1
|
Cao W, Kuang L, Gan R, Huang T, Yan X. A novel compound heterozygous variant of MYO7A in Usher syndrome type 1. Exp Eye Res 2024; 247:110047. [PMID: 39151776 DOI: 10.1016/j.exer.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Usher syndrome (USH) is a recessive genetic disorder manifested by congenital sensorineural hearing loss and progressive retinitis pigmentosa, which leads to audiovisual impairment. We report a patient with Usher syndrome type 1 with new compound heterozygous MYO7A variants. A total of four members from the USH family were included. Medical history and retinal examinations were taken and genomic DNA from peripheral blood was extracted in the proband and other members. 381 retinal disease-associated genes were screened using targeted sequence capture array technology and Sanger sequencing was used to confirm the screening results. Scanning laser ophthalmoscope showed bone spicule pigmentary deposits in the mid-peripheral retina and whitish and thin retinal blood vessels especially in the arterioles. Optical coherence tomography showed that the centrality of the macular ellipsoid band disappeared in both eyes, and only remained near the fovea. Visual field examination showed a progressive loss of the visual field in a concentric pattern in both eyes. The electroretinography showed a significant decrease in the amplitudes of a- and b-waves in the scotopic and photopic condition. DNA sequencing identified the compound heterozygous variants including c.1003+1G > A: p. (?) and c.5957_5958del: p.G1987Lfs*50 of MYO7A, with the latter being novel. In this study, we found a novel compound heterozygous variant in MYO7A, which enriched the mutation spectrum and expanded our understanding of the heterogeneity of phenotype and genotype of Usher syndrome type 1.
Collapse
Affiliation(s)
- Wenchao Cao
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Longhao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Run Gan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
2
|
Wang S, Xu CY, Zhu Y, Ding W, Hu J, Xu B, Guo Y, Liu X. A rare transcript homozygous variants in CLRN1(USH3A) causes Usher syndrome type 3 in a Chinese family. Orphanet J Rare Dis 2024; 19:349. [PMID: 39304915 DOI: 10.1186/s13023-024-03348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Usher syndrome type 3 (USH3) is an autosomal recessive inherited disorder caused by pathogenic variants in the CLRN1 gene. OBJECT To evaluate the genotype-phenotype correlation of Usher syndrome type 3 (USH3) in a deaf-blind Chinese family of 3 generations with 2 patients. METHODS We collected blood samples and clinical data from all of the pedigree family members. Genomic DNA was isolated from peripheral leukocytes using standard method. Targeted next generation sequencing and Sanger sequencing were performed to find the pathogenic variants in this family. Digital PCR and plasmid overexpression assay were used to verify the pathogenicity of variant sites in different transcripts. RESULTS All patients developed bilateral sensorineural hearing loss (SHL), progressive vision loss and nyctalopia. NGS of genes for Usher syndrome, deafness and retinal dystrophy identified a locus mutation in CLRN1 that caused completely different amino acid changes in different transcripts[CLRN1:c.474T > A(P.Cys158Ter) at NM_001256819.2 or c.302T > A(p.Val101Asp) at NM_174878.3], and plasmid overexpression experiments confirmed that the c.474T > A(P.Cys158Ter, NM_001256819.2) was a pathogenic variant which has never been associated with Usher syndrome in China, and the transcript of this mutation was not the version commonly found worldwide. CONCLUSIONS The CLRN1c.474T > A(NM_001256819.2) mutation is the causative variant in the Chinese family with USH3. The pathogenicity of different transcripts should be particularly considered in pathogenicity analysis.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
- Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Gansu Province, Lanzhou, China
| | - Chen Yang Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Yiming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
| | - Wenjuan Ding
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Jieyu Hu
- Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Gansu Province, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
| | - Xiaowen Liu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
- Department of Otolaryngology-Head and Neck Surgery, Maternal and Child Health Hospital of Gansu Province, Lanzhou, China.
| |
Collapse
|
3
|
Johansen L, O'Hare F, Shepard ER, Ayton LN, Pelentsov LJ, Kearns LS, Galvin KL. Exploring the support needs of Australian parents of young children with Usher syndrome: a qualitative thematic analysis. Orphanet J Rare Dis 2024; 19:129. [PMID: 38515174 PMCID: PMC10956185 DOI: 10.1186/s13023-024-03125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Advancements in genetic testing have led to Usher syndrome now being diagnosed at a much earlier age than in the past, enabling the provision of early intervention and support to children and families. Despite these developments, anecdotal reports suggest there are substantial gaps in the services and supports provided to parents of children with Usher syndrome. The current study investigated the support needs of parents of children with Usher syndrome Type 1 when their child was aged 0 to 5 years. METHOD Purposive sampling was used, and six semi-structured interviews were conducted with Australian parents of children with Usher syndrome, Type 1. Data was analysed using modified reflexive thematic analysis. RESULTS Four key themes were identified as being central to the support needs of parents of children with Usher syndrome aged 0 to 5 years. (1) Social Needs referred to parents' need for various sources of social support, (2) Informational Needs described the lack of information parents received regarding Usher syndrome from treating professionals, (3) Practical Needs included supports needed to assist parents in managing the day-to-day tasks of caring for a child with a disability, and (4) Emotional Needs represented the emotional support (both formal and informal) that parents needed to be a positive support to their child. CONCLUSIONS Findings provide rich information for relevant support groups, policy makers, individual healthcare professionals, and professional governing bodies regarding the education of stakeholders and the development and implementation of best-practice treatment guidelines.
Collapse
Affiliation(s)
- L Johansen
- UsherKids Australia, Mordialloc, VIC, Australia
| | - F O'Hare
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - E R Shepard
- UsherKids Australia, Mordialloc, VIC, Australia
| | - L N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Parkville, VIC, Australia
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - L J Pelentsov
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - L S Kearns
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - K L Galvin
- Department of Audiology and Speech Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Hanany M, Shalom S, Ben-Yosef T, Sharon D. Comparison of Worldwide Disease Prevalence and Genetic Prevalence of Inherited Retinal Diseases and Variant Interpretation Considerations. Cold Spring Harb Perspect Med 2024; 14:a041277. [PMID: 37460155 PMCID: PMC10835612 DOI: 10.1101/cshperspect.a041277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
One of the considerations in planning the development of novel therapeutic modalities is disease prevalence that is usually defined by studying large national/regional populations. Such studies are rare and might suffer from inaccuracies and challenging clinical characterization in heterogeneous diseases, such as inherited retinal diseases (IRDs). Here we collected reported disease prevalence information on various IRDs in different populations. The most common IRD, retinitis pigmentosa, has an average disease prevalence of ∼1:4500 individuals, Stargardt disease ∼1:17,000, Usher syndrome ∼1:25,000, Leber congenital amaurosis ∼1:42,000, and all IRDs ∼1:3450. We compared these values to genetic prevalence (GP) calculated based on allele frequency of autosomal-recessive IRD mutations. Although most values did correlate, some differences were observed that can be explained by discordant, presumably null mutations that are likely to be either nonpathogenic or hypomorphic. Our analysis highlights the importance of performing additional disease prevalence studies and to couple them with population-dependent allele frequency data.
Collapse
Affiliation(s)
- Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120001, Israel
| | - Sapir Shalom
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120001, Israel
- Department of Military Medicine and "Tzameret," Faculty of Medicine, Hebrew University of Jerusalem and Medical Corps, Israel Defense Forces, Jerusalem 9112102, Israel
| | - Tamar Ben-Yosef
- Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120001, Israel
| |
Collapse
|
5
|
Nguyen VP, Hu J, Zhe J, Chen EY, Yang D, Paulus YM. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging of USH2A knockout rabbits. Sci Rep 2023; 13:22071. [PMID: 38086867 PMCID: PMC10716268 DOI: 10.1038/s41598-023-48872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Usher syndrome type 2A (USH2A) is a genetic disorder characterized by retinal degeneration and hearing loss. To better understand the pathogenesis and progression of this syndrome, animal models such as USH2A knockout (USH2AKO) rabbits have been developed. In this study, we employed multimodal imaging techniques, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), fundus autofluorescence (FAF), fluorescein angiography (FA), and indocyanine green angiography (ICGA) imaging to evaluate the retinal changes in the USH2AKO rabbit model. Twelve New Zealand White rabbits including USH2AKO and wild type (WT) were used for the experiments. Multimodal imaging was implemented at different time points over a period of 12 months to visualize the progression of retinal changes in USH2AKO rabbits. The results demonstrate that ellipsoid zone (EZ) disruption and degeneration, key features of Usher syndrome, began at the age of 4 months old and persisted up to 12 months. The EZ degeneration areas were clearly observed on the FAF and OCT images. The FAF images revealed retinal pigment epithelium (RPE) degeneration, confirming the presence of the disease phenotype in the USH2AKO rabbits. In addition, PAM images provided high-resolution and high image contrast of the optic nerve and the retinal microvasculature, including retinal vessels, choroidal vessels, and capillaries in three-dimensions. The quantification of EZ fluorescent intensity using FAF and EZ thickness using OCT provided comprehensive quantitative data on the progression of degenerative changes over time. This multimodal imaging approach allowed for a comprehensive and non-invasive assessment of retinal structure, microvasculature, and degenerative changes in the USH2AKO rabbit model. The combination of PAM, OCT, and fluorescent imaging facilitated longitudinal monitoring of disease progression and provided valuable insights into the pathophysiology of USH2A syndrome. These findings contribute to the understanding of USH2A syndrome and may have implications for the development of diagnostic and therapeutic strategies for affected individuals. The multimodal imaging techniques employed in this study offer a promising platform for preclinical evaluation of potential treatments and may pave the way for future clinical applications in patients with Usher syndrome.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eugene Y Chen
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA
| | - Dongshan Yang
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
6
|
Ayton LN, Galvin KL, Johansen L, O’Hare F, Shepard ER. Awareness of Usher Syndrome and the Need for Multidisciplinary Care: A Cross-Occupational Survey of Allied Health Clinicians. J Multidiscip Healthc 2023; 16:1927-1936. [PMID: 37465013 PMCID: PMC10351585 DOI: 10.2147/jmdh.s411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Background Usher syndrome is the most common cause of deaf-blindness, affecting up to 1 in 6000 people. Multidisciplinary care is required to maximize outcomes for individuals and families. This study assessed awareness of Usher Syndrome amongst allied health clinicians who provide care related to the primarily affected senses of hearing and vision, ie, optometry, orthoptics and audiology. Methods A prospective cross-sectional online survey of clinicians working in Australian university-affiliated clinics (7 optometry, 1 orthoptics and 4 audiology) was completed between September 2021 and January 2022. Questions were asked about the cause, common symptoms, and awareness of health professions who manage Usher syndrome. Results The 27 audiologists, 40 optometrists, and 7 orthoptists who completed the survey included 53 females (71.6%), had an average age of 37 years (range 24-70), and had an average duration of clinical experience of 13 years (range 1-45 years). The majority of respondents correctly identified Usher syndrome as a genetic condition (86%), identified at least two of the affected senses (97%), and identified the progressive nature of the vision and hearing losses (>90%). Awareness of vestibular dysfunction and its characteristics was low, as was knowledge of the key treatment roles that speech pathologists, genetic counsellors and geneticists play in the management of Usher Syndrome. The majority of respondents also did not identify important aspects of care within their own discipline. Conclusion This study has shown that there is a need for targeted education to be delivered to hearing and vision care allied health clinicians to raise awareness of the vestibular impacts and aspects of vision loss experienced by people with Usher syndrome. This education needs to target the broad range of clinicians who have a key role in providing multidisciplinary care (including speech pathologists, geneticists, and genetic counsellors) and to identify the key aspects of good-quality multidisciplinary care.
Collapse
Affiliation(s)
- Lauren N Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery (Ophthalmology), University of Melbourne, Parkville, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Karyn L Galvin
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, VIC, Australia
| | | | - Fleur O’Hare
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | | |
Collapse
|
7
|
Stephenson KAJ, Whelan L, Zhu J, Dockery A, Wynne NC, Cairns RM, Kirk C, Turner J, Duignan ES, O'Byrne JJ, Silvestri G, Kenna PF, Farrar GJ, Keegan DJ. Usher Syndrome on the Island of Ireland: A Genotype-Phenotype Review. Invest Ophthalmol Vis Sci 2023; 64:23. [PMID: 37466950 PMCID: PMC10362925 DOI: 10.1167/iovs.64.10.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive (AR) syndromic inherited retinal degenerations (IRDs) representing 50% of deaf-blindness. All subtypes include retinitis pigmentosa, sensorineural hearing loss, and vestibular abnormalities. Thorough phenotyping may facilitate genetic diagnosis and intervention. Here we report the clinical/genetic features of an Irish USH cohort. Methods USH patients were selected from the Irish IRD registry (Target 5000). Patients were examined clinically (deep-phenotyping) and genetically using a 254 IRD-associated gene target capture sequencing panel, USH2A exon, and whole genome sequencing. Results The study identified 145 patients (24.1% USH1 [n = 35], 73.8% USH2 [n = 107], 1.4% USH3 [n = 2], and 0.7% USH4 [n = 1]). A genetic diagnosis was reached in 82.1%, the majority (80.7%) being MYO7A or USH2A genotypes. Mean visual acuity and visual field (VF) were 0.47 ± 0.58 LogMAR and 31.3° ± 32.8°, respectively, at a mean age of 43 years. Legal blindness criteria were met in 40.7%. Cataract was present in 77.4%. ADGRV1 genotypes had the most VF loss, whereas USH2A patients had greater myopia and CDH23 had the most astigmatism. Variants absent from gnomAD non-Finnish Europeans and ClinVar represented more than 20% of the variants identified and were detected in ADGRV1, ARSG, CDH23, MYO7A, and USH2A. Conclusions USH is a genetically diverse group of AR IRDs that have a profound impact on affected individuals and their families. The prevalence and phenotype/genotype characteristics of USH in Ireland have, as yet, gone unreported. Understanding the genotype of Irish USH patients may guide clinical and genetic characterization facilitating access to existing/novel therapeutics.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julia Zhu
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adrian Dockery
- Next Generation Sequencing Laboratory, Pathology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Niamh C Wynne
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - Rebecca M Cairns
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Claire Kirk
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Jacqueline Turner
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Emma S Duignan
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - James J O'Byrne
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giuliana Silvestri
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Paul F Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - David J Keegan
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Jaffal L, Akhdar H, Joumaa H, Ibrahim M, Chhouri Z, Assi A, Helou C, Lee H, Seo GH, Joumaa WH, El Shamieh S. Novel Missense and Splice Site Mutations in USH2A, CDH23, PCDH15, and ADGRV1 Are Associated With Usher Syndrome in Lebanon. Front Genet 2022; 13:864228. [PMID: 35651951 PMCID: PMC9149366 DOI: 10.3389/fgene.2022.864228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to expand the mutation spectrum by searching the causative mutations in nine Lebanese families with Usher syndrome (USH) using whole-exome sequencing. The pathogenicity of candidate mutations was first evaluated according to their frequency, conservation, and in silico prediction tools. Then, it was confirmed via Sanger sequencing, followed by segregation analysis. Finally, a meta-analysis was conducted to calculate the prevalence of USH genes in the Lebanese population. Three missense mutations, two splice site mutations, and one insertion/deletion were detected in eight of the families. Four of these variants were novel: c.5535C > A; p.(Asn1845Lys) in exon 41 of CDH23, c.7130G > A; p.(Arg2377Gln) in exon 32 of ADGRV1, c.11390-1G > A in USH2A, and c.3999–6A > G in PCDH15. All the identified mutations were shown to be likely disease-causing through our bioinformatics analysis and co-segregated with the USH phenotype. The mutations were classified according to the ACMG standards. Finally, our meta-analysis showed that the mutations in ADGRV1, USH2A, and CLRN1 are the most prevalent and responsible for approximately 75% of USH cases in Lebanon. Of note, the frequency USH type 3 showed a relatively high incidence (23%) compared to the worldwide prevalence, which is around 2–4%. In conclusion, our study has broadened the mutational spectrum of USH and showed a high heterogeneity of this disease in the Lebanese population.
Collapse
Affiliation(s)
- Lama Jaffal
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hanane Akhdar
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Mariam Ibrahim
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Zahraa Chhouri
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Hane Lee
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Go Hun Seo
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
9
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
10
|
Usher syndrome IIIA: a review of the disorder and preclinical research advances in therapeutic approaches. Hum Genet 2022; 141:759-783. [PMID: 35320418 DOI: 10.1007/s00439-022-02446-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/27/2022]
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive pigmentary retinopathy, and vestibular dysfunction. The degree and onset of hearing loss vary among subtypes I, II, and III, while blindness often occurs in the second to fourth decades of life. Usher type III (USH3), characterized by postlingual progressive sensorineural hearing loss, varying levels of vestibular dysfunction, and varying degrees of visual impairment, typically manifests in the first to second decades of life. While USH3 is rare, it is highly prevalent in certain populations. RP61, USH3, and USH3A symbolize the same disorder, with the latter symbol used more frequently in recent literature. This review focuses on the clinical features, epidemiology, molecular genetics, treatment, and research advances for sensory deficits in USH3A.
Collapse
|
11
|
Velde HM, Reurink J, Held S, Li CHZ, Yzer S, Oostrik J, Weeda J, Haer-Wigman L, Yntema HG, Roosing S, Pauleikhoff L, Lange C, Whelan L, Dockery A, Zhu J, Keegan DJ, Farrar GJ, Kremer H, Lanting CP, Damme M, Pennings RJE. Usher syndrome type IV: clinically and molecularly confirmed by novel ARSG variants. Hum Genet 2022; 141:1723-1738. [PMID: 35226187 PMCID: PMC9556359 DOI: 10.1007/s00439-022-02441-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
AbstractUsher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.
Collapse
Affiliation(s)
- Hedwig M. Velde
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Janine Reurink
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Sebastian Held
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Catherina H. Z. Li
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Suzanne Yzer
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Helger G. Yntema
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Laurenz Pauleikhoff
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Whelan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Adrian Dockery
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - David J. Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - G. Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Cornelis P. Lanting
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Markus Damme
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Ronald J. E. Pennings
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Galbis‐Martínez L, Blanco‐Kelly F, García‐García G, Ávila‐Fernández A, Jaijo T, Fuster‐García C, Perea‐Romero I, Zurita‐Muñoz O, Jimenez‐Rolando B, Carreño E, García‐Sandoval B, Millán JM, Ayuso C. Genotype-phenotype correlation in patients with Usher syndrome and pathogenic variants in MYO7A: implications for future clinical trials. Acta Ophthalmol 2021; 99:922-930. [PMID: 33576163 PMCID: PMC9540557 DOI: 10.1111/aos.14795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022]
Abstract
Purpose We aimed to establish correlations between the clinical features of a cohort of Usher syndrome (USH) patients with pathogenic variants in MYO7A, type of pathogenic variant, and location on the protein domain. Methods Sixty‐two USH patients from 46 families with biallelic variants in MYO7A were examined for visual and audiological features. Participants were evaluated based on self‐reported ophthalmological history and ophthalmological investigations (computerized visual field testing, best‐corrected visual acuity, and ophthalmoscopic and electrophysiological examination). Optical coherence tomography and fundus autofluorescence imaging were performed when possible. Auditory and vestibular functions were evaluated. Patients were classified according to the type of variant and the protein domain where the variants were located. Results Most patients displayed a typical USH1 phenotype, that is, prelingual severe‐profound sensorineural hearing loss, prepubertal retinitis pigmentosa (RP) and vestibular dysfunction. No statistically significant differences were observed for the variables analysed except for the onset of hearing loss due to the existence of two USH2 cases, defined as postlingual sensorineural hearing loss, postpubertal onset of RP, and absence of vestibular dysfunction, and one atypical case of USH. Conclusion We were unable to find a correlation between genotype and phenotype for MYO7A. However, our findings could prove useful for the assessment of efficacy in clinical trials, since the type of MYO7A variant does not seem to change the onset, severity or course of visual disease.
Collapse
Affiliation(s)
- Lilián Galbis‐Martínez
- Department of Genetics University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
- CIBERER ISCIII Madrid Spain
| | - Fiona Blanco‐Kelly
- Department of Genetics University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
- CIBERER ISCIII Madrid Spain
| | - Gema García‐García
- CIBERER ISCIII Madrid Spain
- Unit of Genetics University Hospital La Fe – IIS La Fe Valencia Spain
- Joint Unit for Rare Diseases IIS La Fe‐CIPF Valencia Spain
| | - Almudena Ávila‐Fernández
- Department of Genetics University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
- CIBERER ISCIII Madrid Spain
| | - Teresa Jaijo
- CIBERER ISCIII Madrid Spain
- Unit of Genetics University Hospital La Fe – IIS La Fe Valencia Spain
- Joint Unit for Rare Diseases IIS La Fe‐CIPF Valencia Spain
| | - Carla Fuster‐García
- CIBERER ISCIII Madrid Spain
- Unit of Genetics University Hospital La Fe – IIS La Fe Valencia Spain
- Joint Unit for Rare Diseases IIS La Fe‐CIPF Valencia Spain
| | - Irene Perea‐Romero
- Department of Genetics University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
- CIBERER ISCIII Madrid Spain
| | - Olga Zurita‐Muñoz
- Department of Genetics University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
- CIBERER ISCIII Madrid Spain
| | - Belén Jimenez‐Rolando
- CIBERER ISCIII Madrid Spain
- Department of Ophthalmology University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
| | - Ester Carreño
- CIBERER ISCIII Madrid Spain
- Department of Ophthalmology University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
| | - Blanca García‐Sandoval
- CIBERER ISCIII Madrid Spain
- Department of Ophthalmology University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
| | - José M. Millán
- CIBERER ISCIII Madrid Spain
- Unit of Genetics University Hospital La Fe – IIS La Fe Valencia Spain
- Joint Unit for Rare Diseases IIS La Fe‐CIPF Valencia Spain
| | - Carmen Ayuso
- Department of Genetics University Hospital Fundacion Jimenez Diaz IIS‐FJD UAM Madrid Spain
- CIBERER ISCIII Madrid Spain
| |
Collapse
|
13
|
Kim YN, Kim YJ, Seol CA, Seo EJ, Lee JY, Yoon YH. Genetic Profile and Associated Characteristics of 150 Korean Patients with Retinitis Pigmentosa. J Ophthalmol 2021; 2021:5067271. [PMID: 34721897 PMCID: PMC8553513 DOI: 10.1155/2021/5067271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/31/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) shows great diversity between genotypes and phenotypes, and it is important to identify the causative genes. This study aimed to analyze the molecular profiles, associated ocular characteristics, and progression of RP in Korean patients. METHODS All the genetic variants in patients with RP, identified using targeted next-generation sequencing (NGS) with a panel of 88 RP-related genes between November 2018 and November 2019, were retrospectively reviewed. All the patients underwent comprehensive ophthalmological evaluations, and their clinical and family histories were recorded. The best-corrected visual acuity (BCVA) deterioration and photoreceptor disruption progression rates were determined based on the major causative mutational genes using nonlinear mixed models, and the differences among them were investigated using the interaction effect. RESULTS Among the 144 probands, 82 variants in 24 causative genes were identified in 77 families (53.5%). Most of the RP cases were associated with autosomal recessive variants (N = 64 (44.4%)), followed by autosomal dominant (N = 10 (6.9%)) and X-linked variants (N = 3 (2.1%)). The four most frequently affected genes were EYS (N = 15 (10.4%)), USH2A (N = 12 (8.3%)), PDE6B (N = 9 (6.3%)), and RP1 (N = 8 (5.6%)). Epiretinal membranes and cystoid macular edema were frequently noted in the patients with USH2A (75.0%) and PDE6B (50.0%) variants, respectively. During the follow-up period, the BCVA and photoreceptor disruption changes were significantly different among the patients carrying the four common causative genes (P=0.014 and 0.034, resp.). Patients with PDE6B variants showed faster BCVA changes (0.2 LogMAR/10 years), and those with USH2A variants showed the fastest ellipsoid zone disruptions (-170.4 µm/year). CONCLUSION In conclusion, our genetic analysis using targeted NGS provides information about the prevalence of RP-associated mutations in Korean patients. Delineating clinical characteristics according to genetic variations may help clinicians identify subtype features and predict the clinical course of RP.
Collapse
Affiliation(s)
- You Na Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yoon Jeon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
14
|
Yoshimura H, Nishio SY, Isaka Y, Kurokawa T, Usami SI. A nationwide epidemiologic, clinical, genetic study of Usher syndrome in Japan. Acta Otolaryngol 2021; 141:841-846. [PMID: 34452594 DOI: 10.1080/00016489.2021.1966500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Usher syndrome (USH) typically leads to deaf-blindness, requiring the provision of extensive education and rehabilitation services. Therefore, investigating the prevalence is crucial to requests for proper government support for USH patients. OBJECTIVE The aim was to perform a nationwide epidemiologic survey of USH in Japan to estimate the prevalence of USH and reveal the relative frequency and characteristics of the three USH subtypes. METHODS To estimate the number of USH patients visiting hospitals over a 1-year period, 1,628 hospitals were randomly selected from all Departments of Otorhinolaryngology and Ophthalmology in Japan. Subsequently, we collected data regarding the clinical characteristics of each patient treated and the results of genetic testing, if performed. RESULTS We found that the prevalence of USH was at least 0.4 per 100,000 population. The frequency of clinical subtypes and causal genes for USH were consistent with previous reports. Also, we demonstrated the feasibility of genetic counseling for USH patients based on the results of genetic testing. CONCLUSION USH is a rare disease, but requires social support due to the severity of symptoms. To minimize these issues, understanding the clinical characteristics and performing comprehensive genetic testing could allow early and accurate diagnosis as well as medical intervention.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuichi Isaka
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Kurokawa
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | | |
Collapse
|
15
|
Kinoshita S, Ando M, Ando J, Ishii M, Furukawa Y, Tomita O, Azusawa Y, Shirane S, Kishita Y, Yatsuka Y, Eguchi H, Okazaki Y, Komatsu N. Trigenic ADH5/ ALDH2/ ADGRV1 mutations in myelodysplasia with Usher syndrome. Heliyon 2021; 7:e07804. [PMID: 34458631 PMCID: PMC8379464 DOI: 10.1016/j.heliyon.2021.e07804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022] Open
Abstract
Trio-next generation sequencing is useful to identify undiagnosed inherited diseases. We have attended a patient with trigenic ADH5/ALDH2/ADGRV1 pathogenic variants, which caused two distinct diseases, myelodysplastic syndrome and Usher syndrome. Whole genome sequencing of peripheral blood from the patient and his parents were applied to identify disease-causing genes. Sanger sequencing was performed to validate the identified ADH5/ALDH2/ADGRV1 variants. Our results identified disease-associated variants in ADGRV1 (disease inheritance autosomal recessive) and in ADH5 (disease inheritance also autosomal recessive) and a variant in ALDH2 (disease inheritance autosomal dominant). Although the variants identified in ADH5 and ALDH2 have been reported, their co-existence in association with disease-causing variation in a third gene has not. They broaden the spectrum of ADGRV1 in Usher syndrome. Findings on next generation sequencing guided rapid and accurate diagnosis, resulting in patient-tailored therapeutic intervention. Trigenic ADH5 / ALDH2 / ADGRV1 variants in myelodysplastic syndrome with Usher syndrome were identified. Two novel pathogenic frameshift variants in ADGRV1 in compound heterozygous state with Usher syndrome type II were described. Findings on next generation sequencing guided rapid and accurate diagnosis, resulting in patient-tailored therapy.
Collapse
Affiliation(s)
- Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan.,Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Tomita
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoko Azusawa
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan
| | - Shuichi Shirane
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihito Kishita
- Diagnostic and Therapeutics of Intractable Diseases, Graduate School of Medicine and Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Yukiko Yatsuka
- Diagnostic and Therapeutics of Intractable Diseases, Graduate School of Medicine and Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Hidetaka Eguchi
- Diagnostic and Therapeutics of Intractable Diseases, Graduate School of Medicine and Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostic and Therapeutics of Intractable Diseases, Graduate School of Medicine and Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
17
|
Wafa TT, Faridi R, King KA, Zalewski C, Yousaf R, Schultz JM, Morell RJ, Muskett J, Turriff A, Tsilou E, Griffith AJ, Friedman TB, Zein WM, Brewer CC. Vestibular phenotype-genotype correlation in a cohort of 90 patients with Usher syndrome. Clin Genet 2021; 99:226-235. [PMID: 33089500 PMCID: PMC7821283 DOI: 10.1111/cge.13868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Usher syndrome has been historically categorized into one of three classical types based on the patient phenotype. However, the vestibular phenotype does not infallibly predict which Usher genes are mutated. Conversely, the Usher syndrome genotype is not sufficient to reliably predict vestibular function. Here we present a characterization of the vestibular phenotype of 90 patients with clinical presentation of Usher syndrome (59 females), aged 10.9 to 75.5 years, with genetic variants in eight Usher syndromic genes and expand the description of atypical Usher syndrome. We identified unexpected horizontal semicircular canal reactivity in response to caloric and rotational stimuli in 12.5% (3 of 24) and 41.7% (10 of 24), respectively, of our USH1 cohort. These findings are not consistent with the classical phenotypic definition of vestibular areflexia in USH1. Similarly, 17% (6 of 35) of our cohort with USH2A mutations had saccular dysfunction as evidenced by absent cervical vestibular evoked myogenic potentials in contradiction to the classical assumption of normal vestibular function. The surprising lack of consistent genotypic to vestibular phenotypic findings as well as no clear vestibular phenotypic patterns among atypical USH cases, indicate that even rigorous vestibular phenotyping data will not reliably differentiate the three USH types.
Collapse
Affiliation(s)
- Talah T. Wafa
- Otolaryngology BranchNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Rabia Faridi
- Laboratory of Molecular GeneticsNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Kelly A. King
- Otolaryngology BranchNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Christopher Zalewski
- Otolaryngology BranchNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Rizwan Yousaf
- Laboratory of Molecular GeneticsNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Julie M. Schultz
- Laboratory of Molecular GeneticsNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
- Review Analysis DepartmentGeneDxGaithersburgMarylandUSA
| | - Robert J. Morell
- Genomics and Computational Biology CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Julie Muskett
- Otolaryngology BranchNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Amy Turriff
- Ophthalmic Genetics and Visual Function BranchNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Ekaterini Tsilou
- Ophthalmic Genetics and Visual Function BranchNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Andrew J. Griffith
- Otolaryngology BranchNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Thomas B. Friedman
- Laboratory of Molecular GeneticsNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| | - Wadih M. Zein
- Ophthalmic Genetics and Visual Function BranchNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Carmen C. Brewer
- Otolaryngology BranchNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
18
|
Falsini B, Placidi G, De Siena E, Savastano MC, Minnella AM, Maceroni M, Midena G, Ziccardi L, Parisi V, Bertelli M, Maltese PE, Chiurazzi P, Rizzo S. USH2A-Related Retinitis Pigmentosa: Staging of Disease Severity and Morpho-Functional Studies. Diagnostics (Basel) 2021; 11:diagnostics11020213. [PMID: 33535592 PMCID: PMC7912870 DOI: 10.3390/diagnostics11020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/29/2023] Open
Abstract
Usher syndrome type 2A (USH2A) is a genetic disease characterized by bilateral neuro-sensory hypoacusia and retinitis pigmentosa (RP). While several methods, including electroretinogram (ERG), describe retinal function in USH2A patients, structural alterations can be assessed by optical coherence tomography (OCT). According to a recent collaborative study, RP can be staged considering visual acuity, visual field area and ellipsoid zone (EZ) width. The aim of this study was to retrospectively determine RP stage in a cohort of patients with USH2A gene variants and to correlate the results with age, as well as additional functional and morphological parameters. In 26 patients with established USH2A genotype, RP was staged according to recent international standards. The cumulative staging score was correlated with patients' age, amplitude of full-field and focal flicker ERGs, and the OCT-measured area of sub-Retinal Pigment Epithelium (RPE) illumination (SRI). RP cumulative score (CS) was positively correlated (r = 0.6) with age. CS was also negatively correlated (rho = -0.7) with log10 ERG amplitudes and positively correlated (r = 0.5) with SRI. In USH2A patients, RP severity score is correlated with age and additional morpho-functional parameters not included in the international staging system and can reliably predict their abnormality at different stages of disease.
Collapse
Affiliation(s)
- Benedetto Falsini
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Placidi
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa De Siena
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Savastano
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Maria Minnella
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Maceroni
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630-154-928
| | - Giulia Midena
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Ziccardi
- Fondazione GB Bietti per l’Oftalmologia, IRCCS, 00184 Rome, Italy; (L.Z.); (V.P.)
| | - Vincenzo Parisi
- Fondazione GB Bietti per l’Oftalmologia, IRCCS, 00184 Rome, Italy; (L.Z.); (V.P.)
| | - Matteo Bertelli
- MAGI’S LAB, 38068 Rovereto, Italy; (M.B.); (P.E.M.)
- MAGI EUREGIO, 39100 Bolzano, Italy
| | - Paolo Enrico Maltese
- MAGI’S LAB, 38068 Rovereto, Italy; (M.B.); (P.E.M.)
- MAGI EUREGIO, 39100 Bolzano, Italy
| | - Pietro Chiurazzi
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Stanislao Rizzo
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.F.); (G.P.); (E.D.S.); (M.C.S.); (A.M.M.); (G.M.); (P.C.); (S.R.)
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Ambrosio L, Hansen RM, Moskowitz A, Oza A, Barrett D, Manganella J, Medina G, Kawai K, Fulton AB, Kenna M. Dark-adapted threshold and electroretinogram for diagnosis of Usher syndrome. Doc Ophthalmol 2021; 143:39-51. [PMID: 33511521 DOI: 10.1007/s10633-021-09818-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine the utility of ophthalmology evaluation, dark-adapted threshold, and full-field electroretinogram for early detection of Usher syndrome in young patients with bilateral sensorineural hearing loss. METHODS We identified 39 patients with secure genetic diagnoses of Usher Syndrome. Visual acuity, spherical equivalent, fundus appearance, dark-adapted threshold, and full-field electroretinogram results were summarized and compared to those in a group of healthy controls with normal hearing. In those Usher patients with repeated measures, regression analysis was done to evaluate for change in visual acuity and dark-adapted threshold with age. Spherical equivalent and full-field electroretinogram responses from dark- and light-adapted eyes were evaluated as a function of age. RESULTS The majority of initial visual acuity and spherical equivalent results were within normal limits for age. Visual acuity and dark-adapted threshold worsened significantly with age in Usher type 1 but not in Usher type 2. At initial test, full-field electroretinogram responses from dark- and light-adapted eyes were abnormal in 53% of patients. Remarkably, nearly half of our patients (17% of Usher type 1 and 30% of Usher type 2) would have been missed by tests of retinal function alone if evaluated before age 10. CONCLUSIONS Although there is an association of abnormal dark-adapted threshold and full-field electroretinogram at young ages in Usher patients, it appears that a small but important proportion of patients would not be detected by tests of retinal function alone. Thus, genetic testing is needed to secure a diagnosis of Usher syndrome.
Collapse
Affiliation(s)
- Lucia Ambrosio
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Ronald M Hansen
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Anne Moskowitz
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Andrea Oza
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Devon Barrett
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Juliana Manganella
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Genevieve Medina
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kosuke Kawai
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Xing D, Zhou H, Yu R, Wang L, Hu L, Li Z, Li X. Targeted exome sequencing identified a novel USH2A mutation in a Chinese usher syndrome family: a case report. BMC Ophthalmol 2020; 20:485. [PMID: 33302902 PMCID: PMC7727220 DOI: 10.1186/s12886-020-01711-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Usher syndrome is a disease with a heterogeneous phenotype and genotype. Our purpose was to identify the gene mutation in a Chinese family with Usher syndrome type 2 and describe the clinical features. Case presentation A 23-year-old man complained of a 10-year duration of nyctalopia and a 3-year decline in visual acuity of both eyes accompanied by congenital dysaudia. To clarify the diagnosis, the clinical symptoms were observed and analysed in combination with comprehensive ophthalmologic examinations as well as genetic analysis (targeted exome sequencing, TES). A typical clinical presentation of Usher syndrome of the fundus was found, including a waxy yellow-like disc, bone-spicule formations and retinal vessel stenosis. Optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) showed loss of the ellipsoid zone and a reduction in paracaval vessel density in both eyes. Genetic analysis identified a novel homozygous c.8483_8486del (p.Ser2828*) mutation in USH2A. The mutation resulted in premature termination of translation and caused the deletion of 19 fibronectin type 3 domains (FN3), transmembrane (TM) region and PDZ-binding motif domain, which play an important role in protein binding. After combining the clinical manifestations and genetic results, the patient was diagnosed with Usher syndrome type 2. Conclusion We found a novel c.8483_8486del mutation in the USH2A gene through TES techniques. The results broaden the spectrum of mutations in Usher syndrome type 2 and suggest that a combination of clinical information and molecular diagnosis via TES could help Usher syndrome patients obtain a better diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-020-01711-7.
Collapse
Affiliation(s)
- Dongjun Xing
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Huaiyu Zhou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Rongguo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Linni Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Liying Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| |
Collapse
|
21
|
Awan AI, Abdul Raffay E, Liaqat A, Hassan T, Khan M. Are Consanguineous Marriages to Blame for Usher Syndrome Type 1, a Rare Disease in Pakistan? Cureus 2020; 12:e11117. [PMID: 33240713 PMCID: PMC7682543 DOI: 10.7759/cureus.11117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Usher syndrome type I is a rare genetic autosomal recessive disease caused by mutations in specific genes that provide instructions for making proteins involved in normal hearing, vision, and balance. It is characterized by hearing impairment due to the inability of auditory nerves to send sensory input to the brain leading to hearing loss along with retinitis pigmentosa (RP), which is a progressive, bilateral, symmetrical retinal degeneration involving photoreceptor cells. We report a 32-year-old male patient who presented to us with complaints of night blindness and progressive vision loss for the past 20 years. He had bilateral hearing loss leading to deaf-mutism. In addition, his developmental milestones were delayed. His fundoscopic findings were consistent with RP and his electroretinography confirmed reduced retinal activity. Pure tone audiometry confirmed bilateral sensory neural hearing. His mother was a known case of Usher syndrome type 1. His family history was remarkable for multiple consanguineous marriages in both his parental and maternal families and a confirmed diagnosis of Usher syndrome in paternal uncle. The patient was tried on hearing aids and vitamin A medication but with minimal improvement in his overall condition. A multidisciplinary approach, involving an audiologist, speech, and language therapist was adapted to help the patient. Early genetic testing can help diagnose such cases in its early stages and genetic counseling regarding the detrimental effects of consanguineous marriages can play a very positive role in genetic diseases, especially those with autosomal recessive inheritance patterns.
Collapse
Affiliation(s)
- Ali I Awan
- Psychiatry and Behavioral Sciences, King Edward Medical University, Mayo Hospital, Lahore, PAK
| | | | - Ayesha Liaqat
- Internal Medicine, Services Institute of Medical Sciences, Lahore, PAK
| | - Taimoor Hassan
- Internal Medicine, District Headquarter Hospital, Nankana Sahib, PAK
| | - Maria Khan
- Internal Medicine, King Edward Medical University, Mayo Hospital, Lahore, PAK
| |
Collapse
|
22
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
23
|
Panagiotou ES, Papathomas T, Nikopoulos K, Koukoula S, Quinodoz M, Rehman AU, Giannopoulos T, Rivolta C, Konstas AG. Management of Full-Thickness Macular Hole in A Genetically Confirmed Case with Usher Syndrome. Ophthalmol Ther 2020; 9:677-684. [PMID: 32566994 PMCID: PMC7406580 DOI: 10.1007/s40123-020-00276-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Full-thickness macular hole (FTMH) formation is rarely seen in patients with retinitis pigmentosa (RP) and can have an adverse impact on their residual visual function. The underlying mechanisms are unknown, and clinical experience is limited regarding surgical outcomes. Here, we describe the surgical management of FTMH in a young patient with genetically confirmed Usher syndrome, the most common form of syndromic RP. CASE REPORT A 28-year-old woman presented with blurred vision in her right eye (RE). She had a history of RP and bilateral hearing impairment since childhood. Fundoscopy and spectral-domain optical coherence tomography revealed a FTMH in the RE along with typical RP features bilaterally. After pars plana vitrectomy (PPV) with internal limiting membrane peel and gas tamponade, the FTMH closed. Six months after PPV the patient underwent cataract surgery in the affected eye, and the visual acuity remained stable compared to baseline. The clinical diagnosis of Usher syndrome was genetically confirmed by whole exome sequencing (WES), which revealed the presence of two pathogenic nucleotide variants in trans (compound heterozygosity) in the gene USH2A. CONCLUSION We report a rare case of successful closure of a FTMH in a patient with Usher syndrome. Surgical treatment of FTMH can help preserve the central vision in RP patients, whose peripheral vision is severely affected.
Collapse
Affiliation(s)
- Evangelia S Panagiotou
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Thomas Papathomas
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Nikopoulos
- Laboratory of Oncogenomics, Department of Hematology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Mathieu Quinodoz
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Atta Ur Rehman
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Theodoros Giannopoulos
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Carlo Rivolta
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Anastasios G Konstas
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
- 3rd Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| |
Collapse
|
24
|
Wang K, Statler B, Ramos M, DeBenedictis MJ, Babiuch A, Yuan A, Traboulsi EI. Hickam's Dictum: Pseudoxanthoma elasticum and Usher syndrome in a single patient. Ophthalmic Genet 2020; 41:465-469. [PMID: 32664777 DOI: 10.1080/13816810.2020.1790616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND To report the case of a patient with two distinct genetic systemic diseases - pseudoxanthoma elasticum (PXE) and Usher syndrome - confirmed by genetic testing. MATERIALS AND METHODS Single Retrospective Case Report. RESULTS A 36-year-old woman presented with acute central vision loss of the left eye (OS). Fundus exam revealed choroidal neovascularization OS in the setting of angioid streaks secondary to an underlying diagnosis of PXE. Unexpectedly, she also exhibited peripheral bony spicules with significant visual field constriction. Physical exam revealed skin papules on her neck and hearing loss. The presence of angioid streaks and skin findings was compatible with PXE; the etiology of her pigmentary retinopathy and hearing loss was elucidated using genetic testing. The patient was found to be compound heterozygous for pathogenic variants in both the ABCC6 and USH2A genes, confirming the diagnosis of two rare disorders in a single patient. CONCLUSIONS PXE and Usher syndrome are rare systemic disorders that cause distinctive retinal abnormalities. This report highlights the importance of genetic testing in diagnosing uncommon hereditary retinal disorders and outlines the progression of disease over 6 years.
Collapse
Affiliation(s)
- Kevin Wang
- Cleveland Clinic, Cole Eye Institute , Cleveland, Ohio, USA
| | | | - Michael Ramos
- Cleveland Clinic, Cole Eye Institute , Cleveland, Ohio, USA
| | | | - Amy Babiuch
- Cleveland Clinic, Cole Eye Institute , Cleveland, Ohio, USA
| | - Alex Yuan
- Cleveland Clinic, Cole Eye Institute , Cleveland, Ohio, USA
| | | |
Collapse
|
25
|
Nolen RM, Hufnagel RB, Friedman TB, Turriff AE, Brewer CC, Zalewski CK, King KA, Wafa TT, Griffith AJ, Brooks BP, Zein WM. Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genet 2020; 41:401-412. [PMID: 32372680 DOI: 10.1080/13816810.2020.1747090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.
Collapse
Affiliation(s)
- Rosalie M Nolen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Christopher K Zalewski
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Kelly A King
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Talah T Wafa
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
26
|
Puthalath A, Samanta R, Saraswat N, Agrawal A, Singh A, Jamil M. A rare case of type 3 usher syndrome with bilateral cystoid macular edema treated with topical dorzolamide. Taiwan J Ophthalmol 2020; 11:183-186. [PMID: 34295626 PMCID: PMC8259521 DOI: 10.4103/tjo.tjo_6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/02/2020] [Indexed: 12/03/2022] Open
Abstract
A 30-year-old female presented with gradually progressive diminution of vision for 1 month, with night blindness for the past 5 years and difficulty in hearing for the past 10 years. Her developmental history and family history were unremarkable. Ocular examination revealed visual acuity of 6/36 in both eyes. Fundus showed features of retinitis pigmentosa with bilateral macular edema. Audiometry revealed bilateral sensorineural hearing loss; although, her vestibular functions were preserved. Clinical diagnosis of Usher syndrome type 3 was made based on normal hearing at birth, delayed presentation of progressive visual and auditory impairment with normal vestibular function, and developmental milestones. Her macular edema resolved after 3 months of treatment with topical dorzolamide therapy. The unique feature of this case is the presence of bilateral macular edema in type 3 Usher syndrome, which is rarely reported in literature.
Collapse
Affiliation(s)
- Athul Puthalath
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Ramanuj Samanta
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Neeraj Saraswat
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Ajai Agrawal
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Anupam Singh
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Mahsa Jamil
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| |
Collapse
|
27
|
Al-Kindi MN, Al-Khabouri MJ, Al-Lamki KA, Palombo F, Pippucci T, Romeo G, Al-Wardy NM. In silico analysis of a novel causative mutation in Cadherin23 gene identified in an Omani family with hearing loss. J Genet Eng Biotechnol 2020; 18:8. [PMID: 32115674 PMCID: PMC7049540 DOI: 10.1186/s43141-020-0021-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
Background Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every 500 newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. It is found to be expressed in the stereocilia of hair cells and in the retina photoreceptor cells. Defective CDH23 have been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12) deafness. The purpose of this study was to identify causative mutations in an Omani family diagnosed with severe-profound sensorineural hearing loss by whole exome sequencing technique and analyzing the detected variant in silico for pathogenicity using several in silico mutation prediction software. Results A novel homozygous missense variant, c.A7436C (p. D2479A), in exon 53 of CDH23 was detected in the family while the control samples were all negative for the detected variant. In silico mutation prediction analysis showed the novel substituted D2479A to be deleterious and protein destabilizing mutation at a conserved site on CDH23 protein. Conclusion In silico mutation prediction analysis might be used as a useful molecular diagnostic tool benefiting both genetic counseling and mutation verification. The aspartic acid 2479 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.
Collapse
Affiliation(s)
- Mohammed Nasser Al-Kindi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al-Khoud, 123, Muscat, Oman
| | - Mazin Jawad Al-Khabouri
- Department of Otolaryngology and Head and Neck Surgery, Al Nahda Hospital, Ministry of Health, Muscat, Oman
| | - Khalsa Ahmad Al-Lamki
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al-Khoud, 123, Muscat, Oman
| | - Flavia Palombo
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Nadia Mohammed Al-Wardy
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al-Khoud, 123, Muscat, Oman.
| |
Collapse
|
28
|
Genetic analysis of Usher syndrome associated genes in Iranian pedigrees: The prominent role of MYO7A gene. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Galli-Resta L, Placidi G, Campagna F, Ziccardi L, Piccardi M, Minnella A, Abed E, Iovine S, Maltese P, Bertelli M, Falsini B. Central Retina Functional Damage in Usher Syndrome Type 2: 22 Years of Focal Macular ERG Analysis in a Patient Population From Central and Southern Italy. Invest Ophthalmol Vis Sci 2019; 59:3827-3835. [PMID: 30073356 DOI: 10.1167/iovs.17-23703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent studies show that patients with Usher syndrome type 2 (USH2) have abnormal cone structure and density in the central retina. This occurs in the presence of normal acuity, opening the quest for additional sensitive functional measures of central cone function in USH. We tested here whether focal macular cone electroretinogram (fERG) could be such a tool. Methods This retrospective study of central cone function loss was based on data from 47 patients with USH2 from the Ophthalmology Department of the Policlinico Gemelli/Catholic University in Rome. The analysis focused on the decrease of the fERG, obtained in response to a 41-Hz sinusoidal modulation of a uniform field presented to the central 18°, generated by red light-emitting diodes (LEDs) and superimposed on an equiluminant steady adapting background. fERG decrease was compared with the decrease of best-corrected visual acuity and Goldmann kinetic perimetry V4E field. Results fERG follow-up data document a severe and precocious loss of central cone function in USH2 patients, preceding losses in other measures of cone function. fERG is already reduced to 40% of control at the beginning of the second decade of life, and by 25 years of age, all USH2 patients have fERGs less than 30% of control values. Conclusions fERG represents a sensitive tool to evaluate central cone function in USH2, anticipating the decline of other central cone function measures, such as visual acuity and Goldmann perimetry.
Collapse
Affiliation(s)
| | - Giorgio Placidi
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Campagna
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Marco Piccardi
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Minnella
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edoardo Abed
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Iovine
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maltese
- Medical Genetics Laboratory, MAGI Euregio SCS, Bolzano, Italy
| | - Matteo Bertelli
- Medical Genetics Laboratory, MAGI Euregio SCS, Bolzano, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Dalby DM, Hirdes JP, Stolee P, Strong JG, Poss J, Tjam EY, Bowman L, Ashworth M. Development and Psychometric Properties of a Standardized Assessment for Adults who are Deaf-Blind. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2019. [DOI: 10.1177/0145482x0910300103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The internal consistency and validity of the interRAI Community Health Assessment and Deafblind Supplement were tested with 182 persons with deaf-blindness. All subscales demonstrated good to excellent internal consistency, and expected associations provided evidence of convergent validity. This instrument can facilitate standardized service planning for persons with deaf-blindness.
Collapse
Affiliation(s)
- Dawn M. Dalby
- Department of Kinesiology and Physical Education, BA 521, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada, N2L 3C5
| | - John P. Hirdes
- Department of Health Studies and Gerontology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1, and director, Homewood Research Institute, Guelph, ON, Canada
| | - Paul Stolee
- Department of Health Studies and Gerontology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - J. Graham Strong
- Centre for Sight Enhancement and School of Optometry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jeff Poss
- Department of Health Studies and Gerontology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
| | - Erin Y. Tjam
- St. Mary's General Hospital, 911 Queen's Boulevard, Kitchener, ON, N2M 1B2, Canada
| | - Lindsay Bowman
- Public health planner, Family and Community Resources, Region of Waterloo Public Health, 99 Regina Street South, Waterloo, Ontario, N2J 4V3, Canada
| | - Melody Ashworth
- Ontario Institute for Studies in Education, Department of Human Development and Applied Psychology, University of Toronto, 252 Bloor Street West, Toronto, ON, Canada, M5S 1V6
| |
Collapse
|
31
|
CLINICAL PRESENTATION AND DISEASE COURSE OF USHER SYNDROME BECAUSE OF MUTATIONS IN MYO7A OR USH2A. Retina 2018; 37:1581-1590. [PMID: 27828912 DOI: 10.1097/iae.0000000000001389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate differences in the visual phenotype and natural history of Usher syndrome caused by mutations in MYO7A or USH2A, the most commonly affected genes of Usher syndrome Type I (USH1) and Type II (USH2), respectively. METHODS Eighty-eight patients with a clinical diagnosis of USH1 (26 patients) or USH2 (62 patients) were retrospectively evaluated. Of these, 48 patients had 2 disease-causing mutations in MYO7A (10 USH1 patients), USH2A (33 USH2 patients), and other USH (5 patients) genes. Clinical investigation included best-corrected visual acuity, Goldmann visual field, fundus photography, electroretinography, and audiologic and vestibular assessments. Longitudinal analysis was performed over a median follow-up time of 3.5 years. RESULTS Patients carrying mutations in MYO7A had a younger age of onset of hearing and visual impairments than those carrying mutations in USH2A, leading to an earlier diagnosis of the disease in the former patients. Longitudinal analysis showed that visual acuity and visual field decreased more rapidly in subjects carrying MYO7A mutations than in those carrying USH2A mutations (mean annual exponential rates of decline of 3.92 vs. 3.44% and of 8.52 vs. 4.97%, respectively), and the former patients reached legal blindness on average 15 years earlier than the latter. CONCLUSION The current study confirmed a more severe progression of the retinal disease in USH1 patients rather than in USH2 patients. Furthermore, most visual symptoms (i.e., night blindness, visual acuity worsening) occurred at an earlier age in USH1 patients carrying mutations in MYO7A.
Collapse
|
32
|
Cheng L, Yu H, Jiang Y, He J, Pu S, Li X, Zhang L. Identification of a novel MYO7A mutation in Usher syndrome type 1. Oncotarget 2017; 9:2295-2303. [PMID: 29416772 PMCID: PMC5788640 DOI: 10.18632/oncotarget.23408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.
Collapse
Affiliation(s)
- Ling Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China.,Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Hongsong Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China.,Department of Immunology, Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Guizhou, P. R. China
| | - Yan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Juan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Sisi Pu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Xin Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Li Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| |
Collapse
|
33
|
Niepokój K, Rygiel AM, Jurczak P, Kujko AA, Śniegórska D, Sawicka J, Grabarczyk A, Bal J, Wertheim-Tysarowska K. Hearing impairment caused by mutations in two different genes responsible for nonsyndromic and syndromic hearing loss within a single family. J Appl Genet 2017; 59:67-72. [PMID: 29151245 DOI: 10.1007/s13353-017-0416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 11/29/2022]
Abstract
Usher syndrome is rare genetic disorder impairing two human senses, hearing and vision, with the characteristic late onset of vision loss. This syndrome is divided into three types. In all cases, the vision loss is postlingual, while loss of hearing is usually prelingual. The vestibular functions may also be disturbed in Usher type 1 and sometimes in type 3. Vestibular areflexia is helpful in making a proper diagnosis of the syndrome, but, often, the syndrome is misdiagnosed as a nonsyndromic hearing loss. Here, we present a Polish family with hearing loss, which was clinically classified as nonsyndromic. After excluding mutations in the DFNB1 locus, we implemented the next-generation sequencing method and revealed that hearing loss was syndromic and mutations in the USH2A gene indicate Usher syndrome. This research highlights the importance of molecular analysis in establishing a clinical diagnosis of congenital hearing loss.
Collapse
Affiliation(s)
- Katarzyna Niepokój
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland.
| | - Agnieszka M Rygiel
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Piotr Jurczak
- Center of Diagnosis, Treatment and Rehabilitation of Hearing, Voice and Speech Disorders, John Paul II Podkarpacie Province Hospital, Korczyńska Street, 38-400, Krosno, Poland
| | - Aleksandra A Kujko
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Dominika Śniegórska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Justyna Sawicka
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Alicja Grabarczyk
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Jerzy Bal
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | | |
Collapse
|
34
|
Xia H, Hu P, Yuan L, Xiong W, Xu H, Yi J, Yang Z, Deng X, Guo Y, Deng H. A homozygous MYO7A mutation associated to Usher syndrome and unilateral auditory neuropathy spectrum disorder. Mol Med Rep 2017; 16:4241-4246. [PMID: 28731162 DOI: 10.3892/mmr.2017.7053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/31/2017] [Indexed: 11/06/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive visual loss and night blindness due to retinitis pigmentosa (RP), with or without vestibular dysfunction. The purpose of this study was to detect the causative gene in a consanguineous Chinese family with USH. A c.3696_3706del (p.R1232Sfs*72) variant in the myosin VIIa gene (MYO7A) was identified in the homozygous state by exome sequencing. The co‑segregation of the MYO7A c.3696_3706del variant with the phenotype of deafness and progressive visual loss in the USH family was confirmed by Sanger sequencing. The variant was absent in 200 healthy controls. Therefore, the c.3696_3706del variant may disrupt the interaction between myosin VIIa and other USH1 proteins, and impair melanosome transport in retinal pigment epithelial cells. Notably, bilateral auditory brainstem responses were absent in two patients of the USH family, while distortion product otoacoustic emissions were elicited in the right ears of the two patients, consistent with clinical diagnosis of unilateral auditory neuropathy spectrum disorder. These data suggested that the homozygous c.3696_3706del variant in the MYO7A gene may be the disease‑causing mutation for the disorder in this family. These findings broaden the phenotype spectrum of the MYO7A gene, and may facilitate understanding of the molecular pathogenesis of the disease, and genetic counseling for the family.
Collapse
Affiliation(s)
- Hong Xia
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Pengzhi Hu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hongbo Xu
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Junhui Yi
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhijian Yang
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiong Deng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Guo
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Deng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
35
|
Testa F, Melillo P, Rossi S, Marcelli V, de Benedictis A, Colucci R, Gallo B, Brunetti-Pierri R, Donati S, Azzolini C, Marciano E, Simonelli F. Prevalence of macular abnormalities assessed by optical coherence tomography in patients with Usher syndrome. Ophthalmic Genet 2017; 39:17-21. [DOI: 10.1080/13816810.2017.1329445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Marcelli
- Audiology Unit, Department of Neuroscience, Reproductive and Odontostomatologic Science, University of Naples Federico II, Naples, Italy
| | - Antonella de Benedictis
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaella Colucci
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Beatrice Gallo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Simone Donati
- Department of Surgical and Morphological Sciences, University of Insunbria, Varese, Italy
| | - Claudio Azzolini
- Department of Surgical and Morphological Sciences, University of Insunbria, Varese, Italy
| | - Elio Marciano
- Audiology Unit, Department of Neuroscience, Reproductive and Odontostomatologic Science, University of Naples Federico II, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
36
|
Dean G, Orford A, Staines R, McGee A, Smith KJ. Psychosocial well-being and health-related quality of life in a UK population with Usher syndrome. BMJ Open 2017; 7:e013261. [PMID: 28082366 PMCID: PMC5253575 DOI: 10.1136/bmjopen-2016-013261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To determine whether psychosocial well-being is associated with the health-related quality of life (HRQOL) of people with Usher syndrome. SETTING The survey was advertised online and through deafblind-related charities, support groups and social groups throughout the UK. PARTICIPANTS 90 people with Usher syndrome took part in the survey. Inclusion criteria are having a diagnosis of Usher syndrome, being 18 or older and being a UK resident. PRIMARY AND SECONDARY OUTCOME MEASURES All participants took part in a survey that measured depressive symptoms, loneliness and social support (predictors) and their physical and mental HRQOL (outcomes). Measured confounders included age-related, sex-related and health-related characteristics. Hierarchical multiple linear regression analyses examined the association of each psychosocial well-being predictor with the physical and mental HRQOL outcomes while controlling for confounders in a stepwise manner. RESULTS After adjusting for all confounders, psychosocial well-being was shown to predict physical and mental HRQOL in our population with Usher syndrome. Increasing depressive symptoms were predictive of poorer physical (β=-0.36, p<0.01) and mental (β=-0.60, p<0.001) HRQOL. Higher levels of loneliness predicted poorer mental HRQOL (β=-0.20, p<0.05). Finally, increasing levels of social support predicted better mental HRQOL (β=0.19, p<0.05). CONCLUSIONS Depression, loneliness and social support all represent important issues that are linked with HRQOL in a UK population with Usher syndrome. Our results add to the growing body of evidence that psychosocial well-being is an important factor to consider in people with Usher syndrome alongside functional and physical impairment within research and clinical practice.
Collapse
Affiliation(s)
- Gavin Dean
- Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Amy Orford
- Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | | | | | - Kimberley J Smith
- Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Ageing Studies Research Group, Institute of Health, Environment and Societies. Brunel University London, Uxbridge, Middlesex, UK
| |
Collapse
|
37
|
Qu C, Liang F, Long Q, Zhao M, Shang H, Fan L, Wang L, Foster J, Yan D, Liu X. Genetic screening revealed usher syndrome in a paediatric Chinese patient. HEARING BALANCE AND COMMUNICATION 2017; 15:98-106. [PMID: 30800556 DOI: 10.1080/21695717.2017.1321217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Introduction Usher syndrome is the most common cause of hereditary deaf-blindness. Three clinical subtypes have been classified. Usher syndrome type I is the most severe subtype characterized by congenital severe-to-profound hearing loss, retinitis pigmentosa and vestibular dysfunction. Methods One family was analyzed and the analysis included the combination of a custom capture/next-generation sequencing panel of 180 known deafness gene, Sanger sequencing and bioinformatics approaches. Results Compound heterozygous mutations in the MYO7A gene: a known missense mutation c.494C>T (p.Thr165Met) and a novel missense mutation c.6113G>A (p.Gly2038Glu) were identified in a proband. This Chinese hearing-impaired child was misdiagnosed as non-syndromic hearing loss which was later changed to the diagnosis of Usher syndrome type I after comprehensive audiometric, vestibular and ophthalmological examinations at 9 years old. Conclusions Due to the features of genetic heterogeneity and variation in clinical manifestation, molecular diagnosis and ophthalmological examinations by skilled ophthalmologists with knowledge of Usher syndrome should be suggested as a routine assessment which may improve the accuracy and reliability of etiological diagnosis for hearing loss.
Collapse
Affiliation(s)
- Chunyan Qu
- China Rehabilitation and Research Center for Deaf Children, Beijing 100029, China
| | - Fenghe Liang
- Department of Otolaryngology-Head and Neck Surgery, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Min Zhao
- China Rehabilitation and Research Center for Deaf Children, Beijing 100029, China
| | - Haiqiong Shang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Lynn Fan
- BSc, University of Miami, Miami, FL 33136, USA
| | - Li Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Joseph Foster
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xuezhong Liu
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Fu Q, Xu M, Chen X, Sheng X, Yuan Z, Liu Y, Li H, Sun Z, Li H, Yang L, Wang K, Zhang F, Li Y, Zhao C, Sui R, Chen R. CEP78 is mutated in a distinct type of Usher syndrome. J Med Genet 2016; 54:190-195. [PMID: 27627988 DOI: 10.1136/jmedgenet-2016-104166] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Usher syndrome is a genetically heterogeneous disorder featured by combined visual impairment and hearing loss. Despite a dozen of genes involved in Usher syndrome having been identified, the genetic basis remains unknown in 20-30% of patients. In this study, we aimed to identify the novel disease-causing gene of a distinct subtype of Usher syndrome. METHODS Ophthalmic examinations and hearing tests were performed on patients with Usher syndrome in two consanguineous families. Target capture sequencing was initially performed to screen causative mutations in known retinal disease-causing loci. Whole exome sequencing (WES) and whole genome sequencing (WGS) were applied for identifying novel disease-causing genes. RT-PCR and Sanger sequencing were performed to evaluate the splicing-altering effect of identified CEP78 variants. RESULTS Patients from the two independent families show a mild Usher syndrome phenotype featured by juvenile or adult-onset cone-rod dystrophy and sensorineural hearing loss. WES and WGS identified two homozygous rare variants that affect mRNA splicing of a ciliary gene CEP78. RT-PCR confirmed that the two variants indeed lead to abnormal splicing, resulting in premature stop of protein translation due to frameshift. CONCLUSIONS Our results provide evidence that CEP78 is a novel disease-causing gene for Usher syndrome, demonstrating an additional link between ciliopathy and Usher protein network in photoreceptor cells and inner ear hair cells.
Collapse
Affiliation(s)
- Qing Fu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.,Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xunlun Sheng
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Zhisheng Yuan
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Yani Liu
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Huiping Li
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Fangxia Zhang
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Abdi S, Bahloul A, Behlouli A, Hardelin JP, Makrelouf M, Boudjelida K, Louha M, Cheknene A, Belouni R, Rous Y, Merad Z, Selmane D, Hasbelaoui M, Bonnet C, Zenati A, Petit C. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome. PLoS One 2016; 11:e0161893. [PMID: 27583663 PMCID: PMC5008642 DOI: 10.1371/journal.pone.0161893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.
Collapse
Affiliation(s)
- Samia Abdi
- Laboratoire de biochimie génétique, Service de biologie - CHU de Bab El Oued, Université d'Alger 1, 16 Alger, Algérie
- Laboratoire central de biologie, CHU Frantz Fanon, 09 Blida, Algérie
- Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie
| | - Amel Bahloul
- Unité de génétique et physiologie de l’audition, INSERM UMRS1120, Institut Pasteur, 75015, Paris, France
| | - Asma Behlouli
- Laboratoire de biochimie génétique, Service de biologie - CHU de Bab El Oued, Université d'Alger 1, 16 Alger, Algérie
- Faculté des sciences biologiques, Université des sciences et de la technologie Houari Boumédiène, 16 Alger, Algérie
| | - Jean-Pierre Hardelin
- Unité de génétique et physiologie de l’audition, INSERM UMRS1120, Institut Pasteur, 75015, Paris, France
| | - Mohamed Makrelouf
- Laboratoire de biochimie génétique, Service de biologie - CHU de Bab El Oued, Université d'Alger 1, 16 Alger, Algérie
| | - Kamel Boudjelida
- Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie
- Service d’ophtalmologie, CHU Frantz Fanon, 09 Blida, Algérie
| | - Malek Louha
- Service de biochimie et de biologie moléculaire, Hôpital Armand Trousseau, APHP, 75012, Paris, France
| | - Ahmed Cheknene
- Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie
- Service d’ORL, CHU Frantz Fanon, 09 Blida, Algérie
| | - Rachid Belouni
- Laboratoire central de biologie, CHU Frantz Fanon, 09 Blida, Algérie
- Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie
| | - Yahia Rous
- Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie
- Service d’ORL, CHU Frantz Fanon, 09 Blida, Algérie
| | - Zahida Merad
- Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie
- Service d’ophtalmologie, CHU Frantz Fanon, 09 Blida, Algérie
| | | | | | - Crystel Bonnet
- INSERM UMRS 1120, Institut de la vision, Université Pierre et Marie Curie, 75005, Paris, France
| | - Akila Zenati
- Laboratoire de biochimie génétique, Service de biologie - CHU de Bab El Oued, Université d'Alger 1, 16 Alger, Algérie
| | - Christine Petit
- Unité de génétique et physiologie de l’audition, INSERM UMRS1120, Institut Pasteur, 75015, Paris, France
- INSERM UMRS 1120, Institut de la vision, Université Pierre et Marie Curie, 75005, Paris, France
- Collège de France, 75005, Paris, France
- * E-mail:
| |
Collapse
|
40
|
Dad S, Rendtorff ND, Tranebjærg L, Grønskov K, Karstensen HG, Brox V, Nilssen Ø, Roux AF, Rosenberg T, Jensen H, Møller LB. Usher syndrome in Denmark: mutation spectrum and some clinical observations. Mol Genet Genomic Med 2016; 4:527-539. [PMID: 27957503 PMCID: PMC5023938 DOI: 10.1002/mgg3.228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Usher syndrome (USH) is a genetically heterogeneous deafness‐blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Methods Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Results Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C,USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Conclusion Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A. The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.
Collapse
Affiliation(s)
- Shzeena Dad
- Applied Human Genetics Kennedy Center Department of Clinical Genetics Copenhagen University Rigshospitalet Glostrup Denmark
| | - Nanna Dahl Rendtorff
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Otorhinolaryngology, Head & Neck Surgery and AudiologyBispebjerg Hospital/RigshospitaletCopenhagenDenmark
| | - Lisbeth Tranebjærg
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Otorhinolaryngology, Head & Neck Surgery and AudiologyBispebjerg Hospital/RigshospitaletCopenhagenDenmark
| | - Karen Grønskov
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark
| | - Helena Gásdal Karstensen
- Department of Cellular and Molecular Medicine The Faculty of Health Sciences University of Copenhagen 2200 Copenhagen Denmark
| | - Vigdis Brox
- Department of Medical Genetics University Hospital of North-Norway N-9038 Tromsø Norway
| | - Øivind Nilssen
- Department of Medical GeneticsUniversity Hospital of North-NorwayN-9038TromsøNorway; Department of Clinical Medicine, Medical GeneticsUniversity of TromsøNO-9037TromsøNorway
| | - Anne-Françoise Roux
- Laboratoire de Génétique MoléculaireCHU MontpellierMontpellierF-34000France; U827InsermMontpellierF-34000France
| | - Thomas Rosenberg
- The National Eye ClinicThe Kennedy CenterDepartment of OphthalmologyCopenhagen University Hospital2600RigshospitaletGlostrupDenmark; Institute of Clinical MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200Copenhagen NDenmark
| | - Hanne Jensen
- The National Eye Clinic The Kennedy Center Department of Ophthalmology Copenhagen University Hospital 2600 Rigshospitalet Glostrup Denmark
| | - Lisbeth Birk Møller
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Science Systems and Models (NSM)Roskilde UniversityDK 4000RoskildeDenmark
| |
Collapse
|
41
|
Yoshimura H, Miyagawa M, Kumakawa K, Nishio SY, Usami SI. Frequency of Usher syndrome type 1 in deaf children by massively parallel DNA sequencing. J Hum Genet 2016; 61:419-22. [PMID: 26791358 PMCID: PMC4893503 DOI: 10.1038/jhg.2015.168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 01/18/2023]
Abstract
Usher syndrome type 1 (USH1) is the most severe of the three USH subtypes due to its profound hearing loss, absent vestibular response and retinitis pigmentosa appearing at a prepubescent age. Six causative genes have been identified for USH1, making early diagnosis and therapy possible through DNA testing. Targeted exon sequencing of selected genes using massively parallel DNA sequencing (MPS) technology enables clinicians to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using MPS along with direct sequence analysis, we screened 227 unrelated non-syndromic deaf children and detected recessive mutations in USH1 causative genes in five patients (2.2%): three patients harbored MYO7A mutations and one each carried CDH23 or PCDH15 mutations. As indicated by an earlier genotype–phenotype correlation study of the CDH23 and PCDH15 genes, we considered the latter two patients to have USH1. Based on clinical findings, it was also highly likely that one patient with MYO7A mutations possessed USH1 due to a late onset age of walking. This first report describing the frequency (1.3–2.2%) of USH1 among non-syndromic deaf children highlights the importance of comprehensive genetic testing for early disease diagnosis.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Hearing Implant Science, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kozo Kumakawa
- Department of Otolaryngology, Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Hearing Implant Science, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
42
|
Abstract
Hearing loss (HL) is one of the most common birth defects in developed countries and is a diverse pathologic condition with different classifications. One of these is based on the association with other clinical features, defined as syndromic hearing loss (SHL). Determining the cause of the HL in these patients is extremely beneficial as it enables a personalized approach to caring for the individual. Early screening can further aid in optimal rehabilitation for a child's development and growth. The advancement of high-throughput sequencing technology is facilitating rapid and low-cost diagnostics for patients with SHL.
Collapse
Affiliation(s)
- Tal Koffler
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
43
|
West SK, Hindocha M, Hogg CR, Holder GE, Moore AT, Reddy MA. Electroretinogram assessment of children with sensorineural hearing loss: implications for screening. J AAPOS 2015; 19:450-4. [PMID: 26486028 DOI: 10.1016/j.jaapos.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/26/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND The guidelines of the National Deaf Children's Society recommend that children with sensorineural hearing loss (SNHL) be routinely screened for ophthalmological problems and suggest electroretinography (ERG) to exclude Usher syndrome. The present study reports the nature and prevalence of abnormal ERG findings in a cohort of children with SNHL undergoing ERG with the aim of identifying risk factors for the diagnosis of Usher syndrome. METHODS The medical records of children (<18 years of age) with SNHL referred for ERG at Moorfields Eye Hospital, London, between January 2009 and December 2011 were retrospectively reviewed. Patients were included if they had been referred with SNHL by an audiological medicine consultant and the primary indication for electrodiagnostic testing was possible Usher syndrome. RESULTS A total of 84 cases met inclusion criteria of which 13 (15%) had ERG findings showing rod-cone dysfunction consistent with a diagnosis of Usher syndrome. Two patients with retinal pigmentary changes had normal ERGs and were diagnosed with rubella retinopathy based on the clinical findings. Risk factor analysis showed that age of ≥8 years at the time of ERG, sex, and bilateral hearing loss were not predictive of a diagnosis of Usher syndrome. However, the presence of or referral for cochlear implants, having relevant symptoms and/or clinical signs consistent with a retinal dystrophy, and profound hearing loss were all highly predictive. CONCLUSIONS ERG is a useful diagnostic tool in children with SNHL and should be performed in children with SNHL who have cochlear implants and/or have signs or symptoms of retinal dystrophy. A focused approach could have potential cost-saving benefit.
Collapse
Affiliation(s)
| | - Maya Hindocha
- Department of Ophthalmology, Royal London Hospital, Barts NHS Health Trust, London, United Kingdom
| | | | - Graham E Holder
- Moorfields Eye Hospital, London, United Kingdom; Inherited Eye Diseases, UCL, Institute of Ophthalmology, London, United Kingdom
| | - Anthony T Moore
- Moorfields Eye Hospital, London, United Kingdom; Inherited Eye Diseases, UCL, Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of California, San Francisco, California
| | - M Ashwin Reddy
- Department of Ophthalmology, Royal London Hospital, Barts NHS Health Trust, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
44
|
Domanico D, Fragiotta S, Cutini A, Grenga PL, Vingolo EM. Psychosis, Mood and Behavioral Disorders in Usher Syndrome: Review of the Literature. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2015; 4:50-5. [PMID: 26060830 PMCID: PMC4458326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this review is to focus the current knowledge about mental and behavioral disorders in Usher syndrome. Previous studies described the presence of various mental disorders associated with Usher syndrome, suggesting possible mechanisms of association between these disorders. The most common manifestations are schizophrenia-like disorder and psychotic symptoms. Mood and behavioral disorders are rarely described, and often are associated with more complex cases in co-occurrence with other psychiatric disorders. Neuroimaging studies reported diffuse involvement of central nervous system (CNS) in Usher patients, suggesting a possible role of CNS damage in the pathogenesis of psychiatric manifestations. Genetic hypothesis and stress-related theories have also been proposed.
Collapse
|
45
|
Bujakowska KM, Consugar M, Place E, Harper S, Lena J, Taub DG, White J, Navarro-Gomez D, Weigel DiFranco C, Farkas MH, Gai X, Berson EL, Pierce EA. Targeted exon sequencing in Usher syndrome type I. Invest Ophthalmol Vis Sci 2014; 55:8488-96. [PMID: 25468891 PMCID: PMC4280089 DOI: 10.1167/iovs.14-15169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/16/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. METHODS The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. RESULTS With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. CONCLUSIONS We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study.
Collapse
Affiliation(s)
- Kinga M. Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Mark Consugar
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Emily Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Shyana Harper
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Jaclyn Lena
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Daniel G. Taub
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Joseph White
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Daniel Navarro-Gomez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Carol Weigel DiFranco
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Michael H. Farkas
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaowu Gai
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Eliot L. Berson
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Eric A. Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| |
Collapse
|
46
|
Lemos Reis RF, Moreira-Gonçalves N, Estrela Silva SE, Brandão EM, Falcão-Reis FM. Comparison of topical dorzolamide and ketorolac treatment for cystoid macular edema in retinitis pigmentosa and Usher's syndrome. Ophthalmologica 2014; 233:43-50. [PMID: 25428176 DOI: 10.1159/000368052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the topical effect of dorzolamide versus ketorolac on retinitis pigmentosa (RP) and Usher's syndrome (US) macular edema. METHODS Prospective, randomized and interventional study. A total of 28 eyes of 18 patients were included. Five eyes had US, 23 had RP. Fifteen eyes were allocated to ketorolac tromethamine 0.5% (4 drops daily regimen) and 13 eyes to dorzolamide hydrochloride 2% (3 drops daily regimen) treatment groups. Snellen's best-corrected visual acuity (BCVA), foveal thickness (FT) and foveal zone thickness (FZT) measured by Stratus® optical coherence tomography (OCT) were evaluated at baseline, 1, 3, 6 and 12 months after treatment. RESULTS Patients assigned to ketorolac had a baseline BCVA of 0.37 ± 0.17 logMAR which improved at the end of 1 year to 0.28 ± 0.16 (p = 0.02). Three eyes (20%) of 2 patients improved by 7 letters or more. Mean FT and FZT did not change significantly during the study follow-up. After 1 year of treatment, 4 eyes (27%) of 3 patients showed an improvement of at least 16% of FT and 11% of FZT. Patients assigned to dorzolamide had a baseline BCVA of 0.48 ± 0.34 logMAR which improved in the first 6 months (0.40 ± 0.30; p = 0.01), with a decrease at 1 year (0.42 ± 0.27; p = 0.20). Seven eyes (54%) of 5 patients had an improvement of 7 letters or more. Mean FT and FZT did not change significantly either. After 1 year of treatment, 3 eyes (23%) of 2 patients showed an improvement of at least 16% on FT and 11% on FZT. CONCLUSIONS RESULTS suggest that dorzolamide and ketorolac might improve visual acuity and therefore be of interest in selected cases. No relationship between retinal thickness fluctuation and visual acuity was found. Sample size was a limitation to the study.
Collapse
|
47
|
Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2. PLoS One 2014; 9:e97808. [PMID: 24831256 PMCID: PMC4022727 DOI: 10.1371/journal.pone.0097808] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.
Collapse
|
48
|
The retinal phenotype of Usher syndrome: pathophysiological insights from animal models. C R Biol 2014; 337:167-77. [PMID: 24702843 DOI: 10.1016/j.crvi.2013.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 01/26/2023]
Abstract
The Usher syndrome (USH) is the most prevalent cause of inherited deaf-blindness. Three clinical subtypes, USH1-3, have been defined, and ten USH genes identified. The hearing impairment due to USH gene defects has been shown to result from improper organisation of the hair bundle, the sound receptive structure of sensory hair cells. In contrast, the cellular basis of the visual defect is less well understood as this phenotype is absent in almost all the USH mouse models that faithfully mimic the human hearing impairment. Structural and molecular interspecies discrepancies regarding photoreceptor calyceal processes and the association with the distribution of USH1 proteins have recently been unravelled, and have led to the conclusion that a defect in the USH1 protein complex-mediated connection between the photoreceptor outer segment and the surrounding calyceal processes (in both rods and cones), and the inner segment (in rods only), probably causes the USH1 retinal dystrophy in humans.
Collapse
|
49
|
Vincent C, Routhier F, Martel V, Mottard MÈ, Dumont F, Côté L, Cloutier D. Field testing of two electronic mobility aid devices for persons who are deaf-blind. Disabil Rehabil Assist Technol 2013; 9:414-20. [DOI: 10.3109/17483107.2013.825929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Claude Vincent
- Department of Rehabilitation, Université Laval , Québec , Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Salvatore S, Fishman GA, Genead MA. Treatment of cystic macular lesions in hereditary retinal dystrophies. Surv Ophthalmol 2013; 58:560-84. [DOI: 10.1016/j.survophthal.2012.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
|