1
|
Titisari N, Fauzi A, Abdul Razak IS, Mohd Noor MH, Samsulrizal N, Ahmad H. Dietary menhaden fish oil supplementation suppresses lipopolysaccharide-induced neuroinflammation and cognitive impairment in diabetic rats. PHARMACEUTICAL BIOLOGY 2024; 62:447-455. [PMID: 38753370 PMCID: PMC11100436 DOI: 10.1080/13880209.2024.2351933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Menhaden fish oil (FO) is widely recognized for inhibiting neuroinflammatory responses and preserving brain function. Nevertheless, the mechanisms of FO influencing brain cognitive function in diabetic states remain unclear. OBJECTIVE This study examines the potential role of FO in suppressing LPS-induced neuroinflammation and cognitive impairment in diabetic animals (DA). MATERIALS AND METHODS Thirty male Wistar rats were divided into 5 groups: i) DA received LPS induction (DA-LPS); ii) DA received LPS induction and 1 g/kg FO (DA-LPS-1FO); iii) DA received LPS induction and 3 g/kg FO (DA-LPS-3FO); iv) animals received normal saline and 3 g/kg FO (NS-3FO) and v) control animals received normal saline (CTRL). Y-maze test was used to measure cognitive performance, while brain samples were collected for inflammatory markers and morphological analysis. RESULTS DA received LPS induction, and 1 or 3 g/kg FO significantly inhibited hyperglycaemia and brain inflammation, as evidenced by lowered levels of pro-inflammatory mediators. Additionally, both DA-LPS-1FO and DA-LPS-3FO groups exhibited a notable reduction in neuronal damage and glial cell migration compared to the other groups. These results were correlated with the increasing number of entries and time spent in the novel arm of the Y-maze test. DISCUSSION AND CONCLUSION This study indicates that supplementation of menhaden FO inhibits the LPS signaling pathway and protects against neuroinflammation, consequently maintaining cognitive performance in diabetic animals. Thus, the current study suggested that fish oil may be effective as a supporting therapy option for diabetes to avoid diabetes-cognitive impairment.
Collapse
Affiliation(s)
- Nurina Titisari
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Universitas Brawijaya, East Java, Indonesia
| | - Ahmad Fauzi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, East Java, Indonesia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
2
|
Qian F, Guo Y, Li C, Liu Y, Luttmann-Gibson H, Gomelskaya N, Demler OV, Cook NR, Lee IM, Buring JE, Larsen J, Boring J, McPhaul MJ, Manson JE, Pradhan AD, Mora S. Biomarkers of glucose-insulin homeostasis and incident type 2 diabetes and cardiovascular disease: results from the Vitamin D and Omega-3 trial. Cardiovasc Diabetol 2024; 23:393. [PMID: 39488682 PMCID: PMC11531120 DOI: 10.1186/s12933-024-02470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Dysglycemia and insulin resistance increase type 2 diabetes (T2D) and cardiovascular disease (CVD) risk, yet associations with specific glucose-insulin homeostatic biomarkers have been inconsistent. Vitamin D and marine omega-3 fatty acids (n-3 FA) may improve insulin resistance. We sought to examine the association between baseline levels of insulin, C-peptide, HbA1c, and a novel insulin resistance score (IRS) with incident cardiometabolic diseases, and whether randomized vitamin D or n-3 FA modify these associations. METHODS VITamin D and OmegA-3 TriaL (NCT01169259) was a randomized clinical trial testing vitamin D and n-3 FA for the prevention of CVD and cancer over a median of 5.3 years. Incident cases of T2D and CVD (including cardiovascular death, myocardial infarction, stroke, and coronary revascularization) were matched 1:1 on age, sex, and fasting status to controls. Conditional logistic regressions adjusted for demographic, clinical, and adiposity-related factors were used to assess the adjusted odds ratio (aOR) per-standard deviation (SD) and 95%CI of baseline insulin, C-peptide, HbA1c, and IRS (Insulin×0.0295 + C-peptide×0.00372) with risk of T2D, CVD, and coronary heart disease (CHD). RESULTS We identified 218 T2D case-control pairs and 715 CVD case-control pairs including 423 with incident CHD. Each of the four biomarkers at baseline was separately associated with incident T2D, aOR (95%CI) per SD increment: insulin 1.46 (1.03, 2.06), C-peptide 2.04 (1.35, 3.09), IRS 1.72 (1.28, 2.31) and HbA1c 7.00 (3.76, 13.02), though only HbA1c remained statistically significant with mutual adjustments. For cardiovascular diseases, we only observed significant associations of HbA1c with CVD (1.19 [1.02, 1.39]), and IRS with CHD (1.25 [1.04, 1.50]), which persisted after mutual adjustment. Randomization to vitamin D and/or n-3 FA did not modify the association of these biomarkers with the endpoints. CONCLUSIONS Each of insulin, C-peptide, IRS, and HbA1c were associated with incident T2D with the strongest association noted for HbA1c. While HbA1c was significantly associated with CVD risk, a novel IRS appears to be associated with CHD risk. Neither vitamin D nor n-3 FA modified the associations between these biomarkers and cardiometabolic outcomes.
Collapse
Affiliation(s)
- Frank Qian
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Section of Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Yanjun Guo
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunying Li
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanyan Liu
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heike Luttmann-Gibson
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Natalya Gomelskaya
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga V Demler
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy R Cook
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - I-Min Lee
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Julie E Buring
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Julia Larsen
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Jennifer Boring
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | | | - JoAnn E Manson
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aruna D Pradhan
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Bristol Myers Squibb, Cambridge, MA, USA
| | - Samia Mora
- Division of Preventive Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Divisions of Preventive and Cardiovascular Medicine, Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Zhuang P, Wang F, Yao J, Liu X, Li Y, Ao Y, Ye H, Wan X, Zhang Y, Jiao J. Unhealthy plant-based diet is associated with a higher cardiovascular disease risk in patients with prediabetes and diabetes: a large-scale population-based study. BMC Med 2024; 22:485. [PMID: 39443972 PMCID: PMC11515529 DOI: 10.1186/s12916-024-03683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The role of plant-based dietary patterns in preventing cardiovascular disease (CVD) among individuals with prediabetes and diabetes remains unclear. We aimed to evaluate the associations of plant-based diet index (PDI), healthful PDI (hPDI), and unhealthful PDI (uPDI) with cardiovascular disease (CVD) risk and explore potential contributing factors among people with prediabetes and diabetes. METHODS A total of 17,926 participants with prediabetes and 7798 with diabetes were enrolled from the UK Biobank between 2006 and 2010 and followed until the end of 2020. We calculated the PDI, hPDI, and uPDI based on 18 major food groups including plant-based foods and animal-based foods and applied Cox proportional hazard models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for CVD risk related to PDI, hPDI, and uPDI. Decomposition analysis was performed to assess the role of dietary components, and mediation analysis was performed to assess the potential mediating role of serum biomarkers underlying these associations. RESULTS A total of 2324 CVD events were documented among individuals with prediabetes, while 1461 events occurred among patients with diabetes. An inverse association was found between hPDI and CVD risk among individuals with prediabetes (HR T3 vs. T1 = 0.88, 95% CI = 0.79-0.98, Ptrend = 0.025) but not those with diabetes. A positive association was found between uPDI and CVD risk among individuals with prediabetes (HR T3 vs. T1 = 1.17, 95% CI = 1.05-1.30, Ptrend = 0.005) and those with diabetes (HR T3 vs. T1 = 1.14, 95% CI = 1.00-1.29, Ptrend = 0.043). High-sugar-sweetened beverages (SSB) intake accounted for 35% of the hPDI-CVD association and 15% of the uPDI-CVD association among individuals with prediabetes, whereas low intake of whole grain accounted for 36% of the association among patients with diabetes. Elevated cystatin C levels explained the largest proportion of the association between uPDI and CVD risk among individuals with prediabetes (15%, 95% CI = 7-30%) and diabetes (44%, 95% CI = 9-86%). CONCLUSIONS Adherence to an unhealthy plant-based diet is associated with a higher CVD risk in people with prediabetes or diabetes, which may be partially attributed to low consumption of whole grains, high intake of SSB, and high blood cystatin C levels.
Collapse
Affiliation(s)
- Pan Zhuang
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jianxin Yao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yin Li
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Hao Ye
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xuzhi Wan
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yu Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
4
|
Magara HJO, Hugel S, Fisher BL. Effect of Feed on the Growth Performance, Nutrition Content and Cost of Raising the Field Cricket ( Gryllus madagascarensis) as a Sustainable Nutrient Source in Madagascar. Foods 2024; 13:3139. [PMID: 39410175 PMCID: PMC11475400 DOI: 10.3390/foods13193139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field cricket, Gryllus madagascarensis, is a sustainable and nutritious food resource that has the potential to mitigate global malnutrition. Feeds provided to this cricket can influence its growth parameters, nutritional content, and the cost of raising it for food. The current study aimed to evaluate the effects of feeds formulated from weeds, agro-byproducts, and chicken feed (control) on the growth parameters and nutritional content of G. madagascarensis. The formulated feeds included CFB (25.0% protein), CFC (24.5% protein), CFD (24.0% protein), CFE (23.5% protein), CFF (22.5% protein), CFG (21.5% protein), CFH (20.0% protein), CFI (14.5% protein), and CFJ (13.5% protein), and chicken feed (CFA) (28% protein) was used as the control. The formulation of the feeds was based on the acceptability and protein content of the 12 selected weeds and agro-byproducts. Proximate, mineral, and fatty acid analyses were conducted to determine the nutrient content of each feed, as well as the crickets raised on these feeds. The fastest development time was recorded with CFE and CFC. The highest survivorship (98%) was observed in CFG, CFE, and CFC. The highest body mass (1.15 g) and body length (26.80 mm) were observed in crickets fed CFG. By comparison, crickets fed control feed averaged a body mass of 0.81 g and a body length of 23.55 mm. The feed conversion ratio for G. madagascarensis fed CFG, CFE, and CFC was 1.71. Crickets raised on CFH and CFG had the lowest cost of feeding per kg live mass gain. Crickets fed on CFF had the highest quantity of protein (67%), followed by those fed CFG (65% protein); crickets with the lowest protein content (50%) were fed CFJ. Crickets fed on CFG had the highest mineral content. Linoleic acid, oleic acid, and palmitic acid were the major fatty acids. The findings indicate that formulated feeds from weeds and agro-byproducts have great potential to be used as an alternative feed source for crickets for two reasons: their capacity to positively influence the biology and nutrition of the cricket, and they can serve as an inexpensive replacement for chicken feed.
Collapse
Affiliation(s)
- Henlay J. O. Magara
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
| | - Sylvain Hugel
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Brian L. Fisher
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
- Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|
5
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Schuchardt JP, Hahn A, Greupner T, Tintle NL, Westra J, Harris WS. Higher docosahexaenoic acid proportions in blood are inversely associated with the prevalence of prediabetes: Evidence from the UK Biobank. Nutr Res 2024; 131:62-70. [PMID: 39368287 DOI: 10.1016/j.nutres.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Prediabetes and type 2 diabetes mellitus are growing global health concerns, predisposing individuals to various vascular complications. Lifestyle modifications, including dietary interventions, offer promising avenues for prevention and management. Using a multivariable-adjusted model, we analyzed the cross-sectional associations between plasma proportions (% of total fatty acids) of omega-3 polyunsaturated fatty acids (n3 PUFA, including total n3 PUFA, docosahexaenoic acid [DHA], non-DHA n3 PUFA), and glycated hemoglobin A1c (HbA1c) as well as the prevalence of prediabetes in a sample from the UK Biobank cohort. Our hypothesis was that proportions of n3 PUFA, especially DHA, would by inversely associated with the prediabetes prevalence. The sample (n = 92,762; 54.5% females) had an average age of 56 years and was overweight (mean body mass index = 27). The mean plasma DHA proportion in the sample was 2.03% (standard deviation [SD] = 0.67%), non-DHA n3 PUFA was 2.41% (SD = 1.02%) and total n3 PUFA was 4.43% (SD = 1.56%). Prediabetic individuals were identified by blood HbA1c proportions between 5.7% and 6.4% (39-46 mmol/mol) according to American Diabetes Association criteria. Each of the three n3 PUFA biomarkers was inversely associated with HbA1c proportions. In particular, DHA showed the strongest inverse association, with an OR of 0.62 (95% confidence intervals: 0.58, 0.67; P < .001) when comparing quintiles 5 to 1 in a fully adjusted model. These findings suggest a potential protective role of n3 PUFA, particularly DHA, in mitigating the risk of having prediabetes. Further prospective investigations are needed to clarify whether long-chain n3 PUFA could function as modifiable factors for prediabetes.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany; The Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - Theresa Greupner
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - Nathan L Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Jason Westra
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
7
|
Chen H, Xiong R, Cheng J, Ye J, Qiu Y, Huang S, Li M, Liu Z, Pang J, Zhang X, Guo S, Li H, Zhu H. Effects and Mechanisms of Polyunsaturated Fatty Acids on Age-Related Musculoskeletal Diseases: Sarcopenia, Osteoporosis, and Osteoarthritis-A Narrative Review. Nutrients 2024; 16:3130. [PMID: 39339730 PMCID: PMC11434726 DOI: 10.3390/nu16183130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The process of the globally aging population has been accelerating, leading to an increasing social burden. As people age, the musculoskeletal system will gradually go through a series of degenerative and loss of function and eventually develop age-related musculoskeletal diseases, like sarcopenia, osteoporosis, and osteoarthritis. On the other hand, several studies have shown that polyunsaturated fatty acids (PUFAs) possess various important physiological functions on the health of muscles, bones, and joints. Objective: This narrative review paper provides a summary of the literature about the effects and mechanisms of PUFAs on age-related musculoskeletal diseases for the prevention and management of these diseases. Methods: Web of Science, PubMed, Science Direct, and Scopus databases have been searched to select the relevant literature on epidemiological, cellular, and animal experiments and clinical evidence in recent decades with keywords "polyunsaturated fatty acids", "PUFAs", "omega-3", "omega-6", "musculoskeletal diseases", "sarcopenia", "osteoporosis", "osteoarthritis", and so on. Results: PUFAs could prevent and treat age-related musculoskeletal diseases (sarcopenia, osteoporosis, and osteoarthritis) by reducing oxidative stress and inflammation and controlling the growth, differentiation, apoptosis, and autophagy of cells. This review paper provides comprehensive evidence of PUFAs on age-related musculoskeletal diseases, which will be helpful for exploitation into functional foods and drugs for their prevention and treatment. Conclusions: PUFAs could play an important role in the prevention and treatment of sarcopenia, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Haoqi Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jialu Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingzhen Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinzhu Pang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Guo
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Huabin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Chen H, Yang G, Chen L, Zhao Y, Yao P, Li Y, Tang Y, Li D. Dietary polyunsaturated fatty acids intake is negatively associated with hyperuricemia: The National Health and Nutrition Examination Survey 2003-2015. Nutr Metab Cardiovasc Dis 2024; 34:2203-2216. [PMID: 39003131 DOI: 10.1016/j.numecd.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND AIMS The objective of this research was to explore the associations between dietary PUFAs intake and hyperuricemia risk. METHODS AND RESULTS Based on the National Health and Nutrition Examination Survey (NHANES) 2003-2015, all eligible individuals were divided into hyperuricemia and non-hyperuricemia groups based on diagnostic criteria for hyperuricemia (serum uric acid >420 μmol/L for men and >360 μmol/L for women). Multivariate-adjusted logistic regression was employed to explore the relationship between dietary PUFAs intake and hyperuricemia risk. Total PUFAs and their subtypes were modeled to isocalorically replace saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). Higher intake of n-3 PUFAs, n-6 PUFAs, linoleic acid (LA), alpha-linoleic acid (ALA), and non-marine PUFAs intake correlated with decreased hyperuricemia risk, with adjusted odds ratio (OR) and 95% confidence interval (95%CIs) were 0.77 (0.63, 0.93), 0.75 (0.61, 0.92), 0.75 (0.61, 0.91), 0.69 (0.55, 0.87), and 0.73 (0.59, 0.91), respectively. Replacing 5% of total energy intake from SFAs with isocaloric PUFAs was associated with decreased odds of hyperuricemia in men (0.69 (0.57, 0.84)) and in individuals (0.81 (0.71, 0.92)). Similar trends were observed in the substitution of SFAs with non-marine PUFAs in men (0.87 (0.80, 0.94)) and in all individuals (0.92 (0.88, 0.98)). Sensitivity analyses exhibited consistent results with primary analyses. CONCLUSION Higher dietary intake of n-3 PUFAs, n-6 PUFAs, LA, ALA, and non-marine PUFAs was associated with decreased hyperuricemia risk. These results support the recommendation to substitute SFAs with PUFAs in diet.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Yang
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430030, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430030, China; State Environmental Protection Key Laboratory of Health Effects of Environmental Pollution, China; State Key Laboratory of Environment Health (Incubation), Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, Wuhan 430030, China
| | - Yanyan Li
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430030, China; State Environmental Protection Key Laboratory of Health Effects of Environmental Pollution, China; State Key Laboratory of Environment Health (Incubation), Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, Wuhan 430030, China.
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Lan Q, Li X, Fang J, Yu X, Wu ZE, Yang C, Jian H, Li F. Comprehensive biomarker analysis of metabolomics in different syndromes in traditional Chinese medical for prediabetes mellitus. Chin Med 2024; 19:114. [PMID: 39183283 PMCID: PMC11346218 DOI: 10.1186/s13020-024-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prediabetes mellitus (PreDM) is a high-risk state for developing type 2 diabetes mellitus (T2DM) and often goes undiagnosed, which is closely associated with obesity and characterized by insulin resistance that urgently needs to be treated. PURPOSE To obtain a better understanding of the biological processes associated with both "spleen-dampness" syndrome individuals and those with dysglycaemic control at its earliest stages, we performed a detailed metabolomic analysis of individuals with various early impairments in glycaemic control, the results can facilitate clinicians' decision making and benefit individuals at risk. METHODS According to the diagnostic criteria of TCM patterns and PreDM, patients were divided into 4 groups with 20 cases, patients with syndrome of spleen deficiency with dampness encumbrance and PreDM (PDMPXSK group), patients with syndrome of dampness-heat in the spleen and PreDM (PDMSRYP group), patients with syndrome of spleen deficiency with dampness encumbrance and normal blood glucose (NDMPXSK group), and patients with syndrome of dampness-heat in the spleen and normal blood glucose (NDMSRYP group). Plasma samples from patients were collected for clinical index assessment and untargeted metabolomics using liquid chromatography-mass spectrometry. RESULTS Among patients with the syndrome of spleen deficiency with dampness encumbrance (PXSK), those with PreDM (PDMPXSK group) had elevated levels of 2-hour post-load blood glucose (2-h PG), glycosylated hemoglobin (HbA1c), high-density lipoprotein cholesterol (HDL-C), and systolic blood pressure (SBP) than those in the normal blood glucose group (NDMPXSK group, P < 0.01). Among patients with the syndrome of dampness-heat in the spleen (SRYP), the levels of body mass index (BMI), fasting blood glucose (FBG), 2-h PG, HbA1c, and fasting insulin (FINS) were higher in the PreDM group (PDMSRYP group) than those in the normal blood glucose group (NDMSRYP group, P < 0.05). In both TCM syndromes, the plasma metabolomic profiles of PreDM patients were mainly discriminatory from the normal blood glucose controls of the same syndrome in the levels of lipid species, with the PXSK syndrome showing a more pronounced and broader spectrum of alterations than the SRYP syndrome. Changes associated with PreDM common to both syndromes included elevations in the levels of 27 metabolites which were mainly lipid species encompassing glycerophospholipids (GPs), diglycerides (DGs) and triglycerides (TGs), cholesterol and derivatives, and decreases in 5 metabolites consisting 1 DG, 1 TG, 2 N,N-dimethyl phosphatidylethanolamine (PE-NMe2) and iminoacetic acid. Correlation analysis identified significant positive correlations of 3α,7α,12α,25-Tetrahydroxy-5β-cholestane-24-one with more than one glycaemia-related indicators, whereas DG (20:4/20:5) and PC (20:3/14:0) were positively and PC (18:1/14:0) was inversely correlated with more than one lipid profile-related indicators. Based on the value of correlation coefficient, the top three correlative pairs were TG with PC (18:1/14:0) (r = - 0.528), TG with TG (14:0/22:4/22:5) (r = 0.521) and FINS with PE-NMe (15:0/22:4) (r = 0.52). CONCLUSION Our results revealed PreDM patients with different TCM syndromes were characterized by different clinical profiles. Common metabolite markers associated with PreDM shared by the two TCM syndromes were mainly lipid species encompassing GP, GL, cholesterol and derivatives. Our findings were in line with the current view that altered lipid metabolism is a conserved and early event of dysglycaemia. Our study also implied the possible involvement of perturbed bile acid homeostasis and dysregulated PE methylation during development of dysglycaemia.
Collapse
Affiliation(s)
- Qin Lan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- Outpatient Department, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xue Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianhe Fang
- Medical Ancient Literature Teaching and Research Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinyu Yu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhanxuan E Wu
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Caiyun Yang
- Endocrinology Department II, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Hui Jian
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Fei Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Wang S, Hu C, Lin H, Jia X, Hu R, Zheng R, Li M, Xu Y, Xu M, Zheng J, Zhao X, Li Y, Chen L, Zeng T, Ye Z, Shi L, Su Q, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Qin G, Wan Q, Chen G, Dai M, Zhang D, Qiu B, Zhu X, Liu R, Wang X, Tang X, Gao Z, Shen F, Gu X, Luo Z, Qin Y, Chen L, Hou X, Huo Y, Li Q, Wang G, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Zhao J, Mu Y, Xu G, Lai S, Li D, Ning G, Wang W, Bi Y, Lu J. Association of circulating long-chain free fatty acids and incident diabetes risk among normoglycemic Chinese adults: a prospective nested case-control study. Am J Clin Nutr 2024; 120:336-346. [PMID: 38729573 DOI: 10.1016/j.ajcnut.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Long-chain free fatty acids (FFAs) are associated with risk of incident diabetes. However, a comprehensive assessment of the associations in normoglycemic populations is lacking. OBJECTIVES Our study aimed to comprehensively investigate the prospective associations and patterns of FFA profiles with diabetes risk among normoglycemic Chinese adults. METHODS This is a prospective nested case-control study from the China Cardiometabolic Disease and Cancer Cohort (4C) study. We quantitatively measured 53 serum FFAs using a targeted metabolomics approach in 1707 incident diabetes subjects and 1707 propensity score-matched normoglycemic controls. Conditional logistic regression models were employed to estimate odds ratios (ORs) for associations. Least Absolute Shrinkage and Selection Operator (LASSO) penalty regression and quantile g-computation (qg-comp) analyses were implemented to estimate the association between multi-FFA exposures and incident diabetes. RESULTS The majority of odd-chain FFAs exhibited an inverse association with incident diabetes, wherein the ORs per SD increment of all 7 saturated fatty acids (SFAs), monounsaturated fatty acid (MUFA) 15:1, and polyunsaturated fatty acid (PUFA) 25:2 were ranging from 0.79 to 0.88 (95% CIs ranging between 0.71 and 0.97). Even-chain FFAs comprised 99.3% of total FFAs and displayed heterogeneity with incident diabetes. SFAs with 18-26 carbon atoms are inversely linked to incident diabetes, with ORs ranging from 0.81 to 0.86 (95% CIs ranging between 0.73 and 0.94). MUFAs 26:1 (OR: 0.85; 95% CI: 0.76, 0.94), PUFAs 20:4 (OR: 0.84; 95% CI: 0.75, 0.94), and 24:2 (OR: 0.87; 95% CI: 0.78, 0.97) demonstrated significant associations. In multi-FFA exposure model, 24 FFAs were significantly associated with incident diabetes, most of which were consistent with univariate results. The mixture OR was 0.78 (95% CI: 0.61, 0.99; P = 0.04159). Differential correlation network analysis revealed pre-existing perturbations in intraclass and interclass FFA coregulation before diabetes onset. CONCLUSIONS These findings underscore the variations in diabetes risk associated with FFAs across chain length and unsaturation degree, highlighting the importance of recognizing FFA subtypes in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanli Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zeng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lixin Shi
- Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Wan
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Chen
- Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Meng Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bihan Qiu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xulei Tang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhengnan Gao
- Dalian Municipal Central Hospital, Dalian, China
| | - Feixia Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejiang Gu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuojie Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Xinguo Hou
- Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Huo
- Jiangxi provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Qiang Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yinfei Zhang
- Central Hospital of Shanghai Jiading District, Shanghai, China
| | - Chao Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Youmin Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengli Wu
- Karamay Municipal People's Hospital, Xinjiang, China
| | - Tao Yang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huacong Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Zhao
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yiming Mu
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shenghan Lai
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MA, United States
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Abolo L, Ssenkaali J, Mulumba O, Awe OI. Exploring the causal effect of omega-3 polyunsaturated fatty acid levels on the risk of type 1 diabetes: a Mendelian randomization study. Front Genet 2024; 15:1353081. [PMID: 39040994 PMCID: PMC11260775 DOI: 10.3389/fgene.2024.1353081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
The burden of Type 1 diabetes (T1D) is vast and as of 2021, an estimated 8.4 million people were living with the disease worldwide. Predictably, this number could increase to 17.4 million people by 2040. Despite nearly a century of insulin therapy for the management of hyperglycemia in T1D, no therapies exist to treat its underlying etiopathology. Adequate dietary intake of omega-3 fatty acids (ω-3) has been reported in observational studies and Randomized Controlled Trials to be associated with reduced risk of developing T1D but results have been inconclusive. We conducted a Mendelian randomization (MR) study to explore the relationship between ω-3 intake and T1D. We performed a two-sample MR analysis using single nucleotide polymorphisms associated with ω-3 levels in a sample of 114,999 Europeans and their effects on T1D from a genome-wide association study meta-analysis of 24,840 European participants. A main MR analysis using the Inverse-variance weighted (IVW) method was conducted and validated using MR-Egger, Weighted median, and Weighted mode methods. Sensitivity analyses excluding potentially pleiotropic single nucleotide polymorphisms were also performed. Main MR analysis using the IVW method showed no evidence of a causal relationship between ω-3 levels and T1D risk (OR: 0.92, 95% CI: 0.56-1.51, p = 0.745). MR-Egger and Weighted mode methods showed similar results while Weighted median showed a marginally significant association (OR: 1.15, CI: 1.00-1.32, p = 0.048). Sensitivity analysis revealed heterogeneity in the main analysis MR estimates (IVW Q > 100, p < 0.0001) and no directional pleiotropy (Egger intercept: -0.032, p = 0.261). Our study found limited evidence of a causal association between ω-3 and T1D, with only a marginally significant association observed in one of the four MR methods. This challenges the proposition that ω-3-rich diets are of substantial benefit for the prevention and management of T1D.
Collapse
Affiliation(s)
- Lydia Abolo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
- Faculty of Medicine, Lira University, Lira, Uganda
| | - Joachim Ssenkaali
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
- Faculty of Medicine, Lira University, Lira, Uganda
| | - Onan Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Olaitan I. Awe
- Department of Computer Science, University of Ibadan, Ibadan, Oyo, Nigeria
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
12
|
Moon JS, Kang S, Choi JH, Lee KA, Moon JH, Chon S, Kim DJ, Kim HJ, Seo JA, Kim MK, Lim JH, Song YJ, Yang YS, Kim JH, Lee YB, Noh J, Hur KY, Park JS, Rhee SY, Kim HJ, Kim HM, Ko JH, Kim NH, Kim CH, Ahn J, Oh TJ, Kim SK, Kim J, Han E, Jin SM, Bae J, Jeon E, Kim JM, Kang SM, Park JH, Yun JS, Cha BS, Moon MK, Lee BW. 2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association. Diabetes Metab J 2024; 48:546-708. [PMID: 39091005 PMCID: PMC11307112 DOI: 10.4093/dmj.2024.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Shinae Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Joon Ho Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Hyun Lim
- Department of Food Service and Nutrition Care, Seoul National University Hospital, Seoul, Korea
| | - Yoon Ju Song
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Korea
| | - Ye Seul Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junghyun Noh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Suk Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Hae Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chong Hwa Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo-Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jaehyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eugene Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaehyun Bae
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Eonju Jeon
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jung Hwan Park
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Abraham A, Cule M, Thanaj M, Basty N, Hashemloo MA, Sorokin EP, Whitcher B, Burgess S, Bell JD, Sattar N, Thomas EL, Yaghootkar H. Genetic Evidence for Distinct Biological Mechanisms That Link Adiposity to Type 2 Diabetes: Toward Precision Medicine. Diabetes 2024; 73:1012-1025. [PMID: 38530928 PMCID: PMC11109787 DOI: 10.2337/db23-1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
We aimed to unravel the mechanisms connecting adiposity to type 2 diabetes. We used MR-Clust to cluster independent genetic variants associated with body fat percentage (388 variants) and BMI (540 variants) based on their impact on type 2 diabetes. We identified five clusters of adiposity-increasing alleles associated with higher type 2 diabetes risk (unfavorable adiposity) and three clusters associated with lower risk (favorable adiposity). We then characterized each cluster based on various biomarkers, metabolites, and MRI-based measures of fat distribution and muscle quality. Analyzing the metabolic signatures of these clusters revealed two primary mechanisms connecting higher adiposity to reduced type 2 diabetes risk. The first involves higher adiposity in subcutaneous tissues (abdomen and thigh), lower liver fat, improved insulin sensitivity, and decreased risk of cardiometabolic diseases and diabetes complications. The second mechanism is characterized by increased body size and enhanced muscle quality, with no impact on cardiometabolic outcomes. Furthermore, our findings unveil diverse mechanisms linking higher adiposity to higher disease risk, such as cholesterol pathways or inflammation. These results reinforce the existence of adiposity-related mechanisms that may act as protective factors against type 2 diabetes and its complications, especially when accompanied by reduced ectopic liver fat. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Angela Abraham
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, U.K
| | | | - Marjola Thanaj
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - M. Amin Hashemloo
- Department of Life Sciences, Brunel University London, Uxbridge, U.K
| | | | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
- MRI Unit, Department of Radiology, The Royal Marsden National Health Service Foundation Trust, London, U.K
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, U.K
| | - Jimmy D. Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, U.K
| | - E. Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, U.K
| |
Collapse
|
14
|
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024; 16:1715. [PMID: 38892648 PMCID: PMC11174689 DOI: 10.3390/nu16111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a major vision-threatening disease among the working-age population worldwide. Present therapeutic strategies such as intravitreal injection of anti-VEGF and laser photocoagulation mainly target proliferative DR. However, there is a need for early effective management in patients with early stage of DR before its progression into the more severe sight-threatening proliferative stage. Nutraceuticals, natural functional foods with few side effects, have been proposed to be beneficial in patients with DR. Over the decades, many studies, either in vitro or in vivo, have demonstrated the advantages of a number of nutraceuticals in DR with their antioxidative, anti-inflammatory, neuroprotective, or vasoprotective effects. However, only a few clinical trials have been conducted, and their outcomes varied. The low bioavailability and instability of many nutraceuticals have indeed hindered their utilization in clinical use. In this context, nanoparticle carriers have been developed to deliver nutraceuticals and to improve their bioavailability. Despite its preclinical nature, research of interventive nutraceuticals for DR may yield promising information in their clinical applications.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Nicholas Siu Kay Fung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Wai Ching Lam
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
- Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Room 301, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| |
Collapse
|
15
|
Liu W, Wang Y, Zhou Y. Exploring the causal relationship between omega-3 and omega-6 fatty acids and kidney cancer: a Mendelian randomization study. Transl Cancer Res 2024; 13:1685-1694. [PMID: 38737698 PMCID: PMC11082679 DOI: 10.21037/tcr-23-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Background The causal link between kidney cancer and omega-3/6 (ω-3/6) fatty acids is yet to be clearly established. Therefore, the objective of our study was to investigate these potential causal relationships. Methods We conducted a two-sample Mendelian randomization (MR) analysis to investigate the possible causal association between ω-3/6 fatty acids and kidney cancer. We utilized the random effect inverse variance weighted (IVW) method as our primary analytical approach for the two-sample MR analysis. In addition, sensitivity analyses such as heterogeneity tests, pleiotropy analyses, and leave-one-out analyses were performed to assess the robustness of the MR analysis results. Results The IVW method showed statistically significant associations between ω-3 and ω-6 fatty acids and increased risk of kidney cancer. The result for ω-3 and ω-6 were [odds ratio (OR) =1.27; 95% confidence interval (CI): 1.04-1.55; P=0.02] and (OR =1.56; 95% CI: 1.17-2.09; P=0.003), respectively. Moreover, in the results of sensitivity analyses, no apparent horizontal gene pleiotropy nor heterogeneity was observed. After performing "the leave-one-out" sensitivity analysis of the data one by one, no single nucleotide polymorphisms (SNPs) sites in each instrumental variable (IV) were found to have greatly affected the disease outcome. Conclusions Elevated serum ω-3/6 fatty acids levels are causally associated with an increased risk of kidney cancer. Therefore, it is crucial to monitor dietary intake and properly intervene to lower these levels in those at risk of kidney cancer.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufei Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Takić M, Ranković S, Girek Z, Pavlović S, Jovanović P, Jovanović V, Šarac I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int J Mol Sci 2024; 25:4909. [PMID: 38732139 PMCID: PMC11084241 DOI: 10.3390/ijms25094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.
Collapse
Affiliation(s)
- Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Slavica Ranković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Zdenka Girek
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Suzana Pavlović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Petar Jovanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| |
Collapse
|
17
|
Zeng J, Qian Y, Yang J, Chen X, Fu C, Che Z, Feng Y, Yin J. Nutritional therapy bridges the critical cut-off point for the closed-loop role of type 2 diabetes and bone homeostasis: A narrative review. Heliyon 2024; 10:e28229. [PMID: 38689978 PMCID: PMC11059410 DOI: 10.1016/j.heliyon.2024.e28229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Currently, osteoporosis-related fractures become the most cutting-edge problem of diabetes-related complications. Rational diet is not only the basis of glycemic management in type 2 diabetes patients, but also the direction of diabetic bone health. This review highlights the importance of micronutrient supplementation (including calcium, magnesium, zinc, vitamin D, vitamin K, and vitamin C) for patients with T2DM, as well as describing the constructive intermediary role of gut flora between T2DM and bone through nutrients predominantly high in dietary fiber. In addition, it is recommended to combine the Mediterranean dietary pattern with other diversified management approaches to prevent OP. Therefore, this provides a theoretical basis for the potential role of islet β-cells in promoting bone health.
Collapse
Affiliation(s)
- Jia Zeng
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Ying Qian
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jizhuo Yang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Xinqiang Chen
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Chuanwen Fu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Zhuohang Che
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, 650500, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, 678000, China
- Yunnan Provincial Key Laboratary of Public Health and Biosafety, Kunming, 650500, China
| |
Collapse
|
18
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Nussbaumer H, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D. Dietary Recommendations for Persons with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2024; 132:182-215. [PMID: 38286422 DOI: 10.1055/a-2166-6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition, Faculty of Agriculture and Nutritional Sciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Stefan Kabisch
- German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Winfried Keuthage
- Specialist Practice for Diabetes and Nutritional Medicine, Münster, Germany
| | - Peter Kronsbein
- Faculty of Nutrition and Food Sciences, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Mönchengladbach, Germany
| | - Karsten Müssig
- Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
| | | | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Astrid Tombek
- Diabetes Centre Bad Mergentheim, Bad Mergentheim, Germany
| | - Katharina S Weber
- Institute for Epidemiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany
- Vivantes Humboldt Hospital, Berlin, Germany
| |
Collapse
|
19
|
Breeze P, Sworn K, McGrane E, Abraham S, Cantrell A. Relationships between sodium, fats and carbohydrates on blood pressure, cholesterol and HbA1c: an umbrella review of systematic reviews. BMJ Nutr Prev Health 2024; 7:191-203. [PMID: 38966118 PMCID: PMC11221289 DOI: 10.1136/bmjnph-2023-000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/06/2023] [Indexed: 07/06/2024] Open
Abstract
Background The relationship between nutrition and health is complex and the evidence to describe it broad and diffuse. This review brings together evidence for the effect of nutrients on cardiometabolic risk factors. Methods An umbrella review identified systematic reviews of randomised controlled trials and meta-analyses estimating the effects of fats, carbohydrates and sodium on blood pressure, cholesterol and haemoglobin A1c (HbA1c). Medline, Embase, Cochrane Library and Science Citation Index were search through 26 May 2020, with supplementary searches of grey literature and websites. English language systematic reviews and meta-analyses were included that assessed the effect of sodium, carbohydrates or fat on blood pressure, cholesterol and HbA1c. Reviews were purposively selected using a sampling framework matrix. The quality of evidence was assessed with A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR2) checklist, evidence synthesised in a narrative review and causal pathways diagram. Results Forty-three systematic reviews were included. Blood pressure was significantly associated with sodium, fibre and fat. Sodium, fats and carbohydrates were significantly associated with cholesterol. Monounsaturated fat, fibre and sugars were associated with HbA1c. Conclusion Multiple relationships between nutrients and cardiometabolic risk factors were identified and summarised in an accessible way for public health researchers. The review identifies associations, inconsistencies and gaps in evidence linking nutrition to cardiometabolic health.
Collapse
Affiliation(s)
- Penny Breeze
- Division of Population Health, The University of Sheffield, Sheffield, UK
| | - Katie Sworn
- Institute of Nursing Science Clinical-Theoretical Institute of the University Hospital, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | | | | | | |
Collapse
|
20
|
Joshi N, Jadhav A, Godhamgaonkar A, Sundrani D, Randhir K, Pisal H, Wagh G, Krishnaveni G, Gupte S, Joshi S. Fatty acids and their metabolites (resolvins) are altered in women with gestational diabetes mellitus (GDM). Food Funct 2024; 15:3023-3035. [PMID: 38412051 DOI: 10.1039/d3fo05348b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The maternal fatty acid status plays a key role in influencing pregnancy outcomes. Omega-3 fatty acids are the precursors for E-series (RvE) and D-series resolvins (RvD) and possess anti-inflammatory properties. Pregnancy complications like gestational diabetes mellitus (GDM) are associated with excess maternal inflammation. This study reports the levels of maternal fatty acids across gestation in GDM and non-GDM women, placental fatty acids, resolvins and their association with the maternal fatty acid status. Pregnant women were recruited at 11-14 (V1) weeks and followed at 18-22 (V2) and 26-28 (V3) weeks and at delivery (V4). A total of 209 women who were diagnosed as GDM and 207 non-GDM women were included in this study. Fatty acids were estimated using gas chromatography. The protein levels of resolvins (RvE1, RvE2, RvD1 and RvD2) were measured using ELISA kits. Total PUFAs, eicosapentaenoic acid (EPA), omega-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were lower, while saturated fatty acid (SFA) and alpha-linolenic acid (ALA) levels were higher in GDM women at 18-22 weeks. Placental AA was lower (p < 0.05) in women with GDM. Placental protein levels of RvE1, RvD1 and RvD2 were lower (p < 0.001 for all) in the GDM group. The maternal delta 5 desaturase index was positively associated, while erythrocyte omega-3 and omega-6 fatty acids were negatively associated with RvE2 at 11-14 weeks. Placental LA and ALA were positively associated with RvD1 and RvD2 (p < 0.05, for both), respectively. Our findings suggest that the maternal fatty acid status influences pro-resolving mediators which may lead to increased inflammation in GDM.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| | - Anjali Jadhav
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| | - Aditi Godhamgaonkar
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| | - Deepali Sundrani
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| | - Karuna Randhir
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| | - Hemalata Pisal
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| | - Girija Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | | | - Sadhana Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune- 411043, India.
| |
Collapse
|
21
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
22
|
Hlaing-Hlaing H, Dolja-Gore X, Tavener M, Hure AJ. Longitudinal analysis of the Alternative Healthy Eating Index-2010 and incident non-communicable diseases over 15 years in the 1973-1978 cohort of the Australian Longitudinal Study on Women's Health. Br J Nutr 2024; 131:143-155. [PMID: 37470131 DOI: 10.1017/s0007114523001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In studies that contain repeated measures of variables, longitudinal analysis accounting for time-varying covariates is one of the options. We aimed to explore longitudinal association between diet quality (DQ) and non-communicable diseases (NCDs). Participants from the 1973-1978 cohort of the Australian Longitudinal Study on Women's Health (ALSWH) were included, if they; responded to survey 3 (S3, 2003, aged 25-30 years) and at least one survey between survey 4 (S4, 2006) and survey 8 (S8, 2018), were free of NCDs at or before S3, and provided dietary data at S3 or S5. Outcomes were coronary heart disease (CHD), hypertension (HT), asthma, cancer (except skin cancer), diabetes mellitus (DM), depression and/or anxiety, and multimorbidity (MM). Longitudinal modelling using generalised estimation equation (GEE) approach with time-invariant (S4), time-varying (S4-S8) and lagged (S3-S7) covariates were performed. The mean (± standard deviation) of Alternative Healthy Eating Index-2010 (AHEI-2010) of participants (n = 8022) was 51·6 ± 11·0 (range: 19-91). Compared to women with the lowest DQ (AHEI-2010 quintile 1), those in quintile 5 had reduced odds of NCDs in time-invariant model (asthma: OR (95 % CI): 0·77 (0·62-0·96), time-varying model (HT: 0·71 (0·50-0·99); asthma: 0·62 (0·51-0·76); and MM: 0·75 (0·58-0·97) and lagged model (HT: 0·67 (0·49-0·91); and asthma: 0·70 (0·57-0·85). Temporal associations between diet and some NCDs were more prominent in lagged GEE analyses. Evidence of diet as NCD prevention in women aged 25-45 years is evolving, and more studies that consider different longitudinal analyses are needed.
Collapse
Affiliation(s)
- Hlaing Hlaing-Hlaing
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW2305, Australia
| | - Xenia Dolja-Gore
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW2305, Australia
| | - Meredith Tavener
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW2305, Australia
| | - Alexis J Hure
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW2305, Australia
| |
Collapse
|
23
|
Retterstøl K, Rosqvist F. Fat and fatty acids - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:9980. [PMID: 38327998 PMCID: PMC10845901 DOI: 10.29219/fnr.v68.9980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 08/30/2023] [Indexed: 02/09/2024] Open
Abstract
Two de novo NNR2022 systematic reviews (SRs) as well as 21 qualified SRs (qSRs) were available. A literature search yielded an additional ~70 SRs, meta-analyses and biomarker papers. Diets lower in total fat are associated with reductions in body weight and blood pressure compared with diets higher in total fat in adults. Partial replacement of saturated fatty acid (SFA) with n-6 polyunsaturated fatty acid (PUFA) improves blood lipid profile, decreases the risk of cardiovascular disease (CVD), improves glucose-insulin homeostasis and may decrease the risk of total mortality. Long-chain n-3 PUFAs (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) decrease triglycerides and are associated with lower risk of CVD. Dietary PUFAs, both n-3 and n-6, may be associated with reduced risk of type 2 diabetes (T2D). There is inconclusive evidence to suggest that the type of dietary fat is associated with blood pressure, risk of hypertension or musculoskeletal health. Higher intake of total PUFA is associated with lower mortality from any cancer. Long-chain n-3 PUFA is associated with reduced risk of breast cancer, whereas biomarker levels of n-6 PUFA are associated with lower risk of any cancer. Intake of long-chain n-3 PUFA during pregnancy increases length of gestation and child birth weight and reduces the risk of preterm delivery, but there is inconclusive evidence to suggest that it may influence child neurodevelopment, growth or development of allergic disease. In studies with higher versus lower dietary cholesterol intake levels, total blood cholesterol increased or were unaffected by the dietary cholesterol, resulting in inconclusive results. Trans fatty acid (TFA), regardless of source, impairs blood lipid profile compared to unsaturated fat. In observational studies, TFA is positively associated with CVD and total mortality but whether associations differ by source is inconclusive. Ruminant TFA, as well as biomarker levels of odd-chain fatty acids, might be associated with lower risk of T2D.
Collapse
Affiliation(s)
- Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
ElSayed NA, Aleppo G, Bannuru RR, Beverly EA, Bruemmer D, Collins BS, Darville A, Ekhlaspour L, Hassanein M, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S77-S110. [PMID: 38078584 PMCID: PMC10725816 DOI: 10.2337/dc24-s005] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
25
|
Marrugat G, Cano A, Amézaga J, Arranz S, Embade N, Millet Ó, Ferreri C, Tueros I. Effect of age and dietary habits on Red Blood Cell membrane fatty acids in a Southern Europe population (Basque Country). Prostaglandins Leukot Essent Fatty Acids 2024; 200:102602. [PMID: 38147804 DOI: 10.1016/j.plefa.2023.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
The levels of blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are very variable and, in general, low in most of the world population. In this study, the effects of age, sex, COVID-19, and dietary habits on the lipid profile of the erythrocyte membranes were assessed in a sub-cohort of healthy population (N = 203) from a large cohort of individuals from the Basque Country, Spain, (AKRIBEA). Sex did not have an effect on RBC lipid profile. COVID-19 infected participants showed higher levels of DGLA. Oldest participants showed higher oleic acid, EPA and DHA levels. Arachidonic acid in RBC correlated positively with the intake of sunflower oil, butter, eggs, processed and red meat, whereas DHA and EPA correlated positively with oily and lean fish. Basque Country population showed lipid profiles similar to other high fish consuming countries, such as Italy and Japan. Baseline levels of the whole lipidomic profile of the RBC including SFA, MUFA and PUFA should be examined to obtain a better description of the health and nutritional status.
Collapse
Affiliation(s)
- Gerard Marrugat
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Ainara Cano
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Javier Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, Derio 48160, Bizkaia, Spain
| | - Óscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, Derio 48160, Bizkaia, Spain
| | - Carla Ferreri
- Instituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, Bologna 40129, Italy
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, Derio 48160, Spain.
| |
Collapse
|
26
|
Qian X, Klatt S, Bennewitz K, Wohlfart DP, Lou B, Meng Y, Buettner M, Poschet G, Morgenstern J, Fleming T, Sticht C, Hausser I, Fleming I, Szendroedi J, Nawroth PP, Kroll J. Impaired Detoxification of Trans, Trans-2,4-Decadienal, an Oxidation Product from Omega-6 Fatty Acids, Alters Insulin Signaling, Gluconeogenesis and Promotes Microvascular Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302325. [PMID: 38059818 PMCID: PMC10811472 DOI: 10.1002/advs.202302325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Omega-6 fatty acids are the primary polyunsaturated fatty acids in most Western diets, while their role in diabetes remains controversial. Exposure of omega-6 fatty acids to an oxidative environment results in the generation of a highly reactive carbonyl species known as trans, trans-2,4-decadienal (tt-DDE). The timely and efficient detoxification of this metabolite, which has actions comparable to other reactive carbonyl species, such as 4-hydroxynonenal, acrolein, acetaldehyde, and methylglyoxal, is essential for disease prevention. However, the detoxification mechanism for tt-DDE remains elusive. In this study, the enzyme Aldh9a1b is identified as having a key role in the detoxification of tt-DDE. Loss of Aldh9a1b increased tt-DDE levels and resulted in an abnormal retinal vasculature and glucose intolerance in aldh9a1b-/- zebrafish. Transcriptomic and metabolomic analyses revealed that tt-DDE and aldh9a1b deficiency in larval and adult zebrafish induced insulin resistance and impaired glucose homeostasis. Moreover, alterations in hyaloid vasculature is induced by aldh9a1b knockout or by tt-DDE treatment can be rescued by the insulin receptor sensitizers metformin and rosiglitazone. Collectively, these results demonstrated that tt-DDE is the substrate of Aldh9a1b which causes microvascular damage and impaired glucose metabolism through insulin resistance.
Collapse
Affiliation(s)
- Xin Qian
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Stephan Klatt
- Institute for Vascular SignalingCentre for Molecular MedicineGoethe‐Universityam Main60590FrankfurtGermany
- The German Centre for Cardiovascular Research (DZHK)Partner site RheinMain60590FrankfurtGermany
| | - Katrin Bennewitz
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - David Philipp Wohlfart
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Bowen Lou
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
- Present address:
Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta RoadXi'an710061China
| | - Ye Meng
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Michael Buettner
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg University69120HeidelbergGermany
| | - Gernot Poschet
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg University69120HeidelbergGermany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Carsten Sticht
- NGS Core FacilityMedical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Ingrid Hausser
- Institute of Pathology IPHEM LabHeidelberg University Hospital69120HeidelbergGermany
| | - Ingrid Fleming
- Institute for Vascular SignalingCentre for Molecular MedicineGoethe‐Universityam Main60590FrankfurtGermany
- The German Centre for Cardiovascular Research (DZHK)Partner site RheinMain60590FrankfurtGermany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University Hospital69120HeidelbergGermany
| | - Jens Kroll
- Department of Vascular BiologyEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg University68167MannheimGermany
| |
Collapse
|
27
|
Zhao T, Huang H, Li J, Shen J, Zhou C, Xiao R, Ma W. Association between erythrocyte membrane fatty acids and gut bacteria in obesity-related cognitive dysfunction. AMB Express 2023; 13:148. [PMID: 38123761 PMCID: PMC10733235 DOI: 10.1186/s13568-023-01655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity increases the risk of cognitive impairment and dementia, and the gut microbiota can affect brain cognitive function and obesity through a variety of pathways such as the gut-brain axis. This study aimed to discover how fatty acid affect cognitive function by regulating intestinal flora in obesity. Obese subjects were recruited for cognitive function assessment, and participants were divided into obese group with cognitive impairment (MCI, n = 49) and obese cognitively normal group (Non_MCI, n = 55). In the erythrocyte membrane, the proportion of polyunsaturated fatty acids (PUFA), linoleic acid (C18:2 n-6) and arachidonic acid (C20:4 n-6) and n-6/n-3 ratio was higher in the MCI group than in the Non_MCI group. However, the α-linolenic acid (C18:3 n-3) percentage of the erythrocyte membrane was lower in the MCI group. We found that Coriobacteriales_Incertae_Sedis was positively correlated with erythrocyte membrane C20:4 n-6 and n-6 PUFA and negatively correlated with cognitive scores in obese patients. In addition, several of the functional pathways we predicted were significantly different in the MCI and Non_MCI groups. Higher levels of n-6/n-3 polyunsaturated fatty acids ratio in the erythrocyte membranes may influence the inflammatory response in the organism causing obesity induced cognitive damage. Moreover, high levels of n-6/n-3 polyunsaturated fatty acids ratio may also affect the intestinal flora of obese patients, which in turn may affect the cognitive function of obese patients.
Collapse
Affiliation(s)
- Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Cui Zhou
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
28
|
Lewis JI, Lind MV, Møller G, Hansen T, Pedersen H, Christensen MMB, Laursen JC, Nielsen S, Ottendahl CB, Larsen CVL, Stark KD, Bjerregaard P, Jørgensen ME, Lauritzen L. The effect of traditional diet on glucose homoeostasis in carriers and non-carriers of a common TBC1D4 variant in Greenlandic Inuit: a randomised crossover study. Br J Nutr 2023; 130:1871-1884. [PMID: 37129117 PMCID: PMC10632723 DOI: 10.1017/s000711452300106x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Consumption of traditional foods is decreasing amid a lifestyle transition in Greenland as incidence of type 2 diabetes (T2D) increases. In homozygous carriers of a TBC1D4 variant, conferring postprandial insulin resistance, the risk of T2D is markedly higher. We investigated the effects of traditional marine diets on glucose homoeostasis and cardio-metabolic health in Greenlandic Inuit carriers and non-carriers of the variant in a randomised crossover study consisting of two 4-week dietary interventions: Traditional (marine-based, low-carbohydrate) and Western (high in imported meats and carbohydrates). Oral glucose tolerance test (OGTT, 2-h), 14-d continuous glucose and cardio-metabolic markers were assessed to investigate the effect of diet and genotype. Compared with the Western diet, the Traditional diet reduced mean and maximum daily blood glucose by 0·17 mmol/l (95 % CI 0·05, 0·29; P = 0·006) and 0·26 mmol/l (95 % CI 0·06, 0·46; P = 0·010), respectively, with dose-dependency. Furthermore, it gave rise to a weight loss of 0·5 kg (95 % CI; 0·09, 0·90; P = 0·016) relative to the Western diet and 4 % (95 % CI 1, 9; P = 0·018) lower LDL:HDL-cholesterol, which after adjustment for weight loss appeared to be driven by HDL elevation (0·09 mmol/l (0·03, 0·15), P = 0·006). A diet-gene interaction was indicated on insulin sensitivity in the OGTT (p = 0·093), which reflected a non-significant increase of 1·4 (-0·6, 3·5) mmol/l in carrier 2-h glucose. A Traditional diet marginally improved daily glycaemic control and plasma lipid profile compared with a Westernised diet in Greenlandic Inuit. Possible adverse effects on glucose tolerance in carriers of the TBC1D4 variant warrant further studies.
Collapse
Affiliation(s)
- Jack Ivor Lewis
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Grith Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Sara Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ken D. Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Peter Bjerregaard
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
- SDU, Copenhagen, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Ilisimatusarfik, The University of Greenland, Nuuk, Greenland
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Liang H, Mu HB, Zhang FH, Li WQ, Li GC, Li WD, Liang M, He ZL. Causal relationship between linoleic acid and type 2 diabetes and glycemic traits: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1277153. [PMID: 38075067 PMCID: PMC10703485 DOI: 10.3389/fendo.2023.1277153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Objective To investigate the causal relationships between linoleic acid and type 2 diabetes, and between linoleic acid and glycemic traits in European populations. Methods This study employed a two-sample Mendelian randomization approach to infer causality between linoleic acid and type 2 diabetes, as well as between linoleic acid and glycemic traits, leveraging genetic variations. Data were sourced from genome-wide association study summary datasets. Random-effects inverse-variance weighted, weighted median, and MR-Egger methods were used for the two-sample Mendelian randomization analyses. Results were presented as odds ratios with a 95% confidence interval. Multiple sensitivity analyses were conducted to assess result robustness. Results MR findings indicated a correlation between linoleic acid levels and the risk of type 2 diabetes, fasting blood glucose, and glycated hemoglobin (HbA1c), but not with fasting insulin. Specifically: type 2 diabetes (OR: 0.811, 95% CI: 0.688-0.956, P=0.013<0.05),fasting blood glucose (β_IVW): -0.056, 95% CI: (-0.091,-0.021), P=0.002< 0.0125), glycated hemoglobin (β_IVW: -0.032, 95% CI: (-0.048,-0.015), P=0.0002< 0.0125) and Fasting insulin (β_IVW: -0.024, 95% CI: (-0.056,-0.008), P=0.136 >0.05).Reverse MR analyses showed a correlation between type 2 diabetes and reduced levels of linoleic acid (β_IVW: -0.033, 95% CI: (-0.059,-0.006), P=0.014<0.05). Multiple sensitivity analyses also detected study heterogeneity but found no evidence of horizontal pleiotropy. Conclusion High levels linoleic acid can reduce the risk of type 2 diabetes, fasting blood glucose, and glycated hemoglobin, but has no significant relation with fasting insulin. Type 2 diabetes can lower linoleic acid levels; however, no significant causal relationship was observed between the three glycemic traits and reduced levels of linoleic acid.
Collapse
Affiliation(s)
- Hao Liang
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Hai-Bo Mu
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Fei-Hu Zhang
- Centre for Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Li
- Centre for Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guo-Chen Li
- Centre for Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Dong Li
- Department of Cardiovascular Disease, Tai’an Hospital of Traditional Chinese Medicine, Tai’an, China
| | - Min Liang
- Department of Nephrology, Tai’an First People's Hospital, Tai’an, China
| | - Zeng-Lin He
- School of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Deng M, Wen Y, Yan J, Fan Y, Wang Z, Zhang R, Ren L, Ba Y, Wang H, Lu Q, Fan H. Comparative effectiveness of multiple different treatment regimens for nonalcoholic fatty liver disease with type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMC Med 2023; 21:447. [PMID: 37974258 PMCID: PMC10655371 DOI: 10.1186/s12916-023-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are closely related and mutually contribute to the disease's development. There are many treatment options available to patients. We provide a comprehensive overview of the evidence on the treatment effects of several potential interventions for NAFLD with T2DM. METHODS This systematic review and network meta-analysis included searches of PubMed, Embase, Cochrane Library, and Web of Science from inception to June 30, 2023, for randomised controlled trials of treatment of NAFLD with T2DM. We performed Bayesian network meta-analyses to summarise effect estimates of comparisons between interventions. We applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) frameworks to rate all comparative outcomes' certainty in effect estimates, categorise interventions, and present the findings. This study was registered with PROSPERO, CRD42022342373. RESULTS Four thousand three hundred and sixty-nine records were retrieved from the database and other methods, of which 24 records were eligible for studies enrolling 1589 participants. Eight clinical indicators and 14 interventions were finally in focus. Referring to the lower surface under the cumulative ranking curves (SUCRA) and the league matrix table, exenatide and liraglutide, which are also glucagon-like peptide-1 receptor agonists (GLP-1RAs), showed excellent potential to reduce liver fat content, control glycemia, reduce body weight, and improve liver function and insulin resistance. Exenatide was more effective in reducing glycated haemoglobin (HbA1c) (mean difference (MD) 0.32, 95%CI 0.12 to 0.52), lowering BMI (MD 0.81, 95%CI 0.18 to 1.45), and lowering alanine transaminase (ALT) (MD 10.96, 95%CI 5.27 to 16.66) compared to liraglutide. However, this evidence was assessed as low certainty. Omega-3 was the only intervention that did not have a tendency to lower HbA1c, with standard-treatment (STA-TRE) as reference (MD - 0.17, 95%CI - 0.42 to 0.07). Glimepiride is the only intervention that causes an increase in ALT levels, with standard-treatment (STA-TRE) as reference (MD - 11.72, 95%CI - 17.82 to - 5.57). Based on the available evidence, the treatment effects of pioglitazone, dapagliflozin, and liraglutide have a high degree of confidence. CONCLUSIONS The high confidence mandates the confident application of these findings as guides for clinical practice. Dapagliflozin and pioglitazone are used for glycaemic control in patients with NAFLD combined with T2DM, and liraglutide is used for weight loss therapy in patients with abdominal obesity. The available evidence does not demonstrate the credibility of the effectiveness of other interventions in reducing liver fat content, visceral fat area, ALT, and insulin resistance. Future studies should focus on the clinical application of GLP-1Ras and the long-term prognosis of patients.
Collapse
Affiliation(s)
- Manjun Deng
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yonghao Wen
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - JingXin Yan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Department of Interventional Therapy, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Yichen Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Ruixia Zhang
- Department of Endocrinology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Yinggui Ba
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China
| | - Qian Lu
- Department of Hepatopancreatobiliary Surgery, Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China.
- Qinghai Research Key Laboratory for Echinococcosis, Xining, 810000, Qinghai, China.
| |
Collapse
|
31
|
Carta G, Murru E, Trinchese G, Cavaliere G, Manca C, Mollica MP, Banni S. Reducing Dietary Polyunsaturated to Saturated Fatty Acids Ratio Improves Lipid and Glucose Metabolism in Obese Zucker Rats. Nutrients 2023; 15:4761. [PMID: 38004155 PMCID: PMC10674282 DOI: 10.3390/nu15224761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
We investigated the influence of varying dietary polyunsaturated fatty acid (PUFA)/saturated fatty acids (SFA) ratios on insulin resistance (IR), fatty acid metabolism, N-acylethanolamine (NAE) bioactive metabolite levels, and mitochondrial function in lean and obese Zucker rats in a model designed to study obesity and IR from overnutrition. We provided diets with 7% fat (w/w), with either a low PUFA/SFA ratio of 0.48, predominantly comprising palmitic acid (PA), (diet-PA), or the standard AIN-93G diet with a high PUFA/SFA ratio of 3.66 (control, diet-C) over eight weeks. In obese rats on diet-PA versus diet-C, there were reductions in plasma triglycerides, cholesterol, glucose, insulin concentrations and improved muscle mitochondrial function, inflammatory markers and increased muscle N-oleoylethanolamine (OEA), a bioactive lipid that modulates lipid metabolism and metabolic flexibility. Elevated palmitic acid levels were found exclusively in obese rats, regardless of their diet, implying an endogenous production through de novo lipogenesis rather than from a dietary origin. In conclusion, a reduced dietary PUFA/SFA ratio positively influenced glucose and lipid metabolism without affecting long-term PA tissue concentrations. This likely occurs due to an increase in OEA biosynthesis, improving metabolic flexibility in obese rats. Our results hint at a pivotal role for balanced dietary PA in countering the effects of overnutrition-induced obesity.
Collapse
Affiliation(s)
- Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (E.M.); (C.M.); (S.B.)
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (E.M.); (C.M.); (S.B.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (M.P.M.)
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (E.M.); (C.M.); (S.B.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (M.P.M.)
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (E.M.); (C.M.); (S.B.)
| |
Collapse
|
32
|
Liu H, Wang F, Xia H, Pan D, Yang L, Wang S, Zhao F, Sun G. Comparison of the effects of 3 kinds of oils rich in omega-3 polyunsaturated fatty acids on glycolipid metabolism and lipoprotein subfractions. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:2221-2231. [DOI: 10.1016/j.fshw.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
|
33
|
Zhu G, Xu J, Guo G, Zhu F. Association between Lipids, Apolipoproteins and Telomere Length: A Mendelian Randomization Study. Nutrients 2023; 15:4497. [PMID: 37960150 PMCID: PMC10647842 DOI: 10.3390/nu15214497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: The relationship between lipids, apolipoproteins, and telomere length (TL) has been explored in previous studies; however, the causal relationship between the two remains unclear. This study aims to assess the causal relationship between lipids, apolipoproteins, and TL using the two-sample Mendelian randomization (MR) approach; (2) Methods: This study comprehensively employed both univariate MR (uvMR) and multivariate MR (mvMR) methods to genetically evaluate the associations between 21 exposures related to lipids and apolipoproteins and the outcome of TL. During the analysis process, we utilized various statistical methods, including Inverse Variance Weighting (IVW), Weighted Median, MR-Egger regression, MR-PRESSO, and outlier tests. Furthermore, to confirm the robustness of the results, we conducted several sensitivity analyses to explore potential heterogeneity; (3) Results: The uvMR analysis indicated that an increase in MUFA, MUFA/FA ratio, LDL-C, VLDL-C, total cholesterol, ApoB, and triglycerides (TG) was associated with an increase in TL. However, this relationship did not manifest in the mvMR analysis, suggesting that this association may be based on preliminary evidence; (4) Conclusions: MR analysis results suggest potential suggestive positive causal relationships between genetically predicted MUFA, MUFA/FA ratio, LDL-C, VLDL-C, total cholesterol, ApoB, and TG with TL.
Collapse
Affiliation(s)
- Gehua Zhu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; (G.Z.); (J.X.)
| | - Jiamin Xu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; (G.Z.); (J.X.)
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; (G.Z.); (J.X.)
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
34
|
Lai JS, Godfrey KM, Ong CN, Tan KH, Yap F, Chong YS, Chan JKY, Chan SY, Chong MFF. Perinatal Plasma Carotenoids and Vitamin E Concentrations with Glycemia and Insulin Resistance in Women during and after Pregnancy. Nutrients 2023; 15:4421. [PMID: 37892496 PMCID: PMC10610276 DOI: 10.3390/nu15204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
We examined the associations of perinatal plasma carotenoids and E vitamers concentrations with glycemia, insulin resistance, and gestational and type 2 diabetes mellitus during pregnancy and post-pregnancy in GUSTO women. Plasma carotenoid and E vitamer concentrations were measured at delivery, and principal component analysis was used to derive the patterns of their concentrations. Fasting and 2 h glucose levels and fasting insulin were measured at 26-28 weeks gestation and 4-6 years post-pregnancy, with the derivation of homeostatic model assessment for insulin resistance (HOMA-IR). In 678 women, two carotenoid patterns (CP1: α- and β-carotene and lutein; CP2: zeaxanthin, lycopene, and β-cryptoxanthin) and one E vitamer pattern (VE: γ-, δ-, and α-tocopherols) were derived. A higher CP1 score (1-SD) was associated with lower gestational fasting glucose (β (95%CI): -0.06 (-0.10, -0.02) mmol/L) and lower gestational (-0.17 (-0.82, 0.01) mmol/L, p = 0.06) and post-pregnancy HOMA-IR (-0.11 (-0.15, -0.08) mmol/L). A higher VE score (1 SD) was associated with higher gestational and post-pregnancy fasting and 2 h glucose (gestational: 0.05 (0.01, 0.08) and 0.08 (0.01, 0.16); post-pregnancy: 0.19 (0.07, 0.31) and 0.24 (0.06, 0.42) mmol/L). Higher α- and β-carotene and lutein may be beneficial for gestational fasting glycemia, but higher vitamin E may increase gestational and post-pregnancy glycemia, although these findings require confirmation in cohorts with prospective longitudinal measurements of these vitamins.
Collapse
Affiliation(s)
- Jun S. Lai
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 117609, Singapore; (Y.S.C.); (S.-Y.C.); (M.F.-F.C.)
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Centre & NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Fabian Yap
- Department of Paediatric Endocrinology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 117609, Singapore; (Y.S.C.); (S.-Y.C.); (M.F.-F.C.)
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Jerry K. Y. Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 117609, Singapore; (Y.S.C.); (S.-Y.C.); (M.F.-F.C.)
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Mary F.-F. Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 117609, Singapore; (Y.S.C.); (S.-Y.C.); (M.F.-F.C.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| |
Collapse
|
35
|
Lei H, Chen X, Cheng B, Song L, Luo R, Wang S, Kang T, Wang Q, Zheng Y. The effects of unsaturated fatty acids on psoriasis: A two-sample Mendelian randomization study. Food Sci Nutr 2023; 11:6073-6084. [PMID: 37823124 PMCID: PMC10563715 DOI: 10.1002/fsn3.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 10/13/2023] Open
Abstract
Unsaturated fatty acids have been reported to be associated with the risk of psoriasis. However, the causal relationship between them remains unclear This study aimed to explore the causal relationship between unsaturated FAs and psoriasis. Firstly, we obtained genome-wide association study (GWAS) data for psoriasis from the FINNGEN database (number of cases = 4510, number of controls = 212,242) and different FA levels (number of samples = 114,999) from the IEU OpenGWAS Project. Secondly, the genetic correlation coefficient was calculated using linkage disequilibrium fractional regression. Thirdly, a two-sample Mendelian randomization (MR) analysis was performed using independent instrumental variables (p < 5 × 10-8) to determine the direction of randomization. Finally, expression quantitative trait loci (eQTL)-related analyses of common single nucleotide polymorphisms (SNPs) were carried out to explore the potential molecular mechanisms of unsaturated FAs affecting psoriasis. We found that an increase in the ratio of monounsaturated fatty acids (MUFAs) to total fatty acids could increase the risk of psoriasis (inverse-variance weighted [IVW], adjusted odds ratio [OR] = 1.175; adjusted 95% confidence interval [CI] = 1.045-1.321; adjusted p = .007). However, an increase in the ratio of polyunsaturated fatty acids (PUFAa) to total fatty acids could decrease the risk of psoriasis (IVW, adjusted OR = 0.754; adjusted 95% CI = 0.631-0.901; adjusted p = .002). Moreover, an increase in the ratio of PUFAs to MUFAs could decrease the risk of psoriasis (IVW, adjusted OR = 0.823; adjusted 95% CI = 0.715-0.948; adjusted p = .007). The heterogeneity of data was eliminated, and pleiotropy was not detected. There was no statistical difference in the MR analysis of other fatty acids indices with psoriasis. Further, no statistically significant evidence was found to verify a causal relationship between psoriasis and fatty acid levels in reverse MR. Functional enrichment analysis showed that these eQTL related to common SNPs were mainly involved in organic ion transport, choline metabolism, and the expression of key metabolic factors mediated by PKA, ChREBP, and PP2A. Our study indicated that the ratio of MUFAs to total fatty acids had a positive causal effect on psoriasis, while the ratio of PUFAs to total fatty acids and the ratio of PUFAs to MUFAs had a negative causal effect on psoriasis. Moreover, PKA-, PP2A-, and ChREBP-mediated activation of metabolic factors may play an important role in this process.
Collapse
Affiliation(s)
- Hao Lei
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Baochen Cheng
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Liumei Song
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ruiting Luo
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shengbang Wang
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tong Kang
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Wang
- Tangdu Hospital, Air Force Military Medical UniversityXi'anChina
| | - Yan Zheng
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
36
|
Wang Q, Wang X. The Effect of Plant-Derived Low-Ratio Linoleic Acid/α-Linolenic Acid on Markers of Glucose Controls: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14383. [PMID: 37762686 PMCID: PMC10532139 DOI: 10.3390/ijms241814383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this meta-analysis was to examine the impact of a low-ratio linoleic acid/α-linolenic acid (LA/ALA) diet on the glycemic profile of adults. A comprehensive search was performed across four databases (Web of Science, Scopus, Embase, and PubMed) to evaluate the influence of the low-ratio LA/ALA. Relevant references were screened up until February 2023. Intervention effects were analyzed by calculating change values as weighted mean differences (WMD) and 95% confidence intervals (CI) using fixed-effects models. Additionally, subgroup analysis and meta-regression were employed to investigate potential sources of heterogeneity. Twenty-one randomized controlled trials (RCTs) were included, and the low-ratio LA/ALA diet had no significant effect on fasting blood sugar (FBS, WMD: 0.00 mmol/L, 95% CI: -0.06, 0.06, p = 0.989, I2 = 0.0%), insulin levels (WMD: 0.20 μIU/mL, 95% CI: -0.23, 0.63, p = 0.360, I2 = 3.2%), homeostatic model assessment insulin resistance (HOMA-IR, WMD: 0.09, 95% CI: -0.06, 0.23, p = 0.243, I2 = 0.0%), and hemoglobin A1c (HbA1c, WMD: -0.01%, 95% CI: -0.07, 0.06, p = 0.836, I2 = 0.0%). Based on subgroup analyses, it was observed that the impact of a low-ratio LA/ALA diet on elevated plasma insulin (WMD: 1.31 μIU/mL, 95% CI: 0.08, 2.54, p = 0.037, I2 = 32.0%) and HOMA-IR (WMD: 0.47, 95% CI: 0.10, 0.84, p = 0.012, I2 = 0.0%) levels exhibited greater prominence in North America compared to Asian and European countries. Publication bias was not detected for FBS, insulin, HOMA-IR, and HbA1c levels according to the Begg and Egger tests. Furthermore, the conducted sensitivity analyses indicated stability, as the effects of the low-ratio LA/ALA diet on various glycemic and related metrics remained unchanged even after removing individual studies. Overall, based on the available studies, it can be concluded that the low-ratio LA/ALA diet has limited impact on blood glucose-related biomarker levels.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
37
|
Qian X, Ko A, Li H, Liao C. Saliva sampling strategies affecting the salivary glucose measurement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4598-4605. [PMID: 37655760 DOI: 10.1039/d3ay01005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Characterized by sustained elevated blood glucose levels, diabetes mellitus has become one of the largest global public health concerns by imposing a heavy global burden on socio-economic development. To date, regular blood glucose level check by performing a finger-prick test has been a routine strategy to monitor diabetes. However, the intrusive nature of finger blood prick tests makes it challenging for individuals to maintain consistent testing routines. Recently, salivary glucose measurement (SGM) has increasingly become a non-invasive alternative to traditional blood glucose testing for diabetes. Despite that, further research is needed to standardize the collection methods and address the issues of variability to ensure accurate and reliable SGM. To resolve possible remaining issues in SGM, we here thoroughly explored saliva sampling strategies that could impact the measurement results. Additionally, the effects of supplements taken, mouth washing, gum chewing, and smoking were collectively analyzed, followed by a continuous SGM over a long period, forming the stepping stone for the practical transitional development of SGM in non-invasive diabetes monitoring.
Collapse
Affiliation(s)
- Xia Qian
- Medical School, Sun Yat-Sen University, Guangzhou, China
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Haifeng Li
- Shenzhen People's Hospital, Shenzhen, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
38
|
Xia H, Wang Y, Shi X, Liao W, Wang S, Sui J, Sun G. Beneficial Effects of Dietary Flaxseed Oil through Inflammation Pathways and Gut Microbiota in Streptozotocin-Induced Diabetic Mice. Foods 2023; 12:3229. [PMID: 37685162 PMCID: PMC10487211 DOI: 10.3390/foods12173229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Flaxseed oil (FO) has displayed potential anti-diabetes properties by providing a high content of α-linolenic acid. However, the effects and mechanisms of FO on type 1 diabetes are still unclear. The present study aims to explore the effects of different doses of FO feeding on hepatic inflammation and gut microbiota in streptozotocin-induced diabetic mice. Forty-eight six-week-old C57BL/6J male mice were divided into a control group (CON), a diabetic group (MOD), a diabetes with 7.0% w/w FO feeding group (FO-L), and a diabetes with 10.5% w/w FO feeding group (FO-H) for six weeks. The 7.0% w/w and 10.5% w/w FO feeding groups exhibited potential recovery of the number and size of pancreas tissues. The fasting blood glucose level was significantly decreased only after 4 weeks of feeding with 10.5% w/w FO in diabetic mice. The 10.5% w/w FO feeding group significantly decreased the postprandial blood glucose level of mice in the OGTT test. Hepatic glycogen levels were dramatically upregulated in the mice fed with both 7.0% w/w and 10.5% w/w FO. FO feeding significantly attenuated hepatic LPS, TNF-α, and IL-1β levels. In addition, we observed that 7.0% w/w and 10.5% w/w FO feedings notably downregulated hepatic gene and protein expressions of TLR4, MyD88, and P65. Furthermore, only 10.5% FO regulated fecal microbiota by increasing the relative abundance of the Bacteroidetes phylum, Lactococcus family, and Muribaculaceae and Streptococcaceae family and genus in streptozotocin-induced diabetic mice. Therefore, we conclude that FO feeding plays a role in anti-inflammation via the regulation of hepatic LPS/TLR4/MyD88 pathways and gut microbiota. In addition, different doses of FO supplementation may exhibit varying mechanisms in streptozotocin-induced mice.
Collapse
Affiliation(s)
- Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
| | - Ying Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
| | - Xiangling Shi
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
| | - Jing Sui
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 211544, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (H.X.); (Y.W.); (X.S.); (W.L.); (S.W.); (J.S.)
| |
Collapse
|
39
|
Titisari N, Fauzi A, Razak ISA, Samsulrizal N, Ahmad H. Protective potential of fish oil supplementation against insulin resistance and pancreatic islet damage in STZ-induced Wistar rats. Open Vet J 2023; 13:983-990. [PMID: 37701670 PMCID: PMC10495088 DOI: 10.5455/ovj.2023.v13.i8.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023] Open
Abstract
Background Fish oil, which is regarded as the primary source of omega-3 fatty acids, has been long studied for its potential as an antidiabetic therapy. However, its protective ability against insulin resistance and pancreatic islet alteration remains unclear and controversial. Aim To investigate the beneficial effects of fish oil consumption on the progression of insulin resistance and pancreatic islet dysfunction in a rat model of diabetes. Methods Diabetic rats model (n = 30) were divided into five groups and received; 1) NS injection + NS oral (normal control); 2) NS injection + 3 g/kg fish oil (fish oil control); 3) streptozotocin (STZ) injection + NS oral [diabetes control (DC)]; 4) STZ injection + 1 g/kg fish oil (DFO1); and 5) STZ injection + 3 g/kg fish oil (DFO3). Fasting blood insulin was analyzed by commercial rat insulin enzyme-linked immunosorbent assay; meanwhile, the determination of insulin sensitivity was calculated by homeostatic model assessment of insulin resistance (HOMA-IR) and homeostatic model assessment of beta-cell function. A histological study was conducted on pancreas tissue using H and E staining. Results Fish oil supplementation reduced hyperglycemia and ameliorated HOMA-IR in STZ-induced animal models indicating that fish oil supplementation improved insulin sensitivity. Furthermore, animals treated with fish oil at a dose of 3 g/kg (DFO3) showed an enhancement in pancreatic islets, which was displayed by less abnormal structures than DC animals. This could imply that the administration of fish oil, especially rich in bioactive omega-3 fatty acids effectively inhibits insulin resistance and restore islet of Langerhans alteration in rats injected with STZ. Conclusion Thus, the current study suggested that fish oil supplementation could support the treatment of diabetes but should not be considered as an alternative therapy.
Collapse
Affiliation(s)
- Nurina Titisari
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ahmad Fauzi
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Safety, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
40
|
Rohman A, Irnawati, Windarsih A, Riswanto FDO, Indrayanto G, Fadzillah NA, Riyanto S, Bakar NKA. Application of Chromatographic and Spectroscopic-Based Methods for Analysis of Omega-3 (ω-3 FAs) and Omega-6 (ω-6 FAs) Fatty Acids in Marine Natural Products. Molecules 2023; 28:5524. [PMID: 37513396 PMCID: PMC10383577 DOI: 10.3390/molecules28145524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Omega-3 fatty acids v(ω-3 FAs) such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) and omega-6 fatty acids (ω-6 FAs) such as linoleic acid and arachidonic acid are important fatty acids responsible for positive effects on human health. The main sources of ω-3 FAs and ω-6 FAs are marine-based products, especially fish oils. Some food, supplements, and pharmaceutical products would include fish oils as a source of ω-3 FAs and ω-6 FAs; therefore, the quality assurance of these products is highly required. Some analytical methods mainly based on spectroscopic and chromatographic techniques have been reported. Molecular spectroscopy such as Infrared and Raman parallel to chemometrics has been successfully applied for quantitative analysis of individual and total ω-3 FAs and ω-6 FAs. This spectroscopic technique is typically applied as the alternative method to official methods applying chromatographic methods. Due to the capability to provide the separation of ω-3 FAs and ω-6 FAs from other components in the products, gas and liquid chromatography along with sophisticated detectors such as mass spectrometers are ideal analytical methods offering sensitive and specific results that are suitable for routine quality control.
Collapse
Affiliation(s)
- Abdul Rohman
- Halal Center, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Irnawati
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Study Program of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | - Nurrulhidayah A Fadzillah
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
| | - Sugeng Riyanto
- Study Program of Pharmacy, Faculty of Health Sciences and Pharmacy, Universitas Gunadarma, Jakarta 16451, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
41
|
Bae JH, Lim H, Lim S. The Potential Cardiometabolic Effects of Long-Chain ω-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Adv Nutr 2023; 14:612-628. [PMID: 37031750 PMCID: PMC10334139 DOI: 10.1016/j.advnut.2023.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Various health-related effects of long-chain (LC) ω-3 PUFAs, EPA, and DHA have been suggested. LC ω-3 PUFAs reduce TG concentrations and have anti-inflammatory, immunomodulatory, antiplatelet, and vascular protective effects. Controversially, they might help in restoring glucose homeostasis via the gut microbiota. However, previous studies have not shown the clear benefits of LC ω-3 PUFAs for CVDs. REDUCE-IT and STRENGTH-representative randomized controlled trials (RCTs) that examined whether LC ω-3 PUFAs would prevent major adverse cardiovascular (CV) events (MACE)-showed conflicting results with differences in the types, doses, or comparators of LC ω-3 PUFAs and study populations. Therefore, we performed a meta-analysis using major RCTs to address this inconsistency and assess the clinical and biological effects of LC ω-3 PUFAs. We included RCTs that involved ≥500 participants with ≥1 y follow-up. Of 17 studies involving 143,410 people, LC ω-3 PUFA supplementation showed beneficial effects on CV death (RR: 0.94; 95% CI: 0.88, 0.99; P = 0.029) and fatal or nonfatal MI (RR: 0.83; 95% CI: 0.72, 0.95; P = 0.010). RCTs on EPA alone showed better results for 3-point MACE, CV death, and fatal or nonfatal MI. However, the benefits were not found for fatal or nonfatal stroke, all-cause mortality, and hospitalization for heart failure. Of note, studies of both the EPA/DHA combination and EPA alone showed a significant increase in risk of new-onset atrial fibrillation. Thus, well-designed studies are needed to investigate the underlying mechanisms involved in the distinct effects of EPA compared with DHA on cardiometabolic diseases. This review discusses the potential benefits and safety of LC ω-3 PUFAs from a cardiometabolic perspective focusing on recent updates and controversies.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Research Institute of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
42
|
Hu C, Zhou Y, Wu X, Jia X, Zhu Y, Zheng R, Wang S, Lin L, Qi H, Lin H, Li M, Wang T, Zhao Z, Xu M, Xu Y, Chen Y, Ning G, Borges MC, Wang W, Zheng J, Bi Y, Lu J. Evaluating the distinct pleiotropic effects of omega-3 fatty acids on type 2 diabetes mellitus: a mendelian randomization study. J Transl Med 2023; 21:370. [PMID: 37286992 DOI: 10.1186/s12967-023-04202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Observational studies and conventional Mendelian randomization (MR) studies showed inconclusive evidence to support the association between omega-3 fatty acids and type 2 diabetes. We aim to evaluate the causal effect of omega-3 fatty acids on type 2 diabetes mellitus (T2DM), and the distinct intermediate phenotypes linking the two. METHODS Two-sample MR was performed using genetic instruments derived from a recent genome-wide association study (GWAS) of omega-3 fatty acids (N = 114,999) from UK Biobank and outcome data obtained from a large-scale T2DM GWAS (62,892 cases and 596,424 controls) in European ancestry. MR-Clust was applied to determine clustered genetic instruments of omega-3 fatty acids that influences T2DM. Two-step MR analysis was used to identify potential intermediate phenotypes (e.g. glycemic traits) that linking omega-3 fatty acids with T2DM. RESULTS Univariate MR showed heterogenous effect of omega-3 fatty acids on T2DM. At least two pleiotropic effects between omega-3 fatty acids and T2DM were identified using MR-Clust. For cluster 1 with seven instruments, increasing omega-3 fatty acids reduced T2DM risk (OR: 0.52, 95%CI 0.45-0.59), and decreased HOMA-IR (β = - 0.13, SE = 0.05, P = 0.02). On the contrary, MR analysis using 10 instruments in cluster 2 showed that increasing omega-3 fatty acids increased T2DM risk (OR:1.10; 95%CI 1.06-1.15), and decreased HOMA-B (β = - 0.04, SE = 0.01, P = 4.52 × 10-5). Two-step MR indicated that increasing omega-3 fatty acid levels decreased T2DM risk via decreasing HOMA-IR in cluster 1, while increased T2DM risk via decreasing HOMA-B in cluster 2. CONCLUSIONS This study provides evidence to support two distinct pleiotropic effects of omega-3 fatty acids on T2DM risk influenced by different gene clusters, which could be partially explained by distinct effects of omega-3 fatty acids on insulin resistance and beta cell dysfunction. The pleiotropic feature of omega-3 fatty acids variants and its complex relationships with T2DM need to be carefully considered in future genetic and clinical studies.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyue Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria-Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Saidi S, Remok F, Handaq N, Drioiche A, Gourich AA, Menyiy NE, Amalich S, Elouardi M, Touijer H, Bouhrim M, Bouissane L, Nafidi HA, Bin Jardan YA, Bourhia M, Zair T. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life (Basel) 2023; 13:life13051165. [PMID: 37240812 DOI: 10.3390/life13051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In Morocco, many applications in ethnomedicine on Ajuga iva (L.) have been recognized as able to treat various pathologies such as diabetes, stress, and microbial infections. The objective of this work is to carry out phytochemical, biological, and pharmacological investigations on the extracts of Ajuga iva leaves in order to confirm its therapeutic effects. The phytochemical screening carried out on the different extracts of Ajuga iva showed its richness in primary (lipids and proteins) and secondary metabolites (flavonoids, tannins, reducing compounds, oses, and holoside. The best contents of polyphenols, flavonoids, and tannins evaluated by spectrophotometric methods were found in the hydroethanolic extract (69.850 ± 2.783 mg EAG/g DE, 17.127 ± 0.474 mg EQ/g DE, 5.566 ± 0.000 mg EQC/g DE), respectively. Analysis of the chemical composition of the aqueous extract by LC/UV/MS revealed 32 polyphenolic compounds including ferulic acid (19.06%), quercetin (10.19%), coumaric acid (9.63%), and apigenin-7-(2-O-apiosylglucoside) (6.8%). The antioxidant activity of Ajuga iva extracts was evaluated by three methods (DPPH*, FRAP, CAT). The hydroethanolic extract recorded the strongest reducing power: DPPH* (IC50 = 59.92 ± 0.7 µg/mL), FRAP (EC50 = 196.85 ± 1.54 (µg/mL), and CAT (199.21 ± 0.37 mg EAG/gE). A strong correlation between phenolic compounds and antioxidant activities was confirmed by the determination of Pearson's coefficient. The antimicrobial activity of Ajuga iva studied by the microtiter method revealed potent antifungal and antibacterial qualities against Candida parapsilosis and Staphylococcus aureus BLACT. An in vivo oral glucose tolerance test (OGTT) using normal rats revealed that the antihyperglycemic action of the aqueous extract significantly reduced postprandial hyperglycaemia at (30 min, p < 0.01) and area under the curve (AUC glucose), p < 0.01. Similarly, the aqueous extract, tested on pancreatic α-amylase enzyme activity in vitro and in vivo significantly inhibited pancreatic α-amylase activity with IC50 = 1.52 ± 0.03 mg/mL. In conclusion, the extract from Ajuga iva could be a good source of bioactive molecules, which exhibit potent antioxidant and antimicrobial activity, as well as strong antidiabetic activity, for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Soukaina Saidi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Firdaous Remok
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Nadia Handaq
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Plant Valorization and Protection Research Team, Laboratory of Environmental Biology and Sustainable Development, Higher Normal School of Tetouan, Abdelmaek Essaadi University, Tetouan 93000, Morocco
| | - Aziz Drioiche
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Smail Amalich
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohamed Elouardi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Hanane Touijer
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Latifa Bouissane
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Laayoune 70000, Morocco
| | - Touriya Zair
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| |
Collapse
|
44
|
Barrea L, Vetrani C, Verde L, Frias-Toral E, Ceriani F, Cernea S, Docimo A, Graziadio C, Tripathy D, Savastano S, Colao A, Muscogiuri G. Comprehensive Approach to Medical Nutrition Therapy in Patients with Type 2 Diabetes Mellitus: From Diet to Bioactive Compounds. Antioxidants (Basel) 2023; 12:904. [PMID: 37107279 PMCID: PMC10135374 DOI: 10.3390/antiox12040904] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
In the pathogenesis of type 2 diabetes mellitus (T2DM), diet plays a key role. Individualized medical nutritional therapy, as part of lifestyle optimization, is one of the cornerstones for the management of T2DM and has been shown to improve metabolic outcomes. This paper discusses major aspects of the nutritional intervention (including macro- and micronutrients, nutraceuticals, and supplements), with key practical advice. Various eating patterns, such as the Mediterranean-style, low-carbohydrate, vegetarian or plant-based diets, as well as healthy eating plans with caloric deficits have been proven to have beneficial effects for patients with T2DM. So far, the evidence does not support a specific macronutrient distribution and meal plans should be individualized. Reducing the overall carbohydrate intake and replacing high glycemic index (GI) foods with low GI foods have been shown as valid options for patients with T2DM to improve glycemic control. Additionally, evidence supports the current recommendation to reduce the intake of free sugars to less than 10% of total energy intake, since their excessive intake promotes weight gain. The quality of fats seems to be rather important and the substitution of saturated and trans fatty acids with foods rich in monounsaturated and polyunsaturated fats lowers cardiovascular risk and improves glucose metabolism. There is no benefit of supplementation with antioxidants, such as carotene, vitamins E and C, or other micronutrients, due to the lack of consistent evidence showing efficacy and long-term safety. Some studies suggest possible beneficial metabolic effects of nutraceuticals in patients with T2DM, but more evidence about their efficacy and safety is still needed.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Isola F2, 80143 Napoli, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Claudia Vetrani
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Isola F2, 80143 Napoli, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Florencia Ceriani
- Nutrition School, Universidad de la Republica (UdelaR), Montevideo 11100, Uruguay
| | - Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 540146 Târgu Mureş, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540146 Târgu Mureş, Romania
| | - Annamaria Docimo
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Chiara Graziadio
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Devjit Tripathy
- Division of Diabetes UT Health and ALM VA Hospital, San Antonio, TX 78229, USA
| | - Silvia Savastano
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute e Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute e Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
45
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
46
|
Al-Massarani SM, Aldurayhim LS, Alotaibi IA, Abdelmageed MWM, Rehman MT, Basudan OA, Abdel-Kader MS, Alajmi MF, Abdel Bar FM, Alam P, Al Tamimi MM, El Gamal AA. Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. Pharmaceuticals (Basel) 2023; 16:ph16040498. [PMID: 37111255 PMCID: PMC10146147 DOI: 10.3390/ph16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1–4), including a new one (4), and four indole alkaloids (5–8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT1A and 5-HT2A, subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of −7.4 kcal mol−1. Moreover, compound 8 displayed the strongest affinity, with binding energies of −6.9 kcal/mol to 5HT1A and −8.1 kcal/mol to 5HT2A, using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r2) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100–1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 μg/mg of dried extract.
Collapse
|
47
|
Hajihashemi P, Feizi A, Heidari Z, Haghighatdoost F. Association of omega-6 polyunsaturated fatty acids with blood pressure: A systematic review and meta-analysis of observational studies. Crit Rev Food Sci Nutr 2023; 63:2247-2259. [PMID: 36939291 DOI: 10.1080/10408398.2021.1973364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
OBJECTIVES This systematic review and meta-analysis aimed at summarizing earlier findings on the association of n-6 PUFAs levels in diets or blood with blood pressure. METHODS PubMed/Medline, Scopus, and Web of Science were searched for observational studies. Publications with data on the risk of hypertension, or the correlation between n-6 PUFAs or mean values of serum n-6 PUFAs levels in normotensive and hypertensive were included. RESULTS Twenty-two studies (16 cross-sectional studies, 5 cohorts and one case-control) were eligible. Combining 14 extracted effect sizes showed that higher circulatory/dietary n-6 PUFAs tended to be associated with 10% lower risk of HTN (95% CI: 0.81, 1.00), whereas combining 23 effect sizes illustrated no difference in circulatory/dietary n-6 PUFAs mean levels between normotensive and hypertensive subjects. According to subgroup analysis based on fatty acid types, total n-6 PUFAs (OR = 0.82, 95% CI: 0.70, 0.97) and linoleic acid (OR = 0.56, 95% CI: 0.39, 0.82) were inversely related to the risk of HTN. Circulatory/dietary n-6 PUFAs were correlated neither with systolic nor with diastolic blood pressure. CONCLUSIONS Higher circulatory/dietary n-6 PUFAs tend to be associated with lower odds of HTN. Particularly, total n-6 PUFAs and linoleic acid were associated with lower risk of HTN.
Collapse
Affiliation(s)
- Parisa Hajihashemi
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Biostatistics and Epidemiology Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Biostatistics and Epidemiology Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Cardiac Rehabilitation Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Melloni M, Sergi D, Simioni C, Passaro A, Neri LM. Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. BIOLOGY 2023; 12:449. [PMID: 36979141 PMCID: PMC10044993 DOI: 10.3390/biology12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Microalgae represent a growing innovative source of nutraceuticals such as carotenoids and phenolic compound which are naturally present within these single-celled organisms or can be induced in response to specific growth conditions. The presence of the unfavourable allelic variant in genes involved in the control of oxidative stress, due to one or more SNPs in gene encoding protein involved in the regulation of redox balance, can lead to pathological conditions such as insulin resistance, which, in turn, is directly involved in the pathogenesis of type 2 diabetes mellitus. In this review we provide an overview of the main SNPs in antioxidant genes involved in the promotion of insulin resistance with a focus on the potential role of microalgae-derived antioxidant molecules as novel nutritional tools to mitigate oxidative stress and improve insulin sensitivity.
Collapse
Affiliation(s)
- Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
49
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
50
|
Liang Z, Lou Y, Li Z, Liu S. Causal relationship between human blood omega-3 fatty acids and the risk of epilepsy: A two-sample Mendelian randomization study. Front Neurol 2023; 14:1130439. [PMID: 36970527 PMCID: PMC10034028 DOI: 10.3389/fneur.2023.1130439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThough omega-3 fatty acids reduce seizures in several animal models, considerable controversy exists regarding the association between omega-3 fatty acids and epilepsy in human.ObjectiveTo assess whether genetically determined human blood omega-3 fatty acids are causally associated with the risk of epilepsy outcomes.MethodsWe conducted a two-sample Mendelian randomization (MR) analysis by applying summary statistics of genome-wide association study datasets of both exposure and outcomes. Single nucleotide polymorphisms significantly associated with blood omega-3 fatty acids levels were selected as instrumental variables to estimate the causal effects on epilepsy. Five MR analysis methods were conducted to analyze the final results. The inverse-variance weighted (IVW) method was used as the primary outcome. The other MR analysis methods (MR-Egger, weighted median, simple mode, and weighted mode) were conducted as the complement to IVW. Sensitivity analyses were also conducted to evaluate heterogeneity and pleiotropy.ResultsGenetically predicted the increase of human blood omega-3 fatty acids levels was associated with a higher risk of epilepsy (OR = 1.160, 95%CI = 1.051–1.279, P = 0.003).ConclusionsThis study revealed a causal relationship between blood omega-3 fatty acids and the risk of epilepsy, thus providing novel insights into the development mechanism of epilepsy.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Zijian Li
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Songyan Liu
| |
Collapse
|