1
|
Warner BE, Patel J, Wang R, Adams-Haduch J, Gao YT, Koh WP, Wong KW, Chiang AKS, Yuan JM, Shair KHY. The Epstein-Barr Virus Nuclear Antigen 1 Variant Associated with Nasopharyngeal Carcinoma Defines the Sequence Criteria for Serologic Risk Prediction. Clin Cancer Res 2024; 30:5207-5217. [PMID: 39264275 PMCID: PMC11567791 DOI: 10.1158/1078-0432.ccr-24-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Antibodies to select Epstein-Barr virus proteins can diagnose early-stage nasopharyngeal carcinoma (NPC). We have previously shown that IgA against Epstein-Barr virus nuclear antigen 1 (EBNA1) can predict incident NPC in high- and intermediate-risk cohorts 4 years before diagnosis. Here, we tested EBNA1 variants, with mutants, to define the sequence requirements for an NPC risk assay. EXPERIMENTAL DESIGN Mammalian-expressed constructs were developed to represent EBNA1 variants 487V and 487A, which can differ by ≥15 amino acids in the N- and C-termini. Denatured lysates were evaluated by a refined IgA and IgG immunoblot assay in a case-control study using prediagnostic NPC sera from two independent cohorts in Singapore and Shanghai, the People's Republic of China. RESULTS At 95% sensitivity, 487V yielded a 94.9% specificity compared with 86.1% for 487A. EBNA1 deleted for the conserved glycine-alanine repeats (GAr) reduced false positives by 22.8%. NPC sera reacted more strongly to the C-terminus than healthy controls, but the C-terminal construct (a.a. 390-641) showed lower specificity (84.8%) than the EBNA1 GAr-deleted construct (92.4%) at 95% sensitivity. CONCLUSIONS Although EBNA1 IgA was present in healthy sera, most epitopes localized to the immunodominant GAr. We conclude that a refined EBNA1 antigen deleted for the GAr, but with residues consistently detected in Southeast Asian NPC tumors, is optimized for risk prediction with an extended sojourn time of 7.5 years. Furthermore, distinct EBNA1 serologic profiles enhanced the utility of the EBNA1 IgA assay for risk stratification. This illustrates the importance of serologically relevant EBNA1 sequences for NPC risk prediction and early detection.
Collapse
Affiliation(s)
- Benjamin E Warner
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Japan Patel
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renwei Wang
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Adams-Haduch
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ka Wo Wong
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alan K S Chiang
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Min Yuan
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathy H Y Shair
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Evans EF, Saraph A, Tokuyama M. Transactivation of Human Endogenous Retroviruses by Viruses. Viruses 2024; 16:1649. [PMID: 39599764 PMCID: PMC11599155 DOI: 10.3390/v16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that are part the human genome and are normally silenced through epigenetic mechanisms. However, HERVs can be induced by various host and environmental factors, including viral infection, and transcriptionally active HERVs have been implicated in various physiological processes. In this review, we summarize mounting evidence of transactivation of HERVs by a wide range of DNA and RNA viruses. Though a mechanistic understanding of this phenomenon and the biological implications are still largely missing, the link between exogenous and endogenous viruses is intriguing. Considering the increasing recognition of the role of viral infections in disease, understanding these interactions provides novel insights into human health.
Collapse
Affiliation(s)
| | | | - Maria Tokuyama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Su ZY, Siak PY, Lwin YY, Cheah SC. Epidemiology of nasopharyngeal carcinoma: current insights and future outlook. Cancer Metastasis Rev 2024; 43:919-939. [PMID: 38430391 DOI: 10.1007/s10555-024-10176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is characterised by its remarkable geographical and ethnic distribution. The interplay between genetic susceptibility, environmental exposures, and Epstein-Barr virus (EBV) infections is indicated in the development of NPC. Exposure to tobacco smoking, dietary factors, and inhalants has been associated with the risk of NPC. Genetic association studies have revealed NPC-associated susceptibility loci, including genes involved in immune responses, xenobiotic metabolism, genome maintenance, and cell cycle regulation. EBV exposure timing and strain variation might play a role in its carcinogenicity, although further investigations are required. Other factors including medical history and oral hygiene have been implicated in NPC. Prevention strategies, including primary prevention and secondary prevention through early detection, are vital in reducing mortality and morbidity of NPC. The current review discusses the global and regional distribution of NPC incidences, the risk factors associated with NPC, and the public health implications of these insights. Future investigations should consider international, large-scale prospective studies to elucidate the mechanisms underlying NPC pathogenesis and develop individualized interventions for NPC.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010 Port Dickson, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010 Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Xiang T, Sun F, Liu T, Zhao J, Yang J, Ouyang D, Chen H, Zhu Q, Wang Q, Li Y, He J, Yang C, Yang X, Chen Y, Tang Y, Weng D, Pan Q, Yang Q, Xia J. EBV-associated epithelial cancers cells promote vasculogenic mimicry formation via a secretory cross-talk with the immune microenvironment. Theranostics 2024; 14:5123-5140. [PMID: 39267775 PMCID: PMC11388080 DOI: 10.7150/thno.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Vasculogenic mimicry (VM) induced by Epstein-Barr virus (EBV) infection plays an important role in resistance to anti-vascular endothelial growth factor (VEGF) therapy in EBV-associated epithelial cancers; however, the interaction between VM and the immune microenvironment has not been systematically investigated. Methods: IHC and multiplex IHC analysis the relationships among tumour-associated macrophage (TAM), VM and EBV infection in EBV-associated epithelial cancer biopsies. In vitro and in vivo evidence using CRISPR-Cas9 system engineered EBV-infected epithelial cancer cells and mouse models support functional role and mechanism for M2c-like macrophages in the VM formation. The prediction of VM in the effectiveness of anti-angiogenic agent was analysed using clinical datasets. Results: EBV-associated epithelial cancer biopsies revealed that infiltration of the TAM surrounding the VM is closely associated with EBV infection. AKT/mTOR/HIF-1α pathway in EBV-infected epithelial cancer cells control the secretion of CCL5 and CSF-1, enabling the recruitment of monocytes and their differentiation into M2c macrophages which promote VM formation by MMP9. Combination of anti-angiogenesis agents and HIF-1α inhibitor caused marked decreases in CD31-positive micro-vessels, VM, and M2c-like macrophages. VM scores can be used as biomarkers to predict the efficacy of anti-angiogenic agent therapy in EBV-associated epithelial cancers. Conclusions: Our findings define a secretory cross-talk between tumour cells and the immune microenvironment in EBV-associated epithelial cancer, revealing an unexpected role of EBV in epithelial cancer cells, controlling VM formation via M2c-like macrophages.
Collapse
Affiliation(s)
- Tong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Fengze Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)
| | - Tingting Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jieying Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Dijun Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qian Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qijing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yongqiang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jia He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Chaopin Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xinyi Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yuanyuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yan Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Desheng Weng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qiuzhong Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qi Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
5
|
Fang CH, Cheng YF, Lin SR, Lai WY, Liao LR, Chiu YL, Lee JM. Establishment of a protocol for rapidly expanding Epstein-Barr-virus-specific cytotoxic T cells with enhanced cytotoxicity. BMC Cancer 2024; 24:980. [PMID: 39118069 PMCID: PMC11312821 DOI: 10.1186/s12885-024-12707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.
Collapse
Affiliation(s)
- Chih-Hao Fang
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Ya Fang Cheng
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Shian-Ren Lin
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Wan-Yu Lai
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Li-Ren Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, No. 121, Sec. 2, Nanya S. Rd., Banqiao Dist., New Taipei City, 220216, Taiwan.
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, 320315, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100233, Taiwan.
| | - Jan-Mou Lee
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan.
| |
Collapse
|
6
|
Edwards KR, Malhi H, Schmidt K, Davis AR, Homad LJ, Warner NL, Chhan CB, Scharffenberger SC, Gaffney K, Hinkley T, Potchen NB, Wang JY, Price J, McElrath MJ, Olson J, King NP, Lund JM, Moodie Z, Erasmus JH, McGuire AT. A gH/gL-encoding replicon vaccine elicits neutralizing antibodies that protect humanized mice against EBV challenge. NPJ Vaccines 2024; 9:120. [PMID: 38926438 PMCID: PMC11208421 DOI: 10.1038/s41541-024-00907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Epstein-Barr virus (EBV) is associated with several malignancies, neurodegenerative disorders and is the causative agent of infectious mononucleosis. A vaccine that prevents EBV-driven morbidity and mortality remains an unmet need. EBV is orally transmitted, infecting both B cells and epithelial cells. Several virally encoded proteins are involved in entry. The gH/gL glycoprotein complex is essential for infectivity irrespective of cell type, while gp42 is essential for infection of B cells. gp350 promotes viral attachment by binding to CD21 or CD35 and is the most abundant glycoprotein on the virion. gH/gL, gp42 and gp350, are known targets of neutralizing antibodies and therefore relevant immunogens for vaccine development. Here, we developed and optimized the delivery of several alphavirus-derived replicon RNA (repRNA) vaccine candidates encoding gH/gL, gH/gL/gp42 or gp350 delivered by a cationic nanocarrier termed LION™. The lead candidate, encoding full-length gH/gL, elicited high titers of neutralizing antibodies that persisted for at least 8 months and a vaccine-specific CD8+ T cell response. Transfer of vaccine-elicited IgG protected humanized mice from EBV-driven tumor formation and death following high-dose viral challenge. These data demonstrate that LION/repRNA-gH/gL is an ideal candidate vaccine for preventing EBV infection and/or related malignancies in humans.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amelia R Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Crystal B Chhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Samuel C Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Nicole B Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jing Yang Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Zhong L, Zhang W, Liu H, Zhang X, Yang Z, Wen Z, Chen L, Chen H, Luo Y, Chen Y, Feng Q, Zeng MS, Zhao Q, Liu L, Krummenacher C, Zeng YX, Chen Y, Xu M, Zhang X. A cocktail nanovaccine targeting key entry glycoproteins elicits high neutralizing antibody levels against EBV infection. Nat Commun 2024; 15:5310. [PMID: 38906867 PMCID: PMC11192767 DOI: 10.1038/s41467-024-49546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.
Collapse
Affiliation(s)
- Ling Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hong Liu
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Xinyu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zeyu Yang
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhenfu Wen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Haolin Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yanran Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanhong Chen
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Lixin Liu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yongming Chen
- College of Chemistry and Molecular Science, Henan University, Zhengzhou, 450046, China.
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
8
|
Edwards KR, Schmidt K, Homad LJ, Kher GM, Xu G, Rodrigues KA, Ben-Akiva E, Abbott J, Prlic M, Newell EW, De Rosa SC, Irvine DJ, Pancera M, McGuire AT. Vaccination with nanoparticles displaying gH/gL from Epstein-Barr virus elicits limited cross-protection against rhesus lymphocryptovirus. Cell Rep Med 2024; 5:101587. [PMID: 38781964 PMCID: PMC11228584 DOI: 10.1016/j.xcrm.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gargi M Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guoyue Xu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joe Abbott
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Liao L, Tsai C, Li P, Lee C, Lin S, Lai W, Chen I, Chang C, Lee J, Chiu Y. Characterization of unique pattern of immune cell profile in patients with nasopharyngeal carcinoma through flow cytometry and machine learning. J Cell Mol Med 2024; 28:e18404. [PMID: 38888489 PMCID: PMC11184936 DOI: 10.1111/jcmm.18404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
In patients with nasopharyngeal carcinoma (NPC), the alteration of immune responses in peripheral blood remains unclear. In this study, we established an immune cell profile for patients with NPC and used flow cytometry and machine learning (ML) to identify the characteristics of this profile. After isolation of circulating leukocytes, the proportions of 104 immune cell subsets were compared between NPC group and the healthy control group (HC). Data obtained from the immune cell profile were subjected to ML training to differentiate between the immune cell profiles of the NPC and HC groups. We observed that subjects in the NPC group presented higher proportions of T cells, memory B cells, short-lived plasma cells, IgG-positive B cells, regulatory T cells, MHC II+ T cells, CTLA4+ T cells and PD-1+ T cells than subjects in the HC group, indicating weaker and compromised cellular and humoral immune responses. ML revealed that monocytes, PD-1+ CD4 T cells, memory B cells, CTLA4+ CD4 Treg cells and PD-1+ CD8 T cells were strongly contributed to the difference in immune cell profiles between the NPC and HC groups. This alteration can be fundamental in developing novel immunotherapies for NPC.
Collapse
Affiliation(s)
- Li‐Jen Liao
- Department of OtolaryngologyFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Chien‐Chen Tsai
- Department of Anatomical PathologyFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Po‐Yu Li
- FullHope Biomedical Co., LtdNew Taipei CityTaiwan
| | | | | | - Wan‐Yu Lai
- FullHope Biomedical Co., LtdNew Taipei CityTaiwan
| | - I‐Yu Chen
- Division of Nephrology, Department of MedicineFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Chiung‐Fang Chang
- Department of Medical ResearchFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Jan‐Mou Lee
- FullHope Biomedical Co., LtdNew Taipei CityTaiwan
| | - Yen‐Ling Chiu
- Division of Nephrology, Department of MedicineFar Eastern Memorial HospitalNew Taipei CityTaiwan
- Department of Medical ResearchFar Eastern Memorial HospitalNew Taipei CityTaiwan
- Graduate Institute of Medicine and Graduate Program in Biomedical InformaticsYuan Ze UniversityTaoyuanTaiwan
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
10
|
Thomas MT, Mardock P, Arukala KS. Acyclovir as a Novel Treatment for Severe Chronic Active Epstein-Barr Virus. Cureus 2024; 16:e62070. [PMID: 38989379 PMCID: PMC11235404 DOI: 10.7759/cureus.62070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Epstein-Barr virus (EBV) is a widely infectious pathogen affecting most of the global population at some point in their life. While, typically, primary infections are subclinical, chronic persistence of the virus due to T-cell proliferation can cause severe complications. Acute hepatitis due to chronic active EBV (CAEBV) has rarely been documented. This case details a previously healthy 81-year-old woman who presented with complaints of diffuse abdominal pain, nausea, and vomiting. Her diagnostic workup demonstrated an EBV infection with worsening thrombocytopenia, transaminitis, and hepatocellular liver injury with acute ascites. Her hospitalization was resistant to the traditional supportive treatment of EBV, requiring intensive care management and unorthodox therapy. Although antivirals have demonstrated limited utility in the treatment of CAEBV, the severity of her illness and refractory hospital course necessitated the use of acyclovir. She made a complete recovery with no deficits. The case demonstrates the presentation of acute hepatitis and ascites as a result of CAEBV, the clinical sequelae, and acyclovir as a potential new treatment option.
Collapse
Affiliation(s)
| | - Philip Mardock
- Internal Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| | | |
Collapse
|
11
|
Wu M, Hau PM, Li L, Tsang CM, Yang Y, Taghbalout A, Chung GTY, Hui SY, Tang WC, Jillette N, Zhu JJ, Lee HHY, Kong EL, Chan MSA, Chan JYK, Ma BBY, Chen MR, Lee C, To KF, Cheng AW, Lo KW. Synthetic BZLF1-targeted transcriptional activator for efficient lytic induction therapy against EBV-associated epithelial cancers. Nat Commun 2024; 15:3729. [PMID: 38702330 PMCID: PMC11068728 DOI: 10.1038/s41467-024-48031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The unique virus-cell interaction in Epstein-Barr virus (EBV)-associated malignancies implies targeting the viral latent-lytic switch is a promising therapeutic strategy. However, the lack of specific and efficient therapeutic agents to induce lytic cycle in these cancers is a major challenge facing clinical implementation. We develop a synthetic transcriptional activator that specifically activates endogenous BZLF1 and efficiently induces lytic reactivation in EBV-positive cancer cells. A lipid nanoparticle encapsulating nucleoside-modified mRNA which encodes a BZLF1-specific transcriptional activator (mTZ3-LNP) is synthesized for EBV-targeted therapy. Compared with conventional chemical inducers, mTZ3-LNP more efficiently activates EBV lytic gene expression in EBV-associated epithelial cancers. Here we show the potency and safety of treatment with mTZ3-LNP to suppress tumor growth in EBV-positive cancer models. The combination of mTZ3-LNP and ganciclovir yields highly selective cytotoxic effects of mRNA-based lytic induction therapy against EBV-positive tumor cells, indicating the potential of mRNA nanomedicine in the treatment of EBV-associated epithelial cancers.
Collapse
Affiliation(s)
- Man Wu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pok Man Hau
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong SAR, China
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yike Yang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong SAR, China
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, China
| | - Aziz Taghbalout
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shin Yee Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Chung Tang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Jacqueline Jufen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Horace Hok Yeung Lee
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong SAR, China
| | - Ee Ling Kong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Melissa Sue Ann Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Ying Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette Buig Yue Ma
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Charlie Lee Precision Immuno-oncology program, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Albert Wu Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
13
|
Bencina G, Oliver E, Meiwald A, Hughes R, Morais E, Weston G, Sundström K. Global burden and economic impact of vaccine-preventable cancer mortality. J Med Econ 2024; 27:9-19. [PMID: 38721643 DOI: 10.1080/13696998.2024.2350877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Infections are responsible for approximately 13% of cancer cases worldwide and many of these infections can be prevented by vaccination. Human papillomavirus (HPV) and hepatitis B virus (HBV) are among the most common infections that cause cancer deaths globally, despite effective prophylactic vaccines being available. This analysis aims to estimate the global burden and economic impact of vaccine-preventable cancer mortality across World Health Organization (WHO) regions. METHODS The number of deaths and years of life lost (YLL) due to five different vaccine-preventable cancer forms (oral cavity, liver, laryngeal, cervical, and oropharyngeal cancer) in each of the WHO regions (African, Eastern Mediterranean, European, the Americas, South-East Asia Pacific, and Western Pacific) were obtained from the Institute for Health Metrics Evaluation global burden of disease dataset. Vaccine-preventable mortality was estimated considering the fraction attributable to infection, to estimate the number of deaths and YLL potentially preventable through vaccination. Data from the World Bank on GDP per capita were used to estimate the value of YLL (VYLL). The robustness of these results was explored with sensitivity analysis. Given that several Epstein-Barr virus (EBV) vaccines are in development, but not yet available, the impact of a potential vaccine for EBV was evaluated in a scenario analysis. RESULTS In 2019, there were 465,740 potentially vaccine-preventable cancer deaths and 14,171,397 YLL across all WHO regions. The estimated economic impact due to this mortality was $106.3 billion globally. The sensitivity analysis calculated a range of 403,025-582,773 deaths and a range in productivity cost of $78.8-129.0 billion. In the scenario analysis EBV-related cancer mortality increased the global burden by 159,723 deaths and $32.4 billion. CONCLUSION Overall, the findings from this analysis illustrate the high economic impact of premature cancer mortality that could be potentially preventable by vaccination which may assist decision-makers in allocating limited resources among competing priorities. Improved implementation and increased vaccination coverage of HPV and HBV should be prioritized to decrease this burden.
Collapse
Affiliation(s)
- Goran Bencina
- Center for Observational and Real-World Evidence, MSD Spain, Madrid, Spain
| | | | | | | | - Edith Morais
- Center for Observational and Real-World Evidence, MSD France, Puteaux, France
| | | | - Karin Sundström
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Medical Diagnostics Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Giehler F, Ostertag MS, Sommermann T, Weidl D, Sterz KR, Kutz H, Moosmann A, Feller SM, Geerlof A, Biesinger B, Popowicz GM, Kirchmair J, Kieser A. Epstein-Barr virus-driven B cell lymphoma mediated by a direct LMP1-TRAF6 complex. Nat Commun 2024; 15:414. [PMID: 38195569 PMCID: PMC10776578 DOI: 10.1038/s41467-023-44455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive. Here we demonstrate that TRAF6 interacts directly with a viral TRAF6 binding motif within CTAR2. Functional and NMR studies supported by molecular modeling provide insight into the architecture of the LMP1-TRAF6 complex, which differs from that of CD40-TRAF6. The direct recruitment of TRAF6 to LMP1 is essential for NF-κB activation by CTAR2 and the survival of LMP1-driven lymphoma. Disruption of the LMP1-TRAF6 complex by inhibitory peptides interferes with the survival of EBV-transformed B cells. In this work, we identify LMP1-TRAF6 as a critical virus-host interface and validate this interaction as a potential therapeutic target in EBV-associated cancer.
Collapse
Affiliation(s)
- Fabian Giehler
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael S Ostertag
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Daniel Weidl
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Kai R Sterz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Helmut Kutz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Andreas Moosmann
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Johannes Kirchmair
- Universität Hamburg, Department of Informatics, Center for Bioinformatics (ZBH), 20146, Hamburg, Germany
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Arnd Kieser
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
15
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
16
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
17
|
Wu Q, Zhong L, Wei D, Zhang W, Hong J, Kang Y, Chen K, Huang Y, Zheng Q, Xu M, Zeng MS, Zeng YX, Xia N, Zhao Q, Krummenacher C, Chen Y, Zhang X. Neutralizing antibodies against EBV gp42 show potent in vivo protection and define novel epitopes. Emerg Microbes Infect 2023; 12:2245920. [PMID: 37542379 PMCID: PMC10443957 DOI: 10.1080/22221751.2023.2245920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Epstein-Barr virus (EBV) is the first reported human oncogenic virus and infects more than 95% of the human population worldwide. EBV latent infection in B lymphocytes is essential for viral persistence. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into B cells. The C-type lectin domain (CTLD) of gp42 plays a key role in receptor binding and is the major target of neutralizing antibodies. Here, we isolated two rabbit antibodies, 1A7 and 6G7, targeting gp42 CTLD with potent neutralizing activity against B cell infection. Antibody 6G7 efficiently protects humanized mice from lethal EBV challenge and EBV-induced lymphoma. Neutralizing epitopes targeted by antibodies 1A7 and 6G7 are distinct and novel. Antibody 6G7 blocks gp42 binding to B cell surface and both 1A7 and 6G7 inhibit membrane fusion with B cells. Furthermore, 1A7- and 6G7-like antibodies in immunized sera are major contributors to B cell neutralization. This study demonstrates that anti-gp42 neutralizing antibodies are effective in inhibiting EBV infection and sheds light on the design of gp42-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dongmei Wei
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Junping Hong
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Yinfeng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Liang Y, Wang H, Luo B. Exploration and analysis of differentially expressed genes in Epstein-Barr virus negative and positive plasmablastic lymphoma. Clin Transl Oncol 2023; 25:2884-2891. [PMID: 36991219 DOI: 10.1007/s12094-023-03150-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES Plasmablastic lymphoma (PBL) is a subtype of diffuse large B-cell lymphoma (DLBCL) often associated with Epstein-Barr virus (EBV) infection. Despite recent advances in treatment, PBL still has a poor prognosis. EBV is listed as one of the human tumor viruses that may cause cancer, and is closely related to the occurrence of some nasopharyngeal carcinoma (NPC), lymphoma and 10% of gastric cancer (GC). It is very important to explore the differentially expressed genes (DEGs) between EBV-positive and EBV-negative PBL. Through bioinformatics analysis of DEGs between EBV-positive PBL and EBV-negative PBL, we gain a deeper understanding of the pathogenesis of EBV-positive PBL. METHODS We selected the GSE102203 data set, and screened the DEGs between EBV-positive PBL and EBV-negative PBL. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied. The protein-protein interaction (PPI) network was constructed, and screened for the hub genes. Finally, Gene Set Enrichment Analysis (GSEA) was performed. RESULTS In EBV-positive PBL, the immune-related pathway is upregulated and Cluster of differentiation 27 (CD27) and programmed cell death-ligand 1 (PD-L1) are hub genes. CONCLUSIONS In EBV-positive PBL, EBV may affect tumorigenesis through activation of immune-related pathways and upregulation of CD27, PD-L1. Immune checkpoint blockers of CD70/CD27 and programmed cell death 1 (PD-1)/PD-L1 pathways may be one of the effective strategies for the treatment of EBV-positive PBL.
Collapse
Affiliation(s)
- Yue Liang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China
| | - Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
19
|
Teshome S, Ahmed EH, Zealiyas K, Abubeker A, Tadesse F, Weigel C, Baiocchi RA, Abebe T. Genotypes Distribution of Epstein-Barr Virus among Lymphoma Patients in Ethiopia. Int J Mol Sci 2023; 24:13891. [PMID: 37762195 PMCID: PMC10531361 DOI: 10.3390/ijms241813891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpes virus associated with several human malignancies. Two main EBV genotypes (type 1 and type 2) distinguished by the differences in EBV nuclear antigens are known. Geographic variability in these genetic differences has been observed in the incidence of some EBV-related tumors. Here, we investigated the genetic variation of EBV in lymphoma specimens collected in Ethiopia. A total of 207 DNA samples were used for EBV detection and typing, and EBNA1 and EBNA3C genes were used to detect and subtype the EBV genome, respectively. EBV genotype 1 was detected in 52.2% of lymphoma patients. EBV genotype 2 was detected in 38.2% of the lymphoma patients, and 9.7% were coinfected by both EBV genotypes. Overall, 52.8% of the Hodgkin's lymphoma (HL) patients and 51.8% of non-Hodgkin's lymphoma (NHL) patients showed the presence of genotype 1. Meanwhile, 42.8% and 2.3% of HL patients and 35.8% and 12.4% of NHL patients showed EBV genotype 2 and both genotypes, respectively. Significant associations between the age groups and EBV genotypes were observed (p = 0.027). However, no significant association was seen between EBV genotypes and other sociodemographic and clinical characteristics. This study showed that the distribution of EBV genotype 1 was higher in Ethiopian lymphoma patients.
Collapse
Affiliation(s)
- Seifegebriel Teshome
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Elshafa Hassan Ahmed
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (C.W.)
| | - Kidist Zealiyas
- Ethiopian Public Health Institute (EPHI), Addis Ababa 1242, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Abdulaziz Abubeker
- Department of Internal Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia; (A.A.); (F.T.)
| | - Fisihatsion Tadesse
- Department of Internal Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia; (A.A.); (F.T.)
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (C.W.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (C.W.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| |
Collapse
|
20
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
21
|
Al-Khreisat MJ, Ismail NH, Tabnjh A, Hussain FA, Mohamed Yusoff AA, Johan MF, Islam MA. Worldwide Prevalence of Epstein-Barr Virus in Patients with Burkitt Lymphoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:2068. [PMID: 37370963 DOI: 10.3390/diagnostics13122068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Burkitt lymphoma (BL) is a form of B-cell malignancy that progresses aggressively and is most often seen in children. While Epstein-Barr virus (EBV) is a double-stranded DNA virus that has been linked to a variety of cancers, it can transform B lymphocytes into immortalized cells, as shown in BL. Therefore, the estimated prevalence of EBV in a population may assist in the prediction of whether this population has a high risk of increased BL cases. This systematic review and meta-analysis aimed to estimate the prevalence of Epstein-Barr virus in patients with Burkitt lymphoma. Using the appropriate keywords, four electronic databases were searched. The quality of the included studies was assessed using the Joanna Briggs Institute's critical appraisal tool. The results were reported as percentages with a 95% confidence interval using a random-effects model (CI). PROSPERO was used to register the protocol (CRD42022372293), and 135 studies were included. The prevalence of Epstein-Barr virus in patients with Burkitt lymphoma was 57.5% (95% CI: 51.5 to 63.4, n = 4837). The sensitivity analyses demonstrated consistent results, and 65.2% of studies were of high quality. Egger's test revealed that there was a significant publication bias. EBV was found in a significantly high proportion of BL patients (more than 50% of BL patients). This study recommends EBV testing as an alternative for predictions and the assessment of the clinical disease status of BL.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abedelmalek Tabnjh
- Department of Applied Dental Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women's Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Liu T, Zhou X, Zhang Z, Qin Y, Wang R, Qin Y, Huang Y, Mo Y, Huang T. The role of EBV-encoded miRNA in EBV-associated gastric cancer. Front Oncol 2023; 13:1204030. [PMID: 37388232 PMCID: PMC10301731 DOI: 10.3389/fonc.2023.1204030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Epstein-Barr virus (human herpesvirus 4, EBV) is a linear double-stranded DNA virus that infects over 90% of the population worldwide. However, our understanding of EBV's contribution to tumorigenesis of EBV-associated GC (EBVaGC) remains incomplete. Recent advancements in EBVaGC research have highlighted that EBV-encoded microRNAs (miRNAs) play prominent roles in critical cellular processes such as migration, cell cycle, apoptosis, cell proliferation, immune response, and autophagy. Notably, the largest group of EBV-encoded miRNAs, known as BamHI-A rightward transcripts (BARTs), exhibit bidirectional effects in EBVaGC. For instance, they present both anti-apoptotic and pro-apoptotic functions and enhance chemosensitivity while also conferring resistance to 5-fluorouracil. Despite these findings, the comprehensive mechanisms through which miRNAs contribute to EBVaGC are yet to be fully elucidated. In this work, we summarize the current evidence of the roles of miRNA in EBVaGC, particularly with the application of multi-omic techniques. Additionally, we discuss the application of miRNA in EBVaGC in retrospective analyses and provide novel perspectives on the use of miRNA in EBVaGC in translational medicine.
Collapse
Affiliation(s)
- Ting Liu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanning Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingting Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Zhang M, Sun W, You X, Xu D, Wang L, Yang J, Li E, He S. LINE-1 repression in Epstein-Barr virus-associated gastric cancer through viral-host genome interaction. Nucleic Acids Res 2023; 51:4867-4880. [PMID: 36942479 PMCID: PMC10250212 DOI: 10.1093/nar/gkad203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
Long INterspersed Element 1 (LINE-1 or L1) acts as a major remodeling force in genome regulation and evolution. Accumulating evidence shows that virus infection impacts L1 expression, potentially impacting host antiviral response and diseases. The underlying regulation mechanism is unclear. Epstein-Barr virus (EBV), a double-stranded DNA virus linked to B-cell and epithelial malignancies, is known to have viral-host genome interaction, resulting in transcriptional rewiring in EBV-associated gastric cancer (EBVaGC). By analyzing publicly available datasets from the Gene Expression Omnibus (GEO), we found that EBVaGC has L1 transcriptional repression compared with EBV-negative gastric cancer (EBVnGC). More specifically, retrotransposition-associated young and full-length L1s (FL-L1s) were among the most repressed L1s. Epigenetic alterations, especially increased H3K9me3, were observed on FL-L1s. H3K9me3 deposition was potentially attributed to increased TASOR expression, a key component of the human silencing hub (HUSH) complex for H3K9 trimethylation. The 4C- and HiC-seq data indicated that the viral DNA interacted in the proximity of the TASOR enhancer, strengthening the loop formation between the TASOR enhancer and its promoter. These results indicated that EBV infection is associated with increased H3K9me3 deposition, leading to L1 repression. This study uncovers a regulation mechanism of L1 expression by chromatin topology remodeling associated with viral-host genome interaction in EBVaGC.
Collapse
Affiliation(s)
- Mengyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Center, Medical School, Nanjing University, Yancheng 224000, China
| | - Weikang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaoxin You
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Dongge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lingling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingping Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Center, Medical School, Nanjing University, Yancheng 224000, China
| |
Collapse
|
24
|
Zheng H, Zhao H, Zhang W, Zhang Y, Zhang Y, Ye B, Guo Q. Epstein-Barr virus immediate-early protein Zta mediates the proliferation and migration of HER2-overexpressing cancer cells. Arch Virol 2023; 168:150. [PMID: 37133552 DOI: 10.1007/s00705-023-05774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
Epstein-Barr virus immediate-early protein Zta plays an active role in altering cellular gene expression, which may be fundamentally linked to the viral life cycle, cell cycle, cell growth, and differentiation. HER2 is associated with a wide variety of human cancers, and its knockdown significantly reverses the malignant features of HER2-positive cancers. The aim of this study was to investigate the potential role of Zta in regulating HER2 expression and phenotype changes of MDA-MB-453 cells. Our results indicate that ectopic expression of Zta resulted in downregulation of the HER2 protein in cancer cells (MDA-MB-453, SKBR-3, BT474, and SKOV-3). The Zta protein significantly decreased HER2 mRNA and protein expression in MDA-MB-453 cells in a dose-dependent manner. Mechanistically, Zta recognized and targeted the promoter of HER2 gene, reducing the transcriptional activity of the HER2 gene. Zta induced G0/G1 arrest of MDA-MB-453 cells, inhibiting their proliferation and migration activity. These data suggest that Zta may act as a transforming suppressor of the HER2 gene.
Collapse
Affiliation(s)
- Hongling Zheng
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Haitao Zhao
- Department of Hematology, Binzhou People's Hospital, Binzhou, 256600, People's Republic of China
| | - Wei Zhang
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Yan Zhang
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Yun Zhang
- Department of Respiratory, Jinan Children's Hospital, Jinan, 250022, People's Republic of China
| | - Bing Ye
- Department of Emergency, Jinan Children's Hospital, Jinan, 250022, People's Republic of China.
| | - Qingwei Guo
- Department of Hematology and Oncology, Jinan Children's Hospital, Jinan, 250022, People's Republic of China.
| |
Collapse
|
25
|
Argirion I, Pfeiffer RM, Proietti C, Coghill AE, Yu KJ, Middeldorp JM, Sarathkumara YD, Hsu WL, Chien YC, Lou PJ, Wang CP, Rothman N, Lan Q, Chen CJ, Mbulaiteye SM, Jarrett RF, Glimelius I, Smedby KE, Hjalgrim H, Hildesheim A, Doolan DL, Liu Z. Comparative Analysis of the Humoral Immune Response to the EBV Proteome across EBV-Related Malignancies. Cancer Epidemiol Biomarkers Prev 2023; 32:687-696. [PMID: 36788424 PMCID: PMC10159936 DOI: 10.1158/1055-9965.epi-22-0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is linked to multiple cancers, including classical Hodgkin lymphoma (cHL), endemic Burkitt lymphoma (eBL), nasopharyngeal carcinoma (NPC), and extranodal natural killer/T-cell lymphoma (NKTCL). METHODS Anti-EBV IgG and IgA antibody responses targeting 202 sequences from 86 EBV proteins were measured using the same EBV whole proteome array across four case-control studies investigating EBV-positive cHL, eBL, NPC, and NKTCL (407 cases/620 controls). We grouped EBV-targeted antibodies into pathways by immunoglobulin type (IgA and IgG) and life-cycle stage (latent, immediate early lytic, early lytic, late lytic, and glycoprotein) and evaluated their association with each cancer type. In an additional analysis, we focused on the subset of 46 individual antibodies representing the top candidates for each cancer and compared their associations across the four cancer types using multivariable linear regression models. RESULTS IgA antibody responses targeting all EBV life-cycle stages were associated with NPC but limited to anti-early lytic stage for cHL. NPC and eBL were associated with IgG antibodies across the viral life cycle; cHL with antibodies in the early lytic, late lytic and glycoprotein stages; and NKTCL with antibodies in the latent, immediate early lytic and early lytic phases. EBNA3A, BBLF1, BDLF4, and BLRF2 IgG antibodies were associated with all cancer types. CONCLUSIONS Our observed similarities and differences across four EBV-associated cancers may inform EBV-related oncogenesis. IMPACT Understanding the comparative humoral immune response across EBV-related cancers may aid in identifying shared etiologic roles of EBV proteins and inform unique pathogenic processes for each cancer.
Collapse
Affiliation(s)
- Ilona Argirion
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Anna E. Coghill
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kelly J. Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Wan-Lun Hsu
- Master Program of Big Data in Biomedicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yin-Chu Chien
- Genomics Research Center, Academica Sinica, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Miaoli, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academica Sinica, Taipei, Taiwan
- Graduate Institute of Epidemiology and Prevention Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ruth F. Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin E. Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
26
|
Sausen DG, Basith A, Muqeemuddin S. EBV and Lymphomagenesis. Cancers (Basel) 2023; 15:cancers15072133. [PMID: 37046794 PMCID: PMC10093459 DOI: 10.3390/cancers15072133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only does it infect approximately 90% of the world’s population, but it is also associated with numerous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric cancer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment for these disease states is ever evolving, much work remains to more fully elucidate the relationship between EBV, its associated disease states, and their treatments. This paper begins with an overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to select hematologic malignancies with a focus on the contribution of latent proteins as well as their associated management.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayeman Basith
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
27
|
Du Y, Yu X, Chang ET, Lian S, Wu B, Li F, Chu B, Wei K, Zhan J, Liang X, Ye W, Ji M. Pre-diagnostic anti-EBV antibodies and primary liver cancer risk: a population-based nested case-control study in southern China. BMC Cancer 2023; 23:250. [PMID: 36922768 PMCID: PMC10015780 DOI: 10.1186/s12885-023-10709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND We aimed to investigate associations between pre-diagnostic anti-Epstein-Barr virus (EBV) antibodies, including interactions with hepatitis B virus (HBV), and risk of primary liver cancer in southern China. METHODS In a population-based nested case-control study, we measured pre-diagnostic immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA) in 125 primary liver cancer cases and 2077 matched controls. We also explored the interaction between HBV surface antigen (HBsAg) and anti-EBV antibodies. RESULTS Participants with positive EBNA1-IgA, positive VCA-IgA or single-positive anti-EBV antibodies had two-fold odds of developing liver cancer, compared with seronegative subjects. The odds ratios (ORs) between the relative optical density of EBNA1-IgA and VCA-IgA and primary cancer, controlling for age and HBsAg, were 1.59 (95% confidence interval (CI): 1.17, 2.14) and 1.60 (95% CI: 1.07, 2.41), respectively. Subjects with both HBsAg and anti-EBV antibody seropositivity were at 50-fold increased risk compared with those negative for both biomarkers (OR: 50.67, 95% CI: 18.28, 140.46), yielding a relative excess risk due to interaction of 30.81 (95% CI: 3.42, 114.93). CONCLUSION Pre-diagnostic seropositivity for EBNA1-IgA and/or VCA-IgA was positively associated with primary liver cancer risk, especially in combination with HBsAg positivity. EBV may interact with HBV in the development of primary liver cancer, and anti-EBV antibodies might be potential biomarkers for primary liver cancer in this high-risk population.
Collapse
Affiliation(s)
- Yun Du
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China
| | - Ellen T Chang
- Department of Epidemiology and Biostatistics, University of California, California, USA
| | - Shifeng Lian
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Biaohua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China
| | - Bing Chu
- Department of Pathology, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China
| | - Kuangrong Wei
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China
| | - Jiyun Zhan
- Xiaolan Public Health Service Center, Zhongshan, 528400, People's Republic of China
| | - Xuejun Liang
- Xiaolan Public Health Service Center, Zhongshan, 528400, People's Republic of China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528400, People's Republic of China.
| |
Collapse
|
28
|
Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model. Vaccines (Basel) 2023; 11:vaccines11030540. [PMID: 36992124 DOI: 10.3390/vaccines11030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
Epstein–Barr virus (EBV) is etiologically associated with a number of malignant and non-malignant conditions. Thus, a prophylactic vaccine against this virus could help to reduce the burden of many EBV-associated diseases. Previously, we reported that an EBV virus-like particle (VLP) vaccine was highly immunogenic and produced a strong humoral response in mice. However, since EBV does not infect mice, the efficacy of the VLP in preventing EBV infection could not be addressed. Here we examined, for the first time, the efficacy of the EBV-VLP vaccine using a novel rabbit model of EBV infection. Animals vaccinated with two doses of VLP elicited higher antibody responses to total EBV antigens compared to animals receiving one dose. Vaccinated animals also elicited both IgM and IgG to EBV-specific antigens, VCA and EBNA1. Analysis of peripheral blood and spleen for EBV copy number indicated that the viral load in both of these compartments was lower in animals receiving a 2-dose vaccine. However, the VLP vaccine was ineffective in preventing EBV infection. With several other EBV vaccine candidates currently at various stages of development and testing, we believe that the rabbit model of EBV infection could be a great platform for evaluating potential candidates.
Collapse
|
29
|
Clinical relevance of plasma EBV DNA as a biomarker for nasopharyngeal carcinoma in non-endemic areas: A multicenter study in southwestern China. Clin Chim Acta 2023; 541:117244. [PMID: 36746264 DOI: 10.1016/j.cca.2023.117244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Numerous clinical studies have validated plasma EBV DNA as a reliable biomarker for nasopharyngeal carcinoma (NPC) screening, tumor load monitoring, and prognosis prediction in endemic regions. However, the clinical relevance of plasma EBV DNA as a biomarker for NPC in non-endemic areas is still unclear. METHOD The pretreatment plasma EBV DNA of 1405 newly diagnosed NPC patients from three major regional hospitals in non-endemic areas were analyzed retrospectively. The medical records of 244 age- and gender-matched healthy individuals were reviewed. EBV DNA was detected using Polymerase Chain Reaction (PCR). Based on the baseline of 400 and 0 copies/mL, the distribution characteristics of the pretreatment EBV DNA load in different clinical stages and geographic regions were analyzed. The diagnostic value of pretreatment plasma EBV DNA for NPC with two baselines was evaluated using the ROC curve. RESULTS NPC patients had a significantly higher pretreatment EBV DNA level than healthy controls (P<0.001). Pretreatment EBV DNA was closely associated with clinical and TNM stages in non-endemic areas, as it was in endemic areas. However, when 400 copies/mL set as the detection baseline, the sensitivity and specificity for NPC diagnosis were 40.8 % and 100 %, respectively (AUC = 0.704, cut off = 200.5 copies/mL). This sensitivity was lower than that reported in endemic regions (41.5 % - 97.1 %). Lower sensitivity may result in false negatives, missing diagnoses during NPC screening. Further investigation revealed that 39.7 % (558/1405) of NPC patients had detectable EBV DNA and S amplification curves. Optimizing the detection limit to 0 copies/mL, the sensitivity could be improved to 80.5 % (AUC = 0.901). CONCLUSIONS In non-endemic areas, the clinical significance of plasma EBV DNA as a biomarker for NPC was restricted due to the low detection limit of 400 copies/mL. More efficient nucleic acid extraction and detection methods are needed to optimize the detection limit and increase the clinical application of plasma EBV DNA for NPC.
Collapse
|
30
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
31
|
Lui WY, Bharti A, Wong NHM, Jangra S, Botelho MG, Yuen KS, Jin DY. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog 2023; 19:e1011186. [PMID: 36802409 PMCID: PMC9983872 DOI: 10.1371/journal.ppat.1011186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/03/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Aradhana Bharti
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Nok-Hei Mickey Wong
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Sonia Jangra
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Michael G. Botelho
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| |
Collapse
|
32
|
Hayman IR, Temple RM, Burgess CK, Ferguson M, Liao J, Meyers C, Sample CE. New insight into Epstein-Barr virus infection using models of stratified epithelium. PLoS Pathog 2023; 19:e1011040. [PMID: 36630458 PMCID: PMC9873185 DOI: 10.1371/journal.ppat.1011040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that is transmitted in saliva. EBV transits through the oral epithelium to infect B cells, where it establishes a life-long latent infection. Reinfection of the epithelium is believed to be mediated by virus shed from B cells, but whether a latent reservoir can exist in the epithelia is unknown. We previously developed an in vitro organotypic model of stratified epithelium where EBV can readily replicate within the suprabasal layers of the epithelium following apical infection mediated by virus-producing B cells. Given that infected epithelial cells and cell-free virus are observed in saliva, we examined the ability of both of these to mediate infection in organotypic cultures. Epithelial-derived cell-free virus was able to infect organotypic cultures from the apical surface, but showed enhanced infection of B cells. Conversely, B cell-derived virus exhibited enhanced infection of epithelial cells. While EBV has been detected in basal cells in oral hairy leukoplakia, it is unknown whether EBV can be seen in undifferentiated primary keratinocytes in the basal layer. Undifferentiated epithelial cells expressed proposed EBV receptors in monolayer and were susceptible to viral binding and entry. Integrins, and occasionally ephrin A2, were expressed in the basal layer of gingiva and tonsil derived organotypic cultures, but the known B-cell receptors HLAII and CD21 were not detected. Following infection with cell-free virus or virus-producing B cells at either the apical or basolateral surface of preformed organotypic cultures, abundant infection was detected in differentiated suprabasal cells while more limited but readily detectable infection was observed in the undifferentiated basal cells. Together, our data has provided new insight into EBV infection in stratified epithelium.
Collapse
Affiliation(s)
- Ian R. Hayman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rachel M. Temple
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Cole K. Burgess
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mary Ferguson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jason Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| |
Collapse
|
33
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022; 7:159. [PMID: 36494369 PMCID: PMC9734748 DOI: 10.1038/s41541-022-00587-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
34
|
Molecular Characterisation of Epstein-Barr Virus in Classical Hodgkin Lymphoma. Int J Mol Sci 2022; 23:ijms232415635. [PMID: 36555277 PMCID: PMC9778902 DOI: 10.3390/ijms232415635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Hodgkin lymphomas (HLs) are a heterogeneous group of lymphoid neoplasia associated with Epstein-Barr virus (EBV) infection. EBV, considered to be an important etiological co-factor in approximately 1% of human malignancies, can be classified into two genotypes based on EBNA-2, EBNA-3A and EBNA-3C sequences, and into genetic variants based on the sequence variation of the gene coding for the LMP1 protein. Here, we present the results on the distribution of EBV genotypes 1 and 2 as well as LMP1 gene variants in 50 patients with EBV-positive classical HL selected from a cohort of 289 histologically verified cases collected over a 9-year period in a tertiary clinical center in the Southeast of Europe. The population-based sequencing of the EBNA-3C gene showed the exclusive presence of EBV genotype 1 in all cHL samples. The analysis of EBV LMP1 variant distribution showed a predominance of the wild-type strain B95-8 and the Mediterranean subtype with 30 bp deletion. These findings could contribute to the understanding of EBV immunobiology in cHL as well as to the development of a prophylactic and therapeutic vaccine.
Collapse
|
35
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
36
|
The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany. Cancers (Basel) 2022; 14:cancers14235837. [PMID: 36497319 PMCID: PMC9736164 DOI: 10.3390/cancers14235837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Cancer represents one of the leading causes of death worldwide. Besides genetic risk factors and non-communicable diseases, chronic infections including Epstein−Barr virus (EBV) infection have been identified as promotors of cancer. In the present manuscript, we evaluated the association between infectious mononucleosis, the clinical manifestation of EBV infection, and cancer development in a real-word cohort of outpatients in Germany. Methods: We used the Disease Analyzer database (IQVIA) and matched a total of 12,095 patients with infectious mononucleosis to a cohort of individuals without infectious mononucleosis based on age, sex, index year, and annual patient consultation frequency between 2000 and 2018. Results: Patients diagnosed with infectious mononucleosis had a cancer incidence of 5.3 cases per 1000 person years versus 4.4 cases per 1000 person years for patients without infectious mononucleosis. In multivariable regression models, infectious mononucleosis showed a trend towards a higher incidence of cancer in general in the age group > 50 years (incidence rate ratio (IRR): 1.32; 95% CI: 1.04−1.67) and among men (IRR: 1.36; 95% CI: 1.07−1.72). Infectious mononucleosis was significantly associated with an increased incidence of tumors of the hematopoietic and lymphoid tissues (IRR: 1.75; 95% CI: 1.22−2.50) and showed a strong trend towards an association with prostate cancer (IRR: 3.09; 95% CI: 1.23−7.76). Conclusion: Infectious mononucleosis is associated with an increased incidence of certain cancer types. The present data from a large real-world cohort support the evidence on a role of EBV in the development of different malignancies and could trigger research efforts to further elucidate its precise involvement in the carcinogenic process.
Collapse
|
37
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Zhao Q, Chen Y, Zeng MS, Zeng YX, Xu M, Zhang X. A high-throughput neutralizing assay for antibodies and sera evaluation against Epstein-Barr virus. Virol J 2022; 19:196. [PMID: 36424667 PMCID: PMC9685953 DOI: 10.1186/s12985-022-01911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a wide-spread human herpesvirus that is highly associated with infectious mononucleosis and several malignancies. Evaluation of EBV neutralizing antibody titers is important for serological studies, vaccine development and monoclonal antibody screening. The traditional method based on antibody inhibition of EBV transformation of B cells is very time-consuming. A more practical flow cytometry-based (FCM) approach to evaluate neutralizing titers is not amenable to achieving high-throughput evaluation of large-scale samples. A high-throughput approach is urgently needed. RESULTS Here, we present a rapid and high-throughput method based on high content imaging system (HCIS) analysis. EBV titers determined by the HCIS-based assay were similar to those obtained by the FCM-based assay. Neutralizing titers of sera and monoclonal antibodies measured by the HCIS-based assay strongly correlated with titers measured by the FCM-based assay. HCIS assays showed a strong correlation between B cell infection neutralizing titers and the anti-gp350 IgG titers in healthy EBV carriers and monkey sera. Finally, anti-gHgL IgG titers from sera of healthy EBV carriers significantly correlated with epithelial cell infection neutralizing titers. CONCLUSIONS This HCIS-based assay is a high-throughput assay to determine viral titers and evaluate neutralizing potentials of sera and monoclonal antibodies. This HCIS-based assay will aid the development of vaccines and therapeutic monoclonal antibody against EBV.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
38
|
The Impact of Deleting Stem-Loop 1 of Epstein-Barr Virus-Encoded RNA 1 on Cell Proliferation. Viruses 2022; 14:v14112538. [PMID: 36423146 PMCID: PMC9696203 DOI: 10.3390/v14112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBERs) are two small, noncoding, structurally conserved transcripts, constitutively expressed at >106 copies per EBV-infected cell. They have been shown to drive cell growth. However, the mechanism(s) involved in EBER-induced proliferation is not clear. In this study, we investigated the molecular mechanisms and structural impact of EBER1. Sequences of EBER1 stem-loops (SL) 1, 3, and 4 were deleted, creating three mutants: ∆SL1, ∆SL3, and ∆SL4. These mutants were cloned into pHebo plasmids and expressed in Jurkat cell lines. Cells transfected with wildtype EBER1 and pHebo were used as controls. Cell proliferation was monitored by microscopy and flow cytometry. Microarray, qPCR, and Western blotting were used to investigate the cell cycle markers. We found significantly higher cell proliferation in wildtype EBER1 cells compared to pHebo, ∆SL1, and ∆SL3, but not ∆SL4 mutants. There was also significant upregulation of S-phase and G2/M phase markers in wildtype EBER1 and ∆SL4 mutant. Furthermore, CDT1, a factor for DNA replication, was upregulated in wildtype EBER1 and ∆SL4 mutant. However, in ∆SL1 mutant, CDT1 was significantly downregulated and translocated to the cytoplasm. These data indicate that the structure of EBER1 is important in cell proliferation.
Collapse
|
39
|
Omoboyede V, Ibrahim O, Umar HI, Bello T, Adedeji AA, Khalid A, Fayojegbe ES, Ayomide AB, Chukwuemeka PO. Designing a vaccine-based therapy against Epstein-Barr virus-associated tumors using immunoinformatics approach. Comput Biol Med 2022; 150:106128. [PMID: 36179514 DOI: 10.1016/j.compbiomed.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/05/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Epstein-Barr virus (EBV) is widely known due to its role in the etiology of infectious mononucleosis. However, it is the first oncovirus that was identified and has been implicated in the etiology of several types of cancers. Globally, EBV infection is associated with more than 200, 000 new cancer cases and 150, 000 deaths yearly. A prophylactic or therapeutic vaccine targeting tumors associated with EBV infection is currently lacking. Therefore, this study aimed to develop a multiepitope-based polyvalent vaccine against EBV-associated tumors using immunoinformatics approach. The latency-associated proteins (LAP) of three strains of the virus were used in this study. Potential epitopes predicted from the proteins were analyzed and selected based on several predicted properties. Thirty viable B-cell and T-cell epitopes were selected and conjugated using various linkers alongside beta-defensin 3 as an adjuvant and pan HLA DR-binding epitope (PADRE) sequence to improve the immunogenicity of the vaccine construct. Molecular docking studies of the vaccine construct against toll-like receptors (TLRs) showed it is capable of inducing immune response via recognition by TLRs while immune simulation studies showed it could induce both cellular and humoral immune responses. Furthermore, molecular dynamics study of the complex formed by the vaccine candidate and TLR-4 showed that the complex was stable. Ultimately, the designed vaccine showed desirable properties based on in silico evaluation; however, experimental studies are needed to validate the efficacy of the vaccine against EBV-associated tumors.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Ochapa Ibrahim
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Taye Bello
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Nigeria.
| | - Ayodeji Adeola Adedeji
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Aqsa Khalid
- Research Center for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan.
| | | | - Adunola Blessing Ayomide
- Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Prosper Obed Chukwuemeka
- Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| |
Collapse
|
40
|
Skalsky RL. MicroRNA-mediated control of Epstein-Barr virus infection and potential diagnostic and therapeutic implications. Curr Opin Virol 2022; 56:101272. [PMID: 36242893 DOI: 10.1016/j.coviro.2022.101272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Herpesviruses, such as Epstein-Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets in vitro, our understanding of their contributions to pathogenesis in vivo, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.
Collapse
Affiliation(s)
- Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA.
| |
Collapse
|
41
|
Rozman M, Korać P, Jambrosic K, Židovec Lepej S. Progress in Prophylactic and Therapeutic EBV Vaccine Development Based on Molecular Characteristics of EBV Target Antigens. Pathogens 2022; 11:pathogens11080864. [PMID: 36014985 PMCID: PMC9414479 DOI: 10.3390/pathogens11080864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was discovered in 1964 in the cell line of Burkitt lymphoma and became first known human oncogenic virus. EBV belongs to the Herpesviridae family, and is present worldwide as it infects 95% of people. Infection with EBV usually happens during childhood when it remains asymptomatic; however, in adults, it can cause an acute infection known as infectious mononucleosis. In addition, EBV can cause wide range of tumors with origins in B lymphocytes, T lymphocytes, and NK cells. Its oncogenicity and wide distribution indicated the need for vaccine development. Research on mice and cultured cells as well as human clinical trials have been in progress for a few decades for both prophylactic and therapeutic EBV vaccines. The main targets of the vaccines are EBV envelope glycoproteins such as gp350 and EBV latent genes. The long wait for the EBV vaccine is due to the complexity of the EBV replication cycle and the wide range of its host cells. Although some strategies such as the use of dendritic cells and recombinant Vaccinia viral vectors have shown success, ongoing clinical trials using mRNA-based vaccines as well as new delivery systems as nanoparticles are yet to show the best choice of vaccine target and its production strategy.
Collapse
Affiliation(s)
- Marija Rozman
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Zagreb, Zagreb 10000, Croatia;
| | - Petra Korać
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia;
| | - Karlo Jambrosic
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia;
| | - Snjezana Židovec Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Zagreb, Zagreb 10000, Croatia;
- Correspondence:
| |
Collapse
|
42
|
Malhi H, Homad LJ, Wan YH, Poudel B, Fiala B, Borst AJ, Wang JY, Walkey C, Price J, Wall A, Singh S, Moodie Z, Carter L, Handa S, Correnti CE, Stoddard BL, Veesler D, Pancera M, Olson J, King NP, McGuire AT. Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. Cell Rep Med 2022; 3:100658. [PMID: 35705092 PMCID: PMC9245003 DOI: 10.1016/j.xcrm.2022.100658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
Epstein-Barr virus (EBV) is a cancer-associated pathogen responsible for 165,000 deaths annually. EBV is also the etiological agent of infectious mononucleosis and is linked to multiple sclerosis and rheumatoid arthritis. Thus, an EBV vaccine would have a significant global health impact. EBV is orally transmitted and has tropism for epithelial and B cells. Therefore, a vaccine would need to prevent infection of both in the oral cavity. Passive transfer of monoclonal antibodies against the gH/gL glycoprotein complex prevent experimental EBV infection in humanized mice and rhesus macaques, suggesting that gH/gL is an attractive vaccine candidate. Here, we evaluate the immunogenicity of several gH/gL nanoparticle vaccines. All display superior immunogenicity relative to monomeric gH/gL. A nanoparticle displaying 60 copies of gH/gL elicits antibodies that protect against lethal EBV challenge in humanized mice, whereas antibodies elicited by monomeric gH/gL do not. These data motivate further development of gH/gL nanoparticle vaccines for EBV.
Collapse
Affiliation(s)
- Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Bibhav Poudel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jing Yang Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jason Price
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Suruchi Singh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Simran Handa
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - James Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA.
| |
Collapse
|
43
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
44
|
Vesicular Stomatitis Virus-Based Epstein-Barr Virus Vaccines Elicit Strong Protective Immune Responses. J Virol 2022; 96:e0033622. [PMID: 35404082 PMCID: PMC9093130 DOI: 10.1128/jvi.00336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, is etiologically associated with various kinds of malignant and benign diseases, accounting for 265,000 cancer incident cases and 164,000 cancer deaths in 2017. EBV prophylactic vaccine development has been gp350 centered for several decades. However, clinical studies show that gp350-centered vaccines fail to prevent EBV infection. Advances in the EBV infection mechanisms shed light on gB and gHgL, the two key components of the infection apparatus. In this study, for the first time, we utilized recombinant vesicular stomatitis virus (VSV) to display EBV gB (VSV-ΔG-gB/gB-G) or gHgL (VSV-ΔG-gHgL). In vitro studies confirmed successful virion production and glycoprotein presentation on the virion surface. In mouse models, VSV-ΔG-gB/gB-G or VSV-ΔG-gHgL elicited potent humoral responses. Neutralizing antibodies elicited by VSV-ΔG-gB/gB-G were prone to prevent B cell infection, while those elicited by VSV-ΔG-gHgL were prone to prevent epithelial cell infection. Combinatorial vaccination yields an additive effect. The ratio of endpoint neutralizing antibody titers to the endpoint total IgG titers immunized with VSV-ΔG-gHgL was approximately 1. The ratio of IgG1/IgG2a after VSV-ΔG-gB/gB-G immunization was approximately 1 in a dose-dependent, adjuvant-independent manner. Taken together, VSV-based EBV vaccines can elicit a high ratio of epithelial and B lymphocyte neutralizing antibodies, implying their unique potential as EBV prophylactic vaccine candidates. IMPORTANCE Epstein-Barr virus (EBV), one of the most common human viruses and the first identified human oncogenic virus, accounted for 265,000 cancer incident cases and 164,000 cancer deaths in 2017 as well as millions of nonmalignant disease cases. So far, no prophylactic vaccine is available to prevent EBV infection. In this study, for the first time, we reported the VSV-based EBV vaccines presenting two key components of the EBV infection apparatus, gB and gHgL. We confirmed potent antigen-specific antibody generation; these antibodies prevented EBV from infecting epithelial cells and B cells, and the IgG1/IgG2a ratio indicated balanced humoral-cellular responses. Taken together, we suggest VSV-based EBV vaccines are potent prophylactic candidates for clinical studies and help eradicate numerous EBV-associated malignant and benign diseases.
Collapse
|
45
|
A Neutralizing Antibody Targeting gH Provides Potent Protection against EBV Challenge In Vivo. J Virol 2022; 96:e0007522. [PMID: 35348362 DOI: 10.1128/jvi.00075-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is associated with 200,000 new cases of cancer and 140,000 deaths annually. To date, there are no available vaccines or therapeutics for clinical usage. Recently, the viral heterodimer glycoprotein gH/gL has become a promising target for the development of prophylactic vaccines against EBV. Here, we developed the anti-gH antibody 6H2 and its chimeric version C6H2, which had full neutralizing activity in epithelial cells and partial neutralizing activity in B cells. C6H2 exhibited potent protection against lethal EBV challenge in a humanized mouse model. The cryo-electron microscopy (cryo-EM) structure further revealed that 6H2 recognized a previously unidentified epitope on gH/gL D-IV that is critical for viral attachment and subsequent membrane fusion with epithelial cells. Our results suggest that C6H2 is a promising candidate in the prevention of EBV-induced lymphoproliferative diseases (LPDs) and may inform the design of an EBV vaccine. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that establishes lifelong persistence and is related to multiple diseases, including cancers. Neutralizing antibodies (NAbs) have proven to be highly effective in preventing EBV infection and subsequent diseases. Here, we developed an anti-EBV-gH NAb, 6H2, which blocked EBV infection in vitro and in vivo. This 6H2 neutralizing epitope should be helpful to understand EBV infection mechanisms and guide the development of vaccines and therapeutics against EBV infection.
Collapse
|
46
|
Heng YJ, Love S, DeHart JC, Fingeroth JD, Wulf GM. The association of infectious mononucleosis and invasive breast cancer in The Health of Women (HOW) Study®. Breast Cancer 2022; 29:731-739. [DOI: 10.1007/s12282-022-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
47
|
Liao HM, Liu H, Chin PJ, Li B, Hung GC, Tsai S, Otim I, Legason ID, Ogwang MD, Reynolds SJ, Kerchan P, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Ayers LW, Pfeiffer RM, Bhatia K, Goedert JJ, Lo SC, Mbulaiteye SM. Epstein-Barr Virus in Burkitt Lymphoma in Africa Reveals a Limited Set of Whole Genome and LMP-1 Sequence Patterns: Analysis of Archival Datasets and Field Samples From Uganda, Tanzania, and Kenya. Front Oncol 2022; 12:812224. [PMID: 35340265 PMCID: PMC8948429 DOI: 10.3389/fonc.2022.812224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with endemic Burkitt lymphoma (eBL), but the contribution of EBV variants is ill-defined. Studies of EBV whole genome sequences (WGS) have identified phylogroups that appear to be distinct for Asian versus non-Asian EBV, but samples from BL or Africa, where EBV was first discovered, are under-represented. We conducted a phylogenetic analysis of EBV WGS and LMP-1 sequences obtained primarily from BL patients in Africa and representative non-African EBV from other conditions or regions using data from GenBank, Sequence Read Archive, or Genomic Data Commons for the Burkitt Lymphoma Genome Sequencing Project (BLGSP) to generate data to support the use of a simpler biomarker of geographic or phenotypic associations. We also investigated LMP-1 patterns in 414 eBL cases and 414 geographically matched controls in the Epidemiology of Burkitt Lymphoma in East African children and minors (EMBLEM) study using LMP-1 PCR and Sanger sequencing. Phylogenetic analysis revealed distinct genetic patterns of African versus Asian EBV sequences. We identified 281 single nucleotide variations (SNVs) in LMP-1 promoter and coding region, which formed 12 unique patterns (A to L). Nine patterns (A, AB, C, D, F, I, J, K and L) predominated in African EBV, of which four were found in 92% of BL samples (A, AB, D, and H). Predominant patterns were B and G in Asia and H in Europe. EBV positivity in peripheral blood was detected in 95.6% of EMBLEM eBL cases versus 79.2% of the healthy controls (odds ratio [OR] =3.83; 95% confidence interval 2.06-7.14). LMP-1 was successfully sequenced in 66.7% of the EBV DNA positive cases but in 29.6% of the controls (ORs ranging 5-11 for different patterns). Four LMP-1 patterns (A, AB, D, and K) were detected in 63.1% of the cases versus 27.1% controls (ORs ranges: 5.58-11.4). Dual strain EBV infections were identified in WGS and PCR-Sanger data. In conclusion, EBV from Africa is phylogenetically separate from EBV in Asia. Genetic diversity in LMP-1 formed 12 patterns, which showed promising geographic and phenotypic associations. Presence of multiple strain infection should be considered in efforts to refine or improve EBV markers of ancestry or phenotype. Lay Summary Epstein-Barr virus (EBV) infection, a ubiquitous infection, contributes to the etiology of both Burkitt Lymphoma (BL) and nasopharyngeal carcinoma, yet their global distributions vary geographically with no overlap. Genomic variation in EBV is suspected to play a role in the geographical patterns of these EBV-associated cancers, but relatively few EBV samples from BL have been comprehensively studied. We sought to compare phylogenetic patterns of EBV genomes obtained from BL samples in Africa and from tumor and non-tumor samples from elsewhere. We concluded that EBV obtained from BL in Africa is genetically separate from EBV in Asia. Through comprehensive analysis of nucleotide variations in EBV's LMP-1 gene, we describe 12 LMP-1 patterns, two of which (B and G) were found mostly in Asia. Four LMP-1 patterns (A, AB, D, and F) accounted for 92% of EBVs sequenced from BL in Africa. Our results identified extensive diversity of EBV, but BL in Africa was associated with a limited number of variants identified, which were different from those identified in Asia. Further research is needed to optimize the use of PCR and sequencing to study LMP-1 diversity for classification of EBV variants and for use in epidemiologic studies to characterize geographic and/or phenotypic associations of EBV variants with EBV-associated malignancies, including eBL.
Collapse
Affiliation(s)
- Hsiao-Mei Liao
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hebing Liu
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Pei-Ju Chin
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Bingjie Li
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Guo-Chiuan Hung
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shien Tsai
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Constance N. Tenge
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Pamela A. Were
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya & Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Nestory Masalu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Bugando Medical Center, Mwanza, Tanzania
| | - Esther Kawira
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Shirati Health and Educational Foundation, Shirati, Tanzania
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shyh-Ching Lo
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Nečasová I, Stojaspal M, Motyčáková E, Brom T, Janovič T, Hofr C. Transcriptional regulators of human oncoviruses: structural and functional implications for anticancer therapy. NAR Cancer 2022; 4:zcac005. [PMID: 35252867 PMCID: PMC8892037 DOI: 10.1093/narcan/zcac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcription is often the first biosynthetic event of viral infection. Viruses produce preferentially viral transcriptional regulators (vTRs) essential for expressing viral genes and regulating essential host cell proteins to enable viral genome replication. As vTRs are unique viral proteins that promote the transcription of viral nucleic acid, vTRs interact with host proteins to suppress detection and immune reactions to viral infection. Thus, vTRs are promising therapeutic targets that are sequentially and structurally distinct from host cell proteins. Here, we review vTRs of three human oncoviruses: HBx of hepatitis B virus, HBZ of human T-lymphotropic virus type 1, and Rta of Epstein-Barr virus. We present three cunningly exciting and dangerous transcription strategies that make viral infections so efficient. We use available structural and functional knowledge to critically examine the potential of vTRs as new antiviral-anticancer therapy targets. For each oncovirus, we describe (i) the strategy of viral genome transcription; (ii) vTRs' structure and binding partners essential for transcription regulation; and (iii) advantages and challenges of vTR targeting in antiviral therapies. We discuss the implications of vTR regulation for oncogenesis and perspectives on developing novel antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Ivona Nečasová
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Martin Stojaspal
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Edita Motyčáková
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Tomáš Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Tomáš Janovič
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Ctirad Hofr
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| |
Collapse
|
49
|
Roetman JJ, Apostolova MKI, Philip M. Viral and cellular oncogenes promote immune evasion. Oncogene 2022; 41:921-929. [PMID: 35022539 PMCID: PMC8851748 DOI: 10.1038/s41388-021-02145-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
Thirteen percent of cancers worldwide are associated with viral infections. While many human oncogenic viruses are widely endemic, very few infected individuals develop cancer. This raises the question why oncogenic viruses encode viral oncogenes if they can replicate and spread between human hosts without causing cancer. Interestingly, viral infection triggers innate immune signaling pathways that in turn activate tumor suppressors such as p53, suggesting that tumor suppressors may have evolved not primarily to prevent cancer, but to thwart viral infection. Here, we summarize and compare several major immune evasion strategies used by viral and non-viral cancers, with a focus on oncogenes that play dual roles in promoting tumorigenicity and immune evasion. By highlighting important and illustrative examples of how oncogenic viruses evade the immune system, we aim to shed light on how non-viral cancers avoid immune detection. Further study and understanding of how viral and non-viral oncogenes impact immune function could lead to improved strategies to combine molecular therapies targeting oncoproteins in combination with immunomodulators.
Collapse
Affiliation(s)
- Jessica J Roetman
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Minna K I Apostolova
- Department of Biochemistry and Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Mary Philip
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
50
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|