1
|
Feng C, Yan J, Luo T, Zhang H, Zhang H, Yuan Y, Chen Y, Chen H. Vitamin B12 ameliorates gut epithelial injury via modulating the HIF-1 pathway and gut microbiota. Cell Mol Life Sci 2024; 81:397. [PMID: 39261351 PMCID: PMC11391010 DOI: 10.1007/s00018-024-05435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.
Collapse
Affiliation(s)
- Chenxi Feng
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinhua Yan
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Yuan
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Haiyang Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Alexandrova AS, Boyanov VS, Mihova KY, Gergova RT. Phylogenetic Lineages and Diseases Associated with Moraxella catarrhalis Isolates Recovered from Bulgarian Patients. Int J Mol Sci 2024; 25:9769. [PMID: 39337257 PMCID: PMC11431480 DOI: 10.3390/ijms25189769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Moraxella catarrhalis has been recognized as an important cause of upper respiratory tract and middle ear infections in children, as well as chronic obstructive pulmonary disease and chronic bronchitis in adults. We aim to study the clonal structure, antimicrobial resistance, and serotypes of M. catarrhalis strains recovered from patients of different ages. Nasopharyngeal swabs, middle ear fluid, and sputum samples were collected. In vitro susceptibility testing was performed according to EUCAST criteria. The monoclonal Ab hybridoma technique was used for serotyping. All strains were subjected to MLST. The studied population demonstrated susceptibility to all tested antimicrobials M. catarrhalis strains, with the majority being serotype A (90.4%), followed by B (6.8%), and C (2.7%). We observed a predominant clonal complex CC224 (21.9%) along with other clusters including CC141 (8.2%), CC184 (8.2%), CC449 (6.8%), CC390 (5.5%), and CC67 (2.7%). Two primary founders, namely, ST224 and ST141, were identified. The analyzed genetic lineages displayed diversity but revealed the predominance of two main clusters, CC224 and CC141, encompassing multidrug-resistant sequence types distributed in other regions. These data underscore the need for ongoing epidemiological monitoring of successfully circulating clones and the implementation of adequate antibiotic policies to limit or delay the spread of multidrug-resistant strains in our region.
Collapse
Affiliation(s)
- Alexandra S Alexandrova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Vasil S Boyanov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Kalina Y Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Raina T Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
Baciu AP, Baciu C, Baciu G, Gurau G. The burden of antibiotic resistance of the main microorganisms causing infections in humans - review of the literature. J Med Life 2024; 17:246-260. [PMID: 39044924 PMCID: PMC11262613 DOI: 10.25122/jml-2023-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/21/2024] [Indexed: 07/25/2024] Open
Abstract
One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.
Collapse
Key Words
- AOM, acute otitis media
- CDC, Centers for Disease Control and Prevention
- CRE, carbapenem-resistant Enterobacterales
- ESBL, extended-spectrum beta-lactamase
- Hib, Haemophilus influenzae type b
- LVRE, linezolid/vancomycin -resistant enterococci
- MBC, minimum bactericidal concentration
- MBL, metallo-beta-lactamases
- MDR, multidrug-resistant
- MIC, minimum inhibitor concentration
- MRSA, methicillin-resistant Staphylococcus aureus
- PBP, penicillin-binding protein
- SCCmec staphylococcal chromosomal cassette mec
- VRE, vancomycin-resistant enterococci
- XDR, extensively drug-resistant
- antibiotic resistance
- antibiotics
- beta-lactamase
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- carbapenems
- methicillin-resistant Staphylococcus aureus
- vancomycin
Collapse
Affiliation(s)
| | - Carmen Baciu
- MedLife Hyperclinic Nicolae Balcescu, Galati, Romania
| | - Ginel Baciu
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| | - Gabriela Gurau
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| |
Collapse
|
4
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
5
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
6
|
Enosi Tuipulotu D, Feng S, Pandey A, Zhao A, Ngo C, Mathur A, Lee J, Shen C, Fox D, Xue Y, Kay C, Kirkby M, Lo Pilato J, Kaakoush NO, Webb D, Rug M, Robertson AAB, Tessema MB, Pang S, Degrandi D, Pfeffer K, Augustyniak D, Blumenthal A, Miosge LA, Brüstle A, Yamamoto M, Reading PC, Burgio G, Man SM. Immunity against Moraxella catarrhalis requires guanylate-binding proteins and caspase-11-NLRP3 inflammasomes. EMBO J 2023; 42:e112558. [PMID: 36762431 PMCID: PMC10015372 DOI: 10.15252/embj.2022112558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.
Collapse
Affiliation(s)
- Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Anyang Zhao
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jiwon Lee
- Centre for Advanced MicroscopyThe Australian National UniversityCanberraACTAustralia
| | - Cheng Shen
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Daniel Fox
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Yansong Xue
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Callum Kay
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Max Kirkby
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jordan Lo Pilato
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | | | - Daryl Webb
- Centre for Advanced MicroscopyThe Australian National UniversityCanberraACTAustralia
| | - Melanie Rug
- Centre for Advanced MicroscopyThe Australian National UniversityCanberraACTAustralia
| | - Avril AB Robertson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Melkamu B Tessema
- Department of Microbiology and ImmunologyThe University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research LaboratoryMurdoch UniversityMurdochWAAustralia
- Department of Microbiology, PathWest Laboratory Medicine‐WAFiona Stanley HospitalMurdochWAAustralia
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital HygieneHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital HygieneHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biological SciencesUniversity of WroclawWroclawPoland
| | - Antje Blumenthal
- Frazer InstituteThe University of QueenslandQLDBrisbaneAustralia
| | - Lisa A Miosge
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Anne Brüstle
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Patrick C Reading
- Department of Microbiology and ImmunologyThe University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- WHO Collaborating Centre for Reference and Research on InfluenzaVictorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
7
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
8
|
DeVries A, McCauley K, Fadrosh D, Fujimura KE, Stern DA, Lynch SV, Vercelli D. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development. Allergy 2022; 77:3617-3628. [PMID: 35841380 PMCID: PMC9712226 DOI: 10.1111/all.15442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.
Collapse
Affiliation(s)
- Avery DeVries
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
| | - Kathryn McCauley
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Douglas Fadrosh
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kei E. Fujimura
- Genetic Disease LabCalifornia Department of Public HealthRichmondCaliforniaUSA
| | - Debra A. Stern
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Benioff Center for Microbiome MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Donata Vercelli
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
9
|
Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022; 14:pharmaceutics14122597. [PMID: 36559091 PMCID: PMC9784355 DOI: 10.3390/pharmaceutics14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.
Collapse
|
10
|
Structural and functional insights into iron acquisition from lactoferrin and transferrin in Gram-negative bacterial pathogens. Biometals 2022; 36:683-702. [PMID: 36418809 PMCID: PMC10182148 DOI: 10.1007/s10534-022-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
AbstractIron is an essential element for various lifeforms but is largely insoluble due to the oxygenation of Earth’s atmosphere and oceans during the Proterozoic era. Metazoans evolved iron transport glycoproteins, like transferrin (Tf) and lactoferrin (Lf), to keep iron in a non-toxic, usable form, while maintaining a low free iron concentration in the body that is unable to sustain bacterial growth. To survive on the mucosal surfaces of the human respiratory tract where it exclusively resides, the Gram-negative bacterial pathogen Moraxella catarrhalis utilizes surface receptors for acquiring iron directly from human Tf and Lf. The receptors are comprised of a surface lipoprotein to capture iron-loaded Tf or Lf and deliver it to a TonB-dependent transporter (TBDT) for removal of iron and transport across the outer membrane. The subsequent transport of iron into the cell is normally mediated by a periplasmic iron-binding protein and inner membrane transport complex, which has yet to be determined for Moraxella catarrhalis. We identified two potential periplasm to cytoplasm transport systems and performed structural and functional studies with the periplasmic binding proteins (FbpA and AfeA) to evaluate their role. Growth studies with strains deleted in the fbpA or afeA gene demonstrated that FbpA, but not AfeA, was required for growth on human Tf or Lf. The crystal structure of FbpA with bound iron in the open conformation was obtained, identifying three tyrosine ligands that were required for growth on Tf or Lf. Computational modeling of the YfeA homologue, AfeA, revealed conserved residues involved in metal binding.
Collapse
|
11
|
Zhao N, Ren H, Deng J, Du Y, Li Q, Zhou P, Zhou H, Jiang X, Qin T. Genotypic and Phenotypic Characteristics of Moraxella catarrhalis from Patients and Healthy Asymptomatic Participants among Preschool Children. Pathogens 2022; 11:pathogens11090984. [PMID: 36145417 PMCID: PMC9503219 DOI: 10.3390/pathogens11090984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: M. catarrhalis can ascend into the middle ear, where it is a prevalent causative agent of otitis media in children, or enter the lower respiratory tract, where it is associated with community-acquired pneumonia (CAP). In this study, we aimed to provide an overview of the prevalence of M. catarrhalis in preschool children. (2) Methods: M. catarrhalis strains were isolated from samples. All isolates were characterized in terms of serotypes (STs), virulence genes, multilocus sequence type, and antibiotic susceptibility. (3) Results: The percentages of strains expressing lipooligosaccharides (LOSs), serotype A, B, C, or unknown were 67.61%, 15.71%, 4.28%, and 12.38%, respectively. Among the strains, 185 (88.10%) carried ompB2, 207 (98.57%) carried ompE, and 151 (71.90%) carried ompCD. The most frequently identified STs were ST449 (n = 13), ST64 (n = 11), and ST215 (n = 10). The resistance rates to the antibiotics cefuroxime, azithromycin, and erythromycin were 43.33%, 28.10%, and 39.05%, respectively. (4) Conclusions: High prevalence of some-specific ST types and high rates of antibiotic resistance indicate the necessity for an increased vigilance of resistant strains, a rational use of antibiotics in preschool children, and most importantly, the surveillance of healthy asymptomatic participants preschool children with M. catarrhalis. Our findings provide a platform for the development of novel M. catarrhalis vaccines.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Hongyu Ren
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Control and Prevention of Zigong City, Zigong 643002, China
| | - Yinju Du
- Disease Control and Prevention of Liaocheng City, Liaocheng 252001, China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Control and Prevention of Zigong City, Zigong 643002, China
| | - Pu Zhou
- Disease Control and Prevention of Liaocheng City, Liaocheng 252001, China
| | - Haijian Zhou
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Xiangkun Jiang
- Disease Control and Prevention of Liaocheng City, Liaocheng 252001, China
| | - Tian Qin
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
- Correspondence: ; Tel.: +86-10-58900783
| |
Collapse
|
12
|
Morris DE, Osman KL, Cleary DW, Clarke SC. The characterization of Moraxella catarrhalis carried in the general population. Microb Genom 2022; 8:mgen000820. [PMID: 35639578 PMCID: PMC9465073 DOI: 10.1099/mgen.0.000820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Moraxella catarrhalis is a common cause of respiratory tract infection, particularly otitis media in children, whilst it is also associated with the onset of exacerbation in chronic obstructive pulmonary disease in adults. Despite the need for an efficacious vaccine against M. catarrhalis, no candidates have progressed to clinical trial. This study, therefore, aimed to characterize the diversity of M. catarrhalis isolated from the upper respiratory tract of healthy children and adults, to gain a better understanding of the epidemiology of M. catarrhalis and the distribution of genes associated with virulence factors, to aid vaccine efforts. Isolates were sequenced and the presence of target genes reported. Contrary to prevailing data, this study found that lipooligosaccharide (LOS) B serotypes are not exclusively associated with 16S type 1. In addition, a particularly low prevalence of LOS B and high prevalence of LOS C serotypes was observed. M. catarrhalis isolates showed low prevalence of antimicrobial resistance and a high gene prevalence for a number of the target genes investigated: ompB2 (also known as copB), ompCD, ompE, ompG1a, ompG1b, mid (also known as hag), mcaP, m35, tbpA, lbpA, tbpB, lbpB, msp22, msp75 and msp78, afeA, pilA, pilQ, pilT, mod, oppA, sbp2, mcmA and mclS.
Collapse
Affiliation(s)
- Denise E. Morris
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Karen L. Osman
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - David W. Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK
| | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Infective Endocarditis by Moraxella Species: A Systematic Review. J Clin Med 2022; 11:jcm11071854. [PMID: 35407461 PMCID: PMC8999714 DOI: 10.3390/jcm11071854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Moraxella catarrhalis is the most clinically relevant species among Moraxella spp. For decades, it was considered to be part of the normal human flora in the upper respiratory tract. However, since the late 1970s, considerable evidence has proposed that M. catarrhalis is an important pathogen in the human respiratory tract. Even though Infective Endocarditis (IE) is rarely caused by Moraxella spp., these infections can be problematic due to the lack of experience in their management. The aim of this study was to systematically review all published cases of IE by Moraxella spp. A systematic review of PubMed, Scopus and Cochrane library (through 8 December 2021) for studies providing epidemiological, clinical, microbiological data as well as treatment data and outcomes of IE by Moraxella spp. was performed. A total of 27 studies, containing data for 31 patients, were included. A prosthetic valve was present in 25.8%. Mitral valve was the most commonly infected site. Fever, sepsis and embolic phenomena were the most common clinical presentations. Cephalosporins, aminoglycosides, aminopenicillins and penicillin were the most commonly used antimicrobials. Overall mortality was 12.9%.
Collapse
|
14
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
15
|
Traditional Medicinal Plants—A Possible Source of Antibacterial Activity on Respiratory Diseases Induced by Chlamydia pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae and Moraxella catarrhalis. DIVERSITY 2022. [DOI: 10.3390/d14020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background. Nowadays, phytotherapy offers viable solutions in managing respiratory infections, disorders known for considerable incidence in both children and adults. In a context in which more and more people are turning to phytotherapy, finding new remedies is a topical goal of researchers in health and related fields. This paper aims to identify those traditional medicinal plants that show potentially antibacterial effects against four Gram-negative germs (Chlamydia pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, and Moraxella catarrhalis), which are considered to have high involvement in respiratory infections. Furthermore, a comparison with Romanian folk medicines was performed. Methods. An extensive review of books and databases was undertaken to identify vegetal species of interest in the context of the topic. Results. Some traditional Romanian species (such as Mentha × piperita, Thymus vulgaris, Pinus sylvestris, Allium sativum, Allium cepa, Ocimum basilicum, and Lavandulaangustifolia) were identified and compared with the plants and preparations confirmed as having antibacterial effects against specific germs. Conclusions. The antibacterial effects of some traditionally used Romanian medicinal plants are poorly investigated, and deserve further attention.
Collapse
|
16
|
Chan C, Ng D, Schryvers AB. The Role of the Moraxella catarrhalis CopB Protein in Facilitating Iron Acquisition From Human Transferrin and Lactoferrin. Front Microbiol 2021; 12:714815. [PMID: 34630348 PMCID: PMC8497027 DOI: 10.3389/fmicb.2021.714815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative bacterium that is responsible for a substantial proportion of upper respiratory infections in children and lower respiratory infections in the elderly. Moraxella catarrhalis resides exclusively on the mucosal surfaces of the upper respiratory tract of humans and is capable of directly acquiring iron for growth from the host glycoproteins human transferrin (hTf) and human lactoferrin (hLf). The iron-bound form of these glycoproteins is initially captured by the surface lipoproteins Tf or Lf binding protein B (TbpB or LbpB) and delivered to the integral outer membrane TonB-dependent transport (TBDT) proteins, Tf binding protein A (TbpA) or Lf binding protein A (LbpA). The extraction of iron involves conformational changes in Lf and Tf to facilitate iron removal followed by its transport across the outer membrane by a well characterized process for TBDTs. Surprisingly the disruption of the gene encoding another TBDT, CopB, results in a reduction in the ability to grow on human Tf or Lf. The possibility that this could have been due to an artifact of mutant construction that resulted in the inhibition of TonB-mediated process was eliminated by a complete deletion of the CopB gene. A systematic evaluation of the impact on growth under various conditions by deletions of the genes encoding TbpA, LbpA, and CopB as well as mutations of the iron liganding residues and TonB box region of CopB was implemented. The results indicate that although CopB is capable of effectively acquiring iron from the growth medium, it does not directly acquire iron from Tf or Lf. We propose that the indirect effect on iron transport from Tf and Lf by CopB could possibly be explained by the association of TBDTs at gaps in the peptidoglycan layer that may enhance the efficiency of the process. This concept is supported by previous studies demonstrating an indirect effect on growth of Tf and Lf by deletion of the peptidoglycan binding outer membrane lipoprotein RmpM in Neisseria that also reduced the formation of larger complexes of TBDTs.
Collapse
Affiliation(s)
- Clement Chan
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dixon Ng
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Sun X, Zhang B, Xu G, Chen J, Shang Y, Lin Z, Yu Z, Zheng J, Bai B. In Vitro Activity of the Novel Tetracyclines, Tigecycline, Eravacycline, and Omadacycline, Against Moraxella catarrhalis. Ann Lab Med 2021; 41:293-301. [PMID: 33303714 PMCID: PMC7748099 DOI: 10.3343/alm.2021.41.3.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
Background Tigecycline, eravacycline, and omadacycline are recently developed tetracyclines. Susceptibility of microbes to these tetracyclines and their molecular mechanisms have not been well elucidated. We investigated the susceptibility of Moraxella catarrhalis to tigecycline, eravacycline, and omadacycline and its resistance mechanisms against these tetracyclines. Methods A total of 207 non-duplicate M. catarrhalis isolates were collected from different inpatients. The minimum inhibitory concentrations (MICs) of the tetracyclines were determined by broth microdilution. Tigecycline-, eravacycline-, or omadacycline-resistant isolates were induced under in vitro pressure. The tet genes and mutations in the 16S rRNA was detected by PCR and sequencing. Results Eravacycline had a lower MIC50 (0.06 mg/L) than tigecycline (0.125 mg/L) or omadacycline (0.125 mg/L) against M. catarrhalis isolates. We found that 136 isolates (65.7%) had the tetB gene, and 15 (7.2%) isolates were positive for tetL; however, their presence was not correlated with high tigecycline, eravacycline, or omadacycline (≥1 mg/L) MICs. Compared with the initial MIC after 160 days of induction, the MICs of tigecycline or eravacycline against three M. catarrhalis isolates increased ≥eight-fold, while those of omadacycline against two M. catarrhalis isolates increased 64-fold. Mutations in the 16S rRNA genes (C1036T and/or G460A) were observed in omadacycline-induced resistant isolates, and increased RR (the genes encoding 16SrRNA (four copies, RR1-RR4) copy number of 16S rRNA genes with mutations was associated with increased resistance to omadacycline. Conclusions Tigecycline, eravacycline, and omadacycline exhibited robust antimicrobial effects against M. catarrhalis. Mutations in the 16S rRNA genes contributed to omadacycline resistance in M. catarrhalis.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Bo Zhang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Yongpeng Shang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, China
| | - Bing Bai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital, Shenzhen University of School Medicine, Shenzhen, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
18
|
Nesbitt H, Burke C, Haghi M. Manipulation of the Upper Respiratory Microbiota to Reduce Incidence and Severity of Upper Respiratory Viral Infections: A Literature Review. Front Microbiol 2021; 12:713703. [PMID: 34512591 PMCID: PMC8432964 DOI: 10.3389/fmicb.2021.713703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a high incidence of upper respiratory viral infections in the human population, with infection severity being unique to each individual. Upper respiratory viruses have been associated previously with secondary bacterial infection, however, several cross-sectional studies analyzed in the literature indicate that an inverse relationship can also occur. Pathobiont abundance and/or bacterial dysbiosis can impair epithelial integrity and predispose an individual to viral infection. In this review we describe common commensal microorganisms that have the capacity to reduce the abundance of pathobionts and maintain bacterial symbiosis in the upper respiratory tract and discuss the potential and limitations of localized probiotic formulations of commensal bacteria to reduce the incidence and severity of viral infections.
Collapse
Affiliation(s)
- Henry Nesbitt
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Burke
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
21
|
Jokicevic K, Kiekens S, Byl E, De Boeck I, Cauwenberghs E, Lebeer S, Kiekens F. Probiotic nasal spray development by spray drying. Eur J Pharm Biopharm 2020; 159:211-220. [PMID: 33238191 DOI: 10.1016/j.ejpb.2020.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
The upper respiratory tract (URT) is the main entrance point for many viral and bacterial pathogens, and URT infections are among the most common infections in the world. Recent evidences by our own group and others imply the importance of lactobacilli as gatekeepers of a healthy URT. However, the benefits of putting health-promoting microbes or potential probiotics, such as these URT lactobacilli, in function of URT disease control and prevention is underestimated, among others because of the absence of adequate formulation modalities. Therefore, this study entails important aspects in probiotic nasal spray development with a novel URT-derived probiotic strain by spray drying. We report quantitative and qualitative analysis of several spray-dried formulations, i.e. powders for reconstitution, based on disaccharide or sugar alcohol combinations with a polymer, including their long-term stability. Four formulations with the highest survival of >109 (Colony Forming Units) CFU/g after 28 weeks were further examined upon reconstitution which confirmed sufficiency of one bottle/dosage form during 7 days and rheological properties of shear-thinning. Tests also demonstrated maintained viability and cell morphology overall upon spraying through a nasal spray bottle in all 4 formulations. Lastly, application suitability in terms of high adherence to Calu-3 cells and antimicrobial activity against common URT pathogens was demonstrated and was not impacted neither by powder production process nor by spraying of reconstituted powder through a nasal spray device.
Collapse
Affiliation(s)
- Katarina Jokicevic
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Shari Kiekens
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Eline Byl
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ilke De Boeck
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Eline Cauwenberghs
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
22
|
Bhadriraju S, Fadrosh DW, Shenoy MK, Lin DL, Lynch KV, McCauley K, Ferrand RA, Majonga ED, McHugh G, Huang L, Lynch SV, Metcalfe JZ. Distinct lung microbiota associate with HIV-associated chronic lung disease in children. Sci Rep 2020; 10:16186. [PMID: 32999331 PMCID: PMC7527458 DOI: 10.1038/s41598-020-73085-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease (CLD) is a common co-morbidity for HIV-positive children and adolescents on antiretroviral therapy (ART) in sub-Saharan Africa. In this population, distinct airway microbiota may differentially confer risk of CLD. In a cross-sectional study of 202 HIV-infected children aged 6-16 years in Harare, Zimbabwe, we determined the association of sputum microbiota composition (using 16S ribosomal RNA V4 gene region sequencing) with CLD defined using clinical, spirometric, or radiographic criteria. Forty-two percent of children were determined to have CLD according to our definition. Dirichlet multinomial mixtures identified four compositionally distinct sputum microbiota structures. Patients whose sputum microbiota was dominated by Haemophilus, Moraxella or Neisseria (HMN) were at 1.5 times higher risk of CLD than those with Streptococcus or Prevotella (SP)-dominated microbiota (RR = 1.48, p = 0.035). Cell-free products of HMN sputum microbiota induced features of epithelial disruption and inflammatory gene expression in vitro, indicating enhanced pathogenic potential of these CLD-associated microbiota. Thus, HIV-positive children harbor distinct sputum microbiota, with those dominated by Haemophilus, Moraxella or Neisseria associated with enhanced pathogenesis in vitro and clinical CLD.
Collapse
Affiliation(s)
- Sudha Bhadriraju
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital and Trauma Center, University of California San Francisco, 1001 Potrero Avenue, Rm 5K1, San Francisco, CA, 94110-0111, USA
| | - Douglas W Fadrosh
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, USA
| | - Meera K Shenoy
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, USA
| | - Din L Lin
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, USA
| | - Kole V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, USA
| | - Kathryn McCauley
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, USA
| | - Rashida A Ferrand
- Biomedical Research and Training Institute, Harare, Zimbabwe
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Edith D Majonga
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Grace McHugh
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Laurence Huang
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital and Trauma Center, University of California San Francisco, 1001 Potrero Avenue, Rm 5K1, San Francisco, CA, 94110-0111, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, USA
| | - John Z Metcalfe
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital and Trauma Center, University of California San Francisco, 1001 Potrero Avenue, Rm 5K1, San Francisco, CA, 94110-0111, USA.
| |
Collapse
|
23
|
Riesbeck K. Complement evasion by the human respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis. FEBS Lett 2020; 594:2586-2597. [PMID: 32053211 DOI: 10.1002/1873-3468.13758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/26/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
All infective bacterial species need to conquer the innate immune system in order to colonize and survive in their hosts. The human respiratory pathogens Haemophilus influenzae and Moraxella catarrhalis are no exceptions and have developed sophisticated mechanisms to evade complement-mediated killing. Both bacterial species carry lipooligosaccharides preventing complement attacks and attract and utilize host complement regulators C4b binding protein and factor H to inhibit the classical and alternative pathways of complement activation, respectively. In addition, the regulator of the terminal pathway of complement activation, vitronectin, is hijacked by both bacteria. An array of different outer membrane proteins (OMP) in H. influenzae and M. catarrhalis simultaneously binds complement regulators, but also plasminogen. Several of the bacterial complement-binding proteins are important adhesins and contain highly conserved regions for interactions with the host. Thus, some of the OMP are viable targets for new therapeutics, including vaccines aimed at preventing respiratory tract diseases such as otitis media in children and exacerbations in patients suffering from chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
Genotypic differences in CC224, CC363, CC449 and CC446 of Moraxella catarrhalis isolates based on whole genome SNP, MLST and PFGE typing. Int J Med Microbiol 2019; 310:151357. [PMID: 31570247 DOI: 10.1016/j.ijmm.2019.151357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/15/2019] [Accepted: 09/15/2019] [Indexed: 10/26/2022] Open
Abstract
Understanding the evolutionary path of M. catarrhalis from macrolide-susceptible to macrolide-resistant organism, is important for hindering macrolide resistance from propagation. Multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and whole genome SNP typing (WGST), as useful and practical typing tools, have both advantages and disadvantages. We studied the utility of these 3 typing methods, including the level of agreement, consistency and drawbacks, in characterizing M. catarrhalis clones and clonal complexes. We focused on four clonal complexes [CC224, CC363, CC449 (CCN10) and CC446 (CCN08)] and found that PFGE and WGST had a high level of agreement and a proper consistency of the same clone or very closely related clones, while MLST is less discriminatory for different clones. Furthermore, we also established an evolutionary distance cut-off value for "The same clone". Moreover, we detected macrolide-resistant M. catarrhalis in CC224, which had previously been considered as a macrolide-susceptible clonal complex. A higher number of isolates belonged to ST215 compared to ST446, implying that ST215 is more likely to be the primary founder. Our study also demonstrated that all the four clonal complexes belong to the M. catarrhalis lineage 1, which is considered to be related to increased virulence potential and serum resistance. We also observed that copB II was highly related to CC449 and LOS type B was mainly confined in CC224. In conclusion, these findings provide further insight into the evolutionary characteristics of M. catarrhalis.
Collapse
|
25
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
Mikula KM, Kolodziejczyk R, Goldman A. Structure of the UspA1 protein fragment from Moraxella catarrhalis responsible for C3d binding. J Struct Biol 2019; 208:77-85. [PMID: 31400508 PMCID: PMC6839023 DOI: 10.1016/j.jsb.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
Abstract
UspA1299–452 is a left-handed coiled-coil structure that follows TAA rules. Structure of UspA1299–452 contains part of the long neck domain and of the stalk. UspA1-C3d binding does not saturate at C3d physiological concentrations. The binding constant as measured by thermophoresis is at least 140 μM. Full-length proteins or other factors are important for UspA1-C3d interactions.
The gram-negative bacterium Moraxella catarrhalis infects humans exclusively, causing various respiratory tract diseases, including acute otitis media in children, septicaemia or meningitis in adults, and pneumonia in the elderly. To do so, M. catarrhalis expresses virulence factors facilitating its entry and survival in the host. Among them are the ubiquitous surface proteins (Usps): A1, A2, and A2H, which all belong to the trimeric autotransporter adhesin family. They bind extracellular matrix molecules and inhibit the classical and alternative pathways of the complement cascade by recruiting complement regulators C3d and C4b binding protein. Here, we report the 2.5 Å resolution X-ray structure of UspA1299–452, which previous work had suggested contained the canonical C3d binding site found in both UspA1 and UspA2. We show that this fragment of the passenger domain contains part of the long neck domain (residues 299–336) and a fragment of the stalk (residues 337–452). The coiled-coil stalk is left-handed, with 7 polar residues from each chain facing the core and coordinating chloride ions or water molecules. Despite the previous reports of tight binding in serum-based assays, we were not able to demonstrate binding between C3d and UspA1299–452 using ELISA or biolayer interferometry, and the two proteins run separately on size-exclusion chromatography. Microscale thermophoresis suggested that the dissociation constant was 140.5 ± 8.4 μM. We therefore suggest that full-length proteins or other additional factors are important in UspA1-C3d interactions. Other molecules on the bacterial surface or present in serum may enhance binding of those two molecules.
Collapse
Affiliation(s)
- Kornelia M Mikula
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Robert Kolodziejczyk
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
27
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
28
|
Non-cystic fibrosis bronchiectasis: actual problem review and treatment prospects. КЛИНИЧЕСКАЯ ПРАКТИКА 2018. [DOI: 10.17816/clinpract9455-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review introduces some actual data related to the etiology, epidemiology, pathogenesis of non-cystic fibrosis bronchiectasis, presents the nowaday tendencies of treatment methods development.
Collapse
|
29
|
Augustyniak D, Seredyński R, McClean S, Roszkowiak J, Roszniowski B, Smith DL, Drulis-Kawa Z, Mackiewicz P. Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution. Sci Rep 2018; 8:4955. [PMID: 29563531 PMCID: PMC5862889 DOI: 10.1038/s41598-018-23029-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a common human respiratory tract pathogen. Its virulence factors associated with whole bacteria or outer membrane vesicles (OMVs) aid infection, colonization and may induce specific antibodies. To investigate pathogen-host interactions, we applied integrated bioinformatic and immunoproteomic (2D-electrophoresis, immunoblotting, LC-MS/MS) approaches. We showed that OMV proteins engaged exclusively in complement evasion and colonization strategies, but not those involved in iron transport and metabolism, are major targets for cross-reacting antibodies produced against phylogenetically divergent M. catarrhalis strains. The analysis of 31 complete genomes of M. catarrhalis and other Moraxella revealed that OMV protein-coding genes belong to 64 orthologous groups, five of which are restricted to M. catarrhalis. This species showed a two-fold increase in the number of OMV protein-coding genes relative to its ancestors and animal-pathogenic Moraxella. The appearance of specific OMV factors and the increase in OMV-associated virulence proteins during M. catarrhalis evolution is an interesting example of pathogen adaptation to optimize colonization. This precisely targeted cross-reactive immunity against M. catarrhalis may be an important strategy of host defences to counteract this phenomenon. We demonstrate that cross-reactivity is closely associated with the anti-virulent antibody repertoire which we have linked with adaptation of this pathogen to the host.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| | - Rafał Seredyński
- Department of Physiology, Wroclaw Medical University, T. Chalubinskiego 10, 50-368, Wroclaw, Poland.,Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, UCD O'Brien Centre for Science West, B304, Dublin, Ireland
| | - Justyna Roszkowiak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Bartosz Roszniowski
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Darren L Smith
- Applied Sciences, University of Northumbria, Ellison Building EBD222, Newcastle upon Tyne, NE1 8ST, UK
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
30
|
Shakhatreh MAK, Khabour OF, Alzoubi KH, Masadeh MM, Hussein EI, Bshara GN. Alterations in oral microbial flora induced by waterpipe tobacco smoking. Int J Gen Med 2018; 11:47-54. [PMID: 29440924 PMCID: PMC5799848 DOI: 10.2147/ijgm.s150553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Waterpipe smoking is a global health problem and a serious public concern. Little is known about the effects of waterpipe smoking on oral health. In the current study, we examined the alterations of oral microbial flora by waterpipe smoking. Methods One hundred adult healthy subjects (59 waterpipe smokers and 41 non-smokers) were recruited into the study. Swabs were taken from the oral cavity and subgingival regions. Standard culturing techniques were used to identify types, frequency, and mean number of microorganisms in cultures obtained from the subjects. Results It was notable that waterpipe smokers were significantly associated with a history of oral infections. In subgingiva, Acinetobacter and Moraxella species were present only in waterpipe smokers. In addition, the frequency of Candida albicans was higher in the subgingiva of waterpipe smokers (p = 0.023) while the frequency of Fusobacterium nucleatum was significantly lower in the subgingiva of waterpipe smokers (p = 0.036). However, no change was observed in other tested bacteria, such as Campylobacter species; Viridans group streptococci, Enterobacteriaceae, and Staphylococcus aureus. In oral cavity and when colony-forming units were considered, the only bacterial species that showed significant difference were the black-pigmented bacteria (p < 0.001). Conclusion This study provides evidence indicating that some of the oral microflora is significantly altered by waterpipe smoking.
Collapse
Affiliation(s)
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Emad I Hussein
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - George N Bshara
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Irbid, Jordan
| |
Collapse
|
31
|
De Boeck I, Wittouck S, Wuyts S, Oerlemans EFM, van den Broek MFL, Vandenheuvel D, Vanderveken O, Lebeer S. Comparing the Healthy Nose and Nasopharynx Microbiota Reveals Continuity As Well As Niche-Specificity. Front Microbiol 2017; 8:2372. [PMID: 29238339 PMCID: PMC5712567 DOI: 10.3389/fmicb.2017.02372] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
To improve our understanding of upper respiratory tract (URT) diseases and the underlying microbial pathogenesis, a better characterization of the healthy URT microbiome is crucial. In this first large-scale study, we obtained more insight in the URT microbiome of healthy adults. Hereto, we collected paired nasal and nasopharyngeal swabs from 100 healthy participants in a citizen-science project. High-throughput 16S rRNA gene V4 amplicon sequencing was performed and samples were processed using the Divisive Amplicon Denoising Algorithm 2 (DADA2) algorithm. This allowed us to identify the bacterial richness and diversity of the samples in terms of amplicon sequence variants (ASVs), with special attention to intragenus variation. We found both niches to have a low overall species richness and uneven distribution. Moreover, based on hierarchical clustering, nasopharyngeal samples could be grouped into some bacterial community types at genus level, of which four were supported to some extent by prediction strength evaluation: one intermixed type with a higher bacterial diversity where Staphylococcus, Corynebacterium, and Dolosigranulum appeared main bacterial members in different relative abundances, and three types dominated by either Moraxella, Streptococcus, or Fusobacterium. Some of these bacterial community types such as Streptococcus and Fusobacterium were nasopharynx-specific and never occurred in the nose. No clear association between the nasopharyngeal bacterial profiles at genus level and the variables age, gender, blood type, season of sampling, or common respiratory allergies was found in this study population, except for smoking showing a positive association with Corynebacterium and Staphylococcus. Based on the fine-scale resolution of the ASVs, both known commensal and potential pathogenic bacteria were found within several genera - particularly in Streptococcus and Moraxella - in our healthy study population. Of interest, the nasopharynx hosted more potential pathogenic species than the nose. To our knowledge, this is the first large-scale study using the DADA2 algorithm to investigate the microbiota in the "healthy" adult nose and nasopharynx. These results contribute to a better understanding of the composition and diversity of the healthy microbiome in the URT and the differences between these important URT niches. Trial Registration: Ethical Committee of Antwerp University Hospital, B300201524257, registered 23 March 2015, ClinicalTrials.gov Identifier: NCT02 933983.
Collapse
Affiliation(s)
- Ilke De Boeck
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sander Wuyts
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline F M Oerlemans
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Dieter Vandenheuvel
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Olivier Vanderveken
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of ENT, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: An update on current progress and challenges. Hum Vaccin Immunother 2017; 13:2322-2331. [PMID: 28853985 PMCID: PMC5647992 DOI: 10.1080/21645515.2017.1356951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023] Open
Abstract
Moraxella catarrhalis is a major cause of morbidity and mortality worldwide, especially causing otitis media in young children and exacerbations of chronic obstructive pulmonary disease in adults. This pathogen uses several virulence mechanisms to colonize and survive in its host, including adherence and invasion of host cells, formation of polymicrobial biofilms with other bacterial pathogens, and production of β-lactamase. Given the global impact of otitis media and COPD, an effective vaccine to prevent M. catarrhalis infection would have a huge impact on the quality of life in both patient populations by preventing disease, thus reducing morbidity and health care costs. A number of promising vaccine antigens have been identified for M. catarrhalis. The development of improved animal models of M. catarrhalis disease and identification of a correlate of protection are needed to accelerate vaccine development. This review will discuss the current state of M. catarrhalis vaccine development, and the challenges that must be addressed to succeed.
Collapse
Affiliation(s)
- Antonia C. Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Timothy F. Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Microbiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Murphy TF, Brauer AL, Johnson A, Wilding GE, Koszelak-Rosenblum M, Malkowski MG. A Cation-Binding Surface Protein as a Vaccine Antigen To Prevent Moraxella catarrhalis Otitis Media and Infections in Chronic Obstructive Pulmonary Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00130-17. [PMID: 28659326 PMCID: PMC5585693 DOI: 10.1128/cvi.00130-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 02/05/2023]
Abstract
Moraxella catarrhalis is an exclusively human respiratory tract pathogen that is a common cause of otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent these infections would have a major impact on reducing the substantial global morbidity and mortality in these populations. Through a genome mining approach, we identified AfeA, an ∼32-kDa substrate binding protein of an ABC transport system, as an excellent candidate vaccine antigen. Recombinant AfeA was expressed and purified and binds ferric, ferrous, manganese, and zinc ions, as demonstrated by thermal shift assays. It is a highly conserved protein that is present in all strains of M. catarrhalis Immunization with recombinant purified AfeA induces high-titer antibodies that recognize the native M. catarrhalis protein. AfeA expresses abundant epitopes on the bacterial surface and induces protective responses in the mouse pulmonary clearance model following aerosol challenge with M. catarrhalis Finally, AfeA is expressed during human respiratory tract infection of adults with chronic obstructive pulmonary disease (COPD). Based on these observations, AfeA is an excellent vaccine antigen to be included in a vaccine to prevent infections caused by M. catarrhalis.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Antoinette Johnson
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Gregory E Wilding
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| |
Collapse
|
34
|
Nagy YI, Hussein MMM, Ragab YM, Attia AS. Isogenic mutations in the Moraxella catarrhalis CydDC system display pleiotropic phenotypes and reveal the role of a palindrome sequence in its transcriptional regulation. Microbiol Res 2017. [PMID: 28647125 DOI: 10.1016/j.micres.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Moraxella catarrhalis is becoming an important human respiratory tract pathogen affecting significant proportions from the population. However, still little is known about its physiology and molecular regulation. To this end, the CydDC, which is a heterodimeric ATP binding cassette transporter that has been shown to contribute to the maintenance of the redox homeostasis across the periplasm in other Gram-negative bacteria, is studied here. Amino acids multiple sequence alignments indicated that M. catarrhalis CydC is different from the CydC proteins of the bacterial species in which this system has been previously studied. These findings prompted further interest in studying this system in M. catarrhalis. Isogenic mutant in the CydDC system showed suppression in growth rate, hypersensitivity to oxidative and reductive stress and increased accumulation of intracellular cysteine levels. In addition, the growth of cydC- mutant exhibited hypersensitivity to exogenous cysteine; however, it did not display a significant difference from its wild-type counterpart in the murine pulmonary clearance model. Moreover, a palindrome was detected 94bp upstream of the cydD ORF suggesting it might act as a potential regulatory element. Real-time reverse transcription-PCR analysis showed that deletion/change in the palindrome resulted into alterations in the transcription levels of cydC. A better understanding of such system and its regulation helps in developing better ways to combat M. catarrhalis infections.
Collapse
Affiliation(s)
- Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Manal M M Hussein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
35
|
Tan A, Blakeway LV, Bakaletz LO, Boitano M, Clark TA, Korlach J, Jennings MP, Peak IR, Seib KL. Complete Genome Sequence of Moraxella catarrhalis Strain CCRI-195ME, Isolated from the Middle Ear. GENOME ANNOUNCEMENTS 2017; 5:e00384-17. [PMID: 28546484 PMCID: PMC5477397 DOI: 10.1128/genomea.00384-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 11/21/2022]
Abstract
Moraxella catarrhalis is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we report the complete genome sequence of M. catarrhalis strain CCRI-195ME, which contains the phase-variable epigenetic regulator ModM3.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | | - Ian R Peak
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
36
|
Rabionet A, Vivar KL, Mancl K, Bennett AE, Shenefelt P. Ecthyma associated with Moraxella and Staphylococcus epidermidis. JAAD Case Rep 2016; 2:473-475. [PMID: 27981222 PMCID: PMC5148780 DOI: 10.1016/j.jdcr.2016.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Alejandro Rabionet
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Karina L Vivar
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Kimberly Mancl
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Adam E Bennett
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Philip Shenefelt
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| |
Collapse
|
37
|
Depner M, Ege MJ, Cox MJ, Dwyer S, Walker AW, Birzele LT, Genuneit J, Horak E, Braun-Fahrländer C, Danielewicz H, Maier RM, Moffatt MF, Cookson WO, Heederik D, von Mutius E, Legatzki A. Bacterial microbiota of the upper respiratory tract and childhood asthma. J Allergy Clin Immunol 2016; 139:826-834.e13. [PMID: 27576124 DOI: 10.1016/j.jaci.2016.05.050] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients with asthma and healthy controls differ in bacterial colonization of the respiratory tract. The upper airways have been shown to reflect colonization of the lower airways, the actual site of inflammation in asthma, which is hardly accessible in population studies. OBJECTIVE We sought to characterize the bacterial communities at 2 sites of the upper respiratory tract obtained from children from a rural area and to relate these to asthma. METHODS The microbiota of 327 throat and 68 nasal samples from school-age farm and nonfarm children were analyzed by 454-pyrosequencing of the bacterial 16S ribosomal RNA gene. RESULTS Alterations in nasal microbiota but not of throat microbiota were associated with asthma. Children with asthma had lower α- and β-diversity of the nasal microbiota as compared with healthy control children. Furthermore, asthma presence was positively associated with a specific operational taxonomic unit from the genus Moraxella in children not exposed to farming, whereas in farm children Moraxella colonization was unrelated to asthma. In nonfarm children, Moraxella colonization explained the association between bacterial diversity and asthma to a large extent. CONCLUSIONS Asthma was mainly associated with an altered nasal microbiota characterized by lower diversity and Moraxella abundance. Children living on farms might not be susceptible to the disadvantageous effect of Moraxella. Prospective studies may clarify whether Moraxella outgrowth is a cause or a consequence of loss in diversity.
Collapse
Affiliation(s)
- Martin Depner
- Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany.
| | - Markus J Ege
- Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Michael J Cox
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah Dwyer
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Alan W Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Lena T Birzele
- Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Elisabeth Horak
- Division of Cardiology and Pulmonology, Department of Pediatrics and Adolescents, Innsbruck Medical University, Innsbruck, Austria
| | | | - Hanna Danielewicz
- Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Raina M Maier
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Ariz
| | - Miriam F Moffatt
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - William O Cookson
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, University of Utrecht, Utrecht, The Netherlands
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Antje Legatzki
- Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
38
|
Santee CA, Nagalingam NA, Faruqi AA, DeMuri GP, Gern JE, Wald ER, Lynch SV. Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis. MICROBIOME 2016; 4:34. [PMID: 27364497 PMCID: PMC4929776 DOI: 10.1186/s40168-016-0179-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Upper respiratory infections (URI) and their complications are a major healthcare burden for pediatric populations. Although the microbiology of the nasopharynx is an important determinant of the complications of URI, little is known of the nasopharyngeal (NP) microbiota of children, the factors that affect its composition, and its precise relationship with URI. RESULTS Healthy children (n = 47) aged 49-84 months from a prospective cohort study based in Wisconsin, USA, were examined. Demographic and clinical data and NP swab samples were obtained from participants upon entry to the study. All NP samples were profiled for bacterial microbiota using a phylogenetic microarray, and these data were related to demographic characteristics and upper respiratory health outcomes. The composition of the NP bacterial community of children was significantly related prior to the history of acute sinusitis (R (2) = 0.070, P < 0.009). History of acute sinusitis was associated with significant depletion in relative abundance of taxa including Faecalibacterium prausnitzii and Akkermansia spp. and enrichment of Moraxella nonliquefaciens. Enrichment of M. nonliquefaciens was also a characteristic of baseline NP samples of children who subsequently developed acute sinusitis over the 1-year study period. Time to develop URI was significantly positively correlated with NP diversity, and children who experienced more frequent URIs exhibited significantly diminished NP microbiota diversity (P ≤ 0.05). CONCLUSIONS These preliminary data suggest that previous history of acute sinusitis influences the composition of the NP microbiota, characterized by a depletion in relative abundance of specific taxa. Diminished diversity was associated with more frequent URIs.
Collapse
Affiliation(s)
- Clark A Santee
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nabeetha A Nagalingam
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Present address: Janssen Prevention Center, 2 Royal College Street, London, NW1 0TU, UK
| | - Ali A Faruqi
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gregory P DeMuri
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ellen R Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
39
|
Earl JP, de Vries SPW, Ahmed A, Powell E, Schultz MP, Hermans PWM, Hill DJ, Zhou Z, Constantinidou CI, Hu FZ, Bootsma HJ, Ehrlich GD. Comparative Genomic Analyses of the Moraxella catarrhalis Serosensitive and Seroresistant Lineages Demonstrate Their Independent Evolution. Genome Biol Evol 2016; 8:955-74. [PMID: 26912404 PMCID: PMC4860680 DOI: 10.1093/gbe/evw039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored.
Collapse
Affiliation(s)
- Joshua P Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Stefan P W de Vries
- Present address: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Azad Ahmed
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Evan Powell
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Matthew P Schultz
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Peter W M Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Darryl J Hill
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Fen Z Hu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Hester J Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
40
|
Liu G, Gradstedt H, Ermert D, Englund E, Singh B, Su YC, Johansson ME, Aspberg A, Agarwal V, Riesbeck K, Blom AM. Moraxella catarrhalis Evades Host Innate Immunity via Targeting Cartilage Oligomeric Matrix Protein. THE JOURNAL OF IMMUNOLOGY 2015; 196:1249-58. [DOI: 10.4049/jimmunol.1502071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
41
|
Whitehouse CA, Chase K, Embers ME, Kulesh DA, Ladner JT, Palacios GF, Minogue TD. Development of real-time PCR assays for the detection of Moraxella macacae associated with bloody nose syndrome in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. J Med Primatol 2015; 44:364-72. [PMID: 26365904 DOI: 10.1111/jmp.12196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Moraxella macacae is a recently described bacterial pathogen that causes epistaxis or so-called bloody nose syndrome in captive macaques. The aim of this study was to develop specific molecular diagnostic assays for M. macacae and to determine their performance characteristics. METHODS We developed six real-time PCR assays on the Roche LightCycler. The accuracy, precision, selectivity, and limit of detection (LOD) were determined for each assay, in addition to further validation by testing nasal swabs from macaques presenting with epistaxis at the Tulane National Primate Research Center. RESULTS All assays exhibited 100% specificity and were highly sensitive with an LOD of 10 fg for chromosomal assays and 1 fg for the plasmid assay. Testing of nasal swabs from 10 symptomatic macaques confirmed the presence of M. macacae in these animals. CONCLUSIONS We developed several accurate, sensitive, and species-specific real-time PCR assays for the detection of M. macacae in captive macaques.
Collapse
Affiliation(s)
- Chris A Whitehouse
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kitty Chase
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Monica E Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - David A Kulesh
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jason T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| |
Collapse
|
42
|
Abstract
INTRODUCTION Moraxella catarrhalis is a prominent pathogen that causes acute otitis media in children and lower respiratory tract infections in adults, resulting in a significant socioeconomic burden on healthcare systems globally. No vaccine is currently available for M. catarrhalis. Promising M. catarrhalis target antigens have been characterized in animal models and should soon enter human clinical trials. AREAS COVERED This review discusses the detailed features and research status of current candidate target antigens for an M. catarrhalis vaccine. The approaches for assessing M. catarrhalis vaccine efficacy are also discussed. EXPERT OPINION Targeting the key molecules contributing to serum resistance may be a viable strategy to identify effective vaccine targets among M. catarrhalis antigens. Elucidating the role and mechanisms of the serum and mucosal immune responses to M. catarrhalis is significant for vaccine target selection, testing and evaluation. Developing animal models closely simulating M. catarrhalis-caused human respiratory diseases is of great benefit in better understanding pathogenesis and evaluating vaccine efficacy. Carrying out clinical trials will be a landmark in the progress of M. catarrhalis vaccine research. Combined multicomponent vaccines will be a focus of future M. catarrhalis vaccine studies.
Collapse
Affiliation(s)
- Dabin Ren
- a 1 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA +1 585 922 3706 ;
| | - Michael E Pichichero
- b 2 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA
| |
Collapse
|
43
|
Expression of the Oligopeptide Permease Operon of Moraxella catarrhalis Is Regulated by Temperature and Nutrient Availability. Infect Immun 2015; 83:3497-505. [PMID: 26099587 DOI: 10.1128/iai.00597-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Moraxella catarrhalis causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. Together, these two conditions contribute to enormous morbidity and mortality worldwide. The oligopeptide permease (opp) ABC transport system is a nutritional virulence factor important for the utilization of peptides. The substrate binding protein OppA, which binds peptides for uptake, is a potential vaccine antigen, but little was known about the regulation of gene expression. The five opp genes oppB, oppC, oppD, oppF, and oppA are in the same open reading frame. Sequence analysis predicted two promoters, one located upstream of oppB and one within the intergenic region between oppF and oppA. We have characterized the gene cluster as an operon with two functional promoters and show that cold shock at 26°C for ≤ 0.5 h and the presence of a peptide substrate increase gene transcript levels. Additionally, the putative promoter upstream of oppA contributes to the transcription of oppA but is not influenced by the same environmental cues as the promoter upstream of oppB. We conclude that temperature and nutrient availability contribute to the regulation of the Opp system, which is an important nutritional virulence factor in M. catarrhalis.
Collapse
|
44
|
Liu Y, Xu H, Xu Z, Kudinha T, Fan X, Xiao M, Kong F, Sun H, Xu Y. High-Level Macrolide-Resistant Moraxella catarrhalis and Development of an Allele-Specific PCR Assay for Detection of 23S rRNA Gene A2330T Mutation: A Three-Year Study at a Chinese Tertiary Hospital. Microb Drug Resist 2015; 21:507-11. [PMID: 25923017 DOI: 10.1089/mdr.2014.0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies indicate that macrolide resistance in Moraxella catarrhalis isolates is less common in adults than in children. However, few studies have investigated M. catarrhalis macrolide resistance mechanisms in adult patients. In this study, 124 M. catarrhalis isolates were collected from adult patients in a Chinese tertiary hospital, between 2010 and 2013, and investigated for antimicrobial resistance. We found that only seven isolates were macrolide resistant and all exhibited high-level macrolide resistance (minimum inhibitory concentrations >256 μg/ml). Multilocus sequence typing (MLST) suggested that M. catarrhalis has a diverse population; in particular, both pulsed-field gel electrophoresis and MLST revealed that all the seven high-level macrolide-resistant M. catarrhalis belonged to different clones. A 934-bp 23S rRNA gene sequencing showed that only nine isolates (including all the seven macrolide-resistant isolates) had mutations within the studied region, and only the seven macrolide-resistant isolates had mutation of A2330T. No other known macrolide-resistance determinant genes (ermA, ermB, mefA, or mefE) were detected. These findings support previous studies in children on M. catarrhalis macrolide-resistant isolates and suggest that the 23S rRNA gene A2330T mutation is responsible for the high M. catarrhalis macrolide resistance. The findings prompted us to successfully develop a simple allele-specific polymerase chain reaction assay for high-level macrolide-resistant 23S rRNA gene A2330T mutation for future clinical and further surveillance use.
Collapse
Affiliation(s)
- Yali Liu
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Heping Xu
- 2 Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University , Xiamen, China
| | - Zhipeng Xu
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy Kudinha
- 3 Charles Sturt University , Orange, New South Wales, Australia .,4 Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney , Westmead, New South Wales, Australia
| | - Xin Fan
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Xiao
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Fanrong Kong
- 4 Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney , Westmead, New South Wales, Australia
| | - Hongli Sun
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales BJ, Walker ML, Hollams E, Bochkov YA, Grindle K, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17:704-15. [PMID: 25865368 PMCID: PMC4433433 DOI: 10.1016/j.chom.2015.03.008] [Citation(s) in RCA: 635] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/09/2015] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory infections (ARIs). Lung inflammation resulting from ARIs during infancy is linked to asthma development. We examined the NP microbiome during the critical first year of life in a prospective cohort of 234 children, capturing both the viral and bacterial communities and documenting all incidents of ARIs. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella. Transient incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns. In the absence of effective anti-viral therapies, targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma. The nasopharynx microbiome of infants has a simple structure dominated by six genera Microbiome composition affects infection severity and pathogen spread to lower airways Early asymptomatic colonization with Streptococcus increases risk of asthma Antibiotic usage disrupts asymptomatic colonization patterns
Collapse
Affiliation(s)
- Shu Mei Teo
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Kym Pham
- Melbourne Translational Genomics Platform, Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Merci Kusel
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Niamh Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Belinda J Hales
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Michael L Walker
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elysia Hollams
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Yury A Bochkov
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Kristine Grindle
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Sebastian L Johnston
- Airway Disease Infection Section and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - James E Gern
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4059, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia; Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4059, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
46
|
Augustyniak D, Piekut M, Majkowska-Skrobek G, Skała J. Bactericidal, opsonophagocytic and anti-adhesive effectiveness of cross-reactive antibodies against Moraxella catarrhalis. Pathog Dis 2015; 73:ftu026. [PMID: 25743473 DOI: 10.1093/femspd/ftu026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a human-restricted significant respiratory tract pathogen. The bacteria accounts for 15-20% of cases of otitis media in children and is an important causative agent of infectious exacerbations of chronic obstructive pulmonary disease in adults. The acquisition of new M. catarrhalis strains plays a central role in the pathogenesis of both mentioned disorders. The antibody-dependent immune response to this pathogen is critical for its effective elimination. Thus, the knowledge about the protective threshold of cross-reactive antibodies with defined functionality seems to be important. The complex analysis of broad-spectrum effectiveness of cross-reactive antibodies against M. catarrhalis has never been performed. The goal of the present study was to demonstrate and compare the bactericidal, opsonophagocytic and blocking function of cross-reacting antibodies produced in response to this bacterium or purified outer membrane proteins incorporated in Zwittergent-based micelles. The multivalent immunogens were used in order to better mimic the natural response of the host. The demonstrated broad-spectrum effectiveness of cross-reactive antibodies in pathogen eradication or inhibition strongly indicates that this pool of antibodies by recognition of pivotal shared M. catarrhalis surface epitopes seems to be an essential additional source to control host-microbe interaction.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland;
| | - Monika Piekut
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Grażyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Jacek Skała
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
47
|
Whitehouse CA, Ladner JT, Palacios GF. Molecular characterization of plasmid pMoma1of Moraxella macacae, a newly described bacterial pathogen of macaques. Folia Microbiol (Praha) 2014; 60:235-9. [PMID: 25398380 DOI: 10.1007/s12223-014-0364-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
We report the complete nucleotide sequence and characterization of a small cryptic plasmid of Moraxella macacae 0408225, a newly described bacterial species within the family Moraxellaceae and a causative agent of epistaxis in macaques. The complete nucleotide sequence of the plasmid pMoma1 was determined and found to be 5,375 bp in size with a GC content of 37.4 %. Computer analysis of the sequence data revealed five open reading frames encoding putative proteins of 54.4 kDa (ORF1), 17.6 kDa (ORF2), 13.3 kDa (ORF3), 51.6 kDa (ORF4), and 25.0 kDa (ORF5). ORF1, ORF2, and ORF3 encode putative proteins with high identity (72, 42, and 55 %, respectively) to mobilization proteins of plasmids found in other Moraxella species. ORF3 encodes a putative protein with similarity (about 40 %) to several plasmid replicase (RepA) proteins. The fifth open reading frames (ORF) was most similar to hypothetical proteins with unknown functions, although domain analysis of this sequence suggests it belongs to the Abi-like protein family. Upstream of the repA gene, a 470-bp intergenic region, was identified that contained an AT-rich section and two sets of tandem direct and indirect repeats, consistent with a putative origin of replication site. In contrast to other plasmids of Moraxella, the occurrence of pMoma1 in M. macacae isolates appears to be common as PCR testing of 14 clinical isolates from two different research institutions all contained the plasmid.
Collapse
Affiliation(s)
- Chris A Whitehouse
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA,
| | | | | |
Collapse
|
48
|
Yi H, Yong D, Lee K, Cho YJ, Chun J. Profiling bacterial community in upper respiratory tracts. BMC Infect Dis 2014; 14:583. [PMID: 25391813 PMCID: PMC4236460 DOI: 10.1186/s12879-014-0583-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Infection by pathogenic viruses results in rapid epithelial damage and significantly impacts on the condition of the upper respiratory tract, thus the effects of viral infection may induce changes in microbiota. Thus, we aimed to define the healthy microbiota and the viral pathogen-affected microbiota in the upper respiratory tract. In addition, any association between the type of viral agent and the resultant microbiota profile was assessed. METHODS We analyzed the upper respiratory tract bacterial content of 57 healthy asymptomatic people (17 health-care workers and 40 community people) and 59 patients acutely infected with influenza, parainfluenza, rhino, respiratory syncytial, corona, adeno, or metapneumo viruses using culture-independent pyrosequencing. RESULTS The healthy subjects harbored primarily Streptococcus, whereas the patients showed an enrichment of Haemophilus or Moraxella. Quantifying the similarities between bacterial populations by using Fast UniFrac analysis indicated that bacterial profiles were apparently divisible into 6 oropharyngeal types in the tested subjects. The oropharyngeal types were not associated with the type of viruses, but were rather linked to the age of the subjects. Moraxella nonliquefaciens exhibited unprecedentedly high abundance in young subjects aged <6 years. The genome of M. nonliquefaciens was found to encode various proteins that may play roles in pathogenesis. CONCLUSIONS This study identified 6 oropharyngeal microbiome types. No virus-specific bacterial profile was discovered, but comparative analysis of healthy adults and patients identified a bacterium specific to young patients, M. nonliquefaciens.
Collapse
Affiliation(s)
- Hana Yi
- School of Biosystem and Biomedial Science, Korea University, Seoul, Republic of Korea.
- Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea.
- Korea University Guro Hospital, Korea University, Seoul, Republic of Korea.
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | | | - Jongsik Chun
- ChunLab, Inc., Seoul, Republic of Korea.
- School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Complete Genome Assembly of a Quality Control Reference Isolate, Moraxella catarrhalis Strain ATCC 25240. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00938-14. [PMID: 25237030 PMCID: PMC4172279 DOI: 10.1128/genomea.00938-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally an opportunistic pathogen in the United States, Moraxella catarrhalis has acquired resistance to multiple antibacterial/antimicrobial agents. Here, we present the complete 1.9-Mb genome of M. catarrhalis strain ATCC 25240, as deposited in NCBI under the accession number CP008804.
Collapse
|
50
|
Role of the oligopeptide permease ABC Transporter of Moraxella catarrhalis in nutrient acquisition and persistence in the respiratory tract. Infect Immun 2014; 82:4758-66. [PMID: 25156736 DOI: 10.1128/iai.02185-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract.
Collapse
|