phylogenetic diversity of Orthohantavirus hantanense using high-fidelity nanopore sequencing, Republic of Korea. PLoS Negl Trop Dis 2025; 19:e0012859. [PMID: 39919119 DOI: 10.1371/journal.pntd.0012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Orthohantavirus hantanense (HTNV) poses a substantial global public health threat due to its role in causing hemorrhagic fever with renal syndrome (HFRS). HTNV outbreaks are particularly prevalent in the Gyeonggi and Gangwon Provinces of the Republic of Korea (ROK). This study aimed to evaluate the application of advanced nanopore sequencing and bioinformatics to generate complete genome sequences of HTNV, with the objective of accurately identifying infection sources and analyzing their genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS In 2022 and 2023, we collected 579 small mammals from 11 distinct locations across Gyeonggi and Gangwon Provinces, as well as in Gwangju Metropolitan City, ROK. Among these, 498 Apodemus agrarius specimens were subjected to an epidemiological survey to investigate HTNV infections. The serological and molecular positivity of HTNV were found to be 65/498 (13.1%) and 17/65 (26.2%), respectively. Furthermore, 15 whole-genome sequences of HTNV were obtained from rodents in Gyeonggi and Gangwon Provinces. We developed a novel amplicon-based nanopore sequencing approach to acquire high-fidelity and precise genomic sequences of HTNV. Genome exchange analysis revealed three reassortant candidates, including heterogeneous L segments, from Paju-si and Yeoncheon-gun in Gyeonggi Province. CONCLUSION/SIGNIFICANCE Our findings enhance the resolution of the spatiotemporal genomic surveillance of HTNV by consistently providing new viral sequences and epidemiological data from HFRS-endemic regions in the ROK. This report signifies a notable advancement in nanopore sequencing techniques and bioinformatics, offering a robust platform for genome-based diagnostics and sophisticated phylogenetic analyses of orthohantaviruses, which are essential for public health strategies aimed at controlling HFRS.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Faculty of Health Sciences, Centre for Infectious Disease Genomics and One Health, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ye-Rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Taehun Lim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seonghyeon Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jaeyeon Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung In Lim
- The Fifth Preventive Medicine Unit of Republic of Korea Army, Pocheon, Republic of Korea
| | - Young Hoon Joo
- The First Preventive Medicine Unit of Republic of Korea Army, Goyang, Republic of Korea
| | - Buddle Lee
- The Third Preventive Medicine Unit of Republic of Korea Army, Inje, Republic of Korea
| | - Seok Hyeon Yun
- The Second Preventive Medicine Unit of Republic of Korea Army, Chuncheon, Republic of Korea
| | - Changbo Park
- Republic of Korea Army Headquarters, Daejeon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chang WS, Harvey E, Mahar JE, Firth C, Shi M, Simon-Loriere E, Geoghegan JL, Wille M. Improving the reporting of metagenomic virome-scale data. Commun Biol 2024; 7:1687. [PMID: 39706917 DOI: 10.1038/s42003-024-07212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Erin Harvey
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jackie E Mahar
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Animal Health Laboratory and Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Cadhla Firth
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mang Shi
- Sun Yat-Sen University, Shenzhen campus of Sun Yat-Sen University, Shenzhen, China
| | - Etienne Simon-Loriere
- Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Michelle Wille
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Chen-Germán M, Araúz D, Aguilar C, Vega M, Gonzalez C, Gondola J, Moreno L, Cerezo L, Franco L, Mendez-Rico J, Pascale JM, López-Vergès S, Martínez AA, Moreno B. Detection of dengue virus serotype 4 in Panama after 23 years without circulation. Front Cell Infect Microbiol 2024; 14:1467465. [PMID: 39411321 PMCID: PMC11473613 DOI: 10.3389/fcimb.2024.1467465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Panama is a country with endemic Dengue virus (DENV) transmission since its reintroduction in 1993. The four serotypes have circulated in the country and the region of the Americas, however, DENV-4 confirmed autochthonous cases have not been identified since 2000, despite its circulation in neighboring countries. Here, we report DENV-4 detection in Panama in the last four-month period of 2023 with co-circulation of the other serotypes, this was associated with a peak of dengue cases during the dry season even though most dengue outbreaks are described in the rainy season. Complete genomes of DENV-4 allowed us to determine that cases were caused by DENV-4 genotype IIb, the same genotype as 23 years ago, with high similarity to DENV-4 sequences circulating in Nicaragua and El Salvador during 2023. This report shows the importance of maintaining serotype and genotype surveillance for early detection of new variants circulating in the country.
Collapse
Affiliation(s)
- María Chen-Germán
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Dimelza Araúz
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Celestino Aguilar
- Department of Genomics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Melanie Vega
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Claudia Gonzalez
- Department of Genomics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Jessica Gondola
- Department of Genomics and Proteomics, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Lourdes Moreno
- National Department of Epidemiology, Ministry of Health, Panama City, Panama
| | - Lizbeth Cerezo
- National Department of Epidemiology, Ministry of Health, Panama City, Panama
| | - Leticia Franco
- Infectious Hazard Management Unit, Health Emergencies Department, Pan American Health Organization, Washington, DC, United States
| | - Jairo Mendez-Rico
- Infectious Hazard Management Unit, Health Emergencies Department, Pan American Health Organization, Washington, DC, United States
| | - Juan Miguel Pascale
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Sandra López-Vergès
- Virology Research Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Alexander A. Martínez
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Brechla Moreno
- Modular Specialized Laboratory, Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| |
Collapse
|
4
|
Monzón S, Varona S, Negredo A, Vidal-Freire S, Patiño-Galindo JA, Ferressini-Gerpe N, Zaballos A, Orviz E, Ayerdi O, Muñoz-Gómez A, Delgado-Iribarren A, Estrada V, García C, Molero F, Sánchez-Mora P, Torres M, Vázquez A, Galán JC, Torres I, Causse Del Río M, Merino-Diaz L, López M, Galar A, Cardeñoso L, Gutiérrez A, Loras C, Escribano I, Alvarez-Argüelles ME, Del Río L, Simón M, Meléndez MA, Camacho J, Herrero L, Jiménez P, Navarro-Rico ML, Jado I, Giannetti E, Kuhn JH, Sanchez-Lockhart M, Di Paola N, Kugelman JR, Guerra S, García-Sastre A, Cuesta I, Sánchez-Seco MP, Palacios G. Monkeypox virus genomic accordion strategies. Nat Commun 2024; 15:3059. [PMID: 38637500 PMCID: PMC11026394 DOI: 10.1038/s41467-024-46949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.
Collapse
Affiliation(s)
- Sara Monzón
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sarai Varona
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 2832, Madrid, Spain
| | - Anabel Negredo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Vidal-Freire
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Angel Zaballos
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Orviz
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Ana Muñoz-Gómez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | | | - Vicente Estrada
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Cristina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Patricia Sánchez-Mora
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Montserrat Torres
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan-Carlos Galán
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ignacio Torres
- Servicio de Microbiología, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, 46010, Valencia, Spain
| | - Manuel Causse Del Río
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - Laura Merino-Diaz
- Unidad Clínico de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Marcos López
- Servicio de Microbiología y Parasitología, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
| | - Alicia Galar
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Laura Cardeñoso
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006, Madrid, Spain
| | - Almudena Gutiérrez
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Cristina Loras
- Servicio de Microbiología, Hospital General y Universitario, 13005, Ciudad Real, Spain
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, 03010, Alicante, Spain
| | | | | | - María Simón
- Servicio de Microbiología, Hospital Central de la Defensa "Gómez Ulla", 28947, Madrid, Spain
| | - María Angeles Meléndez
- Servicio de Microbiología y Parasitología, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Navarro-Rico
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Jado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elaina Giannetti
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, 21702, USA
| | - Mariano Sanchez-Lockhart
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Nicholas Di Paola
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Jeffrey R Kugelman
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Susana Guerra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departmento de Medicina Preventiva, Salud Publica y Microbiología, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isabel Cuesta
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maripaz P Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. FRONTIERS IN BIOINFORMATICS 2024; 4:1278228. [PMID: 38560517 PMCID: PMC10978663 DOI: 10.3389/fbinf.2024.1278228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Metagenomic sequencing has revolutionized our understanding of microbiology. While metagenomic tools and approaches have been extensively evaluated and benchmarked, far less attention has been given to the reference sequence database used in metagenomic classification. Issues with reference sequence databases are pervasive. Database contamination is the most recognized issue in the literature; however, it remains relatively unmitigated in most analyses. Other common issues with reference sequence databases include taxonomic errors, inappropriate inclusion and exclusion criteria, and sequence content errors. This review covers ten common issues with reference sequence databases and the potential downstream consequences of these issues. Mitigation measures are discussed for each issue, including bioinformatic tools and database curation strategies. Together, these strategies present a path towards more accurate, reproducible and translatable metagenomic sequencing.
Collapse
|
6
|
Vazquez-Pérez JA, Martínez-Alvarado E, Venancio-Landeros AA, Santiago-Olivares C, Mejía-Nepomuceno F, Mendoza-Ramírez E, Rivera-Toledo E. An amplicon-based protocol for whole-genome sequencing of human respiratory syncytial virus subgroup A. Biol Methods Protoc 2024; 9:bpae007. [PMID: 38371356 PMCID: PMC10873904 DOI: 10.1093/biomethods/bpae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024] Open
Abstract
It is convenient to study complete genome sequences of human respiratory syncytial virus (hRSV) for ongoing genomic characterization and identification of highly transmissible or pathogenic variants. Whole genome sequencing of hRSV has been challenging from respiratory tract specimens with low viral loads. Herein, we describe an amplicon-based protocol for whole genome sequencing of hRSV subgroup A validated with 24 isolates from nasopharyngeal swabs and infected cell cultures, which showed cycle threshold (Ct) values ranging from 10 to 31, as determined by quantitative reverse-transcription polymerase chain reaction. MinION nanopore generated 3200 to 5400 reads per sample to sequence over 93% of the hRSV-A genome. Coverage of each contig ranged from 130× to 200×. Samples with Ct values of 20.9, 25.2, 27.1, 27.7, 28.2, 28.8, and 29.6 led to the sequencing of over 99.0% of the virus genome, indicating high genome coverage even at high Ct values. This protocol enables the identification of hRSV subgroup A genotypes, as primers were designed to target highly conserved regions. Consequently, it holds potential for application in molecular epidemiology and surveillance of this hRSV subgroup.
Collapse
Affiliation(s)
| | - Eber Martínez-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | | | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | | | | | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
7
|
Park K, Noh J, Kim K, Kim J, Cho HK, Kim SG, Yang E, Kim WK, Song JW. A Development of Rapid Whole-Genome Sequencing of Seoul orthohantavirus Using a Portable One-Step Amplicon-Based High Accuracy Nanopore System. Viruses 2023; 15:1542. [PMID: 37515228 PMCID: PMC10386077 DOI: 10.3390/v15071542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Whole-genome sequencing provides a robust platform for investigating the epidemiology and transmission of emerging viruses. Oxford Nanopore Technologies allows for real-time viral sequencing on a local laptop system for point-of-care testing. Seoul orthohantavirus (Seoul virus, SEOV), harbored by Rattus norvegicus and R. rattus, causes mild hemorrhagic fever with renal syndrome and poses an important threat to public health worldwide. We evaluated the deployable MinION system to obtain high-fidelity entire-length sequences of SEOV for the genome identification of accurate infectious sources and their genetic diversity. One-step amplicon-based nanopore sequencing was performed from SEOV 80-39 specimens with different viral copy numbers and SEOV-positive wild rats. The KU-ONT-SEOV-consensus module was developed to analyze SEOV genomic sequences generated from the nanopore system. Using amplicon-based nanopore sequencing and the KU-ONT-consensus pipeline, we demonstrated novel molecular diagnostics for acquiring full-length SEOV genome sequences, with sufficient read depth in less than 6 h. The consensus sequence accuracy of the SEOV small, medium, and large genomes showed 99.75-100% (for SEOV 80-39 isolate) and 99.62-99.89% (for SEOV-positive rats) identities. This study provides useful insights into on-site diagnostics based on nanopore technology and the genome epidemiology of orthohantaviruses for a quicker response to hantaviral outbreaks.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jongwoo Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunyoung Yang
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Adriaenssens EM, Roux S, Brister JR, Karsch-Mizrachi I, Kuhn JH, Varsani A, Yigang T, Reyes A, Lood C, Lefkowitz EJ, Sullivan MB, Edwards RA, Simmonds P, Rubino L, Sabanadzovic S, Krupovic M, Dutilh BE. Guidelines for public database submission of uncultivated virus genome sequences for taxonomic classification. Nat Biotechnol 2023; 41:898-902. [PMID: 37430074 PMCID: PMC10526704 DOI: 10.1038/s41587-023-01844-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Evelien M Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, UK.
| | - Simon Roux
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Ilene Karsch-Mizrachi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Tong Yigang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, UK
| | - Luisa Rubino
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, CH, the Netherlands
| |
Collapse
|
9
|
Kuhn JH, Bradfute SB, Calisher CH, Klempa B, Klingström J, Laenen L, Palacios G, Schmaljohn CS, Tischler ND, Maes P. Pending Reorganization of Hantaviridae to Include Only Completely Sequenced Viruses: A Call to Action. Viruses 2023; 15:660. [PMID: 36992369 PMCID: PMC10059669 DOI: 10.3390/v15030660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this requirement is fairly new; thus, genomic sequence information is fragmented or absent for many already-classified viruses. As a result, taxon-wide modern phylogenetic analyses are often challenging, if not impossible. This problem is particularly eminent among viruses with segmented genomes, such as bunyavirals, which were frequently classified solely based on single-segment sequence information. To solve this issue for one bunyaviral family, Hantaviridae, we call on the community to provide additional sequence information for incompletely sequenced classified viruses by mid-June 2023. Such sequence information may be sufficient to prevent their possible declassification during the ongoing efforts to establish a coherent, consistent, and evolution-based hantavirid taxonomy.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Steven B. Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Jonas Klingström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Lies Laenen
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, 3000 Leuven, Belgium
- Belgium Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Connie S. Schmaljohn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Nicole D. Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, Duprex WP, Dutilh BE, Elena SF, García ML, Junglen S, Katzourakis A, Koonin EV, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Lood C, Mahony J, Meier-Kolthoff JP, Mushegian AR, Oksanen HM, Poranen MM, Reyes-Muñoz A, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Siddell S, Skern T, Smith DB, Sullivan MB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A, Vasilakis N. Four principles to establish a universal virus taxonomy. PLoS Biol 2023; 21:e3001922. [PMID: 36780432 PMCID: PMC9925010 DOI: 10.1371/journal.pbio.3001922] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nicola G. A. Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences—BRTA, Derio, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - W. Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, United States of America
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Reyes-Muñoz
- Max Planck Tandem Group in Computational Biology, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tim Skern
- Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Nikos Vasilakis
- Department of Pathology, Center of Vector-Borne and Zoonotic Diseases, Institute for Human Infection and Immunity and World Reference Center for Emerging Viruses and Arboviruses, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
11
|
Mendes Dos Santos MA, Dias LS, Ramirez Pavon JA, Viniski AE, Campos Souza CL, Pepato MA, Correa de Azevedo V, Teixeira Nunes MR, Slhessarenko RD. Regional mutations in CHIKV-ECSA genomes and detection of other viruses in the serum of acute febrile patients by a metagenomic approach in Mato Grosso, Central-Western Brazil, 2018. Virology 2022; 576:18-29. [PMID: 36126430 DOI: 10.1016/j.virol.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
Mato Grosso (MT) State is part of central western Brazil and has a tropical permissive environment that favors arbovirus outbreaks. A metagenomic approach was used to identify viral genomes in seven pools of serum from patients (n=65) with acute febrile disease. Seven chikungunya virus (CHIKV) genomes were determined, showing four amino acid changes found only in CHIKV genomes obtained in MT since 2018: nsP2:T31I, nsP3: A388V, E3:T201I and E3:H57R, in addition to other mutations in E1, nsP2 and nsP4. Six parvovirus B19 (B19V) genotype I genomes (4771-5131 nt) showed four aa alterations (NS1:N473D, R579Q; VP1:I716T; and 11 kDa:V44A) compared to most similar B19V from the USA. Coinfection between CHIKV and B19V was evidenced in 22/65 (33.8%) patients by RT‒PCR and PCR, respectively. Other viruses found in these pools include human pegivirus C, torque teno virus 3, an unclassified TTV and torque teno mini virus. Metagenomics represents a useful approach to detect viruses in the serum of acute febrile patients suspected of arbovirus disease.
Collapse
Affiliation(s)
- Marcelo Adriano Mendes Dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Faculdade de Medicina, Universidade do Estado de Mato Grosso, Cáceres, MT, Brazil
| | - Lucas Silva Dias
- Curso de Graduação em Medicina, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Janeth Aracely Ramirez Pavon
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Ana Elisa Viniski
- Laboratório Central do Estado de Mato Grosso, Secretaria Estadoual de Saúde, Cuiabá, MT, Brazil
| | | | - Marco Andrey Pepato
- Laboratório Central do Estado de Mato Grosso, Secretaria Estadoual de Saúde, Cuiabá, MT, Brazil; Hospital Universitário Júlio Muller, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | | | | | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
12
|
SARS-CoV-2 Infections in Vaccinated and Unvaccinated Populations in Camp Lemonnier, Djibouti, from April 2020 to January 2022. Viruses 2022; 14:v14091918. [PMID: 36146724 PMCID: PMC9505681 DOI: 10.3390/v14091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 12/12/2022] Open
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the disparity between developed and developing countries for infectious disease surveillance and the sequencing of pathogen genomes. The majority of SARS-CoV-2 sequences published are from Europe, North America, and Asia. Between April 2020 and January 2022, 795 SARS-CoV-2-positive nares swabs from individuals in the U.S. Navy installation Camp Lemonnier, Djibouti, were collected, sequenced, and analyzed. In this study, we described the results of genomic sequencing and analysis for 589 samples, the first published viral sequences for Djibouti, including 196 cases of vaccine breakthrough infections. This study contributes to the knowledge base of circulating SARS-CoV-2 lineages in the under-sampled country of Djibouti, where only 716 total genome sequences are available at time of publication. Our analysis resulted in the detection of circulating variants of concern, mutations of interest in lineages in which those mutations are not common, and emerging spike mutations.
Collapse
|
13
|
Jurasz H, Pawłowski T, Perlejewski K. Contamination Issue in Viral Metagenomics: Problems, Solutions, and Clinical Perspectives. Front Microbiol 2021; 12:745076. [PMID: 34745046 PMCID: PMC8564396 DOI: 10.3389/fmicb.2021.745076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
We describe the most common internal and external sources and types of contamination encountered in viral metagenomic studies and discuss their negative impact on sequencing results, particularly for low-biomass samples and clinical applications. We also propose some basic recommendations for reducing the background noise in viral shotgun metagenomic (SM) studies, which would limit the bias introduced by various classes of contaminants. Regardless of the specific viral SM protocol, contamination cannot be totally avoided; in particular, the issue of reagent contamination should always be addressed with high priority. There is an urgent need for the development and validation of standards for viral metagenomic studies especially if viral SM protocols will be more widely applied in diagnostics.
Collapse
Affiliation(s)
- Henryk Jurasz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Rajagopala SV, Bakhoum NG, Pakala SB, Shilts MH, Rosas-Salazar C, Mai A, Boone HH, McHenry R, Yooseph S, Halasa N, Das SR. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. CELL REPORTS METHODS 2021; 1:100091. [PMID: 34790908 PMCID: PMC8594859 DOI: 10.1016/j.crmeth.2021.100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.
Collapse
Affiliation(s)
- Seesandra V. Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole G. Bakhoum
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman B. Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christian Rosas-Salazar
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annie Mai
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Helen H. Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rendie McHenry
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Natasha Halasa
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
15
|
On-Demand Patient-Specific Phenotype-to-Genotype Ebola Virus Characterization. Viruses 2021; 13:v13102010. [PMID: 34696439 PMCID: PMC8537714 DOI: 10.3390/v13102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.
Collapse
|
16
|
Horie M. Identification of a novel filovirus in a common lancehead (Bothrops atrox (Linnaeus, 1758)). J Vet Med Sci 2021; 83:1485-1488. [PMID: 34275961 PMCID: PMC8498845 DOI: 10.1292/jvms.21-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
I performed metaviromic analysis of publicly available RNA-seq data from reptiles to understand the diversity of filoviruses (family Filoviridae). I identified a coding-complete sequence of a filovirus from the common lancehead (Bothrops atrox (Linnaeus, 1758)), tentatively named Tapajós virus (TAPV). Although the genome organization of TAPV is similar to mammalian filoviruses, our phylogenetic analysis showed that TAPV forms a cluster with a fish filovirus. However, TAPV is still distantly related to all the known filoviruses, suggesting that TAPV can be assigned as a species of a novel genus in Filoviridae. To our knowledge, this is the first report identifying a filovirus in reptiles, and thus contributes to a deeper understanding of the diversity and evolution of filoviruses.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University.,Department of Virology, Institute for Frontier Life and Medical Science, Kyoto University.,Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
17
|
Multiplex PCR-Based Nanopore Sequencing and Epidemiological Surveillance of Hantaan orthohantavirus in Apodemus agrarius, Republic of Korea. Viruses 2021; 13:v13050847. [PMID: 34066592 PMCID: PMC8148566 DOI: 10.3390/v13050847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing of infectious agents enables the identification and characterization of emerging viruses. The MinION device is a portable sequencer that allows real-time sequencing in fields or hospitals. Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius, causes hemorrhagic fever with renal syndrome (HFRS) and poses a critical public health threat worldwide. In this study, we aimed to evaluate the feasibility of using nanopore sequencing for whole-genome sequencing of HTNV from samples having different viral copy numbers. Amplicon-based next-generation sequencing was performed in A. agrarius lung tissues collected from the Republic of Korea. Genomic sequences of HTNV were analyzed based on the viral RNA copy numbers. Amplicon-based nanopore sequencing provided nearly full-length genomic sequences of HTNV and showed sufficient read depth for phylogenetic analysis after 8 h of sequencing. The average identity of the HTNV genome sequences for the nanopore sequencer compared to those of generated from Illumina MiSeq revealed 99.8% (L and M segments) and 99.7% (S segment) identities, respectively. This study highlights the potential of the portable nanopore sequencer for rapid generation of accurate genomic sequences of HTNV for quicker decision making in point-of-care testing of HFRS patients during a hantavirus outbreak.
Collapse
|
18
|
Kapuscinski ML, Bergren NA, Russell BJ, Lee JS, Borland EM, Hartman DA, King DC, Hughes HR, Burkhalter KL, Kading RC, Stenglein MD. Genomic characterization of 99 viruses from the bunyavirus families Nairoviridae, Peribunyaviridae, and Phenuiviridae, including 35 previously unsequenced viruses. PLoS Pathog 2021; 17:e1009315. [PMID: 33647063 PMCID: PMC7951987 DOI: 10.1371/journal.ppat.1009315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Bunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that include important human, veterinary, and plant pathogens. The rapid characterization of known and new emerging pathogens depends on the availability of comprehensive reference sequence databases that can be used to match unknowns, infer evolutionary relationships and pathogenic potential, and make response decisions in an evidence-based manner. In this study, we determined the coding-complete genome sequences of 99 bunyaviruses in the Centers for Disease Control and Prevention's Arbovirus Reference Collection, focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae), and phleboviruses (Phenuiviridae) that either completely or partially lacked genome sequences. These viruses had been collected over 66 years from 27 countries from vertebrates and arthropods representing 37 genera. Many of the viruses had been characterized serologically and through experimental infection of animals but were isolated in the pre-sequencing era. We took advantage of our unusually large sample size to systematically evaluate genomic characteristics of these viruses, including reassortment, and co-infection. We corroborated our findings using several independent molecular and virologic approaches, including Sanger sequencing of 197 genome segments, and plaque isolation of viruses from putative co-infected virus stocks. This study contributes to the described genetic diversity of bunyaviruses and will enhance the capacity to characterize emerging human pathogenic bunyaviruses.
Collapse
Affiliation(s)
- Marylee L. Kapuscinski
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nicholas A. Bergren
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brandy J. Russell
- Arboviral Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin M. Borland
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Daniel A. Hartman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David C. King
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Holly R. Hughes
- Arboviral Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Kristen L. Burkhalter
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Arboviral Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Rebekah C. Kading
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
19
|
Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia longipalpis Using Genomic and Virus-Host Interaction Signatures. Viruses 2020; 13:v13010009. [PMID: 33374584 PMCID: PMC7822452 DOI: 10.3390/v13010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hematophagous insects act as the major reservoirs of infectious agents due to their intimate contact with a large variety of vertebrate hosts. Lutzomyia longipalpis is the main vector of Leishmania chagasi in the New World, but its role as a host of viruses is poorly understood. In this work, Lu. longipalpis RNA libraries were subjected to progressive assembly using viral profile HMMs as seeds. A sequence phylogenetically related to fungal viruses of the genus Mitovirus was identified and this novel virus was named Lul-MV-1. The 2697-base genome presents a single gene coding for an RNA-directed RNA polymerase with an organellar genetic code. To determine the possible host of Lul-MV-1, we analyzed the molecular characteristics of the viral genome. Dinucleotide composition and codon usage showed profiles similar to mitochondrial DNA of invertebrate hosts. Also, the virus-derived small RNA profile was consistent with the activation of the siRNA pathway, with size distribution and 5′ base enrichment analogous to those observed in viruses of sand flies, reinforcing Lu. longipalpis as a putative host. Finally, RT-PCR of different insect pools and sequences of public Lu. longipalpis RNA libraries confirmed the high prevalence of Lul-MV-1. This is the first report of a mitovirus infecting an insect host.
Collapse
|
20
|
Lee J, Parvathareddy J, Yang D, Bansal S, O'Connell K, Golden JE, Jonsson CB. Emergence and Magnitude of ML336 Resistance in Venezuelan Equine Encephalitis Virus Depend on the Microenvironment. J Virol 2020; 94:e00317-20. [PMID: 32878897 PMCID: PMC7592223 DOI: 10.1128/jvi.00317-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that can cause neurological disease and death in humans and equines following transmission from infected mosquitoes. Despite the continued epidemic threat of VEEV, and its potential use as a bioterrorism agent, there are no FDA-approved antivirals or vaccines for treatment or prevention. Previously, we reported the discovery of a small molecule, ML336, with potent antiviral activity against VEEV. To further explore the population-level resistance profiles of ML336, we developed a whole-genome next-generation sequencing (NGS) approach to examine single nucleotide polymorphisms (SNPs) from virus passaged in dose escalation studies in a nonhuman primate kidney epithelial and a human astrocyte cell line, Vero 76 and SVGA, respectively. We passaged VEEV TC-83 in these two cell lines over seven concentrations of ML336, starting at 50 nM. NGS revealed several prominent mutations in the nonstructural protein (nsP) 3 and nsP4 genes that emerged consistently in these two distinct in vitro environments-notably, a mutation at Q210 in nsP4. Several of these mutations were stable following passaging in the absence of ML336 in Vero 76 cells. Network analyses showed that the trajectory of resistance differed between Vero and SVGA. Moreover, the penetration of SNPs was lower in SVGA. In conclusion, we show that the microenvironment influenced the SNP profile of VEEV TC-83. Understanding the dynamics of resistance in VEEV against newly developed antiviral compounds will guide the design of optimal drug candidates and dosing regimens for minimizing the emergence of resistant viruses.IMPORTANCE RNA viruses, including Venezuelan equine encephalitis virus (VEEV), have high mutation rates that allow for rapid adaptation to selective pressures in their environment. Antiviral compounds exert one such pressure on virus populations during infections. Next-generation sequencing allows for examination of viruses at the population level, which enables tracking of low levels of single-nucleotide polymorphisms in the population over time. Therefore, the timing and extent of the emergence of resistance to antivirals can be tracked and assessed. We show here that in VEEV, the trajectory and penetration of antiviral resistance reflected the microenvironment in which the virus population replicates. In summary, we show the diversity of VEEV within a single population under antiviral pressure and two distinct cell types, and we show that population dynamics in these viruses can be examined to better understand how they evolve over time.
Collapse
Affiliation(s)
- Jasper Lee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shruti Bansal
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kathryn O'Connell
- Laboratory Animal Care Unit, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
21
|
Torsson E, Kgotlele T, Misinzo G, Johansson Wensman J, Berg M, Karlsson Lindsjö O. Field-Adapted Full Genome Sequencing of Peste-Des-Petits-Ruminants Virus Using Nanopore Sequencing. Front Vet Sci 2020; 7:542724. [PMID: 33195515 PMCID: PMC7649132 DOI: 10.3389/fvets.2020.542724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023] Open
Abstract
Peste-des-petits-ruminants virus (PPRV) is currently the focus of a control and eradication program. Full genome sequencing has the opportunity to become a powerful tool in the eradication program by improving molecular epidemiology and the study of viral evolution. PPRV is prevalent in many resource-constrained areas, with long distances to laboratory facilities, which can lack the correct equipment for high-throughput sequencing. Here we present a protocol for near full or full genome sequencing of PPRV. The use of a portable miniPCR and MinION brings the laboratory to the field and in addition makes the production of a full genome possible within 24 h of sampling. The protocol has been successfully used on virus isolates from cell cultures and field isolates from tissue samples of naturally infected goats.
Collapse
Affiliation(s)
- Emeli Torsson
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tebogo Kgotlele
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Gerald Misinzo
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jonas Johansson Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Oskar Karlsson Lindsjö
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
Taylor MK, Williams EP, Wongsurawat T, Jenjaroenpun P, Nookaew I, Jonsson CB. Amplicon-Based, Next-Generation Sequencing Approaches to Characterize Single Nucleotide Polymorphisms of Orthohantavirus Species. Front Cell Infect Microbiol 2020; 10:565591. [PMID: 33163416 PMCID: PMC7591466 DOI: 10.3389/fcimb.2020.565591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Whole-genome sequencing (WGS) of viruses from patient or environmental samples can provide tremendous insight into the epidemiology, drug resistance or evolution of a virus. However, we face two common hurdles in obtaining robust sequence information; the low copy number of viral genomes in specimens and the error introduced by WGS techniques. To optimize detection and minimize error in WGS of hantaviruses, we tested four amplification approaches and different amplicon pooling methods for library preparation and examined these preparations using two sequencing platforms, Illumina MiSeq and Oxford Nanopore Technologies MinION. First, we tested and optimized primers used for whole segment PCR or one kilobase amplicon amplification for even coverage using RNA isolated from the supernatant of virus-infected cells. Once optimized we assessed two sources of total RNA, virus-infected cells and supernatant from the virus-infected cells, with four variations of primer pooling for amplicons, and six different amplification approaches. We show that 99-100% genome coverage was obtained using a one-step RT-PCR reaction with one forward and reverse primer. Using a two-step RT-PCR with three distinct tiling approaches for the three genomic segments (vRNAs), we optimized primer pooling approaches for PCR amplification to achieve a greater number of aligned reads, average depth of genome, and genome coverage. The single nucleotide polymorphisms identified from MiSeq and MinION sequencing suggested intrinsic mutation frequencies of ~10-5-10-7 per genome and 10-4-10-5 per genome, respectively. We noted no difference in the coverage or accuracy when comparing WGS results with amplicons amplified from RNA extracted from infected cells or supernatant of these infected cells. Our results show that high-throughput diagnostics requiring the identification of hantavirus species or strains can be performed using MiSeq or MinION using a one-step approach. However, the two-step MiSeq approach outperformed the MinION in coverage depth and accuracy, and hence would be superior for assessment of genomes for epidemiology or evolutionary questions using the methods developed herein.
Collapse
Affiliation(s)
- Mariah K. Taylor
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
23
|
Forth JH, Forth LF, Blome S, Höper D, Beer M. African swine fever whole-genome sequencing-Quantity wanted but quality needed. PLoS Pathog 2020; 16:e1008779. [PMID: 32853289 PMCID: PMC7451517 DOI: 10.1371/journal.ppat.1008779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The pandemic spread of African swine fever virus (ASFV) genotype II (GTII) has led to a global crisis. Since the circulating strains are almost identical, time and money have been mis-invested in whole-genome sequencing the last years. New methods, harmonised protocols for sample selection, sequencing, and bioinformatics are therefore urgently needed.
Collapse
Affiliation(s)
- Jan H. Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Leonie F. Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
- * E-mail:
| |
Collapse
|
24
|
Deng X, Achari A, Federman S, Yu G, Somasekar S, Bártolo I, Yagi S, Mbala-Kingebeni P, Kapetshi J, Ahuka-Mundeke S, Muyembe-Tamfum JJ, Ahmed AA, Ganesh V, Tamhankar M, Patterson JL, Ndembi N, Mbanya D, Kaptue L, McArthur C, Muñoz-Medina JE, Gonzalez-Bonilla CR, López S, Arias CF, Arevalo S, Miller S, Stone M, Busch M, Hsieh K, Messenger S, Wadford DA, Rodgers M, Cloherty G, Faria NR, Thézé J, Pybus OG, Neto Z, Morais J, Taveira N, R Hackett J, Chiu CY. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol 2020; 5:443-454. [PMID: 31932713 PMCID: PMC7047537 DOI: 10.1038/s41564-019-0637-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Metagenomic next-generation sequencing (mNGS), the shotgun sequencing of RNA and DNA from clinical samples, has proved useful for broad-spectrum pathogen detection and the genomic surveillance of viral outbreaks. An additional target enrichment step is generally needed for high-sensitivity pathogen identification in low-titre infections, yet available methods using PCR or capture probes can be limited by high cost, narrow scope of detection, lengthy protocols and/or cross-contamination. Here, we developed metagenomic sequencing with spiked primer enrichment (MSSPE), a method for enriching targeted RNA viral sequences while simultaneously retaining metagenomic sensitivity for other pathogens. We evaluated MSSPE for 14 different viruses, yielding a median tenfold enrichment and mean 47% (±16%) increase in the breadth of genome coverage over mNGS alone. Virus detection using MSSPE arboviral or haemorrhagic fever viral panels was comparable in sensitivity to specific PCR, demonstrating 95% accuracy for the detection of Zika, Ebola, dengue, chikungunya and yellow fever viruses in plasma samples from infected patients. Notably, sequences from re-emerging and/or co-infecting viruses that have not been specifically targeted a priori, including Powassan and Usutu, were successfully enriched using MSSPE. MSSPE is simple, low cost, fast and deployable on either benchtop or portable nanopore sequencers, making this method directly applicable for diagnostic laboratory and field use. This study describes a new method that improves the sensitivity of viral detection compared with next-generation sequencing and enables the detection of emerging flaviviruses not specifically targeted a priori. Metagenomic sequencing with spiked primer enrichment is simple, low cost, fast and deployable on either benchtop or portable nanopore sequencers, making it applicable for diagnostic laboratory and field use.
Collapse
Affiliation(s)
- Xianding Deng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Asmeeta Achari
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Scot Federman
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Guixia Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Sneha Somasekar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Inês Bártolo
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Shigeo Yagi
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | | | - Jimmy Kapetshi
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | | | - Asim A Ahmed
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vijay Ganesh
- Massachussetts General Hospital, Boston, MA, USA
| | - Manasi Tamhankar
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicaise Ndembi
- Institute for Human Virology Nigeria, Abuja, Nigeria.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dora Mbanya
- Universite de Yaoundé I, Yaoundé, Cameroon.,University of Bamenda, Bamenda, Cameroon
| | | | | | | | | | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Shaun Arevalo
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Michael Busch
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Kristina Hsieh
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Sharon Messenger
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Debra A Wadford
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | | | | | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Zoraima Neto
- Angolan National Institute of Health Research, Luanda, Angola
| | - Joana Morais
- Angolan National Institute of Health Research, Luanda, Angola
| | - Nuno Taveira
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, Portugal
| | | | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA. .,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA. .,Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Laenen L, Vergote V, Calisher CH, Klempa B, Klingström J, Kuhn JH, Maes P. Hantaviridae: Current Classification and Future Perspectives. Viruses 2019; 11:v11090788. [PMID: 31461937 PMCID: PMC6784073 DOI: 10.3390/v11090788] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
In recent years, negative-sense RNA virus classification and taxon nomenclature have undergone considerable transformation. In 2016, the new order Bunyavirales was established, elevating the previous genus Hantavirus to family rank, thereby creating Hantaviridae. Here we summarize affirmed taxonomic modifications of this family from 2016 to 2019. Changes involve the admission of >30 new hantavirid species and the establishment of subfamilies and novel genera based on DivErsity pArtitioning by hieRarchical Clustering (DEmARC) analysis of genomic sequencing data. We outline an objective framework that can be used in future classification schemes when more hantavirids sequences will be available. Finally, we summarize current taxonomic proposals and problems in hantavirid taxonomy that will have to be addressed shortly.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
| | | | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Metagenomic Next-Generation Sequencing of the 2014 Ebola Virus Disease Outbreak in the Democratic Republic of the Congo. J Clin Microbiol 2019; 57:JCM.00827-19. [PMID: 31315955 PMCID: PMC6711896 DOI: 10.1128/jcm.00827-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
We applied metagenomic next-generation sequencing (mNGS) to detect Zaire Ebola virus (EBOV) and other potential pathogens from whole-blood samples from 70 patients with suspected Ebola hemorrhagic fever during a 2014 outbreak in Boende, Democratic Republic of the Congo (DRC) and correlated these findings with clinical symptoms. Twenty of 31 patients (64.5%) tested in Kinshasa, DRC, were EBOV positive by quantitative reverse transcriptase PCR (qRT-PCR). We applied metagenomic next-generation sequencing (mNGS) to detect Zaire Ebola virus (EBOV) and other potential pathogens from whole-blood samples from 70 patients with suspected Ebola hemorrhagic fever during a 2014 outbreak in Boende, Democratic Republic of the Congo (DRC) and correlated these findings with clinical symptoms. Twenty of 31 patients (64.5%) tested in Kinshasa, DRC, were EBOV positive by quantitative reverse transcriptase PCR (qRT-PCR). Despite partial degradation of sample RNA during shipping and handling, mNGS followed by EBOV-specific capture probe enrichment in a U.S. genomics laboratory identified EBOV reads in 22 of 70 samples (31.4%) versus in 21 of 70 (30.0%) EBOV-positive samples by repeat qRT-PCR (overall concordance = 87.1%). Reads from Plasmodium falciparum (malaria) were detected in 21 patients, of which at least 9 (42.9%) were coinfected with EBOV. Other positive viral detections included hepatitis B virus (n = 2), human pegivirus 1 (n = 2), Epstein-Barr virus (n = 9), and Orungo virus (n = 1), a virus in the Reoviridae family. The patient with Orungo virus infection presented with an acute febrile illness and died rapidly from massive hemorrhage and dehydration. Although the patient’s blood sample was negative by EBOV qRT-PCR testing, identification of viral reads by mNGS confirmed the presence of EBOV coinfection. In total, 9 new EBOV genomes (3 complete genomes, and an additional 6 ≥50% complete) were assembled. Relaxed molecular clock phylogenetic analysis demonstrated a molecular evolutionary rate for the Boende strain 4 to 10× slower than that of other Ebola lineages. These results demonstrate the utility of mNGS in broad-based pathogen detection and outbreak surveillance.
Collapse
|
27
|
Anh NT, Hong NTT, Nhu LNT, Thanh TT, Anscombe C, Chau LN, Thanh TTT, Lau CY, Limmathurotsakul D, Chau NVV, Rogier van Doorn H, Deng X, Rahman M, Delwart E, Le T, Thwaites G, Van Tan L. Detection and Characterization of Human Pegivirus 2, Vietnam. Emerg Infect Dis 2019; 24:2063-2067. [PMID: 30334714 PMCID: PMC6199981 DOI: 10.3201/eid2411.180668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report human pegivirus 2 (HPgV-2) infection in Vietnam. We detected HPgV-2 in some patients with hepatitis C virus/HIV co-infection but not in patients with HIV or hepatitis A, B, or C virus infection, nor in healthy controls. HPgV-2 strains in Vietnam are phylogenetically related to global strains.
Collapse
|
28
|
Dhaygude K, Johansson H, Kulmuni J, Sundström L. Genome organization and molecular characterization of the three Formica exsecta viruses-FeV1, FeV2 and FeV4. PeerJ 2019; 6:e6216. [PMID: 30809424 PMCID: PMC6387575 DOI: 10.7717/peerj.6216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
We present the genome organization and molecular characterization of the three Formica exsecta viruses, along with ORF predictions, and functional annotation of genes. The Formica exsecta virus-4 (FeV4; GenBank ID: MF287670) is a newly discovered negative-sense single-stranded RNA virus representing the first identified member of order Mononegavirales in ants, whereas the Formica exsecta virus-1 (FeV1; GenBank ID: KF500001), and the Formica exsecta virus-2 (FeV2; GenBank ID: KF500002) are positive single-stranded RNA viruses initially identified (but not characterized) in our earlier study. The new virus FeV4 was found by re-analyzing data from a study published earlier. The Formica exsecta virus-4 genome is 9,866 bp in size, with an overall G + C content of 44.92%, and containing five predicted open reading frames (ORFs). Our bioinformatics analysis indicates that gaps are absent and the ORFs are complete, which based on our comparative genomics analysis suggests that the genomes are complete. Following the characterization, we validate virus infection for FeV1, FeV2 and FeV4 for the first time in field-collected worker ants. Some colonies were infected by multiple viruses, and the viruses were observed to infect all castes, and multiple life stages of workers and queens. Finally, highly similar viruses were expressed in adult workers and queens of six other Formica species: F. fusca, F. pressilabris, F. pratensis, F. aquilonia, F. truncorum and F. cinerea. This research indicates that viruses can be shared between ant species, but further studies on viral transmission are needed to understand viral infection pathways.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Helena Johansson
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jonna Kulmuni
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Liselotte Sundström
- Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Hanko, Finland
| |
Collapse
|
29
|
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB, Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté JM, Lee KB, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H, Páez-Espino D, Petit MA, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario K, Schriml L, Schulz F, Steward GF, Sullivan MB, Sunagawa S, Suttle CA, Temperton B, Tringe SG, Thurber RV, Webster NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, Wrighton KC, Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, Eloe-Fadrosh EA. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol 2019; 37:29-37. [PMID: 30556814 PMCID: PMC6871006 DOI: 10.1038/nbt.4306] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Abstract
We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.
Collapse
Affiliation(s)
- Simon Roux
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland USA
| | - Rob Lavigne
- KU Leuven, Laboratory of Gene Technology, Heverlee, Belgium
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona USA
- Department of Integrative Biomedical Sciences, Structural Biology Research Unit, University of Cape Town, Observatory, Cape Town, South Africa
| | - Clara Amid
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee USA
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida USA
| | - Guy R Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Rebecca A Daly
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, Colorado USA
| | - Christelle Desnues
- Aix-Marseille Université, CNRS, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Melissa B Duhaime
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California USA
| | - François Enault
- LMGE,UMR 6023 CNRS, Université Clermont Auvergne, Aubiére, France
| | - Jed A Fuhrman
- University of Southern California, Los Angeles, Los Angeles, California USA
| | - Pascal Hingamp
- Aix Marseille Université,
- , Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland Australia
| | - Bonnie L Hurwitz
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona USA
- BIO5 Research Institute, University of Arizona, Tucson, Arizona USA
| | - Natalia N Ivanova
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas USA
| | - Kyung-Bum Lee
- DDBJ Center, National Institute of Genetics, Mishima, Shizuoka Japan
| | - Rex R Malmstrom
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Ilene Karsch Mizrachi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - David Páez-Espino
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois USA
- Department of Computer Science, Loyola University Chicago, Chicago, Illinois USA
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology,” University of Vienna, Vienna, Austria
| | - Alejandro Reyes
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Francisco Rodriguez-Valera
- Departamento de Producción Vegetal y Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Alicante, Spain
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida USA
| | - Lynn Schriml
- University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Frederik Schulz
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Grieg F Steward
- Department of Oceanography, Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, Hawai'i USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio USA
| | | | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia Canada
- Institute of Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia Canada
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland Australia
- Australian Institute of Marine Science, Townsville, Queensland Australia
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee USA
| | - K Eric Wommack
- University of Delaware, Delaware Biotechnology Institute, Newark, Delaware USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Kelly C Wrighton
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, Colorado USA
| | - Pelin Yilmaz
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto, Japan
| | - Mark J Young
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Lisa Zeigler Allen
- J Craig Venter Institute, La Jolla, California USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.,
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | |
Collapse
|
30
|
Fauver JR, Akter S, Morales AIO, Black WC, Rodriguez AD, Stenglein MD, Ebel GD, Weger-Lucarelli J. A reverse-transcription/RNase H based protocol for depletion of mosquito ribosomal RNA facilitates viral intrahost evolution analysis, transcriptomics and pathogen discovery. Virology 2018; 528:181-197. [PMID: 30616207 DOI: 10.1016/j.virol.2018.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 11/17/2022]
Abstract
Identifying novel viruses or assessing viral variation by NGS requires high sequencing coverage. More than 90% of total RNA is ribosomal (rRNA), making variant calling, virus discovery or transcriptomic profiling difficult. Current methods to increase informative reads suffer from drawbacks, either they cannot be used for some viruses, are optimized for a single species, or introduce bias. We describe a two-part approach combining reverse-transcription to create RNA/DNA hybrids which are then degraded with RNaseH/DNase sequentially that works for three medically relevant mosquito genera; Aedes, Anopheles, and Culex. We demonstrate depletion of rRNA from different samples, including whole mosquitoes and midgut contents from FTA cards. We describe novel insect-specific virus genomes from field collected mosquitoes. The protocol requires only common laboratory reagents and small oligonucleotides specific to rRNA. This approach can be adapted for other organisms, aiding virus diversity analyses, virus discovery and transcriptomics in both laboratory and field samples.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 360 W Campus Drive, Blacksburg, VA, USA
| | - Aldo Ivan Ortega Morales
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, Mexico
| | - William C Black
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Americo D Rodriguez
- Centro Regional de Investigación en Salud Publica, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Mark D Stenglein
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
31
|
Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, Neuhaus EB, Dugan VG, Wentworth DE, Barnes JR. Direct RNA Sequencing of the Coding Complete Influenza A Virus Genome. Sci Rep 2018; 8:14408. [PMID: 30258076 PMCID: PMC6158192 DOI: 10.1038/s41598-018-32615-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
For the first time, a coding complete genome of an RNA virus has been sequenced in its original form. Previously, RNA was sequenced by the chemical degradation of radiolabeled RNA, a difficult method that produced only short sequences. Instead, RNA has usually been sequenced indirectly by copying it into cDNA, which is often amplified to dsDNA by PCR and subsequently analyzed using a variety of DNA sequencing methods. We designed an adapter to short highly conserved termini of the influenza A virus genome to target the (-) sense RNA into a protein nanopore on the Oxford Nanopore MinION sequencing platform. Utilizing this method with total RNA extracted from the allantoic fluid of influenza rA/Puerto Rico/8/1934 (H1N1) virus infected chicken eggs (EID50 6.8 × 109), we demonstrate successful sequencing of the coding complete influenza A virus genome with 100% nucleotide coverage, 99% consensus identity, and 99% of reads mapped to influenza A virus. By utilizing the same methodology one can redesign the adapter in order to expand the targets to include viral mRNA and (+) sense cRNA, which are essential to the viral life cycle, or other pathogens. This approach also has the potential to identify and quantify splice variants and base modifications, which are not practically measurable with current methods.
Collapse
Affiliation(s)
- Matthew W Keller
- Oak Ridge Institute of Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | | | | | | | - Samuel S Shepard
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Thomas J Stark
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Elizabeth B Neuhaus
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - John R Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA.
| |
Collapse
|
32
|
Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. J Virol 2018; 92:JVI.00224-18. [PMID: 29950416 DOI: 10.1128/jvi.00224-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/30/2018] [Indexed: 01/21/2023] Open
Abstract
Insect-specific viruses (ISVs) of the yellow fever mosquito Aedes aegypti have been demonstrated to modulate transmission of arboviruses such as dengue virus (DENV) and West Nile virus by the mosquito. The diversity and composition of the virome of A. aegypti, however, remains poorly understood. In this study, we characterized Aedes anphevirus (AeAV), a negative-sense RNA virus from the order Mononegavirales AeAV identified from Aedes cell lines was infectious to both A. aegypti and Aedes albopictus cells but not to three mammalian cell lines. To understand the incidence and genetic diversity of AeAV, we assembled 17 coding-complete and two partial genomes of AeAV from available transcriptome sequencing (RNA-Seq) data. AeAV appears to transmit vertically and be present in laboratory colonies, wild-caught mosquitoes, and cell lines worldwide. Phylogenetic analysis of AeAV strains indicates that as the A. aegypti mosquito has expanded into the Americas and Asia-Pacific, AeAV has evolved into monophyletic African, American, and Asia-Pacific lineages. The endosymbiotic bacterium Wolbachia pipientis restricts positive-sense RNA viruses in A. aegypti Reanalysis of a small RNA library of A. aegypti cells coinfected with AeAV and Wolbachia produces an abundant RNA interference (RNAi) response consistent with persistent virus replication. We found Wolbachia enhances replication of AeAV compared to a tetracycline-cleared cell line, and AeAV modestly reduces DENV replication in vitro The results from our study improve understanding of the diversity and evolution of the virome of A. aegypti and adds to previous evidence that shows Wolbachia does not restrict a range of negative-strand RNA viruses.IMPORTANCE The mosquito Aedes aegypti transmits a number of arthropod-borne viruses (arboviruses), such as dengue virus and Zika virus. Mosquitoes also harbor insect-specific viruses that may affect replication of pathogenic arboviruses in their body. Currently, however, there are only a few insect-specific viruses described from A. aegypti in the literature. Here, we characterize a novel negative-strand virus, AeAV. Meta-analysis of A. aegypti samples showed that it is present in A. aegypti mosquitoes worldwide and is vertically transmitted. Wolbachia-transinfected mosquitoes are currently being used in biocontrol, as they effectively block transmission of several positive-sense RNA viruses in mosquitoes. Our results demonstrate that Wolbachia enhances the replication of AeAV and modestly reduces dengue virus replication in a cell line model. This study expands our understanding of the virome in A. aegypti as well as providing insight into the complexity of the Wolbachia virus restriction phenotype.
Collapse
|
33
|
Characterizing Phage Genomes for Therapeutic Applications. Viruses 2018; 10:v10040188. [PMID: 29642590 PMCID: PMC5923482 DOI: 10.3390/v10040188] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA) for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates.
Collapse
|
34
|
Bigot D, Atyame CM, Weill M, Justy F, Herniou EA, Gayral P. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evol 2018; 4:vex040. [PMID: 29340209 PMCID: PMC5763275 DOI: 10.1093/ve/vex040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family.
Collapse
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Célestine M Atyame
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| |
Collapse
|
35
|
Jansen van Vuren P, Wiley MR, Palacios G, Storm N, Markotter W, Birkhead M, Kemp A, Paweska JT. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J Gen Virol 2017; 98:935-945. [PMID: 28488954 PMCID: PMC5656801 DOI: 10.1099/jgv.0.000753] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae family comprises viruses causing diseases of public and veterinary health importance, including viral haemorrhagic and arboviral fevers. We report the isolation, identification and genome characterization of a novel orthobunyavirus, named Wolkberg virus (WBV), from wingless bat fly ectoparasites (Eucampsipoda africana) of Egyptian fruit bats (Rousettus aegyptiacus) in South Africa. Complete genome sequence data of WBV suggests it is most closely related to two bat viruses (Mojuí dos Campos and Kaeng Khoi viruses) and an arbovirus (Nyando virus) previously shown to infect humans. WBV replicates to high titres in VeroE6 and C6-36 cells, characteristic of mosquito-borne arboviruses. These findings expand our knowledge of the diversity of orthobunyaviruses and their insect vector host range.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa
| | - Michael R. Wiley
- Centre for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Gustavo Palacios
- Centre for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Nadia Storm
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Monica Birkhead
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Alan Kemp
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Janusz T. Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Janusz T. Paweska,
| |
Collapse
|
36
|
Bào Y, Amarasinghe GK, Basler CF, Bavari S, Bukreyev A, Chandran K, Dolnik O, Dye JM, Ebihara H, Formenty P, Hewson R, Kobinger GP, Leroy EM, Mühlberger E, Netesov SV, Patterson JL, Paweska JT, Smither SJ, Takada A, Towner JS, Volchkov VE, Wahl-Jensen V, Kuhn JH. Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses 2017; 9:E106. [PMID: 28492506 PMCID: PMC5454419 DOI: 10.3390/v9050106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022] Open
Abstract
The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.
Collapse
Affiliation(s)
- Yīmíng Bào
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302-3965, USA.
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, 35032 Marburg, Germany.
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Roger Hewson
- Public Health England, Porton Down, Wiltshire, Salisbury SP4 0JG, UK.
| | - Gary P Kobinger
- Department of Microbiology, Immunology & Infectious Diseases, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville, Institut de Recherche pour le Développement, BP 769 Franceville, Gabon.
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia 630090.
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA.
| | - Janusz T Paweska
- Center for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg 2131, Gauteng, South Africa.
| | - Sophie J Smither
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA.
| | - Viktor E Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Victoria Wahl-Jensen
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD 21702, USA.
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
37
|
Complete Coding Genome Sequence for Mogiana Tick Virus, a Jingmenvirus Isolated from Ticks in Brazil. GENOME ANNOUNCEMENTS 2017; 5:5/18/e00232-17. [PMID: 28473376 PMCID: PMC5477184 DOI: 10.1128/genomea.00232-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mogiana tick virus (MGTV) is a segmented jingmenvirus isolated in 2011 from cattle ticks in Brazil. Here, we present a complete coding genome sequence for MGTV isolate MGTV/V4/11, including all four segments. MGTV is evolutionarily related to the Jingmen tick virus isolates SY84 and RC27.
Collapse
|
38
|
Kugelman JR, Wiley MR, Nagle ER, Reyes D, Pfeffer BP, Kuhn JH, Sanchez-Lockhart M, Palacios GF. Error baseline rates of five sample preparation methods used to characterize RNA virus populations. PLoS One 2017; 12:e0171333. [PMID: 28182717 PMCID: PMC5300104 DOI: 10.1371/journal.pone.0171333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022] Open
Abstract
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods.
Collapse
Affiliation(s)
- Jeffrey R. Kugelman
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Michael R. Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Elyse R. Nagle
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Daniel Reyes
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Brad P. Pfeffer
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Gustavo F. Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ronholm J, Nasheri N, Petronella N, Pagotto F. Navigating Microbiological Food Safety in the Era of Whole-Genome Sequencing. Clin Microbiol Rev 2016; 29:837-57. [PMID: 27559074 PMCID: PMC5010751 DOI: 10.1128/cmr.00056-16] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The epidemiological investigation of a foodborne outbreak, including identification of related cases, source attribution, and development of intervention strategies, relies heavily on the ability to subtype the etiological agent at a high enough resolution to differentiate related from nonrelated cases. Historically, several different molecular subtyping methods have been used for this purpose; however, emerging techniques, such as single nucleotide polymorphism (SNP)-based techniques, that use whole-genome sequencing (WGS) offer a resolution that was previously not possible. With WGS, unlike traditional subtyping methods that lack complete information, data can be used to elucidate phylogenetic relationships and disease-causing lineages can be tracked and monitored over time. The subtyping resolution and evolutionary context provided by WGS data allow investigators to connect related illnesses that would be missed by traditional techniques. The added advantage of data generated by WGS is that these data can also be used for secondary analyses, such as virulence gene detection, antibiotic resistance gene profiling, synteny comparisons, mobile genetic element identification, and geographic attribution. In addition, several software packages are now available to generate in silico results for traditional molecular subtyping methods from the whole-genome sequence, allowing for efficient comparison with historical databases. Metagenomic approaches using next-generation sequencing have also been successful in the detection of nonculturable foodborne pathogens. This review addresses state-of-the-art techniques in microbial WGS and analysis and then discusses how this technology can be used to help support food safety investigations. Retrospective outbreak investigations using WGS are presented to provide organism-specific examples of the benefits, and challenges, associated with WGS in comparison to traditional molecular subtyping techniques.
Collapse
Affiliation(s)
- J Ronholm
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Neda Nasheri
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Nicholas Petronella
- Biostatistics and Modelling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Franco Pagotto
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada Listeriosis Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
40
|
Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK, Diclaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 2016; 498:288-299. [PMID: 27639161 DOI: 10.1016/j.virol.2016.07.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin J Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Lakin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | | | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Doug E Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
41
|
Ladner JT, Wiley MR, Beitzel B, Auguste AJ, Dupuis AP, Lindquist ME, Sibley SD, Kota KP, Fetterer D, Eastwood G, Kimmel D, Prieto K, Guzman H, Aliota MT, Reyes D, Brueggemann EE, St John L, Hyeroba D, Lauck M, Friedrich TC, O'Connor DH, Gestole MC, Cazares LH, Popov VL, Castro-Llanos F, Kochel TJ, Kenny T, White B, Ward MD, Loaiza JR, Goldberg TL, Weaver SC, Kramer LD, Tesh RB, Palacios G. A Multicomponent Animal Virus Isolated from Mosquitoes. Cell Host Microbe 2016; 20:357-367. [PMID: 27569558 DOI: 10.1016/j.chom.2016.07.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
Abstract
RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.
Collapse
Affiliation(s)
- Jason T Ladner
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Michael R Wiley
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett Beitzel
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, Departments of Pathology, Microbiology & Immunology, and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan P Dupuis
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12159, USA
| | - Michael E Lindquist
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishna P Kota
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David Fetterer
- Research Support Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Gillian Eastwood
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12159, USA
| | - David Kimmel
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Karla Prieto
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Hilda Guzman
- Institute for Human Infections and Immunity, Departments of Pathology, Microbiology & Immunology, and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthew T Aliota
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12159, USA
| | - Daniel Reyes
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Ernst E Brueggemann
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lena St John
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Michael Lauck
- Wisconsin National Primate Research Center, Madison, WI 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Marie C Gestole
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; Henry M. Jackson Foundation, Bethesda, MD 20817, USA; DoD Biotechnology High Performance Computing Software Applications Institute, Frederick, MD 21702, USA; Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Vsevolod L Popov
- Institute for Human Infections and Immunity, Departments of Pathology, Microbiology & Immunology, and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | - Tara Kenny
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Bailey White
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Michael D Ward
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jose R Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad de Panamá, Panamá
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Makerere University, Kampala, Uganda; Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Departments of Pathology, Microbiology & Immunology, and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Laura D Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12159, USA; School of Public Health, State University of New York at Albany, One University Place Rensselaer, East Greenbush, NY 12144, USA
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Departments of Pathology, Microbiology & Immunology, and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gustavo Palacios
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
42
|
Woolhouse MEJ, Rambaut A, Kellam P. Lessons from Ebola: Improving infectious disease surveillance to inform outbreak management. Sci Transl Med 2016; 7:307rv5. [PMID: 26424572 DOI: 10.1126/scitranslmed.aab0191] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current Ebola virus disease outbreak in West Africa has revealed serious shortcomings in national and international capacity to detect, monitor, and respond to infectious disease outbreaks as they occur. Recent advances in diagnostics, risk mapping, mathematical modeling, pathogen genome sequencing, phylogenetics, and phylogeography have the potential to improve substantially the quantity and quality of information available to guide the public health response to outbreaks of all kinds.
Collapse
Affiliation(s)
- Mark E J Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Andrew Rambaut
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Cambridge CB10 1RQ, UK. Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
43
|
Bailey AL, Lauck M, Mohns M, Peterson EJ, Beheler K, Brunner KG, Crosno K, Mejia A, Mutschler J, Gehrke M, Greene J, Ericsen AJ, Weiler A, Lehrer-Brey G, Friedrich TC, Sibley SD, Kallas EG, Capuano S, Rogers J, Goldberg TL, Simmons HA, O'Connor DH. Durable sequence stability and bone marrow tropism in a macaque model of human pegivirus infection. Sci Transl Med 2016; 7:305ra144. [PMID: 26378244 DOI: 10.1126/scitranslmed.aab3467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human pegivirus (HPgV)-formerly known as GB virus C and hepatitis G virus-is a poorly characterized RNA virus that infects about one-sixth of the global human population and is transmitted frequently in the blood supply. We create an animal model of HPgV infection by infecting macaque monkeys with a new simian pegivirus (SPgV) discovered in wild baboons. Using this model, we provide a high-resolution, longitudinal picture of SPgV viremia where the dose, route, and timing of infection are known. We detail the highly variable acute phase of SPgV infection, showing that the viral load trajectory early in infection is dependent on the infecting dose, whereas the chronic-phase viremic set point is not. We also show that SPgV has an extremely low propensity for accumulating sequence variation, with no consensus-level variants detected during the acute phase of infection and an average of only 1.5 variants generated per 100 infection-days. Finally, we show that SPgV RNA is highly concentrated in only two tissues: spleen and bone marrow, with bone marrow likely producing most of the virus detected in plasma. Together, these results reconcile several paradoxical observations from cross-sectional analyses of HPgV in humans and provide an animal model for studying pegivirus biology.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Mariel Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Eric J Peterson
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Kerry Beheler
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Kevin G Brunner
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - James Mutschler
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Matthew Gehrke
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Justin Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Adam J Ericsen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Andrea Weiler
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabrielle Lehrer-Brey
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Samuel D Sibley
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 01310-911, Brazil
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, WI 53711, USA
| | - Jeffrey Rogers
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tony L Goldberg
- Wisconsin National Primate Research Center, Madison, WI 53711, USA. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711, USA
| | | | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA. Wisconsin National Primate Research Center, Madison, WI 53711, USA.
| |
Collapse
|
44
|
Kuhn JH, Wiley MR, Rodriguez SE, Bào Y, Prieto K, Travassos da Rosa APA, Guzman H, Savji N, Ladner JT, Tesh RB, Wada J, Jahrling PB, Bente DA, Palacios G. Genomic Characterization of the Genus Nairovirus (Family Bunyaviridae). Viruses 2016; 8:E164. [PMID: 27294949 PMCID: PMC4926184 DOI: 10.3390/v8060164] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Nairovirus, one of five bunyaviral genera, includes seven species. Genomic sequence information is limited for members of the Dera Ghazi Khan, Hughes, Qalyub, Sakhalin, and Thiafora nairovirus species. We used next-generation sequencing and historical virus-culture samples to determine 14 complete and nine coding-complete nairoviral genome sequences to further characterize these species. Previously unsequenced viruses include Abu Mina, Clo Mor, Great Saltee, Hughes, Raza, Sakhalin, Soldado, and Tillamook viruses. In addition, we present genomic sequence information on additional isolates of previously sequenced Avalon, Dugbe, Sapphire II, and Zirqa viruses. Finally, we identify Tunis virus, previously thought to be a phlebovirus, as an isolate of Abu Hammad virus. Phylogenetic analyses indicate the need for reassignment of Sapphire II virus to Dera Ghazi Khan nairovirus and reassignment of Hazara, Tofla, and Nairobi sheep disease viruses to novel species. We also propose new species for the Kasokero group (Kasokero, Leopards Hill, Yogue viruses), the Ketarah group (Gossas, Issyk-kul, Keterah/soft tick viruses) and the Burana group (Wēnzhōu tick virus, Huángpí tick virus 1, Tǎchéng tick virus 1). Our analyses emphasize the sister relationship of nairoviruses and arenaviruses, and indicate that several nairo-like viruses (Shāyáng spider virus 1, Xīnzhōu spider virus, Sānxiá water strider virus 1, South Bay virus, Wǔhàn millipede virus 2) require establishment of novel genera in a larger nairovirus-arenavirus supergroup.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Sergio E Rodriguez
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Yīmíng Bào
- Information Engineering Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Amelia P A Travassos da Rosa
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Hilda Guzman
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nazir Savji
- School of Medicine, New York University, New York, NY 10016, USA.
| | - Jason T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Robert B Tesh
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Dennis A Bente
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
45
|
Abstract
Zika virus is an emerging human pathogen of great concern due to putative links to microcephaly and Guillain-Barre syndrome. Here, we report the complete genomes, including the 5′ and 3′ untranslated regions, of five Zika virus isolates, one from the Asian lineage and four from the African lineage.
Collapse
|
46
|
Complete Genome Sequences of Zika Virus Strains Isolated from the Blood of Patients in Thailand in 2014 and the Philippines in 2012. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00359-16. [PMID: 27174274 PMCID: PMC4866850 DOI: 10.1128/genomea.00359-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we present the complete genome sequences of two Zika virus (ZIKV) strains, Zika virus/Homo sapiens-tc/THA/2014/SV0127-14 and Zika virus/H. sapiens-tc/PHL/2012/CPC-0740, isolated from the blood of patients collected in Thailand, 2014, and the Philippines, 2012, respectively. Sequencing and phylogenetic analysis showed that both strains belong to the Asian lineage.
Collapse
|
47
|
Blackley DJ, Wiley MR, Ladner JT, Fallah M, Lo T, Gilbert ML, Gregory C, D’ambrozio J, Coulter S, Mate S, Balogun Z, Kugelman J, Nwachukwu W, Prieto K, Yeiah A, Amegashie F, Kearney B, Wisniewski M, Saindon J, Schroth G, Fakoli L, Diclaro JW, Kuhn JH, Hensley LE, Jahrling PB, Ströher U, Nichol ST, Massaquoi M, Kateh F, Clement P, Gasasira A, Bolay F, Monroe SS, Rambaut A, Sanchez-Lockhart M, Scott Laney A, Nyenswah T, Christie A, Palacios G. Reduced evolutionary rate in reemerged Ebola virus transmission chains. SCIENCE ADVANCES 2016; 2:e1600378. [PMID: 27386513 PMCID: PMC4928956 DOI: 10.1126/sciadv.1600378] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/11/2016] [Indexed: 06/06/2023]
Abstract
On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over.
Collapse
Affiliation(s)
| | - Michael R. Wiley
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jason T. Ladner
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Terrence Lo
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Merle L. Gilbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Jonathan D’ambrozio
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Stewart Coulter
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suzanne Mate
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Jeffrey Kugelman
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Karla Prieto
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | | | - Brian Kearney
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Meagan Wisniewski
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - John Saindon
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Lawrence Fakoli
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Lisa E. Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Ute Ströher
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Stuart T. Nichol
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - Peter Clement
- World Health Organization, CH-1211 Geneva 27, Switzerland
| | - Alex Gasasira
- World Health Organization, CH-1211 Geneva 27, Switzerland
| | - Fatorma Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
- Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mariano Sanchez-Lockhart
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - A. Scott Laney
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Athalia Christie
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Gustavo Palacios
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
48
|
Kugelman JR, Rossi CA, Wiley MR, Ladner JT, Nagle ER, Pfeffer BP, Garcia K, Prieto K, Wada J, Kuhn JH, Palacios G. Informing the Historical Record of Experimental Nonhuman Primate Infections with Ebola Virus: Genomic Characterization of USAMRIID Ebola Virus/H.sapiens-tc/COD/1995/Kikwit-9510621 Challenge Stock "R4368" and Its Replacement "R4415". PLoS One 2016; 11:e0150919. [PMID: 27002733 PMCID: PMC4803331 DOI: 10.1371/journal.pone.0150919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
The creation of licensed medical countermeasures against Select Agents such as Ebola virus (EBOV) is critically dependent on the use of standardized reagents, assays, and animal models. We performed full genome reconstruction, population genomics, contaminant analysis, and characterization of the glycoprotein gene editing site of historical United States Army Medical Research Institute of Infectious Diseases (USAMRIID) nonhuman-primate challenge stock Ebola virus Kikwit "R4368" and its 2014 replacement "R4415." We also provide characterization of the master stock used to create "R4415." The obtained data are essential to understanding the quality of the seed stock reagents used in pivotal animal studies that have been used to inform medical countermeasure development. Furthermore, these data might add to the understanding of the influence of EBOV variant populations on pathogenesis and disease outcome and inform attempts to avoid the evolution of EBOV escape mutants in response to current therapeutics. Finally, as the primary challenge stocks have changed over time, these data will provide a baseline for understanding and correlating past and future animal study results.
Collapse
Affiliation(s)
- Jeffrey R. Kugelman
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Cynthia A. Rossi
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Michael R. Wiley
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Jason T. Ladner
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Elyse R. Nagle
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Bradley P. Pfeffer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Karla Garcia
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Karla Prieto
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| |
Collapse
|
49
|
Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa. Viruses 2016; 8:65. [PMID: 27011199 PMCID: PMC4810255 DOI: 10.3390/v8030065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 12/29/2022] Open
Abstract
We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA) that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus.
Collapse
|
50
|
Ladner JT, Wiley MR, Mate S, Dudas G, Prieto K, Lovett S, Nagle ER, Beitzel B, Gilbert ML, Fakoli L, Diclaro JW, Schoepp RJ, Fair J, Kuhn JH, Hensley LE, Park DJ, Sabeti PC, Rambaut A, Sanchez-Lockhart M, Bolay FK, Kugelman JR, Palacios G. Evolution and Spread of Ebola Virus in Liberia, 2014-2015. Cell Host Microbe 2015; 18:659-69. [PMID: 26651942 PMCID: PMC4711363 DOI: 10.1016/j.chom.2015.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host.
Collapse
Affiliation(s)
- Jason T Ladner
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| | - Michael R Wiley
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Suzanne Mate
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Karla Prieto
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Sean Lovett
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Elyse R Nagle
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Brett Beitzel
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Merle L Gilbert
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Lawrence Fakoli
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | - Joseph W Diclaro
- Naval Medical Research Unit 3, 3A Imtidad Ramses Street, Cairo, Egypt 11517
| | - Randal J Schoepp
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Joseph Fair
- MRI Global, 1330 Piccard Avenue, Rockville, MD, 20850, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Daniel J Park
- Broad Institute, 75 Ames St, Cambridge, MA, 02142, USA
| | - Pardis C Sabeti
- Broad Institute, 75 Ames St, Cambridge, MA, 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Centre for Immunology, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Fogarty International Center, NIH, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | - Jeffrey R Kugelman
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Gustavo Palacios
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|