1
|
Petit P, Vuillerme N. Global research trends on the human exposome: a bibliometric analysis (2005-2024). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36197-7. [PMID: 40056347 DOI: 10.1007/s11356-025-36197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Exposome represents one of the most pressing issues in the environmental science research field. However, a comprehensive summary of worldwide human exposome research is lacking. We aimed to explore the bibliometric characteristics of scientific publications on the human exposome. A bibliometric analysis of human exposome publications from 2005 to December 2024 was conducted using the Web of Science in accordance with PRISMA guidelines. Trends/hotspots were investigated with keyword frequency, co-occurrence, and thematic map. Sex disparities in terms of publications and citations were examined. From 2005 to 2024, 931 publications were published in 363 journals and written by 4529 authors from 72 countries. The number of publications tripled during the last 5 years. Publications written by females (51% as first authors and 34% as last authors) were cited fewer times (13,674) than publications written by males (22,361). Human exposome studies mainly focused on air pollution, metabolomics, chemicals (e.g., per- and polyfluoroalkyl substances (PFAS), endocrine-disrupting chemicals, pesticides), early-life exposure, biomarkers, microbiome, omics, cancer, and reproductive disorders. Social and built environment factors, occupational exposure, multi-exposure, digital exposure (e.g., screen use), climate change, and late-life exposure received less attention. Our results uncovered high-impact countries, institutions, journals, references, authors, and key human exposome research trends/hotspots. The use of digital exposome technologies (e.g., sensors, and wearables) and data science (e.g., artificial intelligence) has blossomed to overcome challenges and could provide valuable knowledge toward precision prevention. Exposome risk scores represent a promising research avenue.
Collapse
Affiliation(s)
- Pascal Petit
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France.
- Laboratoire AGEIS, Université Grenoble Alpes, Bureau 315, Bâtiment Jean Roget, UFR de Médecine, Domaine de La Merci, 38706, La Tronche Cedex, France.
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Nakiwala D, Adgate JL, Wilkening G, Barrett ES, Ghassabian A, Ruden DM, Schantz SL, Dunlop AL, Brennan PA, Meeker JD, Dabelea D, Starling AP. Neurobehavioral effects of gestational exposure to mixtures of non-persistent endocrine disruptors in preschool-aged children: The environmental influences on child health outcomes (ECHO) program. ENVIRONMENTAL RESEARCH 2025; 272:121131. [PMID: 39971110 DOI: 10.1016/j.envres.2025.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Affiliation(s)
- Dorothy Nakiwala
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, USA
| | - Greta Wilkening
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Akhgar Ghassabian
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas M Ruden
- Institute of Environmental Health Sciences, C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Susan L Schantz
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 N Mathews, Urbana, IL, 61801, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana Dabelea
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Warkentin S, Stratakis N, Fabbri L, Wright J, Yang TC, Bryant M, Heude B, Slama R, Montazeri P, Vafeiadi M, Grazuleviciene R, Brantsæter AL, Vrijheid M. Dietary patterns among European children and their association with adiposity-related outcomes: a multi-country study. Int J Obes (Lond) 2025; 49:295-305. [PMID: 39465309 PMCID: PMC11805707 DOI: 10.1038/s41366-024-01657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND/OBJECTIVE Children's diets in school-age are inherently unhealthy, with few meeting dietary recommendations. Yet, little is known about similarities and differences on dietary patterns across countries and their association with obesity. We aimed to derive dietary patterns in childhood and explore their association with adiposity-related outcomes in childhood and adolescence. SUBJCTS/METHODS This study included data from six European countries (Spain, France, UK, Greece, Lithuania and Norway) during childhood (n = 1597) and adolescence (n = 803). Using a food frequency questionnaire, we derived data-driven dietary patterns through exploratory factor analyses and calculated the Mediterranean KIDMED index. We assessed body mass index z-score (zBMI), fat mass proportion and waist-to-height ratio at both visits. Associations were estimated using generalized linear regressions, adjusted for key-confounders. RESULTS "Meat", "Dairy", "Western", "Healthy" and "Sweets and fats" dietary patterns were derived. Norwegian children showed better diet quality, with higher consumption of fruits and vegetables, and highest "Healthy pattern" adherence, and Lithuanian children, the worst, with higher sweets consumption, and highest "Western pattern" adherence. Children with lower intake of healthy foods (vegetables, fruits, fish) tended to have higher adiposity, e.g., children with average or low "Healthy pattern" adherence (vs. high) had higher fat mass proportion in childhood (average: β (95% CI) 1.44 (0.48; 2.39), low: 1.10 (0.09; 2.12)). Low adherence to a "Healthy pattern" (vs. high) was associated with increased adolescent zBMI, and child and adolescent waist-to-height ratio. Low "Dairy pattern" adherence (vs. high), was associated with lower zBMI and fat mass in childhood, but not in adolescence. No significant associations were seen with the KIDMED index. CONCLUSIONS Many European children have poor diets and a low adherence to a healthy diet pattern may be of concern for adiposity-related outcomes. Assessment of children's dietary patterns can help tailor dietary advice and provide support for families aiming to prevent future excess weight gain.
Collapse
Affiliation(s)
- Sarah Warkentin
- ISGlobal, Barcelona, Spain.
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorenzo Fabbri
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Maria Bryant
- Department of Health Sciences and the Hull York Medical School, University of York, York, UK
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Remy Slama
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Parisa Montazeri
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | - Anne Lise Brantsæter
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Baker JL, Gordon-Dseagu VL, Voortman T, Chan D, Herceg Z, Robinson S, Norat T, Croker H, Ong K, Kampman E. Lifecourse research in cancer: context, challenges, and opportunities when exploring exposures in early life and cancer risk in adulthood. HEALTH OPEN RESEARCH 2025; 6:16. [PMID: 39974286 PMCID: PMC11836561 DOI: 10.12688/healthopenres.13748.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
As the global population ages, and rates of modifiable risk factors for cancer change, cancer incidence and mortality continue to increase. While we understand many modifiable risk factors related to diet, nutrition, bodyweight, and physical activity in adulthood that influence cancer risk, how exposure during childhood, adolescence, and young adulthood impacts cancer risk is less clear. This is partly because the timeline from initial mutation to cancer development and diagnosis can span several decades. This long latency period creates methodological, ethical, and financial issues; as well as resource and feasibility challenges in the design, implementation, and data analysis of lifecourse studies. As such, the large majority of lifecourse studies are observational, often using recall data which has inherent bias issues. Concurrently, a new research era has begun, with mature birth cohort studies that are phenotyped/genotyped and can support studies on adult cancer risk. Several studies and consortia contain information spanning the lifecourse. These resources can support association, mechanistic and epigenetic investigations into the influences of multi-disciplinary (e.g. genetic, behavioural, environmental) factors, across the lifecourse and critical time periods. Ultimately, we will be able to produce high-quality evidence and identify how/when early life risk factors impact cancer development and survival.
Collapse
Affiliation(s)
- Jennifer L. Baker
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, University of Copenhagen, Frederiksberg, Denmark
| | | | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, Erasmus, Rotterdam, The Netherlands
| | - Doris Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, England, UK
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), World Health Organisation, Lyon, France
| | - Sian Robinson
- AGE Research Group, Newcastle University, Newcastle upon Tyne, England, UK
| | - Teresa Norat
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, England, UK
| | - Helen Croker
- World Cancer Research Fund International, London, England, UK
| | - Ken Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, England, UK
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Wang C, Martens DS, Bustamante M, Alfano R, Plusquin M, Maitre L, Wright J, McEachan RRC, Lepeule J, Slama R, Vafeiadi M, Chatzi L, Grazuleviciene R, Gutzkow KB, Keun H, Borràs E, Sabidó E, Carracedo A, Escarami G, Anguita-Ruiz A, Pelegrí-Sisó D, Gonzalez JR, Vrijheid M, Nawrot TS. The multi-omics signatures of telomere length in childhood. BMC Genomics 2025; 26:75. [PMID: 39871190 PMCID: PMC11771044 DOI: 10.1186/s12864-025-11209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood telomere length. METHODS This study included 1001 children aged 6 to 11 years from the Human Early-life Exposome (HELIX) project. Telomere length was quantified via qPCR in peripheral blood of the children. Blood DNA methylation, gene expression, miRNA expression, plasma proteins and serum and urinary metabolites were measured through microarrays or (semi-) targeted assays. The association between each individual omics feature and telomere length was assessed in omics-wide association analyses. In addition, a literature-guided, sparse supervised integration method was applied to multiple omics, and latent components were extracted as predictors of child telomere length. The association of these latent components with early-life aging risk factors (child lifestyle, body mass index (BMI), exposure to smoking, etc.), were interrogated. RESULTS After multiple-testing correction, only two CpGs (cg23686403 and cg16238918 at PARD6G gene) out of all the omics features were significantly associated with child telomere length. The supervised multi-omics integration approach revealed robust associations between latent components and child BMI, with metabolites and proteins emerging as the primary contributing features. In these latent components, the contributing molecular features were known as involved in metabolism and immune regulation-related pathways. CONCLUSIONS Findings of this multi-omics study suggested an intricate interplay between telomere length, metabolism and immune responses, providing valuable insights into the molecular underpinnings of the early-life biological aging.
Collapse
Affiliation(s)
- Congrong Wang
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rossella Alfano
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Lea Maitre
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hector Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER-ISCIII), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Georgia Escarami
- CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, Institute for Global Health, Barcelona, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Juan R Gonzalez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tim S Nawrot
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium.
- Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Stratakis N, Anguita-Ruiz A, Fabbri L, Maitre L, González JR, Andrusaityte S, Basagaña X, Borràs E, Keun HC, Chatzi L, Conti DV, Goodrich J, Grazuleviciene R, Haug LS, Heude B, Yuan WL, McEachan R, Nieuwenhuijsen M, Sabidó E, Slama R, Thomsen C, Urquiza J, Roumeliotaki T, Vafeiadi M, Wright J, Bustamante M, Vrijheid M. Multi-omics architecture of childhood obesity and metabolic dysfunction uncovers biological pathways and prenatal determinants. Nat Commun 2025; 16:654. [PMID: 39809770 PMCID: PMC11732992 DOI: 10.1038/s41467-025-56013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Childhood obesity poses a significant public health challenge, yet the molecular intricacies underlying its pathobiology remain elusive. Leveraging extensive multi-omics profiling (methylome, miRNome, transcriptome, proteins and metabolites) and a rich phenotypic characterization across two parts of Europe within the population-based Human Early Life Exposome project, we unravel the molecular landscape of childhood obesity and associated metabolic dysfunction. Our integrative analysis uncovers three clusters of children defined by specific multi-omics profiles, one of which characterized not only by higher adiposity but also by a high degree of metabolic complications. This high-risk cluster exhibits a complex interplay across many biological pathways, predominantly underscored by inflammation-related cascades. Further, by incorporating comprehensive information from the environmental risk-scape of the critical pregnancy period, we identify pre-pregnancy body mass index and environmental pollutants like perfluorooctanoate and mercury as important determinants of the high-risk cluster. Overall, our work helps to identify potential risk factors for prevention and intervention strategies early in the life course aimed at mitigating obesity and its long-term health consequences.
Collapse
Affiliation(s)
- Nikos Stratakis
- Institute for Global Health (ISGlobal), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Augusto Anguita-Ruiz
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Lorenzo Fabbri
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Juan R González
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Regina Grazuleviciene
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rémy Slama
- Department of Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Theano Roumeliotaki
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
7
|
Llauradó-Pont J, Stratakis N, Fiorito G, Handakas E, Neumann A, Barros H, Brantsæter AL, Chang K, Chatzi L, Felix JF, Grazuleviciene R, Jaddoe VWV, Karachaliou M, Lecorguillé M, Lopes C, Millett C, McEachan RRC, Papadopoulou E, Slama R, Vamos EP, Vineis P, Vrijheid M, Wright J, Voortman T, Bustamante M, Robinson O, Lassale C. A meta-analysis of epigenome-wide association studies of ultra-processed food consumption with DNA methylation in European children. Clin Epigenetics 2025; 17:3. [PMID: 39773758 PMCID: PMC11706074 DOI: 10.1186/s13148-024-01782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE There is limited knowledge on how diet affects the epigenome of children. Ultra-processed food (UPF) consumption is emerging as an important factor impacting health, but mechanisms need to be uncovered. We therefore aimed to assess the association between UPF consumption and DNA methylation in children. METHODS We conducted a meta-analysis of epigenome-wide association studies (EWAS) from a total of 3152 children aged 5-11 years from four European studies (HELIX, Generation XXI, ALSPAC, and Generation R). UPF consumption was defined applying the Nova food classification system (group 4), and DNA methylation was measured in blood with Illumina Infinium Methylation arrays. Associations were estimated within each cohort using robust linear regression models, adjusting for relevant covariates, followed by a meta-analysis of the resulting EWAS estimates. RESULTS Although no CpG was significant at FDR level, we found suggestive associations (p-value < 10-5) between UPF consumption and methylation at seven CpG sites. Three of them, cg00339913 (PHYHIP), cg03041696 (intergenic), and cg03999434 (intergenic), were negatively associated, whereas the other four, cg14665028 (NHEJ1), cg18968409 (intergenic), cg24730307 (intergenic), and cg09709951 (ATF7), were positively associated with UPF intake. These CpGs have been previously associated with health outcomes such as carcinomas, and the related genes are mainly involved in pathways related to thyroid hormones and liver function. CONCLUSION We only found suggestive changes in methylation at 7 CpGs associated with UPF intake in a large EWAS among children: although this shows a potential impact of UPF intake on DNAm, this might not be a key mechanism underlying the health effects of UPFs in children. There is a need for more detailed dietary assessment in children studies and of intervention studies to assess potential epigenetic changes linked to a reduction in UPF in the diet.
Collapse
Affiliation(s)
| | | | - Giovanni Fiorito
- Clinical Bioinformatics Unit, IRCCS Instituto Giannina Gaslini, Genova, Italy
| | - Evangelos Handakas
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henrique Barros
- Generation XXI Study Group, EPIUNIT/ITR- Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal
| | - Anne Lise Brantsæter
- Department of Food Safety, Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Kiara Chang
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Marion Lecorguillé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and Statistics (CRESS), Paris, France
| | - Carla Lopes
- Generation XXI Study Group, EPIUNIT/ITR- Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal
| | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Eleni Papadopoulou
- Division of Health Service, Global Health Cluster, Norwegian Institute of Public Health, Oslo, Norway
| | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Eszter P Vamos
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
| | - Paolo Vineis
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Camille Lassale
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consortium for Biomedical Research - Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Cosin-Tomas M, Hoang T, Qi C, Monasso GS, Langdon R, Kebede Merid S, Calas L, de Prado-Bert P, Richmond R, Jaddoe VV, Duijts L, Wright J, Annesi-Maesano I, Grazuleviciene R, Karachaliou M, Koppelman GH, Melén E, Gruzieva O, Vrijheid M, Yousefi P, Felix JF, London SJ, Bustamante M. Association of exposure to second-hand smoke during childhood with blood DNA methylation. ENVIRONMENT INTERNATIONAL 2025; 195:109204. [PMID: 39693780 DOI: 10.1016/j.envint.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION By recent estimates, 40% of children worldwide are exposed to second-hand smoke (SHS), which has been associated with adverse health outcomes. While numerous studies have linked maternal smoking during pregnancy (MSDP) to widespread differences in child blood DNA methylation (DNAm), research specifically examining postnatal SHS exposure remains sparse. To address this gap, we conducted epigenome-wide meta-analyses to identify associations of postnatal SHS and child blood DNAm. METHODS Six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium (total N = 2,695), with SHS data and child blood DNAm (aged 7-9 years) measured with the Illumina 450K array were included in the meta-analysis. Linear regression models adjusted for covariates were fitted to examine the association between the number of household smokers in postnatal life (0, 1, 2+) and child blood DNAm. Sensitivity models without adjusting for MSDP and restricted to mothers who did not smoke during pregnancy were evaluated. RESULTS Our analysis revealed significant associations (False Discovery Rate < 0.05) between household postnatal SHS exposure and DNAm at 11 CpGs in exposed children. Nine CpGs were mapped to genes (MYO1G, FAM184B, CTDSPL2, LTBP3, PDE10A, and FIBCD1), while 2 CpGs were located in open sea regions. Notably, all except 2 CpGs (mapped to FIBCD1 and CTDSPL2) have previously been linked to either personal smoking habits or in utero exposure to smoking. The models restricted to non-smoking mothers provided similar results. Importantly, several of these CpGs and their associated genes are implicated in conditions exacerbated by or directly linked to SHS. CONCLUSIONS Our findings highlight the potential biological effects of SHS on blood DNAm. These findings support further research on epigenetic factors mediating deleterious effects of SHS on child health and call for public health policies aimed at reducing exposure, particularly in environments where children are present.
Collapse
Affiliation(s)
- Marta Cosin-Tomas
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain.
| | - Thanh Hoang
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Cancan Qi
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Microbiome Medicine Center, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Lucinda Calas
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Paula de Prado-Bert
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincent Vw Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Isabella Annesi-Maesano
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | | | - Marianna Karachaliou
- ISGlobal, Barcelona, Catalonia, Spain; Clinic of preventive and Social Medicine, Medical School, University of Crete, Iraklio, Greece
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Olena Gruzieva
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martine Vrijheid
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| |
Collapse
|
9
|
Fabbri L, Robinson O, Basagaña X, Chatzi L, Gražulevičienė R, Guxens M, Kadawathagedara M, Sakhi AK, Maitre L, McEachan R, Philippat C, Pozo ÓJ, Thomsen C, Wright J, Yang T, Vrijheid M. Childhood exposure to non-persistent endocrine disruptors, glucocorticosteroids, and attentional function: A cross-sectional study based on the parametric g-formula. ENVIRONMENTAL RESEARCH 2025; 264:120413. [PMID: 39577729 DOI: 10.1016/j.envres.2024.120413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Evidence suggests that endocrine disrupting chemicals (EDCs) may perturb the hypothalamic-pituitary-adrenocortical (HPA) axis, which has a major role in brain development. We aimed to evaluate the effects of childhood exposure to organophosphate pesticides, phenols, and phthalate metabolites, on urinary glucocorticosteroids and inattention in childhood. METHODS We used data from the Human Early-Life Exposome (HELIX) cohort (2013-2016) and the parametric g-formula to estimate associations between EDCs, glucocorticosteroids, and hit reaction time standard error (HRT-SE), a measure of inattention, and tested for possible effect modification by sex. RESULTS We observed a positive marginal contrast (MC) for exposure increases from the 10th to the 90th percentile for methyl-paraben (MC: 0.042 and 95% confidence interval (CI): (0.013, 0.071)), and the phthalate metabolites oxo-MiNP (MC: 0.023 and 95% CI: (0.003, 0.044)), oh-MiNP (MC: 0.039 and 95% CI: (0.001, 0.076)), and MEHP (MC: 0.036 and 95% CI: (0.008, 0.063)), on HRT-SE, indicating lower attention. Several EDCs were also associated with a positive MC for cortisone, cortisol, and corticosterone production. Increased levels of the glucocorticosteroids were not associated with HRT-SE, although we found a possible effect modification by sex. CONCLUSIONS Our results suggest that multiple EDCs might interfere with inattention and with the homeostasis of the HPA axis.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands; ICREA, Barcelona, Spain
| | - Manik Kadawathagedara
- Centre for Research in Epidemiology and Statistics, Equipe EAROH, Université Paris Cité, Université Sorbonne Paris Nord, Île-de-France, France
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Óscar J Pozo
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Bozec J, Rousseau-Ralliard D, Jouneau L, Prézelin A, Dahirel M, Richard C, Gelin V, Fournier N, Helies V, Joly T, El Fouikar S, Léandri R, Chavatte-Palmer P, Couturier-Tarrade A. Preconception and/or preimplantation exposure to a mixture of environmental contaminants altered fetoplacental development and placental function in a rabbit model. ENVIRONMENTAL RESEARCH 2024; 262:119829. [PMID: 39179140 DOI: 10.1016/j.envres.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Pregnant women are daily exposed to environmental contaminants, including endocrine disruptors that can impact the offspring's health. This study aimed to evaluate the effects of maternal oral exposure to a mixture of contaminants at a dose mimicking women's exposure, during folliculogenesis and/or preimplantation period (FED and ED groups, respectively) on the fetoplacental phenotype in a rabbit model. The mixture (DEHP, pp'DDE, β-HCH, HCB, BDE-47, BPS, PFOS, PFOA) was defined based on data from HELIX and INMA cohorts. FED and ED females or unexposed females (control) were inseminated, their embryos were collected and transferred to unexposed control recipient rabbits at 80 h post-insemination. The effects of maternal FED and ED exposure were evaluated on fetoplacental growth and development by ultrasound, fetoplacental biometry, fetal metabolism, placental structure and function. The results demonstrated that the mixture weakly affected ultrasound measurements, as only placental volume increased significantly in FED vs ED. Analysis of placental structure demonstrated that the volume fraction of the maternal blood space was increased in FED vs control. Pre- and/or periconception exposure did not affect biometric at the end of gestation, but affected FED fetal biochemistry. Plasma triglyceride concentration was reduced compared to control. However, total cholesterol, urea, ASAT and ALAT in fetal blood were affected in both exposed groups. Multiple factor analysis, including biometric, biochemical, and stereological datasets, indicated that the three groups were significantly different. Additionally, several placental genes were differentially expressed between groups, compared two by two, in a sex-specific manner, with more difference in females than in males. The differentially expressed genes were involved in lipid, cholesterol, and drug/xenobiotic metabolism in both sexes. These results indicate that maternal exposure to environmental contaminants during crucial developmental windows only mildly impaired fetoplacental development but disturbed fetal blood biochemistry and placental gene expression with potential long-term effects on offspring phenotype.
Collapse
Affiliation(s)
- Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Natalie Fournier
- Lip(Sys)2 - EA 7357, Athérosclérose et Macrophages: Impact des Phospholipides et des Fonctions Mitochondriales sur L'efflux du Cholestérol, Université Paris Saclay, UFR de Pharmacie, 91400, Orsay, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Virginie Helies
- GenPhySE, INRAE, Université de Toulouse, INPT, ENVT, Castanet Tolosan, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup, UPSP Interaction Cellule Environnement, 69280, Marcy L'Etoile, France; Université de Lyon, ISARA-Lyon, 69007, Lyon, France
| | - Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Médecine de La Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
11
|
Wang S, Casey E, Sordillo J, Aguilar-Lacasaña S, Morales Berstein F, Biedrzycki RJ, Brescianini S, Chen S, Hough A, Isaevska E, Kim WJ, Lecorguillé M, Li SS, Page CM, Park J, Röder S, Salontaji K, Santorelli G, Sun Y, Won S, Zillich E, Zillich L, Annesi-Maesano I, Arshad SH, Bustamante M, Cecil CAM, Elliott HR, Ewart S, Felix JF, Gagliardi L, Håberg SE, Herberth G, Heude B, Holloway JW, Huels A, Karmaus W, Koppelman GH, London SJ, Mumford SL, Nisticò L, Popovic M, Rusconi F, Schisterman EF, Stein DJ, Send T, Tiemeier H, Vonk JM, Vrijheid M, Wiemels JL, Witt SH, Wright J, Yeung EH, Zar HJ, Zenclussen AC, Zhang H, Chavarro JE, Hivert MF. Cesarean delivery and blood DNA methylation at birth and childhood: Meta-analysis in the Pregnancy and Childhood Epigenetics Consortium. SCIENCE ADVANCES 2024; 10:eadr2084. [PMID: 39602535 PMCID: PMC11601205 DOI: 10.1126/sciadv.adr2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Children born via cesarean delivery have a higher risk of metabolic, immunological, and neurodevelopmental disorders compared to those born via vaginal delivery, although mechanisms remain unclear. We conducted a meta-analysis of epigenome-wide association studies to examine the associations between delivery mode and blood DNA methylation at birth and its persistence in early childhood. Participants were from 19 pregnancy cohorts (9833 term newborns) and 6 pediatric cohorts (2429 children aged 6 to 10 years). We identified six CpGs in cord blood associated with cesarean delivery (effect size range: 0.4 to 0.7%, P < 1.0 × 10-7): MAP2K2 (cg19423175), LIM2 (cg01500140), CNP (cg13917614), BLM (cg18247172), RASA3 (cg22348356), and RUNX3 (cg20674490), independent of cell proportions and other confounders. In childhood, none of these CpGs were associated with cesarean delivery, and no additional CpGs were identified. Delivery mode was associated with cell proportions at birth but not in childhood. Further research is needed to elucidate cesarean delivery's molecular influence on offspring health.
Collapse
Affiliation(s)
- Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Emma Casey
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joanne Sordillo
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Fernanda Morales Berstein
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Richard J. Biedrzycki
- Glotech Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850, USA
| | - Sonia Brescianini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161 Italy
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amy Hough
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon 24289, Korea
| | - Marion Lecorguillé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Sebastian Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
- Department of Physical Health and Aging, Division for Mental and Physical Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | | | - Yidan Sun
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen 9700 RB, Netherlands
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
- Department of Public Health Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eric Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Isabella Annesi-Maesano
- Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, Montpellier, France
- Division of Respiratory Medicine, Allergology, and of Thoracic Oncology, University Hospital of Montpellier, 34093 Montpellier, France
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | - Luigi Gagliardi
- Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa 56121, Italy
| | - Siri E. Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Kalfarveien 31, N-5018 Bergen, Norway
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen 9700 RB, Netherlands
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sunni L. Mumford
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, PA 19087, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Lorenza Nisticò
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161 Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Franca Rusconi
- Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa 56121, Italy
| | - Enrique F. Schisterman
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, PA 19087, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Dan J. Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa
| | - Tabea Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Judith M. Vonk
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen 9700 RB, Netherlands
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Joseph Leo Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - John Wright
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Edwina H. Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Heather J. Zar
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, Department of Paediatrics, University of Cape Town, Rondebosch 7700, South Africa
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
13
|
Zhao Y, Jia Q, Goodrich J, Darst B, Conti DV. An extension of latent unknown clustering integrating multi-omics data (LUCID) incorporating incomplete omics data. BIOINFORMATICS ADVANCES 2024; 4:vbae123. [PMID: 39224838 PMCID: PMC11368387 DOI: 10.1093/bioadv/vbae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Motivation Latent unknown clustering integrating multi-omics data is a novel statistical model designed for multi-omics data analysis. It integrates omics data with exposures and an outcome through a latent cluster, elucidating how exposures influence processes reflected in multi-omics measurements, ultimately affecting an outcome. A significant challenge in multi-omics analysis is the issue of list-wise missingness. To address this, we extend the model to incorporate list-wise missingness within an integrated imputation framework, which can also handle sporadic missingness when necessary. Results Simulation studies demonstrate that our integrated imputation approach produces consistent and less biased estimates, closely reflecting true underlying values. We applied this model to data from the ISGlobal/ATHLETE "Exposome Data Challenge Event" to explore the association between maternal exposure to hexachlorobenzene and childhood body mass index by integrating incomplete proteomics data from 1301 children. The model successfully estimated proteomics profiles for two clusters representing higher and lower body mass index, characterizing the potential profiles linking prenatal hexachlorobenzene levels and childhood body mass index. Availability and implementation The proposed methods have been implemented in the R package LUCIDus. The source code is available at https://github.com/USCbiostats/LUCIDus.
Collapse
Affiliation(s)
- Yinqi Zhao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Qiran Jia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Burcu Darst
- Public Health Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, United States
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
14
|
Matus P, Urquidi C, Cárcamo M, Vidal V. Integrating the exposome and one health approach to national health surveillance: an opportunity for Latin American countries in health preventive management. Front Public Health 2024; 12:1376609. [PMID: 39211902 PMCID: PMC11359557 DOI: 10.3389/fpubh.2024.1376609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The exposome approach, emphasizing lifelong environmental exposures, is a holistic framework exploring the intricate interplay between genetics and the environment in shaping health outcomes. Complementing this, the one health approach recognizes the interconnectedness of human and ecological health within a shared ecosystem, extending to planetary health, which encompasses the entire planet. Integrating Disease Surveillance Systems with exposome, one health, and planetary health signifies a paradigm shift in health management, fostering a comprehensive public health framework. This publication advocates for combining traditional health surveillance with exposome and one health/planetary health approach, proposing a three-step approach: ecological analysis, territorial intervention in identified issues, and an analytical phase for assessing interventions. Particularly relevant for Latin American countries facing a double burden of diseases, integrating the exposome into traditional health surveillance proves cost-effective by leveraging existing data and environmental measurements. In conclusion, the integration of exposome and one health approaches into traditional health surveillance presents a robust framework for monitoring population health, especially in regions like Latin America with complex health challenges. This innovative approach enables tailored interventions, disease outbreak predictions, and a holistic understanding of the intricate links between human health and the environment, offering substantial benefits for public health and disease prevention despite existing challenges.
Collapse
Affiliation(s)
- Patricia Matus
- Department of Epidemiology and Health Studies, Universidad de Los Andes, Santiago, Chile
| | | | | | | |
Collapse
|
15
|
Marín D, Narváez DM, Sierra A, Molina JS, Ortiz I, Builes JJ, Morales O, Cuellar M, Corredor A, Villamil-Osorio M, Bejarano MA, Vidal D, Basagaña X, Anguita-Ruiz A, Maitre L, Domínguez A, Valencia A, Henao J, Abad JM, Lopera V, Amaya F, Aristizábal LM, Rodríguez-Villamizar LA, Ramos-Contreras C, López L, Hernández-Flórez LJ, Bangdiwala SI, Groot H, Rueda ZV. DNA damage and its association with early-life exposome: Gene-environment analysis in Colombian children under five years old. ENVIRONMENT INTERNATIONAL 2024; 190:108907. [PMID: 39121825 DOI: 10.1016/j.envint.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Environmental exposures and gene-exposure interactions are the major causes of some diseases. Early-life exposome studies are needed to elucidate the role of environmental exposures and their complex interactions with biological mechanisms involved in childhood health. This study aimed to determine the contribution of early-life exposome to DNA damage and the modifying effect of genetic polymorphisms involved in air pollutants metabolism, antioxidant defense, and DNA repair. We conducted a cohort study in 416 Colombian children under five years. Blood samples at baseline were collected to measure DNA damage by the Comet assay and to determine GSTT1, GSTM1, CYP1A1, H2AX, OGG1, and SOD2 genetic polymorphisms. The exposome was estimated using geographic information systems, remote sensing, LUR models, and questionnaires. The association exposome-DNA damage was estimated using the Elastic Net linear regression with log link. Our results suggest that exposure to PM2.5 one year before the blood draw (BBD) (0.83, 95 %CI: 0.76; 0.91), soft drinks consumption (0.94, 0.89; 0.98), and GSTM1 null genotype (0.05, 0.01; 0.36) diminished the DNA damage, whereas exposure to PM2.5 one-week BBD (1.18, 1.06; 1.32), NO2 lag-5 days BBD (1.27, 1.18; 1.36), in-house cockroaches (1.10, 1.00; 1.21) at the recruitment, crowding at home (1.34, 1.08; 1.67) at the recruitment, cereal consumption (1.11, 1.04; 1.19) and H2AX (AG/GG vs. AA) (1.44, 1.11; 1.88) increased the DNA damage. The interactions between H2AX (AG/GG vs. AA) genotypes with crowding and PM2.5 one week BBD, GSTM1 (null vs. present) with humidity at the first year of life, and OGG1 (SC/CC vs. SS) with walkability at the first year of life were significant. The early-life exposome contributes to elucidating the effect of environmental exposures on DNA damage in Colombian children under five years old. The exposome-DNA damage effect appears to be modulated by genetic variants in DNA repair and antioxidant defense enzymes.
Collapse
Affiliation(s)
- Diana Marín
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Diana M Narváez
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Anamaría Sierra
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Juan Sebastián Molina
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Isabel Ortiz
- Systems Biology Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Olga Morales
- Pediaciencias Group, School of Medicine, Universidad de Antioquia, Department of Pediatrics, Hospital San Vicente Fundación, Medellín, Colombia
| | - Martha Cuellar
- Pediaciencias Group, School of Medicine, Universidad de Antioquia, Department of Pediatrics, SOMER Clinic, Medellín, Colombia
| | - Andrea Corredor
- Department of Pediatrics, ONIROS Centro Especializado en Medicina integral del Sueño, Bogotá, Colombia
| | - Milena Villamil-Osorio
- Department of Pediatrics, Fundación Hospital Pediátrico la Misericordia, Bogotá, Colombia
| | | | - Dolly Vidal
- Hospital Universitario San José, Popayán, Colombia
| | - Xavier Basagaña
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Leá Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alan Domínguez
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ana Valencia
- Systems Biology Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Julián Henao
- Medical and Experimental Mycology, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Verónica Lopera
- Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Ferney Amaya
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luis M Aristizábal
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | - Lucelly López
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada; Statistics Department, Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Helena Groot
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Zulma Vanessa Rueda
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
17
|
Goodrich JA, Wang H, Jia Q, Stratakis N, Zhao Y, Maitre L, Bustamante M, Vafeiadi M, Aung M, Andrušaitytė S, Basagana X, Farzan SF, Heude B, Keun H, McConnell R, Yang TC, Siskos AP, Urquiza J, Valvi D, Varo N, Småstuen Haug L, Oftedal BM, Gražulevičienė R, Philippat C, Wright J, Vrijheid M, Chatzi L, Conti DV. Integrating Multi-Omics with environmental data for precision health: A novel analytic framework and case study on prenatal mercury induced childhood fatty liver disease. ENVIRONMENT INTERNATIONAL 2024; 190:108930. [PMID: 39128376 PMCID: PMC11620538 DOI: 10.1016/j.envint.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Precision Health aims to revolutionize disease prevention by leveraging information across multiple omic datasets (multi-omics). However, existing methods generally do not consider personalized environmental risk factors (e.g., environmental pollutants). OBJECTIVE To develop and apply a precision health framework which combines multiomic integration (including early, intermediate, and late integration, representing sequential stages at which omics layers are combined for modeling) with mediation approaches (including high-dimensional mediation to identify biomarkers, mediation with latent factors to identify pathways, and integrated/quasi-mediation to identify high-risk subpopulations) to identify novel biomarkers of prenatal mercury induced metabolic dysfunction-associated fatty liver disease (MAFLD), elucidate molecular pathways linking prenatal mercury with MAFLD in children, and identify high-risk children based on integrated exposure and multiomics data. METHODS This prospective cohort study used data from 420 mother-child pairs from the Human Early Life Exposome (HELIX) project. Mercury concentrations were determined in maternal or cord blood from pregnancy. Cytokeratin 18 (CK-18; a MAFLD biomarker) and five omics layers (DNA Methylation, gene transcription, microRNA, proteins, and metabolites) were measured in blood in childhood (age 6-10 years). RESULTS Each standard deviation increase in prenatal mercury was associated with a 0.11 [95% confidence interval: 0.02-0.21] standard deviation increase in CK-18. High dimensional mediation analysis identified 10 biomarkers linking prenatal mercury and CK-18, including six CpG sites and four transcripts. Mediation with latent factors identified molecular pathways linking mercury and MAFLD, including altered cytokine signaling and hepatic stellate cell activation. Integrated/quasi-mediation identified high risk subgroups of children based on unique combinations of exposure levels, omics profiles (driven by epigenetic markers), and MAFLD. CONCLUSIONS Prenatal mercury exposure is associated with elevated liver enzymes in childhood, likely through alterations in DNA methylation and gene expression. Our analytic framework can be applied across many different fields and serve as a resource to help guide future precision health investigations.
Collapse
Affiliation(s)
- Jesse A Goodrich
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States.
| | - Hongxu Wang
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Qiran Jia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Yinqi Zhao
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Max Aung
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytauto Didžiojo Universitetas, Kaunas, Lithuania
| | - Xavier Basagana
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Barbara Heude
- Université de Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), National Research Institute for Agriculture, Food and Environment, Centre of Research in Epidemiology and Statistics, Paris, France
| | - Hector Keun
- Department of Surgery & Cancer and Department of Metabolism Digestion & Reproduction Imperial College London, London, United Kingdom
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Alexandros P Siskos
- Department of Surgery & Cancer and Department of Metabolism Digestion & Reproduction Imperial College London, London, United Kingdom
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nerea Varo
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | | | | | - Regina Gražulevičienė
- Department of Environmental Sciences, Vytauto Didžiojo Universitetas, Kaunas, Lithuania
| | - Claire Philippat
- University Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - David V Conti
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
19
|
Bustamante M, Balagué-Dobón L, Buko Z, Sakhi AK, Casas M, Maitre L, Andrusaityte S, Grazuleviciene R, Gützkow KB, Brantsæter AL, Heude B, Philippat C, Chatzi L, Vafeiadi M, Yang TC, Wright J, Hough A, Ruiz-Arenas C, Nurtdinov RN, Escaramís G, González JR, Thomsen C, Vrijheid M. Common genetic variants associated with urinary phthalate levels in children: A genome-wide study. ENVIRONMENT INTERNATIONAL 2024; 190:108845. [PMID: 38945087 DOI: 10.1016/j.envint.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.
Collapse
Affiliation(s)
- Mariona Bustamante
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | | | - Zsanett Buko
- Department of Oncological Science, Huntsman Cancer Institute, Salt Lake City, United States
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maribel Casas
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne-Lise Brantsæter
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Reproduction and Respiratory Health Team, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Amy Hough
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Carlos Ruiz-Arenas
- Computational Biology Program, CIMA University of Navarra, idiSNA, Pamplona 31008, Spain
| | - Ramil N Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Geòrgia Escaramís
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan R González
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Martine Vrijheid
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
20
|
Tagliaferro S, Maio S, Pirona F, Stanisci I, Sarno G, Silvi P, Kermenidou M, Papaioannou N, Perchard R, Prpic I, Polanska K, Jerzynska J, Ramos E, Rovira J, Belmonte J, Snoj Tratnik JS, Horvat M, Kocman D, Spiric Z, Zickella J, Fasola S, La Grutta S, Malizia V, Montalbano L, Baldacci S, Annesi-Maesano I. Assessing external exposome by implementing an Environmental Data Management System using Open Data. Sci Rep 2024; 14:17142. [PMID: 39060268 PMCID: PMC11282278 DOI: 10.1038/s41598-024-62924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/22/2024] [Indexed: 07/28/2024] Open
Abstract
Due to the increasing importance of exposome in environmental epidemiology, feasibility and usefulness of an Environmental Data Management System (EDMS) using Open Data was evaluated. The EDMS includes data from 10 European cities (Celje (Slovenia), Łódź (Poland), Manchester (UK), Palermo (Italy), Paris (France), Porto (Portugal), Regensburg (Germany), Reus (Spain), Rijeka (Croatia), Thessaloniki (Greece)) about external non-specific and specific exposome factors at the city or country level (2017-2020). Findings showed that the highest values of life expectancy were in Reus females (86 years) and Palermo males (81 years). UK had the highest obesity rate (28%), Croatia the highest prescribed drug consumption (62%), Greece and Portugal the highest smoking rates (37%, 42%) and daily alcohol consumption (21%), respectively. The most polluted cities were Thessaloniki for PM10 (38 µg/m3), Łódź for PM2.5 (25 µg/m3), Porto for NO2 (62 µg/m3) and Rijeka for O3 (92 µg/m3). Thessaloniki had the highest grey space (98%) and Łódź the highest cumulative amount of pollen (39,041 p/m3). The highest daily noise levels ≥ 55 dB was in Reus (81% to traffic) and Regensburg (21% to railway). In drinking water, arsenic had the highest value in Thessaloniki (6.4 µg/L), boron in Celje (24 mg/L) and lead in Paris (46.7 µg/L). Portugal and Greece showed the highest pesticide residues in food (7%). In conclusion, utilizing open-access databases enables the translation of research findings into actionable strategies for public health interventions.
Collapse
Affiliation(s)
- Sofia Tagliaferro
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sara Maio
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | - Federico Pirona
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | - Ilaria Stanisci
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | - Giuseppe Sarno
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | - Patrizia Silvi
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | - Marianthi Kermenidou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- HERACLES Research Center On the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- HERACLES Research Center On the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Reena Perchard
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Igor Prpic
- Department of Pediatrics, University of Rijeka, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Kinga Polanska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Joanna Jerzynska
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Łódź (MUL), Lodz, Poland
| | - Elisabete Ramos
- Laboratório Para a Investigação Integrativa E Translacionalem Saúde Populacional (ITR), Porto, Portugal
- Departamento de Ciências da Saúde Pública E Forenses E Educação Médica, Faculdade de Medicina, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade Do Porto, Porto, Portugal
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira I Virgili, Tarragona, Catalonia, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Reus, Catalonia, Spain
| | - Jordina Belmonte
- Institute of Environmental Science and Technology, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
- Department of Animal Biology, Plant Biology and Ecology, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
| | | | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - David Kocman
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Jacqueline Zickella
- Dept of Pneumology, Allergology and Thoracic Oncology, CHU, Montpellier, France
- IDESP INSERM and Univ Mont, Montpellier, France
| | - Salvatore Fasola
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Palermo, Italy
| | - Stefania La Grutta
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Palermo, Italy
| | - Velia Malizia
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Palermo, Italy
| | - Laura Montalbano
- Institute for Research and Innovation in Biomedicine (IRIB), National Research Council (CNR), Palermo, Italy
| | - Sandra Baldacci
- Pulmonary Environmental Epidemiology Unit, National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | - Isabella Annesi-Maesano
- Dept of Pneumology, Allergology and Thoracic Oncology, CHU, Montpellier, France.
- IDESP INSERM and Univ Mont, Montpellier, France.
| |
Collapse
|
21
|
Lozano M, McEachan RRC, Wright J, Yang TC, Dow C, Kadawathagedara M, Lepeule J, Bustamante M, Maitre L, Vrijheid M, Brantsæter AL, Meltzer HM, Bempi V, Roumeliotaki T, Thomsen C, Nawrot T, Broberg K, Llop S. Early life exposure to mercury and relationships with telomere length and mitochondrial DNA content in European children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173014. [PMID: 38729362 DOI: 10.1016/j.scitotenv.2024.173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 μg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.
Collapse
Affiliation(s)
- Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain.
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lea Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Anne Lise Brantsæter
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle Margrete Meltzer
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Vasiliki Bempi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Tim Nawrot
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
22
|
Wang LJ, Tsai CC, Chao HR, Lee SY, Chen CC, Li SC. MicroRNAs in Umbilical Cord Blood and Development in Full-Term Newborns: A Prospective Study. Biomark Insights 2024; 19:11772719241258017. [PMID: 38863527 PMCID: PMC11165956 DOI: 10.1177/11772719241258017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background Exploring the epigenetic regulations, such as microRNA, in newborns holds significant promise for enhancing our ability to address and potentially prevent early-life developmental delays. Objectives Hence, this research seeks to investigate if the expression of miRNA in the umbilical cord blood of infants can forecast their developmental outcomes as they grow older. Design and method We enrolled 143 full-term newborns, delivered either via cesarean section (CS) or through natural spontaneous delivery (NSD). We then analyzed the profiles of specific miRNAs (miR-486-5p, miR-126-5p, miR-140-3p, miR-151a-3p, miR-142-5p, and miR-30e-5p) in the umbilical cord blood of these infants. Subsequently, we performed follow-up assessments using Bayley-III scores when the cohort reached 1 year of age. Furthermore, we conducted pathway-enrichment analyses on the target genes associated with these examined miRNAs. Results When comparing newborns delivered via cesarean section (CS) to those born via natural spontaneous delivery (NSD), we observed notable differences. Specifically, newborns through NSD displayed significantly higher ΔCt values for miR-486-5p, alongside lower ΔCt values for miR-126-5p and miR-151a-3p in their cord blood. At 1 year of age, cognitive development was significantly linked to the ΔCt values of miR-140-3p and miR-142-5p, while language development showed a significant association with the ΔCt values of miR-140-3p. Moreover, our pathway enrichment analyses revealed that the target genes of these miRNAs were consistently involved in the pathways related to neurons, such as axon guidance and the neurotrophin signaling pathway. Conclusion In summary, this study represents a pioneering effort in elucidating the potential connections between miRNA levels in cord blood and the health indicators and neurodevelopment of newborns at 1 year of age. Our findings underscore the significance of miRNA levels at birth in influencing mechanisms related to neurodevelopment.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung County, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Aguilar-Lacasaña S, Fontes Marques I, de Castro M, Dadvand P, Escribà X, Fossati S, González JR, Nieuwenhuijsen M, Alfano R, Annesi-Maesano I, Brescianini S, Burrows K, Calas L, Elhakeem A, Heude B, Hough A, Isaevska E, W V Jaddoe V, Lawlor DA, Monaghan G, Nawrot T, Plusquin M, Richiardi L, Watmuff A, Yang TC, Vrijheid M, F Felix J, Bustamante M. Green space exposure and blood DNA methylation at birth and in childhood - A multi-cohort study. ENVIRONMENT INTERNATIONAL 2024; 188:108684. [PMID: 38776651 DOI: 10.1016/j.envint.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
Green space exposure has been associated with improved mental, physical and general health. However, the underlying biological mechanisms remain largely unknown. The aim of this study was to investigate the association between green space exposure and cord and child blood DNA methylation. Data from eight European birth cohorts with a total of 2,988 newborns and 1,849 children were used. Two indicators of residential green space exposure were assessed: (i) surrounding greenness (satellite-based Normalized Difference Vegetation Index (NDVI) in buffers of 100 m and 300 m) and (ii) proximity to green space (having a green space ≥ 5,000 m2 within a distance of 300 m). For these indicators we assessed two exposure windows: (i) pregnancy, and (ii) the period from pregnancy to child blood DNA methylation assessment, named as cumulative exposure. DNA methylation was measured with the Illumina 450K or EPIC arrays. To identify differentially methylated positions (DMPs) we fitted robust linear regression models between pregnancy green space exposure and cord blood DNA methylation and between cumulative green space exposure and child blood DNA methylation. Two sensitivity analyses were conducted: (i) without adjusting for cellular composition, and (ii) adjusting for air pollution. Cohort results were combined through fixed-effect inverse variance weighted meta-analyses. Differentially methylated regions (DMRs) were identified from meta-analysed results using the Enmix-combp and DMRcate methods. There was no statistical evidence of pregnancy or cumulative exposures associating with any DMP (False Discovery Rate, FDR, p-value < 0.05). However, surrounding greenness exposure was inversely associated with four DMRs (three in cord blood and one in child blood) annotated to ADAMTS2, KCNQ1DN, SLC6A12 and SDK1 genes. Results did not change substantially in the sensitivity analyses. Overall, we found little evidence of the association between green space exposure and blood DNA methylation. Although we identified associations between surrounding greenness exposure with four DMRs, these findings require replication.
Collapse
Affiliation(s)
- Sofia Aguilar-Lacasaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain; Universitat de Barcelona, Barcelona, Spain.
| | - Irene Fontes Marques
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Xavier Escribà
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Juan R González
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Isabella Annesi-Maesano
- Desbrest Institute of Epidemiology and Public Health (IDESP), Montpellier University and Inserm, Montpellier, Service des Maladies Allergiques et Respiratoires, CHU, Montpellier, France
| | - Sonia Brescianini
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Kimberley Burrows
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucinda Calas
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Ahmed Elhakeem
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Amy Hough
- Born in Bradford, Wolfson Centre for Applied Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Elena Isaevska
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Deborah A Lawlor
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Genevieve Monaghan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy
| | - Aidan Watmuff
- Born in Bradford, Wolfson Centre for Applied Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Spain
| |
Collapse
|
24
|
Guimbaud JB, Siskos AP, Sakhi AK, Heude B, Sabidó E, Borràs E, Keun H, Wright J, Julvez J, Urquiza J, Gützkow KB, Chatzi L, Casas M, Bustamante M, Nieuwenhuijsen M, Vrijheid M, López-Vicente M, de Castro Pascual M, Stratakis N, Robinson O, Grazuleviciene R, Slama R, Alemany S, Basagaña X, Plantevit M, Cazabet R, Maitre L. Machine learning-based health environmental-clinical risk scores in European children. COMMUNICATIONS MEDICINE 2024; 4:98. [PMID: 38783062 PMCID: PMC11116423 DOI: 10.1038/s43856-024-00513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Early life environmental stressors play an important role in the development of multiple chronic disorders. Previous studies that used environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on health are limited by the diversity of exposures included, especially for early life determinants. We used machine learning methods to build early life exposome risk scores for three health outcomes using environmental, molecular, and clinical data. METHODS In this study, we analyzed data from 1622 mother-child pairs from the HELIX European birth cohorts, using over 300 environmental, 100 child peripheral, and 18 mother-child clinical markers to compute environmental-clinical risk scores (ECRS) for child behavioral difficulties, metabolic syndrome, and lung function. ECRS were computed using LASSO, Random Forest and XGBoost. XGBoost ECRS were selected to extract local feature contributions using Shapley values and derive feature importance and interactions. RESULTS ECRS captured 13%, 50% and 4% of the variance in mental, cardiometabolic, and respiratory health, respectively. We observed no significant differences in predictive performances between the above-mentioned methods.The most important predictive features were maternal stress, noise, and lifestyle exposures for mental health; proteome (mainly IL1B) and metabolome features for cardiometabolic health; child BMI and urine metabolites for respiratory health. CONCLUSIONS Besides their usefulness for epidemiological research, our risk scores show great potential to capture holistic individual level non-hereditary risk associations that can inform practitioners about actionable factors of high-risk children. As in the post-genetic era personalized prevention medicine will focus more and more on modifiable factors, we believe that such integrative approaches will be instrumental in shaping future healthcare paradigms.
Collapse
Affiliation(s)
- Jean-Baptiste Guimbaud
- ISGlobal, Barcelona, Spain
- Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622, Villeurbanne, France
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Meersens, Lyon, France
| | - Alexandros P Siskos
- Imperial College London, Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, London, UK
| | | | - Barbara Heude
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hector Keun
- Imperial College London, Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, London, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford, UK
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Leda Chatzi
- Department of Preventive Medicine, University of Southern Los Angeles, Los Angeles, CA, USA
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro Pascual
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- Department of Preventive Medicine, University of Southern Los Angeles, Los Angeles, CA, USA
| | - Oliver Robinson
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Mohn Centre for Children's Health and Well-being, School of Public Health, Imperial College London, London, UK
| | | | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Marc Plantevit
- EPITA Research Laboratory (LRE), Kremlin-Bicêtre, France
| | - Rémy Cazabet
- Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622, Villeurbanne, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
25
|
Cadman T, Elhakeem A, Vinther JL, Avraam D, Carrasco P, Calas L, Cardol M, Charles MA, Corpeleijn E, Crozier S, de Castro M, Estarlich M, Fernandes A, Fossatti S, Gruszfeld D, Guerlich K, Grote V, Haakma S, Harris JR, Heude B, Huang RC, Ibarluzea J, Inskip H, Jaddoe V, Koletzko B, Lioret S, Luque V, Manios Y, Moirano G, Moschonis G, Nader J, Nieuwenhuijsen M, Andersen AMN, McEachen R, de Moira AP, Popovic M, Roumeliotaki T, Salika T, Santa Marina L, Santos S, Serbert S, Tzorovili E, Vafeiadi M, Verduci E, Vrijheid M, Vrijkotte TGM, Welten M, Wright J, Yang TC, Zugna D, Lawlor D. Associations of Maternal Educational Level, Proximity to Green Space During Pregnancy, and Gestational Diabetes With Body Mass Index From Infancy to Early Adulthood: A Proof-of-Concept Federated Analysis in 18 Birth Cohorts. Am J Epidemiol 2024; 193:753-763. [PMID: 37856700 PMCID: PMC11367017 DOI: 10.1093/aje/kwad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
International sharing of cohort data for research is important and challenging. We explored the feasibility of multicohort federated analyses by examining associations between 3 pregnancy exposures (maternal education, exposure to green vegetation, and gestational diabetes) and offspring body mass index (BMI) from infancy to age 17 years. We used data from 18 cohorts (n = 206,180 mother-child pairs) from the EU Child Cohort Network and derived BMI at ages 0-1, 2-3, 4-7, 8-13, and 14-17 years. Associations were estimated using linear regression via 1-stage individual participant data meta-analysis using DataSHIELD. Associations between lower maternal education and higher child BMI emerged from age 4 and increased with age (difference in BMI z score comparing low with high education, at age 2-3 years = 0.03 (95% confidence interval (CI): 0.00, 0.05), at 4-7 years = 0.16 (95% CI: 0.14, 0.17), and at 8-13 years = 0.24 (95% CI: 0.22, 0.26)). Gestational diabetes was positively associated with BMI from age 8 years (BMI z score difference = 0.18, 95% CI: 0.12, 0.25) but not at younger ages; however, associations attenuated towards the null when restricted to cohorts that measured gestational diabetes via universal screening. Exposure to green vegetation was weakly associated with higher BMI up to age 1 year but not at older ages. Opportunities of cross-cohort federated analyses are discussed.
Collapse
Affiliation(s)
- Tim Cadman
- Correspondence to Dr. Tim Cadman, Section of Epidemiology, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Güil-Oumrait N, Stratakis N, Maitre L, Anguita-Ruiz A, Urquiza J, Fabbri L, Basagaña X, Heude B, Haug LS, Sakhi AK, Iszatt N, Keun HC, Wright J, Chatzi L, Vafeiadi M, Bustamante M, Grazuleviciene R, Andrušaitytė S, Slama R, McEachan R, Casas M, Vrijheid M. Prenatal Exposure to Chemical Mixtures and Metabolic Syndrome Risk in Children. JAMA Netw Open 2024; 7:e2412040. [PMID: 38780942 PMCID: PMC11117089 DOI: 10.1001/jamanetworkopen.2024.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 05/25/2024] Open
Abstract
Importance Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical mixtures or explored underlying protein and metabolic signatures. Objective To investigate associations of prenatal exposure to EDC mixtures with MetS risk score in children and identify associated proteins and metabolites. Design, Setting, and Participants This population-based, birth cohort study used data collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023. Exposures Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine and blood samples collected during pregnancy. Main Outcomes and Measures At 6 to 11 years of age, a composite MetS risk score was constructed using z scores of waist circumference, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted methods. Associations were assessed using bayesian weighted quantile sum regressions applied to mixtures for each chemical group. Results The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%]; mean [SD] MetS risk score, -0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for metals (β = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (β = 0.22; 95% CrI, 0.15 to 0.29), PBDEs (β = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (β = 0.19; 95% CrI, 0.14 to 0.24). High-molecular weight phthalate mixtures (β = -0.07; 95% CrI, -0.10 to -0.04) and low-molecular weight phthalate mixtures (β = -0.13; 95% CrI, -0.18 to -0.08) were associated with a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory proteins, amino acids, and altered glycerophospholipids, which in turn were associated with increased MetS score. Conclusions and Relevance This cohort study suggests that prenatal exposure to EDC mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of EDCs and the increase in MetS, these findings hold substantial public health implications.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Augusto Anguita-Ruiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lorenzo Fabbri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, National Institute of Health and Medical Research (INSERM), National Institute for Agriculture, Food and the Environment (INRAE), Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Rémy Slama
- Department of Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB; INSERM U1209, CNRS UMR 5309), Université Grenoble Alpes, Grenoble, France
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, United Kingdom
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
27
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
28
|
Domínguez A, Koch S, Marquez S, de Castro M, Urquiza J, Evandt J, Oftedal B, Aasvang GM, Kampouri M, Vafeiadi M, Mon-Williams M, Lewer D, Lepeule J, Andrusaityte S, Vrijheid M, Guxens M, Nieuwenhuijsen M. Childhood exposure to outdoor air pollution in different microenvironments and cognitive and fine motor function in children from six European cohorts. ENVIRONMENTAL RESEARCH 2024; 247:118174. [PMID: 38244968 DOI: 10.1016/j.envres.2024.118174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Exposure to air pollution during childhood has been linked with adverse effects on cognitive development and motor function. However, limited research has been done on the associations of air pollution exposure in different microenvironments such as home, school, or while commuting with these outcomes. OBJECTIVE To analyze the association between childhood air pollution exposure in different microenvironments and cognitive and fine motor function from six European birth cohorts. METHODS We included 1301 children from six European birth cohorts aged 6-11 years from the HELIX project. Average outdoor air pollutants concentrations (NO2, PM2.5) were estimated using land use regression models for different microenvironments (home, school, and commute), for 1-year before the outcome assessment. Attentional function, cognitive flexibility, non-verbal intelligence, and fine motor function were assessed using the Attention Network Test, Trail Making Test A and B, Raven Colored Progressive Matrices test, and the Finger Tapping test, respectively. Adjusted linear regressions models were run to determine the association between each air pollutant from each microenvironment on each outcome. RESULTS In pooled analysis we observed high correlation (rs = 0.9) between air pollution exposures levels at home and school. However, the cohort-by-cohort analysis revealed correlations ranging from low to moderate. Air pollution exposure levels while commuting were higher than at home or school. Exposure to air pollution in the different microenvironments was not associated with working memory, attentional function, non-verbal intelligence, and fine motor function. Results remained consistently null in random-effects meta-analysis. CONCLUSIONS No association was observed between outdoor air pollution exposure in different microenvironments (home, school, commute) and cognitive and fine motor function in children from six European birth cohorts. Future research should include a more detailed exposure assessment, considering personal measurements and time spent in different microenvironments.
Collapse
Affiliation(s)
- Alan Domínguez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sarah Koch
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Marquez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jorun Evandt
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Bente Oftedal
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Gunn Marit Aasvang
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Mariza Kampouri
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Dan Lewer
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, IAB, 38000, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mark Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
29
|
Cai FS, Tang B, Zheng J, Yan X, Ding XF, Liao QL, Luo XJ, Ren MZ, Yu YJ, Mai BX. First Insight into Fetal Exposure to Legacy and Emerging Plasticizers Revealed by Infant Hair and Meconium: Occurrence, Biotransformation, and Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5739-5749. [PMID: 38456395 DOI: 10.1021/acs.est.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.
Collapse
Affiliation(s)
- Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao-Fan Ding
- Faculty of Health Sciences, University of Macau, Building E12, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Qi-Long Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
30
|
Kristensen R, Omann C, Ekelund CK, Gaynor JW, Hjortdal VE. Impact of an Impaired Maternal-Fetal Environment on Death in Children With Congenital Heart Defects Undergoing Surgery in Denmark From 1994 to 2018. J Am Heart Assoc 2024; 13:e031575. [PMID: 38533951 PMCID: PMC11179785 DOI: 10.1161/jaha.123.031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Studies show that an impaired maternal-fetal environment (iMFE) increases the mortality risk in children with single-ventricle congenital heart defects (CHDs). We investigated the impact of an iMFE on death in children with various surgically corrected CHDs. METHODS AND RESULTS In this nationwide register-based study, we examined the association between an iMFE (including preeclampsia, gestational hypertension, gestational diabetes, maternal smoking during pregnancy) and death in a large cohort of children with surgically corrected CHDs in Denmark (1994-2018). Survival analysis was done using Cox regression, adjusted for confounding and mediating covariates. The cohort included 3304 children: 1662 (50.3%) with minor CHD and 1642 (49.7%) with major CHD. Among them, 792 (24%) children were exposed to an iMFE. During the study, there were 290 deaths: 71 (9.3%) in children exposed to an iMFE and 219 (8.7%) in those unexposed. There were no differences in mortality risk between children with CHD exposed to an iMFE and those unexposed (hazard ratio [HR], 1.12 [95% CI, 0.86-1.47]; P=0.4). This was consistent across subgroups, including minor CHD (HR, 0.76 [95% CI, 0.39-1.47]; P=0.4), major CHD (HR, 1.23 [95% CI, 0.92-1.64]; P=0.2), and hypoplastic left heart syndrome/univentricular heart (HR, 1.08 [95% CI, 0.64-1.85]; P=0.8). CONCLUSIONS Impairment of the maternal-fetal environment did not impact the mortality rate in children with CHD undergoing operation in Denmark from 1994 to 2018. We believe the cause of these discrepant findings to previous studies may be due to differences in the composition of CHD and prenatal maternal health care and health status of the population.
Collapse
Affiliation(s)
- Rasmus Kristensen
- Department of Cardiothoracic SurgeryCopenhagen University Hospital – RigshospitaletDenmark
- Faculty of Health SciencesCopenhagen UniversityDenmark
| | - Camilla Omann
- Department of Clinical MedicineAarhus UniversityDenmark
- Department of Cardiothoracic & Vascular SurgeryAarhus University HospitalDenmark
| | - Charlotte K. Ekelund
- Faculty of Health SciencesCopenhagen UniversityDenmark
- Department of Obstetrics, Center for Fetal MedicineCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - J. William Gaynor
- Division of Cardiothoracic SurgeryChildren’s Hospital of PhiladelphiaPAUSA
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic SurgeryCopenhagen University Hospital – RigshospitaletDenmark
- Faculty of Health SciencesCopenhagen UniversityDenmark
| |
Collapse
|
31
|
Ratier A, Casas M, Grazuleviciene R, Slama R, Småstuen Haug L, Thomsen C, Vafeiadi M, Wright J, Zeman FA, Vrijheid M, Brochot C. Estimating the dynamic early life exposure to PFOA and PFOS of the HELIX children: Emerging profiles via prenatal exposure, breastfeeding, and diet. ENVIRONMENT INTERNATIONAL 2024; 186:108621. [PMID: 38593693 DOI: 10.1016/j.envint.2024.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.
Collapse
Affiliation(s)
- Aude Ratier
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France.
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Florence A Zeman
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Céline Brochot
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| |
Collapse
|
32
|
Brennan Kearns P, van den Dries MA, Julvez J, Kampouri M, López-Vicente M, Maitre L, Philippat C, Småstuen Haug L, Vafeiadi M, Thomsen C, Yang TC, Vrijheid M, Tiemeier H, Guxens M. Association of exposure to mixture of chemicals during pregnancy with cognitive abilities and fine motor function of children. ENVIRONMENT INTERNATIONAL 2024; 185:108490. [PMID: 38364572 DOI: 10.1016/j.envint.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Chemical exposures often occur in mixtures and exposures during pregnancy may lead to adverse effects on the fetal brain, potentially reducing lower cognitive abilities and fine motor function of the child. We investigated the association of motheŕs exposure to a mixture of chemicals during pregnancy (i.e., organochlorine compounds, per- and polyfluoroalkyl substances, phenols, phthalates, organophosphate pesticides) with cognitive abilties and fine motor function in their children. We studied 1097 mother-child pairs from five European cohorts participating in the Human Early Life Exposome study (HELIX). Measurement of 26 biomarkers of exposure to chemicals was performed on urine or blood samples of pregnant women (mean age 31 years). Cognitive abilities and fine motor function were assessed in their children (mean age 8 years) with a battery of computerized tests administered in person (Raveńs Coloured Progressive Matrices, Attention Network Test, N-back Test, Trail Making Test, Finger Tapping Test). We estimated the joint effect of prenatal exposure to chemicals on cognitive abilities and fine motor function using the quantile-based g-computation method, adjusting for sociodemographic characteristics. A quartile increase in all the chemicals in the overall mixture was associated with worse fine motor function, specifically lower scores in the Finger Tapping Test [-8.5 points, 95 % confidence interval (CI) -13.6 to -3.4; -14.5 points, 95 % CI -22.4 to -6.6, and -18.0 points, 95 % CI -28.6 to -7.4) for the second, third and fourth quartile of the overal mixture, respectively, when compared to the first quartile]. Organochlorine compounds, phthalates, and per- and polyfluoroalkyl substances contributed most to this association. We did not find a relationship with cognitive abilities. We conclude that exposure to chemical mixtures during pregnancy may influence neurodevelopment, impacting fine motor function of the offspring.
Collapse
Affiliation(s)
- Pavla Brennan Kearns
- Department of Epidemiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michiel A van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Mariza Kampouri
- University of Crete, Heraklion, Greece; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Lea Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | | | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
33
|
Cadman T, Strandberg-Larsen K, Calas L, Christiansen M, Culpin I, Dadvand P, de Castro M, Foraster M, Fossati S, Guxens M, Harris JR, Hillegers M, Jaddoe V, Lee Y, Lepeule J, El Marroun H, Maule M, McEachen R, Moccia C, Nader J, Nieuwenhuijsen M, Nybo Andersen AM, Pearson R, Swertz M, Vafeiadi M, Vrijheid M, Wright J, Lawlor DA, Pedersen M. Urban environment in pregnancy and postpartum depression: An individual participant data meta-analysis of 12 European birth cohorts. ENVIRONMENT INTERNATIONAL 2024; 185:108453. [PMID: 38368715 DOI: 10.1016/j.envint.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Urban environmental exposures associate with adult depression, but it is unclear whether they are associated to postpartum depression (PPD). OBJECTIVES We investigated associations between urban environment exposures during pregnancy and PPD. METHODS We included women with singleton deliveries to liveborn children from 12 European birth cohorts (N with minimum one exposure = 30,772, analysis N range 17,686-30,716 depending on exposure; representing 26-46 % of the 66,825 eligible women). We estimated maternal exposure during pregnancy to ambient air pollution with nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10), road traffic noise (Lden), natural spaces (Normalised Difference Vegetation Index; NDVI, proximity to major green or blue spaces) and built environment (population density, facility richness and walkability). Maternal PPD was assessed 3-18 months after birth using self-completed questionnaires. We used adjusted logistic regression models to estimate cohort-specific associations between each exposure and PPD and combined results via meta-analysis using DataSHIELD. RESULTS Of the 30,772 women included, 3,078 (10 %) reported having PPD. Exposure to PM10 was associated with slightly increased odds of PPD (adjusted odd ratios (OR) of 1.08 [95 % Confidence Intervals (CI): 0.99, 1.17] per inter quartile range increment of PM10) whilst associations for exposure to NO2 and PM2.5 were close to null. Exposure to high levels of road traffic noise (≥65 dB vs. < 65 dB) was associated with an OR of 1.12 [CI: 0.95, 1.32]. Associations between green spaces and PPD were close to null; whilst proximity to major blue spaces was associated with increased risk of PPD (OR 1.12, 95 %CI: 1.00, 1.26). All associations between built environment and PPD were close to null. Multiple exposure models showed similar results. DISCUSSION The study findings suggest that exposure to PM10, road traffic noise and blue spaces in pregnancy may increase PPD risk, however future studies should explore this causally.
Collapse
Affiliation(s)
- Tim Cadman
- Section for Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands; Department of Social Medicine, School of Medicine, University of Crete, Greece.
| | - Katrine Strandberg-Larsen
- Section for Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lucinda Calas
- Inserm, UMR1153 Center for Research in Epidemiology and Statistics (CRESS), Early Life Research on Later Health Team (EARoH), Paris, France
| | - Malina Christiansen
- Section for Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Iryna Culpin
- MRC Integrative Epidemiology Unit at the University of Bristol, United Kingdom; Population Health Science, Bristol Medical School, University of Bristol, United Kingdom
| | - Payam Dadvand
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Montserrat de Castro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Maria Foraster
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Serena Fossati
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Mònica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Department of Child and Adolescent Psychiatry, University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Jennifer R Harris
- Center for Fertility and Health, Norwegian Institute of Public Health, Olso, Norway
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry, University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Vincent Jaddoe
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Yunsung Lee
- Center for Fertility and Health, Norwegian Institute of Public Health, Olso, Norway
| | - Johanna Lepeule
- Université Grenoble Alpes INSERM CNRS Institute for Advanced Biosciences Team of Environmental Epidemiology Applied to Development and Respiratory Health, F-38700 La Tronche, France
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, University Medical Center, Erasmus MC, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Milena Maule
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Rosie McEachen
- Bradford Institute for Health Research, Bradford BD9 6RJ, United Kingdom
| | - Chiara Moccia
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Johanna Nader
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Anne-Marie Nybo Andersen
- Section for Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Pearson
- MRC Integrative Epidemiology Unit at the University of Bristol, United Kingdom; Population Health Science, Bristol Medical School, University of Bristol, United Kingdom; Manchester Metropolitan University, All Saints Building, All Saints, Manchester, United Kingdom
| | - Morris Swertz
- Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marina Vafeiadi
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford BD9 6RJ, United Kingdom
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, United Kingdom; Population Health Science, Bristol Medical School, University of Bristol, United Kingdom
| | - Marie Pedersen
- Section for Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
35
|
Guillien A, Slama R, Andrusaityte S, Casas M, Chatzi L, de Castro M, de Lauzon-Guillain B, Granum B, Grazuleviciene R, Julvez J, Krog NH, Lepeule J, Maitre L, McEachan R, Nieuwenhuijsen M, Oftedal B, Urquiza J, Vafeiadi M, Wright J, Vrijheid M, Basagaña X, Siroux V. Associations between combined urban and lifestyle factors and respiratory health in European children. ENVIRONMENTAL RESEARCH 2024; 242:117774. [PMID: 38036203 DOI: 10.1016/j.envres.2023.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Previous studies identified some environmental and lifestyle factors independently associated with children respiratory health, but few focused on exposure mixture effects. This study aimed at identifying, in pregnancy and in childhood, combined urban and lifestyle environment profiles associated with respiratory health in children. METHODS This study is based on the European Human Early-Life Exposome (HELIX) project, combining six birth cohorts. Associations between profiles of pregnancy (38 exposures) and childhood (84 exposures) urban and lifestyle factors, identified by clustering analysis, and respiratory health were estimated by regression models adjusted for confounders. RESULTS Among the 1033 included children (mean ± standard-deviation (SD) age: 8.2 ± 1.6 years old, 47% girls) the mean ± SD forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were 99 ± 13% and 101 ± 14%, respectively, and 12%, 12% and 24% reported ever-asthma, wheezing and rhinitis, respectively. Four profiles of pregnancy exposures and four profiles of childhood exposures were identified. Compared to the reference childhood exposure profile (low exposures), two exposure profiles were associated with lower levels of FEV1. One profile was characterized by few natural spaces in the surroundings and high exposure to the built environment and road traffic. The second profile was characterized by high exposure to meteorological factors and low levels of all other exposures and was also associated with an increased risk of ever-asthma and wheezing. A pregnancy exposure profile characterized by high exposure levels to all risk factors, but a healthy maternal lifestyle, was associated with a lower risk of wheezing and rhinitis in children, compared to the reference pregnancy profile (low exposures). CONCLUSION This comprehensive approach revealed pregnancy and childhood profiles of urban and lifestyle exposures associated with lung function and/or respiratory conditions in children. Our findings highlight the need to pursue the study of combined exposures to improve prevention strategies for multifactorial diseases such as asthma.
Collapse
Affiliation(s)
- Alicia Guillien
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Rémy Slama
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361, Academia, Lithuania
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Montserrat de Castro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Berit Granum
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361, Academia, Lithuania
| | - Jordi Julvez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Institut d'Investigatió Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Norun Hjertager Krog
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Bente Oftedal
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Valérie Siroux
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
36
|
Cardenas-Iniguez C, Schachner JN, Ip KI, Schertz KE, Gonzalez MR, Abad S, Herting MM. Building towards an adolescent neural urbanome: Expanding environmental measures using linked external data (LED) in the ABCD study. Dev Cogn Neurosci 2024; 65:101338. [PMID: 38195369 PMCID: PMC10837718 DOI: 10.1016/j.dcn.2023.101338] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
Many recent studies have demonstrated that environmental contexts, both social and physical, have an important impact on child and adolescent neural and behavioral development. The adoption of geospatial methods, such as in the Adolescent Brain Cognitive Development (ABCD) Study, has facilitated the exploration of many environmental contexts surrounding participants' residential locations without creating additional burdens for research participants (i.e., youth and families) in neuroscience studies. However, as the number of linked databases increases, developing a framework that considers the various domains related to child and adolescent environments external to their home becomes crucial. Such a framework needs to identify structural contextual factors that may yield inequalities in children's built and natural environments; these differences may, in turn, result in downstream negative effects on children from historically minoritized groups. In this paper, we develop such a framework - which we describe as the "adolescent neural urbanome" - and use it to categorize newly geocoded information incorporated into the ABCD Study by the Linked External Data (LED) Environment & Policy Working Group. We also highlight important relationships between the linked measures and describe possible applications of the Adolescent Neural Urbanome. Finally, we provide a number of recommendations and considerations regarding the responsible use and communication of these data, highlighting the potential harm to historically minoritized groups through their misuse.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Jared N Schachner
- Price School of Public Policy, University of Southern California, Los Angeles, CA, USA
| | - Ka I Ip
- Institute of Child Development, University of Minnesota, MN, USA
| | - Kathryn E Schertz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Marybel R Gonzalez
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Shermaine Abad
- Department of Radiology, University of California, San Diego, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Li S, Spitz N, Ghantous A, Abrishamcar S, Reimann B, Marques I, Silver MJ, Aguilar-Lacasaña S, Kitaba N, Rezwan FI, Röder S, Sirignano L, Tuhkanen J, Mancano G, Sharp GC, Metayer C, Morimoto L, Stein DJ, Zar HJ, Alfano R, Nawrot T, Wang C, Kajantie E, Keikkala E, Mustaniemi S, Ronkainen J, Sebert S, Silva W, Vääräsmäki M, Jaddoe VWV, Bernstein RM, Prentice AM, Cosin-Tomas M, Dwyer T, Håberg SE, Herceg Z, Magnus MC, Munthe-Kaas MC, Page CM, Völker M, Gilles M, Send T, Witt S, Zillich L, Gagliardi L, Richiardi L, Czamara D, Räikkönen K, Chatzi L, Vafeiadi M, Arshad SH, Ewart S, Plusquin M, Felix JF, Moore SE, Vrijheid M, Holloway JW, Karmaus W, Herberth G, Zenclussen A, Streit F, Lahti J, Hüls A, Hoang TT, London SJ, Wiemels JL. A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation. Commun Biol 2024; 7:66. [PMID: 38195839 PMCID: PMC10776586 DOI: 10.1038/s42003-023-05698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.
Collapse
Affiliation(s)
- Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Natalia Spitz
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brigitte Reimann
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Irene Marques
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matt J Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Negusse Kitaba
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, UK
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johanna Tuhkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Giulia Mancano
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Rondebosch, South Africa
| | - Heather J Zar
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Rondebosch, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| | - Rossella Alfano
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Eero Kajantie
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Pediatric Research Centre, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Elina Keikkala
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Sanna Mustaniemi
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Justiina Ronkainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Wnurinham Silva
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marja Vääräsmäki
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University, Hospital and University of Oulu, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robin M Bernstein
- Department of Anthropology and Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Terence Dwyer
- Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Siri Eldevik Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Oncology and Hematology, Oslo University Hospital, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Aging, Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maja Völker
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tabea Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Luigi Gagliardi
- Woman and Child Health Department, Ospedale Versilia, AUSL Toscana Nord Ovest, Pisa, Italy
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO Piemonte, Turin, Italy
| | - Darina Czamara
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC. University of Southern California, Los Angeles, CA, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michelle Plusquin
- Centre for Environmental Sciences, UHasselt, Agoralaan, Building D, 3590, Diepenbeek, Belgium
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, London, UK
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Ana Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
38
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Persson Waye K, Löve J, Lercher P, Dzhambov AM, Klatte M, Schreckenberg D, Belke C, Leist L, Ristovska G, Jeram S, Kanninen KM, Selander J, Arat A, Lachmann T, Clark C, Botteldooren D, White K, Julvez J, Foraster M, Kaprio J, Bolte G, Psyllidis A, Gulliver J, Boshuizen H, Bozzon A, Fels J, Hornikx M, van den Hazel P, Weber M, Brambilla M, Braat-Eggen E, Van Kamp I, Vincens N. Adopting a child perspective for exposome research on mental health and cognitive development - Conceptualisation and opportunities. ENVIRONMENTAL RESEARCH 2023; 239:117279. [PMID: 37778607 DOI: 10.1016/j.envres.2023.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Mental disorders among children and adolescents pose a significant global challenge. The exposome framework covering the totality of internal, social and physical exposures over a lifetime provides opportunities to better understand the causes of and processes related to mental health, and cognitive functioning. The paper presents a conceptual framework on exposome, mental health, and cognitive development in children and adolescents, with potential mediating pathways, providing a possibility for interventions along the life course. The paper underscores the significance of adopting a child perspective to the exposome, acknowledging children's specific vulnerability, including differential exposures, susceptibility of effects and capacity to respond; their susceptibility during development and growth, highlighting neurodevelopmental processes from conception to young adulthood that are highly sensitive to external exposures. Further, critical periods when exposures may have significant effects on a child's development and future health are addressed. The paper stresses that children's behaviour, physiology, activity pattern and place for activities make them differently vulnerable to environmental pollutants, and calls for child-specific assessment methods, currently lacking within today's health frameworks. The importance of understanding the interplay between structure and agency is emphasized, where agency is guided by social structures and practices and vice-versa. An intersectional approach that acknowledges the interplay of social and physical exposures as well as a global and rural perspective on exposome is further pointed out. To advance the exposome field, interdisciplinary efforts that involve multiple scientific disciplines are crucial. By adopting a child perspective and incorporating an exposome approach, we can gain a comprehensive understanding of how exposures impact children's mental health and cognitive development leading to better outcomes.
Collapse
Affiliation(s)
- Kerstin Persson Waye
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Jesper Löve
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lercher
- Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Angel M Dzhambov
- Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria; Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Group "Health and Quality of Life in a Green and Sustainable Environment", SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Bulgaria
| | - Maria Klatte
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Dirk Schreckenberg
- Centre for Applied Psychology, Environmental and Social Research (Zeus GmbH), Hagen, Germany
| | - Christin Belke
- Centre for Applied Psychology, Environmental and Social Research (Zeus GmbH), Hagen, Germany
| | - Larisa Leist
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Gordana Ristovska
- Institute of Public Health of the Republic of North Macedonia, Skopje, Macedonia
| | - Sonja Jeram
- National Institute of Public Health, Ljubljana, Slovenia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenny Selander
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arzu Arat
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lachmann
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany; Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, Madrid, Spain
| | - Charlotte Clark
- Population Health Research Institute, St George's, University of London, London, United Kingdom
| | - Dick Botteldooren
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Kim White
- National Institute for Public Health and the Environment, Netherlands
| | - Jordi Julvez
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Reus, Spain
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Gabriele Bolte
- Institute of Public Health and Nursing Research, University of Bremen, Bremen, Germany
| | - Achilleas Psyllidis
- Department of Sustainable Design Engineering, Delft University of Technology, Delft, the Netherlands
| | - John Gulliver
- Population Health Research Institute, St George's, University of London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Hendriek Boshuizen
- Department for Statistics, Datascience and Mathematical Modelling, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Alessandro Bozzon
- Department of Sustainable Design Engineering, Delft University of Technology, Delft, the Netherlands
| | - Janina Fels
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Maarten Hornikx
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter van den Hazel
- International Network on Children's Health, Environment and Safety, Ellecom, the Netherlands
| | | | - Marco Brambilla
- Data Science Laboratory, Politecnico di Milano, Milan, Italy
| | | | - Irene Van Kamp
- National Institute for Public Health and the Environment, Netherlands
| | - Natalia Vincens
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Anguita-Ruiz A, Amine I, Stratakis N, Maitre L, Julvez J, Urquiza J, Luo C, Nieuwenhuijsen M, Thomsen C, Grazuleviciene R, Heude B, McEachan R, Vafeiadi M, Chatzi L, Wright J, Yang TC, Slama R, Siroux V, Vrijheid M, Basagaña X. Beyond the single-outcome approach: A comparison of outcome-wide analysis methods for exposome research. ENVIRONMENT INTERNATIONAL 2023; 182:108344. [PMID: 38016387 DOI: 10.1016/j.envint.2023.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Outcome-wide analysis can offer several benefits, including increased power to detect weak signals and the ability to identify exposures with multiple effects on health, which may be good targets for preventive measures. Recently, advanced statistical multivariate techniques for outcome-wide analysis have been developed, but they have been rarely applied to exposome analysis. In this work, we provide an overview of a selection of methods that are well-suited for outcome-wide exposome analysis and are implemented in the R statistical software. Our work brings together six different methods presenting innovative solutions for typical problems arising from outcome-wide approaches in the context of the exposome, including dependencies among outcomes, high dimensionality, mixed-type outcomes, missing data records, and confounding effects. The identified methods can be grouped into four main categories: regularized multivariate regression techniques, multi-task learning approaches, dimensionality reduction approaches, and bayesian extensions of the multivariate regression framework. Here, we compare each technique presenting its main rationale, strengths, and limitations, and provide codes and guidelines for their application to exposome data. Additionally, we apply all selected methods to a real exposome dataset from the Human Early-Life Exposome (HELIX) project, demonstrating their suitability for exposome research. Although the choice of the best method will always depend on the challenges to be faced in each application, for an exposome-like analysis we find dimensionality reduction and bayesian methods such as reduced rank regression (RRR) or multivariate bayesian shrinkage priors (MBSP) particularly useful, given their ability to deal with critical issues such as collinearity, high-dimensionality, missing data or quantification of uncertainty.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- ISGlobal, 08003 Barcelona, Spain; CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ines Amine
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | | | - Lea Maitre
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Jordi Julvez
- ISGlobal, 08003 Barcelona, Spain; CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), 43204 Reus (Tarragona), Catalonia, Spain
| | | | - Chongliang Luo
- Division of Public Health Sciences, Washington University School of Medicine in St. Louis, 600 S Taylor Ave, St. Louis, MO 63110, USA
| | - Mark Nieuwenhuijsen
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248 Kaunas, Lithuania
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Leda Chatzi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Martine Vrijheid
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Xavier Basagaña
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| |
Collapse
|
41
|
Grady SK, Dojcsak L, Harville EW, Wallace ME, Vilda D, Donneyong MM, Hood DB, Valdez RB, Ramesh A, Im W, Matthews-Juarez P, Juarez PD, Langston MA. Seminar: Scalable Preprocessing Tools for Exposomic Data Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:124201. [PMID: 38109119 PMCID: PMC10727037 DOI: 10.1289/ehp12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The exposome serves as a popular framework in which to study exposures from chemical and nonchemical stressors across the life course and the differing roles that these exposures can play in human health. As a result, data relevant to the exposome have been used as a resource in the quest to untangle complicated health trajectories and help connect the dots from exposures to adverse outcome pathways. OBJECTIVES The primary aim of this methods seminar is to clarify and review preprocessing techniques critical for accurate and effective external exposomic data analysis. Scalability is emphasized through an application of highly innovative combinatorial techniques coupled with more traditional statistical strategies. The Public Health Exposome is used as an archetypical model. The novelty and innovation of this seminar's focus stem from its methodical, comprehensive treatment of preprocessing and its demonstration of the positive effects preprocessing can have on downstream analytics. DISCUSSION State-of-the-art technologies are described for data harmonization and to mitigate noise, which can stymie downstream interpretation, and to select key exposomic features, without which analytics may lose focus. A main task is the reduction of multicollinearity, a particularly formidable problem that frequently arises from repeated measurements of similar events taken at various times and from multiple sources. Empirical results highlight the effectiveness of a carefully planned preprocessing workflow as demonstrated in the context of more highly concentrated variable lists, improved correlational distributions, and enhanced downstream analytics for latent relationship discovery. The nascent field of exposome science can be characterized by the need to analyze and interpret a complex confluence of highly inhomogeneous spatial and temporal data, which may present formidable challenges to even the most powerful analytical tools. A systematic approach to preprocessing can therefore provide an essential first step in the application of modern computer and data science methods. https://doi.org/10.1289/EHP12901.
Collapse
Affiliation(s)
- Stephen K. Grady
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Levente Dojcsak
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Emily W. Harville
- Department Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Maeve E. Wallace
- Department of Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Dovile Vilda
- Department of Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | | | - Darryl B. Hood
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, Ohio, USA
| | - R. Burciaga Valdez
- Department of Economics, University of New Mexico, Albuquerque, New Mexico, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Wansoo Im
- Department of Family and Community Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | | | - Paul D. Juarez
- Department of Family and Community Medicine, Meharry Medical College, Nashville, Tennessee, USA
- Institute on Health Disparities, Equity, and the Exposome, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael A. Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
42
|
Weckmann M, Reddy KD. Epigenome-wide association studies: the exposures of yesterday form the methylations of tomorrow. Eur Respir J 2023; 62:2301552. [PMID: 38128955 DOI: 10.1183/13993003.01552-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Markus Weckmann
- Division of Epigenetics in Chronic Lung Disease, Priority Area Chronic Lung Diseases, Leibniz Lung Center, Research Center Borstel, Borstel, Germany
- Airway Research Centre North (ARCN), German Centre for Lung Research (DZL), Germany
- Department of Pediatric Pneumology and Allergology, University Children's Hospital Lübeck, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Karosham Diren Reddy
- Division of Epigenetics in Chronic Lung Disease, Priority Area Chronic Lung Diseases, Leibniz Lung Center, Research Center Borstel, Borstel, Germany
- Airway Research Centre North (ARCN), German Centre for Lung Research (DZL), Germany
| |
Collapse
|
43
|
Dack K, Bustamante M, Taylor CM, Llop S, Lozano M, Yousefi P, Gražulevičienė R, Gutzkow KB, Brantsæter AL, Mason D, Escaramís G, Lewis SJ. Genome-Wide Association Study of Blood Mercury in European Pregnant Women and Children. Genes (Basel) 2023; 14:2123. [PMID: 38136945 PMCID: PMC10742428 DOI: 10.3390/genes14122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury has high industrial utility and is present in many products, and environmental contamination and occupational exposure are widespread. There are numerous biological systems involved in the absorption, metabolism, and excretion of Hg, and it is possible that some systems may be impacted by genetic variation. If so, genotype may affect tissue concentrations of Hg and subsequent toxic effects. Genome-wide association testing was performed on blood Hg samples from pregnant women of the Avon Longitudinal Study of Parents and Children (n = 2893) and children of the Human Early Life Exposome (n = 1042). Directly-genotyped single-nucleotide polymorphisms (SNPs) were imputed to the Haplotype Reference Consortium r1.1 panel of whole genotypes and modelled againstlog-transformed Hg. Heritability was estimated using linkage disequilibrium score regression. The heritability of Hg was estimated as 24.0% (95% CI: 16.9% to 46.4%) in pregnant women, but could not be determined in children. There were 16 SNPs associated with Hg in pregnant women above a suggestive p-value threshold (p < 1 × 10-5), and 21 for children. However, no SNP passed this threshold in both studies, and none were genome-wide significant (p < 5 × 10-8). SNP-Hg associations were highly discordant between women and children, and this may reflect differences in metabolism, a gene-age interaction, or dose-response effects. Several suggestive variants had plausible links to Hg metabolism, such as rs146099921 in metal transporter SLC39A14, and two variants (rs28618224, rs7154700) in potassium voltage-gated channel genes. The findings would benefit from external validation, as suggestive results may contain both true associations and false positives.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08018 Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK;
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
- Department of Preventative Medicine, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, 46100 Valencia, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway;
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Dan Mason
- Bradford Teaching Hospitals NHS Foundation Trust, Duckworth Lane, Bradford BD9 6RJ, UK
| | - Georgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, 08035 Barcelona, Spain
| | - Sarah J. Lewis
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
44
|
Warembourg C, Anguita-Ruiz A, Siroux V, Slama R, Vrijheid M, Richiardi L, Basagaña X. Statistical Approaches to Study Exposome-Health Associations in the Context of Repeated Exposure Data: A Simulation Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16232-16243. [PMID: 37844068 PMCID: PMC10621661 DOI: 10.1021/acs.est.3c04805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The exposome concept aims to consider all environmental stressors simultaneously. The dimension of the data and the correlation that may exist between exposures lead to various statistical challenges. Some methodological studies have provided insight regarding the efficiency of specific modeling approaches in the context of exposome data assessed once for each subject. However, few studies have considered the situation in which environmental exposures are assessed repeatedly. Here, we conduct a simulation study to compare the performance of statistical approaches to assess exposome-health associations in the context of multiple exposure variables. Different scenarios were tested, assuming different types and numbers of exposure-outcome causal relationships. An application study using real data collected within the INMA mother-child cohort (Spain) is also presented. In the simulation experiment, assessed methods showed varying performance across scenarios, making it challenging to recommend a one-size-fits-all strategy. Generally, methods such as sparse partial least-squares and the deletion-substitution-addition algorithm tended to outperform the other tested methods (ExWAS, Elastic-Net, DLNM, or sNPLS). Notably, as the number of true predictors increased, the performance of all methods declined. The absence of a clearly superior approach underscores the additional challenges posed by repeated exposome data, such as the presence of more complex correlation structures and interdependencies between variables, and highlights that careful consideration is essential when selecting the appropriate statistical method. In this regard, we provide recommendations based on the expected scenario. Given the heightened risk of reporting false positive or negative associations when applying these techniques to repeated exposome data, we advise interpreting the results with caution, particularly in compromised contexts such as those with a limited sample size.
Collapse
Affiliation(s)
- Charline Warembourg
- Univ
Rennes, Inserm, EHESP, Irset (Institut de recherche en santé,
environnement et travail)—UMR_S 1085, F-35000 Rennes, France
| | - Augusto Anguita-Ruiz
- ISGlobal, 08003 Barcelona, Spain
- CIBEROBN
(CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valérie Siroux
- Team
of Environmental Epidemiology Applied to Development and Respiratory
Health, Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM, CNRS, 38700 La Tronche, France
| | - Rémy Slama
- Team
of Environmental Epidemiology Applied to Development and Respiratory
Health, Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM, CNRS, 38700 La Tronche, France
| | - Martine Vrijheid
- ISGlobal, 08003 Barcelona, Spain
- Spanish
Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lorenzo Richiardi
- Department
of Medical Sciences, University of Turin
and CPO-Piemonte, 10124 Turin, Italy
| | - Xavier Basagaña
- ISGlobal, 08003 Barcelona, Spain
- Spanish
Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
45
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
46
|
Fernandes A, Krog NH, McEachan R, Nieuwenhuijsen M, Julvez J, Márquez S, de Castro M, Urquiza J, Heude B, Vafeiadi M, Gražulevičienė R, Slama R, Dedele A, Aasvang GM, Evandt J, Andrusaityte S, Kampouri M, Vrijheid M. Availability, accessibility, and use of green spaces and cognitive development in primary school children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122143. [PMID: 37423460 DOI: 10.1016/j.envpol.2023.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Green spaces may have beneficial impacts on children's cognition. However, few studies explored the exposure to green spaces beyond residential areas, and their availability, accessibility and uses at the same time. The aim of the present study was to describe patterns of availability, accessibility, and uses of green spaces among primary school children and to explore how these exposure dimensions are associated with cognitive development. Exposures to green space near home, school, commuting route, and other daily activity locations were assessed for 1607 children aged 6-11 years from six birth cohorts across Europe, and included variables related to: availability (NDVI buffers: 100, 300, 500 m), potential accessibility (proximity to a major green space: linear distance; within 300 m), and use (play time in green spaces: hours/year), and the number of visits to green spaces (times/previous week). Cognition measured as fluid intelligence, inattention, and working memory was assessed by computerized tests. We performed multiple linear regression analyses on pooled and imputed data adjusted for individual and area-level confounders. Availability, accessibility, and uses of green spaces showed a social gradient that was unfavorable in more vulnerable socioeconomic groups. NDVI was associated with more playing time in green spaces, but proximity to a major green space was not. Associations between green space exposures and cognitive function outcomes were not statistically significant in our overall study population. Stratification by socioeconomic variables showed that living within 300 m of a major green space was associated with improved working memory only in children in less deprived residential areas (β = 0.30, CI: 0.09,0.51), and that more time playing in green spaces was associated with better working memory only in children of highly educated mothers (β per IQR increase in hour/year = 0.10; 95% CI: 0.01, 0.19). However, studying within 300 m of a major green space increased inattention scores in children in more deprived areas (β = 15.45, 95% CI: 3.50, 27.40).
Collapse
Affiliation(s)
- Amanda Fernandes
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Norun Hjertager Krog
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal Infirmary, Bradford, UK
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Julvez
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain
| | - Sandra Márquez
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José Urquiza
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Greece
| | | | - Rémy Slama
- Institut National de la Santé et de la Recherche Médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Audrius Dedele
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Jorunn Evandt
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Mariza Kampouri
- Department of Social Medicine, School of Medicine, University of Crete, Greece
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
47
|
Dypås LB, Duale N, Olsen AK, Bustamante M, Maitre L, Escaramis G, Julvez J, Aguilar-Lacasaña S, Andrusaityte S, Casas M, Vafeiadi M, Grazuleviciene R, Heude B, Lepeule J, Urquiza J, Wright J, Yang TC, Vrijheid M, Gützkow KB. Blood miRNA levels associated with ADHD traits in children across six European birth cohorts. BMC Psychiatry 2023; 23:696. [PMID: 37749515 PMCID: PMC10521440 DOI: 10.1186/s12888-023-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.
Collapse
Affiliation(s)
- Lene B Dypås
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Nur Duale
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Geòrgia Escaramis
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Julvez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Sofia Aguilar-Lacasaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Barbara Heude
- Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, La Tronche, France
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
48
|
Cuestas E, Hillman M, Galetto S, Gaido MI, Sobh V, Damico LT, Rizzotti A. Inflammation induces stunting by lowering bone mass via GH/IGF-1 inhibition in very preterm infants. Pediatr Res 2023; 94:1136-1144. [PMID: 36941338 DOI: 10.1038/s41390-023-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Sustained systemic inflammatory response (SIR) was associated with poor postnatal growth in very preterm infants (VPI). We hypothesize that VPI with sustained SIR will exhibit linear growth retardation related to lower bone mass accrual mediated by GH/IGF-1 axis inhibition at term corrected age (CA). METHODS C-reactive protein (CRP), procalcitonin (PCT), growth hormone (GH), insulin-like growth factor 1 (IGF-1), calcium, phosphorus, alkaline phosphatase, anthropometric, nutritional, neonatal and maternal data were collected prospectively in 23 infants <32 weeks gestational age. Body composition using dual-energy X-ray absorptiometry was performed at term CA. Analysis was undertaken with multiple linear regression models. RESULTS At term CA 11 infants with sustained SIR compared with 12 infants without sustained SIR present significantly lower IGF-1, length z-score (LZS), bone mineral content (BMC) and lean mass (LM), and higher GH and fat mass (FM). LZS was associated significantly with PCT, BMC with IGF-1, FM and LM with CRP, GH with bronchopulmonary dysplasia and CRP, and IGF-1 with invasive mechanical ventilation, CRP and PCT. CONCLUSIONS In addition to the known effect on linear growth failure, sustained SIR induces lower bone mass accrual related to higher GH and lower IGF-1 levels in VPI. IMPACT Very preterm infants (VPI) with sustained systemic inflammatory response (SIR) compared with VPI without SIR present stunting, lower bone mass, higher GH and lower IGF-1 levels at term corrected age. SIR may help to explain the influence of non-nutritional factors on growth and body composition in VPI. SIR induces postnatal stunting related to lower bone mass accrual via GH/IGF-1 axis inhibition in VPI. VPI with SIR need special attention to minimize inflammatory stress, which could result in improved postnatal growth. Research on inflammatory-endocrine interactions involved in the pathophysiology of postnatal stunting is needed as a basis for new interventional approaches.
Collapse
Affiliation(s)
- Eduardo Cuestas
- Department of Pediatrics and Neonatology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina.
| | - Macarena Hillman
- Department of Pediatrics and Neonatology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Silvia Galetto
- Department of Pediatrics and Neonatology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - María Isabel Gaido
- Department of Clinical Biochemistry, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Viviana Sobh
- Department of Radiology, Instituto Conci-Carpinella, Córdoba, Argentina
| | | | - Alina Rizzotti
- Department of Pediatrics and Neonatology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| |
Collapse
|
49
|
Amine I, Guillien A, Philippat C, Anguita-Ruiz A, Casas M, de Castro M, Dedele A, Garcia-Aymerich J, Granum B, Grazuleviciene R, Heude B, Haug LS, Julvez J, López-Vicente M, Maitre L, McEachan R, Nieuwenhuijsen M, Stratakis N, Vafeiadi M, Wright J, Yang T, Yuan WL, Basagaña X, Slama R, Vrijheid M, Siroux V. Environmental exposures in early-life and general health in childhood. Environ Health 2023; 22:53. [PMID: 37480033 PMCID: PMC10360263 DOI: 10.1186/s12940-023-01001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Early-life environmental exposures are suspected to be involved in the development of chronic diseases later in life. Most studies conducted so far considered single or few exposures and single-health parameter. Our study aimed to identify a childhood general health score and assess its association with a wide range of pre- and post-natal environmental exposures. METHODS The analysis is based on 870 children (6-12 years) from six European birth cohorts participating in the Human Early-Life Exposome project. A total of 53 prenatal and 105 childhood environmental factors were considered, including lifestyle, social, urban and chemical exposures. We built a general health score by averaging three sub-scores (cardiometabolic, respiratory/allergy and mental) built from 15 health parameters. By construct, a child with a low score has a low general health status. Penalized multivariable regression through Least Absolute Shrinkage and Selection Operator (LASSO) was fitted in order to identify exposures associated with the general health score. FINDINGS The results of LASSO show that a lower general health score was associated with maternal passive and active smoking during pregnancy and postnatal exposure to methylparaben, copper, indoor air pollutants, high intake of caffeinated drinks and few contacts with friends and family. Higher child's general health score was associated with prenatal exposure to a bluespace near residency and postnatal exposures to pets, cobalt, high intakes of vegetables and more physical activity. Against our hypotheses, postnatal exposure to organochlorine compounds and perfluorooctanoate were associated with a higher child's general health score. CONCLUSION By using a general health score summarizing the child cardiometabolic, respiratory/allergy and mental health, this study reinforced previously suspected environmental factors associated with various child health parameters (e.g. tobacco, air pollutants) and identified new factors (e.g. pets, bluespace) warranting further investigations.
Collapse
Affiliation(s)
- Ines Amine
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Alicia Guillien
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Augusto Anguita-Ruiz
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maribel Casas
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Montserrat de Castro
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Judith Garcia-Aymerich
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Berit Granum
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
| | - Line Småstuen Haug
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Jordi Julvez
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Mónica López-Vicente
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Léa Maitre
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Nikos Stratakis
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xavier Basagaña
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Martine Vrijheid
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
50
|
Maitre L, Jedynak P, Gallego M, Ciaran L, Audouze K, Casas M, Vrijheid M. Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review. ENVIRONMENTAL RESEARCH 2023; 228:115788. [PMID: 37004856 DOI: 10.1016/j.envres.2023.115788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Health effects of endocrine disrupting chemicals (EDCs) are challenging to detect in the general population. Omics technologies become increasingly common to identify early biological changes before the apparition of clinical symptoms, to explore toxic mechanisms and to increase biological plausibility of epidemiological associations. This scoping review systematically summarises the application of omics in epidemiological studies assessing EDCs-associated biological effects to identify potential gaps and priorities for future research. Ninety-eight human studies (2004-2021) were identified through database searches (PubMed, Scopus) and citation chaining and focused on phthalates (34 studies), phenols (19) and PFASs (17), while PAHs (12) and recently-used pesticides (3) were less studied. The sample sizes ranged from 10 to 12,476 (median = 159), involving non-pregnant adults (38), pregnant women (11), children/adolescents (15) or both latter populations studied together (23). Several studies included occupational workers (10) and/or highly exposed groups (11) focusing on PAHs, PFASs and pesticides, while studies on phenols and phthalates were performed in the general population only. Analysed omics layers included metabolic profiles (30, including 14 targeted analyses), miRNA (13), gene expression (11), DNA methylation (8), microbiome (5) and proteins (3). Twenty-one studies implemented targeted multi-assays focusing on clinical routine blood lipid traits, oxidative stress or hormones. Overall, DNA methylation and gene expression associations with EDCs did not overlap across studies, while some EDC-associated metabolite groups, such as carnitines, nucleotides and amino acids in untargeted metabolomic studies, and oxidative stress markers in targeted studies, were consistent across studies. Studies had common limitations such as small sample sizes, cross-sectional designs and single sampling for exposure biomonitoring. In conclusion, there is a growing body of evidence evaluating the early biological responses to exposure to EDCs. This review points to a need for larger longitudinal studies, wider coverage of exposures and biomarkers, replication studies and standardisation of research methods and reporting.
Collapse
Affiliation(s)
- Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Paulina Jedynak
- ISGlobal, Barcelona, Spain; University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Marta Gallego
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Ciaran
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|