1
|
Dickson KB, Stadnyk AW, Zhou J, Lehmann C. Mucosal Immunity: Lessons from the Lower Respiratory and Small Intestinal Epithelia. Biomedicines 2025; 13:1052. [PMID: 40426880 PMCID: PMC12108762 DOI: 10.3390/biomedicines13051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Mucosal epithelia represent a diverse group of tissues that function as a barrier against the external environment and exert a wide variety of tissue-specific secondary functions. This review focuses on the lower respiratory tract and small intestinal epithelia, which serve as two distinct sites within the body with respect to their physiological functions. This review provides an overview of their physiology, including both physiological and mechanical defense systems, and their immune responses, which allow both tissues to tolerate commensal organisms while mounting a response against potential pathogens. By highlighting the commonalities and differences across the two tissue types, opportunities to learn from these tissues emerge, which can inform the development of novel therapeutic strategies that harness the unique properties of mucosal epithelia.
Collapse
Affiliation(s)
- Kayle B. Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (K.B.D.); (A.W.S.)
| | - Andrew W. Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (K.B.D.); (A.W.S.)
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (K.B.D.); (A.W.S.)
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Cui Z, Yuan X, Wang Y, Liu Z, Fei X, Chen K, Shen HM, Wu Y, Xia D. Environmentally relevant level of PFDA exacerbates intestinal inflammation by activating the cGAS/STING/NF-κB signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176786. [PMID: 39383958 DOI: 10.1016/j.scitotenv.2024.176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
As a constituent of the Per- and Polyfluoroalkyl Substances (PFAS) family, perfluorodecanoic acid (PFDA) is ubiquitous in the environment and enters the human body through environmental exposure, the food chain, and other pathways, resulting in various toxic effects. Previous population-based studies have suggested a correlation between PFDA exposure and inflammation. However, the evidence is still limited, and the potential mechanisms underlying this correlation remain to be further elucidated. In our study, we observed that exposure to internal doses of PFDA significantly promoted macrophage inflammation through in vitro assays. Utilizing RNA-seq screening and molecular experiments, we identified that environmentally relevant concentration of PFDA promote inflammation mainly by activating non-canonical cGAS/STING/NF-κB pathways in vitro. Finally, we confirmed in the typical mouse inflammatory bowel disease (IBD) model that PFDA could exacerbate intestinal inflammation in a cGAS dependent manner. In conclusion, our research firstly demonstrated that even at environmentally relevant concentrations, PFDA could promote the progression of intestinal inflammation primarily through the cGAS/STING/NF-κB pathway, revealing the potential risk associated with PFDA exposure and providing theoretical evidence for its management.
Collapse
Affiliation(s)
- Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Fei
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Garcia AC, Six N, Ma L, Morel L. Intersection of the microbiome and immune metabolism in lupus. Immunol Rev 2024; 325:77-89. [PMID: 38873851 PMCID: PMC11338729 DOI: 10.1111/imr.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.
Collapse
Affiliation(s)
- Abigail Castellanos Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Tang Y, Feng X, Lu Q, Cui C, Yu M, Wen Z, Luan Y, Dong L, Hu Z, Zhang R, Lu C, Liu J, Shinkura R, Hase K, Wang JY. MZB1-mediated IgA secretion suppresses the development and progression of colorectal cancer triggered by gut inflammation. Mucosal Immunol 2024; 17:450-460. [PMID: 38101774 DOI: 10.1016/j.mucimm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Colorectal cancer (CRC) ranks among the top causes of mortality globally. Gut inflammation is one crucial risk factor that augments CRC development since patients suffering from inflammatory bowel disease have an increased incidence of CRC. The role of immunoglobulin (Ig)A in maintaining gut homeostasis and preventing inflammation has been well established. Our earlier work demonstrated that the marginal zone and B1 cell-specific protein (MZB1) promotes gut IgA secretion and its absence results in pronounced dextran sulfate sodium salt (DSS)-induced colitis. In the present study, we explored the role of MZB1 in CRC development using the azoxymethane (AOM)/DSS-induced CRC model. We observed an increase in both the number and size of the tumor nodules in Mzb1-/- mice compared with Mzb1+/+ mice. The increase in CRC development and progression in Mzb1-/- mice was associated with reduced intestinal IgA levels, altered gut flora, and more severe gut and systemic inflammation. Oral administration of the monoclonal IgA, W27, alleviated both the gut inflammation and AOM/DSS-induced CRC. Notably, cohousing Mzb1+/+ and Mzb1-/- mice from the 10th day after birth led to similar CRC development. Our findings underscore the pivotal role of MZB1-mediated IgA secretion in suppressing the onset and progression of CRC triggered by gut inflammation. Moreover, our study highlights the profound impact of microbiota composition, modulated by gut IgA levels, on gut inflammation. Nonetheless, establishing a direct correlation between the severity of colitis and subsequent CRC development and the presence or absence of a particular microbiota is challenging.
Collapse
Affiliation(s)
- Yue Tang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoqian Feng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chaoqun Cui
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zichao Wen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingying Luan
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Runyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunhui Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute of Quantitative Biosciences, the University of Tokyo, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai 200052, China.
| |
Collapse
|
5
|
Yang Z, Song Y, Chen B, Hao F. Associations of Gut and Circulating Microbiota with Circulating Vitamin D 3, Type I Interferon, and Systemic Inflammation in Chronic Spontaneous Urticaria Patients. J Inflamm Res 2024; 17:2775-2785. [PMID: 38737112 PMCID: PMC11086427 DOI: 10.2147/jir.s455489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Objective To analyze the associations of the gut and circulating microbiota with circulating vitamin D3 (VD3), type I interferon (IFNI), systemic inflammation, and clinical profiles in chronic spontaneous urticaria (CSU) patients. Methods A total of 36 CSU patients with VD3 insufficiency (VDI; serum 25(OH)VD3 <30 ng/mL) and 36 sex-, age-, and body mass index-matched CSU patients with non-VDI were enrolled. Fecal and serum bacteria were identified through 16S rRNA sequencing, and serum 25(OH)VD3 and inflammation biomarkers were assessed using ELISA kits. IFNI response was determined by measuring the stimulatory activity of serum on IFNI-stimulated response element in HEK293 cells in vitro with luciferase assays. Results Higher urticarial activity score over 7 days (UAS7), higher frequency of levocetirizine resistance, and more severe proinflammation but weaker IFNI response were observed in VDI than non-VDI patients (all P<0.05). IFNI response was strongly positively associated with serum 25(OH)VD3 level in both groups (P<0.001). Compared to non-VDI patients, abundance of the fecal genera Prevotella 9, Escherichia-Shigella, and Klebsiella was significantly increased, while Bacteroides, Faecalibacterium, and Agathobacter were remarkably reduced in VDI patients (all P<0.05). Burkholderia-Caballeronia-Paraburkholderia (40.95%), Acinetobacter (3.05%), and Aquabacterium (2.37%) were the top three bacteria in sera from VDI patients. Both serum 25(OH)VD3 level and IFNI response were positively associated with fecal Bacteroides in the two groups (P<0.05). In non-VDI patients, there were moderately positive associations between IFNI response and fecal Lachnoclostridium, unclassified_f__Lachnospiraceae, and Phascolarctobacterium and between serum 25(OH)VD3 level and fecal Lachnoclostridium (all P<0.01). Circulating microbiota in VDI patients was closely related only to proinflammation and UAS7 (both P<0.05). Conclusion Changes in gut but not circulating microbiota composition are associated with serum 25(OH)VD3 insufficiency and impaired IFNI homeostasis, which points to greater disease severity (UAS7) and systemic proinflammation in CSU patients.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Dermatology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Yao Song
- Department of Dermatology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Bangtao Chen
- Department of Dermatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404100, People’s Republic of China
| | - Fei Hao
- Department of Dermatology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| |
Collapse
|
6
|
Kalugotla G, Marmerstein V, Baldridge MT. Regulation of host/pathogen interactions in the gastrointestinal tract by type I and III interferons. Curr Opin Immunol 2024; 87:102425. [PMID: 38763032 PMCID: PMC11162908 DOI: 10.1016/j.coi.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Yang Y, Bo S, Liang L, Deng K, Bai L, Wang T, Wang Y, Liu K, Lu C. Delivery of Interferon β-Encoding Plasmid via Lipid Nanoparticle Restores Interferon β Expression to Enhance Antitumor Immunity in Colon Cancer. ACS NANO 2024. [PMID: 38319978 DOI: 10.1021/acsnano.3c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Type I interferon (IFN-I) plays a critical role in host cancer immunosurveillance, but its expression is often impaired in the tumor microenvironment. We aimed at testing the hypothesis that cationic lipid nanoparticle delivery of interferon β (IFNβ)-encoding plasmid to tumors is effective in restoring IFNβ expression to suppress tumor immune evasion. We determined that IFN-I function in tumor suppression depends on the host immune cells. IFN-I activates the expression of Cxcl9 and Cxcl10 to enhance T cell tumor infiltration. RNA-Seq detected a low level of IFNα13 and IFNβ in colon tumor tissue. scRNA-Seq revealed that IFNβ is expressed in immune cell subsets in non-neoplastic human tissues and to a lesser degree in human colon tumor tissues. Forced expression of IFNα13 and IFNβ in colon tumor cells up-regulates major histocompatibility complex I (MHC I) expression and suppresses colon tumor growth in vivo. In human cancer patients, IFNβ expression is positively correlated with human leukocyte antigen (HLA) expression, and IFN-I signaling activation correlates with the patient response to PD-1 blockade immunotherapy. To translate this finding to colon cancer immunotherapy, we formulated a 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-cholesterol-encapsulated IFNβ-encoding plasmid (IFNBCOL01). IFNBCOL01 transfects colon tumor cells to express IFNβ to increase the level of MHC I expression. IFNBCOL01 therapy transfects tumor cells and tumor-infiltrating immune cells to produce IFNβ to activate MHC I and granzyme B expression and inhibits colon tumor growth in mice. Our data determine that lipid nanoparticle delivery of IFNβ-encoding plasmid DNA enhances tumor immunogenicity and T cell effector function to suppress colon tumor growth in vivo.
Collapse
Affiliation(s)
- Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shixuan Bo
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Liyan Liang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kaidi Deng
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Liya Bai
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, United States
- Georgia Cancer Center, Augusta, Georgia 30912, United States
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Chiriac MT, Hracsko Z, Becker C, Neurath MF. STAT2 Controls Colorectal Tumorigenesis and Resistance to Anti-Cancer Drugs. Cancers (Basel) 2023; 15:5423. [PMID: 38001683 PMCID: PMC10670206 DOI: 10.3390/cancers15225423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer (CRC) is a significant socioeconomic burden in modern society and is accountable for millions of premature deaths each year. The role of signal transducer and activator of transcription 2 (STAT2)-dependent signaling in this context is not yet fully understood, and no therapies targeting this pathway are currently being pursued. We investigated the role of STAT2 in CRC using experimental mouse models coupled with RNA-sequencing (RNA-Seq) data and functional assays with anti-cancer agents in three-dimensional tumoroids. Stat2-/- mice showed greater resistance to the development of CRC in both inflammation-driven and inflammation-independent experimental CRC models. In ex vivo studies, tumoroids derived from Stat2-/- mice with the multiple intestinal neoplasia (Min) mutant allele of the adenomatous polyposis coli (Apc) locus exhibited delayed growth, were overall smaller and more differentiated as compared with tumoroids from ApcMin/+ wildtype (WT) mice. Notably, tumoroids from ApcMin/+ Stat2-/- mice were more susceptible to anti-cancer agents inducing cell death by different mechanisms. Our findings clearly indicated that STAT2 promotes CRC and suggested that interventions targeting STAT2-dependent signals might become an attractive therapeutic option for patients with CRC.
Collapse
Affiliation(s)
- Mircea T. Chiriac
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Zsuzsanna Hracsko
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Kolli P, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ɛ restricts Zika virus infection in the female reproductive tract. PNAS NEXUS 2023; 2:pgad350. [PMID: 37954158 PMCID: PMC10639110 DOI: 10.1093/pnasnexus/pgad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Priyanka Kolli
- Graduate School of Biological Sciences, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirella Salvatore
- Departmentof Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
10
|
de Geus ED, Volaric JS, Matthews AY, Mangan NE, Chang J, Ooi JD, de Weerd NA, Giles EM, Hertzog PJ. Epithelially Restricted Interferon Epsilon Protects Against Colitis. Cell Mol Gastroenterol Hepatol 2023; 17:267-278. [PMID: 37879406 PMCID: PMC10765064 DOI: 10.1016/j.jcmgh.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Type I interferon (T1IFN) signalling is crucial for maintaining intestinal homeostasis. We previously found that the novel T1IFN, IFNε, is highly expressed by epithelial cells of the female reproductive tract, where it protects against pathogens. Its function has not been studied in the intestine. We hypothesize that IFNε is important in maintaining intestinal homeostasis. METHODS We characterized IFNε expression in mouse and human intestine by immunostaining and studied its function in the dextran sulfate sodium (DSS) colitis model using both genetic knockouts and neutralizing antibody. RESULTS We demonstrate that IFNε is expressed in human and mouse intestinal epithelium, and expression is lost in inflammation. Furthermore, we show that IFNε limits intestinal inflammation in mouse models. Regulatory T cell (Treg) frequencies were paradoxically decreased in DSS-treated IFNε-/- mice, suggesting a role for IFNε in maintaining the intestinal Treg compartment. Colitis was ameliorated by transfer of wild-type Tregs into IFNε-/- mice. This demonstrates that IFNε supports intestinal Treg function. CONCLUSIONS Overall, we have shown IFNε expression in intestinal epithelium and its critical role in gut homeostasis. Given its known role in the female reproductive tract, we now show IFNε has a protective role across multiple mucosal surfaces.
Collapse
Affiliation(s)
- Eveline D de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Jennifer S Volaric
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Edward M Giles
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia; Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Masuta Y, Otsuka Y, Minaga K, Honjo H, Kudo M, Watanabe T. Regulation of type I IFN responses by deubiquitinating enzyme A in inflammatory bowel diseases. J Clin Biochem Nutr 2023; 73:103-107. [PMID: 37700847 PMCID: PMC10493212 DOI: 10.3164/jcbn.23-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 09/14/2023] Open
Abstract
The development of Inflammatory bowel disease (IBD) is driven by excessive production of pro-inflammatory cytokines including TNF-α, IL-12, and IL-23. This notion is supported by the remarkable clinical success of biologics targeting these cytokines. Recognition of cell wall components derived from intestinal bacteria by Toll-like receptors (TLRs) induces the production of these pro-inflammatory cytokines by macrophages and dendritic cells in human IBD and experimental colitis model. Although sensing of bacterial nucleic acids by endosomal TLRs, specifically TLR3, TLR7, and TLR9 leads to robust production of type I IFNs, it remains debatable whether TLR-mediated type I IFN responses are pathogenic or protective in IBD patients. Additionally, recent studies identified deubiquitinating enzyme A (DUBA) as a novel negative regulator of TLR-mediated type I IFN responses. In light of these observations and their potential applications, in this review, we summarize recent findings on the roles of type I IFN responses and DUBA-mediated negative regulation of these responses in human IBD and experimental colitis model.
Collapse
Affiliation(s)
- Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
12
|
Cortez V, Livingston B, Sharp B, Hargest V, Papizan JB, Pedicino N, Lanning S, Jordan SV, Gulman J, Vogel P, DuBois RM, Crawford JC, Boyd DF, Pruett-Miller SM, Thomas PG, Schultz-Cherry S. Indoleamine 2,3-dioxygenase 1 regulates cell permissivity to astrovirus infection. Mucosal Immunol 2023; 16:551-562. [PMID: 37290501 PMCID: PMC10528345 DOI: 10.1016/j.mucimm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA.
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James B Papizan
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Natalie Pedicino
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Sarah Lanning
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Summer Vaughn Jordan
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Jacob Gulman
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Boyd
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An overview of host-derived molecules that interact with gut microbiota. IMETA 2023; 2:e88. [PMID: 38868433 PMCID: PMC10989792 DOI: 10.1002/imt2.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
The gut microbiota comprises bacteria, archaea, fungi, protists, and viruses that live together and interact with each other and with host cells. A stable gut microbiota is vital for regulating host metabolism and maintaining body health, while a disturbed microbiota may induce different kinds of disease. In addition, diet is also considered to be the main factor that influences the gut microbiota. The host could shape the gut microbiota through other factors. Here, we reviewed the mechanisms that mediate host regulation on gut microbiota, involved in gut-derived molecules, including gut-derived immune system molecules (secretory immunoglobulin A, antimicrobial peptides, cytokines, cluster of differentiation 4+ effector T cell, and innate lymphoid cells), sources related to gut-derived mucosal molecules (carbon sources, nitrogen sources, oxygen sources, and electron respiratory acceptors), gut-derived exosomal noncoding RNA (ncRNAs) (microRNAs, circular RNA, and long ncRNA), and molecules derived from organs other than the gut (estrogen, androgen, neurohormones, bile acid, and lactic acid). This study provides a systemic overview for understanding the interplay between gut microbiota and host, a comprehensive source for potential ways to manipulate gut microbiota, and a solid foundation for future personalized treatment that utilizes gut microbiota.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huifeng Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Lei Sun
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Yue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaodong Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junhu Yao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
14
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ε restricts Zika virus infection in the female reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535968. [PMID: 37066223 PMCID: PMC10104157 DOI: 10.1101/2023.04.06.535968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q. Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY10461
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
15
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
16
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
17
|
Metzger R, Winter L, Bouznad N, Garzetti D, von Armansperg B, Rokavec M, Lutz K, Schäfer Y, Krebs S, Winheim E, Friedrich V, Matzek D, Öllinger R, Rad R, Stecher B, Hermeking H, Brocker T, Krug AB. CCL17 Promotes Colitis-Associated Tumorigenesis Dependent on the Microbiota. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2227-2238. [PMID: 36426975 DOI: 10.4049/jimmunol.2100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.
Collapse
Affiliation(s)
- Rebecca Metzger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lis Winter
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt von Armansperg
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin Lutz
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yvonne Schäfer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina Krebs
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Verena Friedrich
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
18
|
Jiang H, Guo Y, Yu Z, Hu P, Shi J. Nanocatalytic bacteria disintegration reverses immunosuppression of colorectal cancer. Natl Sci Rev 2022; 9:nwac169. [PMID: 36381212 PMCID: PMC9647001 DOI: 10.1093/nsr/nwac169] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-associated bacteria (TAB) play a critically important role in regulating the microenvironment of a tumor, which consequently greatly deteriorates the therapeutic effects by chemo- and radiotherapy deactivation and, more considerably, leads to substantial immunosuppression. On the contrary, herein we propose a nanocatalytic tumor-immunotherapeutic modality based on the bacteria disintegration by bacteria-specific oxidative damage under magnetic hyperthermia for highly effective immune response activation-promoted tumor regression. A monodispersed and superparamagnetic nanocatalytic medicine modified by arginyl-glycyl-aspartic acid (RGD) and (3-carboxypropyl)triphenylphosphonium bromide (TPP), named as MNP-RGD-TPP herein, has been synthesized, which features selective accumulation at the TAB by the electrostatic affinity, enabling effective TAB disintegration by the nanocatalytic Fenton reaction producing abundant cytotoxic hydroxyl radicals in situ under alternating magnetic field-induced hyperthermia. More importantly, the lipopolysaccharide has been metabolically secreted from the destructed TAB as pathogen-associated molecular patterns (PAMPs) to M1-polarize tumor-associated macrophages (TAMs) and promote the maturation of dendritic cells (DCs) for innate immuno-response activation of TAMs, followed by cytotoxic T lymphocytes awakening under the PAMPs presentation by the mature DCs against tumor cells. The integrated innate and adaptive immunity activations based on this TAB-promoted nanocatalytic immunomedicine, instead of magnetic heating-induced hyperthermia or the released Fe2+/Fe3+ Fenton agent, has been found to achieve excellent therapeutic efficacy in an orthotopic colorectal cancer model, demonstrating the great potential of such an integrated immunity strategy in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Han Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Hu
- Corresponding author. E-mail:
| | | |
Collapse
|
19
|
Charoensappakit A, Sae-Khow K, Leelahavanichkul A. Gut Barrier Damage and Gut Translocation of Pathogen Molecules in Lupus, an Impact of Innate Immunity (Macrophages and Neutrophils) in Autoimmune Disease. Int J Mol Sci 2022; 23:ijms23158223. [PMID: 35897790 PMCID: PMC9367802 DOI: 10.3390/ijms23158223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The gut barrier is a single cell layer that separates gut micro-organisms from the host, and gut permeability defects result in the translocation of microbial molecules from the gut into the blood. Despite the silent clinical manifestation, gut translocation of microbial molecules can induce systemic inflammation that might be an endogenous exacerbating factor of systemic lupus erythematosus. In contrast, circulatory immune-complex deposition and the effect of medications on the gut, an organ with an extremely large surface area, of patients with active lupus might cause gut translocation of microbial molecules, which worsens lupus severity. Likewise, the imbalance of gut microbiota may initiate lupus and/or interfere with gut integrity which results in microbial translocation and lupus exacerbation. Moreover, immune hyper-responsiveness of innate immune cells (macrophages and neutrophils) is demonstrated in a lupus model from the loss of inhibitory Fc gamma receptor IIb (FcgRIIb), which induces prominent responses through the cross-link between activating-FcgRs and innate immune receptors. The immune hyper-responsiveness can cause cell death, especially apoptosis and neutrophil extracellular traps (NETosis), which possibly exacerbates lupus, partly through the enhanced exposure of the self-antigens. Leaky gut monitoring and treatments (such as probiotics) might be beneficial in lupus. Here, we discuss the current information on leaky gut in lupus.
Collapse
Affiliation(s)
- Awirut Charoensappakit
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsanawan Sae-Khow
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Jia L, Wu G, Alonso S, Zhao C, Lemenze A, Lam YY, Zhao L, Edelblum KL. A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunol 2022; 15:772-782. [PMID: 35589986 PMCID: PMC9262869 DOI: 10.1038/s41385-022-00522-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified two guilds of small intestinal or fecal bacteria represented by 12 amplicon sequence variants (ASV) that are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.
Collapse
Affiliation(s)
- Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guojun Wu
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Sara Alonso
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Cuiping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yan Y Lam
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong, China
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
21
|
Chen L, Zhang G, Li G, Wang W, Ge Z, Yang Y, He X, Liu Z, Zhang Z, Mai Q, Chen Y, Chen Z, Pi J, Yang S, Cui J, Liu H, Shen L, Zeng L, Zhou L, Chen X, Ge B, Chen ZW, Zeng G. Ifnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nat Metab 2022; 4:359-373. [PMID: 35288721 DOI: 10.1038/s42255-022-00547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Both host genetics and the gut microbiome have important effects on human health, yet how host genetics regulates gut bacteria and further determines disease susceptibility remains unclear. Here, we find that the gut microbiome pattern of participants with active tuberculosis is characterized by a reduction of core species found across healthy individuals, particularly Akkermansia muciniphila. Oral treatment of A. muciniphila or A. muciniphila-mediated palmitoleic acid strongly inhibits tuberculosis infection through epigenetic inhibition of tumour necrosis factor in mice infected with Mycobacterium tuberculosis. We use three independent cohorts comprising 6,512 individuals and identify that the single-nucleotide polymorphism rs2257167 'G' allele of type I interferon receptor 1 (encoded by IFNAR1 in humans) contributes to stronger type I interferon signalling, impaired colonization and abundance of A. muciniphila, reduced palmitoleic acid production, higher levels of tumour necrosis factor, and more severe tuberculosis disease in humans and transgenic mice. Thus, host genetics are critical in modulating the structure and functions of gut microbiome and gut microbial metabolites, which further determine disease susceptibility.
Collapse
Affiliation(s)
- Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guoliang Zhang
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Wei Wang
- Department of Clinical Laboratory, Foshan Fourth People's Hospital, Foshan, China
| | - Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xing He
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Zhang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiongdan Mai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zixu Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shuai Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, Guangzhou, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Gobert AP, Latour YL, Asim M, Barry DP, Allaman MM, Finley JL, Smith TM, McNamara KM, Singh K, Sierra JC, Delgado AG, Luis PB, Schneider C, Washington MK, Piazuelo MB, Zhao S, Coburn LA, Wilson KT. Protective Role of Spermidine in Colitis and Colon Carcinogenesis. Gastroenterology 2022; 162:813-827.e8. [PMID: 34767785 PMCID: PMC8881368 DOI: 10.1053/j.gastro.2021.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Claus Schneider
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
23
|
Ntunzwenimana JC, Boucher G, Paquette J, Gosselin H, Alikashani A, Morin N, Beauchamp C, Thauvette L, Rivard MÈ, Dupuis F, Deschênes S, Foisy S, Latour F, Lavallée G, Daly MJ, Xavier RJ, Charron G, Goyette P, Rioux JD. Functional screen of inflammatory bowel disease genes reveals key epithelial functions. Genome Med 2021; 13:181. [PMID: 34758847 PMCID: PMC8582123 DOI: 10.1186/s13073-021-00996-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Genetic studies have been tremendously successful in identifying genomic regions associated with a wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and their functional impacts has been more limited. METHODS We identified 145 genes from IBD-associated genomic loci having endogenous expression within the intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame (ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. By comparing the genes in which expression was modulated by each ORF, as well as the functions enriched within these gene lists, we identified ORFs with shared impacts and their putative disease-relevant biological functions. RESULTS Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as HNF4a, IFIH1, and SMAD3 identified functions consistent with what is already known for these genes. These analyses also identified two major clusters of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2, NFKB1, and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses highlight how multiple IBD gene candidates can impact on epithelial structure and function, including the protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16 acts a regulator of MAPK activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor, involved in the protection of the intestinal mucosa from enteric microbiota. CONCLUSIONS This functional screen, based on expressing IBD genes within an appropriate cellular context, in this instance intestinal epithelial cells, resulted in changes to the cell's transcriptome that are relevant to their endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but also provided insight into their biological functions. Furthermore, this work has highlighted the central role of intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy that targets epithelial functions in addition to the current therapies targeting immune functions.
Collapse
Affiliation(s)
- Jessy Carol Ntunzwenimana
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Gabrielle Boucher
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Jean Paquette
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Hugues Gosselin
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Azadeh Alikashani
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Nicolas Morin
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Claudine Beauchamp
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Louise Thauvette
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Marie-Ève Rivard
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Frédérique Dupuis
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Sonia Deschênes
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Sylvain Foisy
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Frédéric Latour
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Geneviève Lavallée
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Mark J Daly
- Massachusetts General Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Ramnik J Xavier
- Massachusetts General Hospital, Boston, MA, USA
- The Broad Institute, Cambridge, MA, USA
| | - Guy Charron
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada
| | - John D Rioux
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, S-6201, Montreal, Quebec, Canada.
- Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Silva M, Brunner V, Tschurtschenthaler M. Microbiota and Colorectal Cancer: From Gut to Bedside. Front Pharmacol 2021; 12:760280. [PMID: 34658896 PMCID: PMC8514721 DOI: 10.3389/fphar.2021.760280] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a complex condition with heterogeneous aetiology, caused by a combination of various environmental, genetic, and epigenetic factors. The presence of a homeostatic gut microbiota is critical to maintaining host homeostasis and determines the delicate boundary between health and disease. The gut microbiota has been identified as a key environmental player in the pathogenesis of CRC. Perturbations of the gut microbiota structure (loss of equilibrium and homeostasis) are associated with several intestinal diseases including cancer. Such dysbiosis encompasses the loss of beneficial microorganisms, outgrowth of pathogens and pathobionts and a general loss of local microbiota diversity and richness. Notably, several mechanisms have recently been identified how bacteria induce cellular transformation and promote tumour progression. In particular, the formation of biofilms, the production of toxic metabolites or the secretion of genotoxins that lead to DNA damage in intestinal epithelial cells are newly discovered processes by which the microbiota can initiate tumour formation. The gut microbiota has also been implicated in the metabolism of therapeutic drugs (conventional chemotherapy) as well as in the modulation of radiotherapy responses and targeted immunotherapy. These new findings suggest that the efficacy of a given therapy depends on the composition of the host’s gut microbiota and may therefore vary from patient to patient. In this review we discuss the role of host-microbiota interactions in cancer with a focus on CRC pathogenesis. Additionally, we show how gut bacteria can be exploited in current therapies and how mechanisms directed by microbiota, such as immune cell boost, probiotics and oncolytic bacteria, can be applied in the development of novel therapies.
Collapse
Affiliation(s)
- Miguel Silva
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Graduate Program in Areas of Basic and Applied Biology (GABBA)/ICBAS - Institute for the Biomedical Sciences Abel Salazar, Porto University, Porto, Portugal
| | - Valentina Brunner
- Institute for Experimental Cancer Therapy, Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Tschurtschenthaler
- Institute for Experimental Cancer Therapy, Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
25
|
Castillo-Álvarez F, Pérez-Matute P, Oteo JA, Marzo-Sola ME. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:495-503. [PMID: 34537163 DOI: 10.1016/j.nrleng.2020.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The association between gut microbiota and animal models of multiple sclerosis has been well established; however, studies in humans are scarce. METHODS We performed a descriptive, cross-sectional study comparing the relative composition of gut microbiota in 30 patients with multiple sclerosis (15 treated with interferon β-1b, 15 not receiving this treatment) and 14 healthy controls using next generation sequencing. RESULTS Patients with multiple sclerosis and controls showed differences in the proportion of Euryarchaeota, Firmicutes, Proteobacteria, Actinobacteria, and Lentisphaerae phyla and in 17 bacterial species. More specifically, we found significant differences in the proportion of Firmicutes, Actinobacteria, and Lentisphaerae and 6 bacteria species between controls and untreated patients; however, these differences disappeared when compared with treated patients. Untreated patients showed a significant reduction in the proportion of Prevotella copri compared to controls, while the bacteria was significantly more abundant in patients treated with interferon β-1b than in untreated patients, with levels resembling those observed in the healthy control group. CONCLUSION We observed differences in gut microbiota composition between patients with multiple sclerosis and controls, and between patients treated and not treated with interferon β-1b. In most cases, no differences were observed between treated patients and healthy controls, particularly for P. copri levels. This suggests that the clinical improvements observed in patients with multiple sclerosis receiving interferon β-1b may result from the effect of the drug on gut microbiota. Longitudinal and functional studies are necessary to establish a causal relationship.
Collapse
Affiliation(s)
| | - P Pérez-Matute
- Servicio de Enfermedades Infecciosas, CIBIR-Hospital San Pedro, Logroño, La Rioja, Spain
| | - J A Oteo
- Servicio de Enfermedades Infecciosas, CIBIR-Hospital San Pedro, Logroño, La Rioja, Spain
| | - M E Marzo-Sola
- Servicio de Neurología, Hospital San Pedro, Logroño, La Rioja, Spain
| |
Collapse
|
26
|
Liu TC, Kern JT, Jain U, Sonnek NM, Xiong S, Simpson KF, VanDussen KL, Winkler ES, Haritunians T, Malique A, Lu Q, Sasaki Y, Storer C, Diamond MS, Head RD, McGovern DPB, Stappenbeck TS. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 2021; 29:988-1001.e6. [PMID: 34010595 DOI: 10.1016/j.chom.2021.04.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Intestinal Paneth cells modulate innate immunity and infection. In Crohn's disease, genetic mutations together with environmental triggers can disable Paneth cell function. Here, we find that a western diet (WD) similarly leads to Paneth cell dysfunction through mechanisms dependent on the microbiome and farnesoid X receptor (FXR) and type I interferon (IFN) signaling. Analysis of multiple human cohorts suggests that obesity is associated with Paneth cell dysfunction. In mouse models, consumption of a WD for as little as 4 weeks led to Paneth cell dysfunction. WD consumption in conjunction with Clostridium spp. increased the secondary bile acid deoxycholic acid levels in the ileum, which in turn inhibited Paneth cell function. The process required excess signaling of both FXR and IFN within intestinal epithelial cells. Our findings provide a mechanistic link between poor diet and inhibition of gut innate immunity and uncover an effect of FXR activation in gut inflammation.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Naomi M Sonnek
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine F Simpson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Talin Haritunians
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Atika Malique
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chad Storer
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
27
|
Lin R, Wang Z, Cao J, Gao T, Dong Y, Chen Y. Role of melatonin in murine "restraint stress"-induced dysfunction of colonic microbiota. J Microbiol 2021; 59:500-512. [PMID: 33630247 DOI: 10.1007/s12275-021-0305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Intestinal diseases caused by physiological stress have become a severe public health threat worldwide. Disturbances in the gut microbiota-host relationship have been associated with irritable bowel disease (IBD), while melatonin (MT) has anti-inflammatory and antioxidant effects. The objective of this study was to investigate the mechanisms by which MT-mediated protection mitigated stress-induced intestinal microbiota dysbiosis and inflammation. We successfully established a murine restraint stress model with and without MT supplementation. Mice subjected to restraint stress had significantly elevated corticosterone (CORT) levels, decreased MT levels in their plasma, elevated colonic ROS levels and increased bacterial abundance, including Bacteroides and Tyzzerella, in their colon tract, which led to elevated expression of Toll-like receptor (TLR) 2/4, p-P65 and p-IKB. In contrast, supplementation with 20 mg/kg MT reversed the elevation of the plasma CORT levels, downregulated the colon ROS levels and inhibited the changes in the intestinal microbiota induced by restraint stress. These effects, in turn, inhibited the activities of TLR2 and TLR4, p-P65 and p-IκB, and decreased the inflammatory reaction induced by restraint stress. Our results suggested that MT may mitigate "restraint stress"-induced colonic microbiota dysbiosis and intestinal inflammation by inhibiting the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Rutao Lin
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Gao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
28
|
Gut Immunity and Microbiota Dysbiosis Are Associated with Altered Bile Acid Metabolism in LPS-Challenged Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634821. [PMID: 33833852 PMCID: PMC8018853 DOI: 10.1155/2021/6634821] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Bacterial infections are among the major factors that cause stress and intestinal diseases in piglets. Lipopolysaccharide (LPS), a major component of the Gram-negative bacteria outer membrane, is commonly employed for inducing an immune response in normal organisms for convenience. The association between LPS stimulation and gut immunity has been reported. However, the effects of gut immunity on microbial homeostasis and metabolism of host, especially bile acid and lipid metabolism in piglets, remain unclear. Hence, in the current study, we elucidated the effect of gut immunity on microbial balance and host metabolism. Twenty-one-day-old healthy piglets (male) were randomly assigned into the CON and LPS groups. After 4 hours of treatment, related tissues and cecal contents were obtained for further analysis. The obtained results showed that stimulated LPS considerably damaged the morphology of intestinal villi and enhanced the relative expression of proinflammatory cytokines. Besides, LPS partially changed the microbial structure as indicated by β-diversity and increased operational taxonomic units (OTUs) related to Oxalobacter and Ileibacterium. Furthermore, bile acid, a large class of gut microbiota metabolites, was also assessed by many proteins related to the enterohepatic circulation of bile acids. It was also revealed that LPS markedly inhibited the mRNA and protein expression of TGR5 and FXR (bile acid receptors) in the ileum, which expressed negative feedback on bile acid de novo synthesis. Additionally, results indicated upregulated mRNA of genes associated with the production of bile acid in the liver tissues. Moreover, LPS reduced the expression of bile acid transporters in the ileum and liver tissues and further disturbed the normal enterohepatic circulation. Taken together, gut immunity and microbial dysbiosis are associated with altered bile acid metabolism in LPS-challenged piglets, which provided theoretical basis for revealing the potential mechanism of intestinal inflammation in swine and seeking nutrients to resist intestinal damage.
Collapse
|
29
|
Wottawa F, Bordoni D, Baran N, Rosenstiel P, Aden K. The role of cGAS/STING in intestinal immunity. Eur J Immunol 2021; 51:785-797. [PMID: 33577080 DOI: 10.1002/eji.202048777] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 02/10/2021] [Indexed: 01/07/2023]
Abstract
The gastrointestinal tract is a highly complex microenvironment under constant interaction with potentially harmful pathogens. Inflammatory bowel disease (IBD) is an archetypical inflammatory disease, in which the intestinal epithelium, defective autophagy, endoplasmic reticulum stress and dysbiosis play a key role. Although no risk-mediating gene variants of STING (TMEM173) have been identified so far, several seminal findings have elucidated a novel understanding of STING in the context of acute and chronic inflammation. STING, an endoplasmic reticulum resident adaptor protein binding cyclic dinucleotides, is a main inducer of type I interferons and canonically involved in antiviral and antibacterial immunity. Recent research has shed light on additional features of STING signaling involved in regulating the microbiota, facilitating autophagy, cell death or ER stress. Importantly, an increasing amount of studies suggests a considerable overlap of IBD pathophysiology and features of STING signaling. Since compelling evidence shows dysregulated type I IFNs in IBD, it is prompting to speculate on the hypothetical role of cGAS/STING/type I IFN signaling in IBD. Here, we summarize recent findings about the origin and function of STING signaling in the gastrointestinal tract and evolve the hypothesis that disturbed STING signaling might be profoundly interconnected with the pathophysiology of IBD.
Collapse
Affiliation(s)
- Felix Wottawa
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dora Bordoni
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
30
|
Stolzer I, Ruder B, Neurath MF, Günther C. Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. Int J Med Microbiol 2021; 311:151491. [PMID: 33662871 DOI: 10.1016/j.ijmm.2021.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
31
|
Reverter A, Ballester M, Alexandre PA, Mármol-Sánchez E, Dalmau A, Quintanilla R, Ramayo-Caldas Y. A gene co-association network regulating gut microbial communities in a Duroc pig population. MICROBIOME 2021; 9:52. [PMID: 33612109 PMCID: PMC7898758 DOI: 10.1186/s40168-020-00994-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/29/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Analyses of gut microbiome composition in livestock species have shown its potential to contribute to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut microbial communities. In pigs, previous studies are based on classical "single-gene-single-trait" approaches and have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately. RESULTS In order to determine the ability of the host genome to control the diversity and composition of microbial communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in 390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP-P < 0.05) and 738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9 and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1. Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate producer bacteria and host performance. CONCLUSIONS Taken together, our results identified regulators, candidate genes, and mechanisms linked with microbiome modulation by the host. They further highlight the value of the proposed analytical pipeline to exploit pleiotropy and the crosstalk between bacteria and protists as significant contributors to host-microbiome interactions and identify genetic markers and candidate genes that can be incorporated in breeding program to improve host-performance and microbial traits. Video Abstract.
Collapse
Affiliation(s)
- Antonio Reverter
- CSIRO Agriculture and Food, St. Lucia, Brisbane, Queensland 4067 Australia
| | - Maria Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona, Spain
| | | | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Dalmau
- Animal Welfare Subprogram, IRTA, 17121 Monells, Girona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
32
|
de Weerd NA, Vivian JP, Lim SS, Huang SUS, Hertzog PJ. Structural integrity with functional plasticity: what type I IFN receptor polymorphisms reveal. J Leukoc Biol 2021; 108:909-924. [PMID: 33448473 DOI: 10.1002/jlb.2mr0420-152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/β receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and Australian Research Council Centre for Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Wei L, Zhang R, Zhang J, Li J, Kong D, Wang Q, Fang J, Wang L. PRKAR2A deficiency protects mice from experimental colitis by increasing IFN-stimulated gene expression and modulating the intestinal microbiota. Mucosal Immunol 2021; 14:1282-1294. [PMID: 34349238 PMCID: PMC8528707 DOI: 10.1038/s41385-021-00426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Protein kinase A (PKA) plays an important role in regulating inflammation via its catalytic subunits. Recently, PKA regulatory subunits have been reported to directly modulate some signaling pathways and alleviate inflammation. However, the role of PKA regulatory subunits in colonic inflammation remains unclear. Therefore, we conducted this study to investigate the role of the PKA regulatory subunit PRKAR2A in colitis. We observed that PRKAR2A deficiency protected mice from dextran sulfate sodium (DSS)-induced experimental colitis. Our experiments revealed that the intestinal epithelial cell-specific deletion of Prkar2a contributed to this protection. Mechanistically, the loss of PRKAR2A in Prkar2a-/- mice resulted in an increased IFN-stimulated gene (ISG) expression and altered gut microbiota. Inhibition of ISGs partially reversed the protective effects against DSS-induced colitis in Prkar2a-/- mice. Antibiotic treatment and cross-fostering experiments demonstrated that the protection against DSS-induced colitis in Prkar2a-/- mice was largely dependent on the gut microflora. Altogether, our work demonstrates a previously unidentified function of PRKAR2A in promoting DSS-induced colitis.
Collapse
Affiliation(s)
- Lumin Wei
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjing Zhang
- grid.9227.e0000000119573309Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jinzhao Zhang
- grid.9227.e0000000119573309Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Li
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deping Kong
- grid.9227.e0000000119573309Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qi Wang
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Fang
- grid.412521.10000 0004 1769 1119Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lifu Wang
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Stanifer ML, Guo C, Doldan P, Boulant S. Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Front Immunol 2020; 11:608645. [PMID: 33362795 PMCID: PMC7759678 DOI: 10.3389/fimmu.2020.608645] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor's expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.
Collapse
Affiliation(s)
- Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Research Group “Cellular polarity and viral infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Tian M, Wang X, Sun J, Lin W, Chen L, Liu S, Wu X, Shi L, Xu P, Cai X, Wang X. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of β-catenin. Nat Commun 2020; 11:5762. [PMID: 33188184 PMCID: PMC7666182 DOI: 10.1038/s41467-020-19627-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Occurrence of Colorectal cancer (CRC) is relevant with gut microbiota. However, role of IRF3, a key signaling mediator in innate immune sensing, has been barely investigated in CRC. Here, we unexpectedly found that the IRF3 deficient mice are hyper-susceptible to the development of intestinal tumor in AOM/DSS and Apcmin/+ models. Genetic ablation of IRF3 profoundly promotes the proliferation of intestinal epithelial cells via aberrantly activating Wnt signaling. Mechanically, IRF3 in resting state robustly associates with the active β-catenin in the cytoplasm, thus preventing its nuclear translocation and cell proliferation, which can be relieved upon microbe-induced activation of IRF3. In accordance, the survival of CRC is clinically correlated with the expression level of IRF3. Therefore, our study identifies IRF3 as a negative regulator of the Wnt/β-catenin pathway and a potential prognosis marker for Wnt-related tumorigenesis, and describes an intriguing link between gut microbiota and CRC via the IRF3-β-catenin axis.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xiumei Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lumin Chen
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Shengduo Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
36
|
Ferreira C, Viana SD, Reis F. Gut Microbiota Dysbiosis-Immune Hyperresponse-Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms 2020; 8:E1514. [PMID: 33019592 PMCID: PMC7601735 DOI: 10.3390/microorganisms8101514] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic infection caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients present a complex clinical picture that, in severe cases, evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. The underlying pathophysiological mechanisms are complex and multifactorial and have been summarized as a hyperresponse of the immune system that originates an inflammatory/cytokine storm. In elderly patients, particularly in those with pre-existing cardiovascular, metabolic, renal, and pulmonary disorders, the disease is particularly severe, causing prolonged hospitalization at intensive care units (ICU) and an increased mortality rate. Curiously, the same populations have been described as more prone to a gut microbiota (GM) dysbiosis profile. Intestinal microflora plays a major role in many metabolic and immune functions of the host, including to educate and strengthen the immune system to fight infections, namely of viral origin. Notably, recent studies suggest the existence of GM dysbiosis in COVID-19 patients. This review article highlights the interplay between the triad GM dysbiosis-immune hyperresponse-inflammation in the individual resilience/fragility to SARS-CoV-2 infection and presents the putative impact of pharmacological and nutraceutical approaches on the triumvirate, with focus on GM.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| |
Collapse
|
37
|
Shabat Y, Lichtenstein Y, Ilan Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 2020; 44:518-525. [PMID: 32978699 DOI: 10.1007/s10753-020-01348-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Cohousing of sick with healthy or treated animals is based on the concept of sharing an intestinal ecosystem and coprophagy, the consumption of feces, which includes sharing of the microbiome and of active drug metabolites secreted in the feces or urine. To develop a model for short-term cohousing, enabling the study of the effect of sharing an ecosystem on inflammatory states. To determine the impact of cohousing of sick and healthy mice on the immune-mediated disorders, mice injected with concanavalin A (ConA) were cohoused with healthy or sick mice or with steroid-treated or untreated mice. To determine the effect of cohousing on acetaminophen (APAP)-induced liver damage, APAP-injected mice were cohoused with N-acetyl-cysteine (NAC)-treated or untreated mice. In the ConA-induced immune-mediated hepatitis model, cohousing of sick with healthy mice was associated with the alleviation of liver damage in sick animals. Similarly, a significant decrease in serum ALT was noted in ConA-injected mice kept in the same cage as ConA-injected mice treated with steroids. A trend for reduction in liver enzymes in APAP-injected mice was observed upon cohousing with NAC-treated animals. Cohousing of sick mice with healthy or treated mice ameliorated the immune-mediated inflammatory state induced by ConA and APAP. These models for liver damage can serve as biological systems for determining the effects of alterations in the ecosystem on the immune system.
Collapse
Affiliation(s)
- Yehudit Shabat
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel
| | - Yoav Lichtenstein
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel.
| |
Collapse
|
38
|
Mavragani CP, Nezos A, Dovrolis N, Andreou NP, Legaki E, Sechi LA, Bamias G, Gazouli M. Type I and II Interferon Signatures Can Predict the Response to Anti-TNF Agents in Inflammatory Bowel Disease Patients: Involvement of the Microbiota. Inflamm Bowel Dis 2020; 26:1543-1553. [PMID: 32812029 DOI: 10.1093/ibd/izaa216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anti-TNF agents have been a cornerstone of IBD therapy; however, response to treatment has been variable, and clinically applicable biomarkers are urgently needed. We hypothesized that the type I and type II interferon (IFN) signatures may be a confounding factor for response to antitumor necrosis factor (TNF) treatment via interactions with the host and its gut microbiota. METHODS Peripheral blood from 30 IBD patients and 10 healthy controls was subjected to real-time quantitative real-time polymerase chain reaction for type I and type II IFN genes (IFNGs), both at baseline and after treatment with anti-TNF. Correlation between IFN signatures and microbiota composition was also determined for a subgroup of patients and controls. RESULTS At baseline, type I IFN score was significantly higher in IBD patients (P = 0.04 vs controls). Responders to subsequent anti-TNF treatment had significantly lower baseline scores for both type I and II IFN signatures (P < 0.005 vs nonresponders for both comparisons). During treatment with anti-TNF, the expression of type I and II IFNGs was significantly elevated in responders and decreased in nonresponders. In addition, changes in IFN signatures correlated to specific alterations in the abundance of several microbial taxa of the gut microbiome. CONCLUSIONS Baseline expression of type I and II IFN signatures and their kinetics during anti-TNF administration significantly correlate to treatment responses in IBD patients. Peripheral blood IFN signatures may serve as clinically meaningful biomarkers for the identification of subgroups of patients with favorable response to anti-TNF treatment. Additionally, the distinct synergies between different IFN types and microbiota might help drive therapeutic intervention.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giorgos Bamias
- GI-Unit, 3rd Academic Department of Internal Medicine, Sotiria Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res Rev 2020; 62:101123. [PMID: 32683039 PMCID: PMC7365123 DOI: 10.1016/j.arr.2020.101123] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 patients with pre-existing age-related comorbidities have poor outcomes. Gut microbiota dysbiosis is associated with ageing and age-related diseases. Viral-mediated ACE2 shedding favors poor outcomes by RAS-dependent mechanisms. Viral-mediated ACE2 shedding favors poor outcomes by RAS-independent gut dysbiosis. Potential of ACE2 and gut microbiota-based therapeutic opportunities for COVID-19.
Coronavirus disease 19 (COVID-19) is a pandemic condition caused by the new coronavirus SARS-CoV-2. The typical symptoms are fever, cough, shortness of breath, evolving to a clinical picture of pneumonia and, ultimately, death. Nausea and diarrhea are equally frequent, suggesting viral infection or transmission via the gastrointestinal-enteric system. SARS-CoV-2 infects human cells by using angiotensin converting enzyme 2 (ACE2) as a receptor, which is cleaved by transmembrane proteases during host cells infection, thus reducing its activities. ACE2 is a relevant player in the renin-angiotensin system (RAS), counterbalancing the deleterious effects of angiotensin II. Furthermore, intestinal ACE2 functions as a chaperone for the aminoacid transporter B0AT1. It has been suggested that B0AT1/ACE2 complex in the intestinal epithelium regulates gut microbiota (GM) composition and function, with important repercussions on local and systemic immune responses against pathogenic agents, namely virus. Notably, productive infection of SARS-CoV-2 in ACE2+ mature human enterocytes and patients’ GM dysbiosis was recently demonstrated. This review outlines the evidence linking abnormal ACE2 functions with the poor outcomes (higher disease severity and mortality rate) in COVID-19 patients with pre-existing age-related comorbidities and addresses a possible role for GM dysbiosis. The article culminates with the therapeutics opportunities based on these pathways.
Collapse
|
40
|
Cao J, Zhang Y, Dai M, Xu J, Chen L, Zhang F, Zhao N, Wang J. Profiling of Human Gut Virome with Oxford Nanopore Technology. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
41
|
Pflügler S, Svinka J, Scharf I, Crncec I, Filipits M, Charoentong P, Tschurtschenthaler M, Kenner L, Awad M, Stift J, Schernthanner M, Bischl R, Herndler-Brandstetter D, Glitzner E, Moll HP, Casanova E, Timelthaler G, Sibilia M, Gnant M, Lax S, Thaler J, Müller M, Strobl B, Mohr T, Kaser A, Trajanoski Z, Heller G, Eferl R. IDO1 + Paneth cells promote immune escape of colorectal cancer. Commun Biol 2020; 3:252. [PMID: 32444775 PMCID: PMC7244549 DOI: 10.1038/s42003-020-0989-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors have evolved mechanisms to escape anti-tumor immunosurveillance. They limit humoral and cellular immune activities in the stroma and render tumors resistant to immunotherapy. Sensitizing tumor cells to immune attack is an important strategy to revert immunosuppression. However, the underlying mechanisms of immune escape are still poorly understood. Here we discover Indoleamine-2,3-dioxygenase-1 (IDO1)+ Paneth cells in the stem cell niche of intestinal crypts and tumors, which promoted immune escape of colorectal cancer (CRC). Ido1 expression in Paneth cells was strictly Stat1 dependent. Loss of IDO1+ Paneth cells in murine intestinal adenomas with tumor cell-specific Stat1 deletion had profound effects on the intratumoral immune cell composition. Patient samples and TCGA expression data suggested corresponding cells in human colorectal tumors. Thus, our data uncovered an immune escape mechanism of CRC and identify IDO1+ Paneth cells as a target for immunotherapy.
Collapse
Affiliation(s)
- Sandra Pflügler
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Jasmin Svinka
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Irene Scharf
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Ilija Crncec
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Martin Filipits
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Pornpimol Charoentong
- Institute of Bioinformatics, Medical University Innsbruck, Biocenter, 6020, Innsbruck, Austria
- Department of Medical Oncology, National Center for Tumor diseases, University Hospital Heidelberg, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Markus Tschurtschenthaler
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, 81675, Munich, Germany
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research LBICR, 1090, Vienna, Austria
- Institute of Clinical Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Monira Awad
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Judith Stift
- Institute of Clinical Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marina Schernthanner
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Romana Bischl
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | | | - Elisabeth Glitzner
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Herwig P Moll
- Department of Physiology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090, Vienna, Austria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research LBICR, 1090, Vienna, Austria
- Department of Physiology, Center of Physiology and Pharmacology, Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Michael Gnant
- Department of Surgery, Breast Health Center, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Sigurd Lax
- Department of Pathology, Hospital Graz II, 8020, Graz, Austria
- Institute of Pathology and Molecular Pathology, Johannes Kepler University, 4040, Linz, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, 4600, Wels, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University Innsbruck, Biocenter, 6020, Innsbruck, Austria
| | - Gerwin Heller
- Division of Oncology, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090, Vienna, Austria.
| |
Collapse
|
42
|
Wehkamp J, Stange EF. An Update Review on the Paneth Cell as Key to Ileal Crohn's Disease. Front Immunol 2020; 11:646. [PMID: 32351509 PMCID: PMC7174711 DOI: 10.3389/fimmu.2020.00646] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The Paneth cells reside in the small intestine at the bottom of the crypts of Lieberkühn, intermingled with stem cells, and provide a niche for their neighbors by secreting growth and Wnt-factors as well as different antimicrobial peptides including defensins, lysozyme and others. The most abundant are the human Paneth cell α-defensin 5 and 6 that keep the crypt sterile and control the local microbiome. In ileal Crohn's disease various mechanisms including established genetic risk factors contribute to defects in the production and ordered secretion of these peptides. In addition, life-style risk factors for Crohn's disease like tobacco smoking also impact on Paneth cell function. Taken together, current evidence suggest that defective Paneth cells may play the key role in initiating inflammation in ileal, and maybe ileocecal, Crohn's disease by allowing bacterial attachment and invasion.
Collapse
Affiliation(s)
- Jan Wehkamp
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| | - Eduard F Stange
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| |
Collapse
|
43
|
Amaddeo G, Nguyen CT, Maillé P, Mulé S, Luciani A, Machou C, Rodrigues A, Regnault H, Mallat A, Laurent A, Lafdil F, Hézode C, Pawlotsky JM, Calderaro J. Intrahepatic immune changes after hepatitis c virus eradication by direct-acting antiviral therapy. Liver Int 2020; 40:74-82. [PMID: 31444947 DOI: 10.1111/liv.14226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The recent approval of direct acting anti-virals (DAA) has dramatically changed the landscape of hepatitis C virus (HCV) therapy. Whether viral clearance could promote liver carcinogenesis is debated. It has been hypothesized that changes in intrahepatic immune surveillance following viral cure could favour tumour growth. This study aimed at characterizing the intrahepatic immune changes induced by HCV cure following DAA therapy. METHODS Patients with compensated cirrhosis who underwent surgical resection for hepatocellular carcinoma (HCC) after sustained virological response (SVR) to DAA therapy were included. A control group of untreated HCV-infected patients with compensated cirrhosis was selected. RNA was extracted from tumoral and non-tumoral tissues and analysed using the Nanostring Immuno-Oncology-360 panel. Immune cells were quantified by immunohistochemistry. RESULTS Twenty patients were included: 10 patients with a DAA-induced SVR and 10 untreated controls. All of them had a de novo BCLC 0/A HCC. Non-tumoral tissue profiling showed down-regulation of interferon-related genes (including MX1, ISG15 and IFIT1) after DAA therapy. No other differences in immune profiles/immune cell densities were identified between the two groups. The intra-tumoral immune profiles of HCCs that occurred after DAA therapy were not qualitatively or quantitatively different from those of tumours occurring in untreated patients. CONCLUSION In conclusion, removal of HCV infection after DAA-based therapy results only in a down-regulation of interferon-stimulated genes in non-tumoral tissues from patients with cirrhosis who develop HCC. These minor changes in the liver immune microenvironment are unlikely to favour HCC occurrence or recurrence after DAA-induced SVR.
Collapse
Affiliation(s)
- Giuliana Amaddeo
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Cong Trung Nguyen
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France
| | - Pascale Maillé
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Département de Pathologie, Créteil, France
| | - Sebastien Mulé
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service d'Imagerie Médicale, Créteil, France
| | - Alain Luciani
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service d'Imagerie Médicale, Créteil, France
| | - Camilia Machou
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France
| | - Aurélie Rodrigues
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France
| | - Hélène Regnault
- APHP, Groupe Hospitalier Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Ariane Mallat
- Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Alexis Laurent
- Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service de Chirurgie Digestive et Hépatobiliaire, Créteil, France
| | - Fouad Lafdil
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France
| | - Christophe Hézode
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Jean-Michel Pawlotsky
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Service de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie et unité Transversale de Traitement des Infections, Centre National de Référence des Hépatites Virales B, C et Delta, Créteil, France
| | - Julien Calderaro
- INSERM U955, Team 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris-Est Créteil, Créteil, France.,APHP, Groupe Hospitalier Henri Mondor, Département de Pathologie, Créteil, France
| |
Collapse
|
44
|
Dash S, Aydin Y, Moroz K. Chaperone-Mediated Autophagy in the Liver: Good or Bad? Cells 2019; 8:E1308. [PMID: 31652893 PMCID: PMC6912708 DOI: 10.3390/cells8111308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection triggers autophagy processes, which help clear out the dysfunctional viral and cellular components that would otherwise inhibit the virus replication. Increased cellular autophagy may kill the infected cell and terminate the infection without proper regulation. The mechanism of autophagy regulation during liver disease progression in HCV infection is unclear. The autophagy research has gained a lot of attention recently since autophagy impairment is associated with the development of hepatocellular carcinoma (HCC). Macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA) are three autophagy processes involved in the lysosomal degradation and extracellular release of cytosolic cargoes under excessive stress. Autophagy processes compensate for each other during extreme endoplasmic reticulum (ER) stress to promote host and microbe survival as well as HCC development in the highly stressed microenvironment of the cirrhotic liver. This review describes the molecular details of how excessive cellular stress generated during HCV infection activates CMA to improve cell survival. The pathological implications of stress-related CMA activation resulting in the loss of hepatic innate immunity and tumor suppressors, which are most often observed among cirrhotic patients with HCC, are discussed. The oncogenic cell programming through autophagy regulation initiated by a cytoplasmic virus may facilitate our understanding of HCC mechanisms related to non-viral etiologies and metabolic conditions such as uncontrolled type II diabetes. We propose that a better understanding of how excessive cellular stress leads to cancer through autophagy modulation may allow therapeutic development and early detection of HCC.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
45
|
Type I interferon signaling before hematopoietic stem cell transplantation lowers donor T cell activation via reduced allogenicity of recipient cells. Sci Rep 2019; 9:14955. [PMID: 31628411 PMCID: PMC6800427 DOI: 10.1038/s41598-019-51431-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies highlight immunoregulatory functions of type I interferons (IFN-I) during the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that selective activation of IFN-I pathways including RIG-I/MAVS and cGAS/STING prior to allo-HSCT conditioning therapy can ameliorate the course of GVHD. However, direct effects of IFN-Is on immune cells remain ill characterized. We applied RIG-I agonists (3pRNA) to stimulate IFN-I production in murine models of conditioning therapy with total body irradiation (TBI) and GVHD. Using IFN-I receptor-deficient donor T cells and hematopoietic cells, we found that endogenous and RIG-I-induced IFN-Is do not reduce GVHD by acting on these cell types. However, 3pRNA applied before conditioning therapy reduced the ability of CD11c+ recipient cells to stimulate proliferation and interferon gamma expression of allogeneic T cells. Consistently, RIG-I activation before TBI reduced the proliferation of transplanted allogeneic T-cells. The reduced allogenicity of CD11c+ recipient cells was dependent on IFN-I signaling. Notably, this immunosuppressive function of DCs was restricted to a scenario where tissue damage occurs. Our findings uncover a context (damage by TBI) and IFN-I dependent modulation of T cells by DCs and extend the understanding about the cellular targets of IFN-I during allo-HSCT and GVHD.
Collapse
|
46
|
Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci Rep 2019; 9:14281. [PMID: 31582793 PMCID: PMC6776661 DOI: 10.1038/s41598-019-50656-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Detection of cytoplasmic DNA by the host’s innate immune system is essential for microbial and endogenous pathogen recognition. In mammalian cells, an important sensor is the stimulator of interferon genes (STING) protein, which upon activation by bacterially-derived cyclic dinucleotides (cDNs) or cytosolic dsDNA (dsDNA), triggers type I interferons and pro-inflammatory cytokine production. Given the abundance of bacterially-derived cDNs in the gut, we determined whether STING deletion, or stimulation, acts to modulate the severity of intestinal inflammation in the dextran sodium sulphate (DSS) model of colitis. DSS was administered to Tmem173gt (STING-mutant) mice and to wild-type mice co-treated with DSS and a STING agonist. Colitis severity was markedly reduced in the DSS-treated Tmem173gt mice and greatly exacerbated in wild-type mice co-treated with the STING agonist. STING expression levels were also assessed in colonic tissues, murine bone marrow derived macrophages (BMDMs), and human THP-1 cells. M1 and M2 polarized THP-1 and murine BMDMs were also stimulated with STING agonists and ligands to assess their responses. STING expression was increased in both murine and human M1 polarized macrophages and a STING agonist repolarized M2 macrophages towards an M1-like subtype. Our results suggest that STING is involved in the host’s response to acutely-induced colitis.
Collapse
|
47
|
Neil JA, Matsuzawa-Ishimoto Y, Kernbauer-Hölzl E, Schuster SL, Sota S, Venzon M, Dallari S, Galvao Neto A, Hine A, Hudesman D, Loke P, Nice TJ, Cadwell K. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat Microbiol 2019; 4:1737-1749. [PMID: 31182797 PMCID: PMC6871771 DOI: 10.1038/s41564-019-0470-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Products derived from bacterial members of the gut microbiota evoke immune signalling pathways of the host that promote immunity and barrier function in the intestine. How immune reactions to enteric viruses support intestinal homeostasis is unknown. We recently demonstrated that infection by murine norovirus (MNV) reverses intestinal abnormalities following depletion of bacteria, indicating that an intestinal animal virus can provide cues to the host that are typically attributed to the microbiota. Here, we elucidate mechanisms by which MNV evokes protective responses from the host. We identify an important role for the viral protein NS1/2 in establishing local replication and a type I interferon (IFN-I) response in the colon. We further show that IFN-I acts on intestinal epithelial cells to increase the proportion of CCR2-dependent macrophages and interleukin (IL)-22-producing innate lymphoid cells, which in turn promote pSTAT3 signalling in intestinal epithelial cells and protection from intestinal injury. In addition, we demonstrate that MNV provides a striking IL-22-dependent protection against early-life lethal infection by Citrobacter rodentium. These findings demonstrate novel ways in which a viral member of the microbiota fortifies the intestinal barrier during chemical injury and infectious challenges.
Collapse
Affiliation(s)
- Jessica A Neil
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
| | - Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
| | - Elisabeth Kernbauer-Hölzl
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
| | - Samantha L Schuster
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
| | - Stela Sota
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Mericien Venzon
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Simone Dallari
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA
| | - Antonio Galvao Neto
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Ashley Hine
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - David Hudesman
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute of Biomedical Medicine, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Hubert M, Gobbini E, Bendriss-Vermare N, Caux C, Valladeau-Guilemond J. Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers (Basel) 2019; 11:E1082. [PMID: 31366174 PMCID: PMC6721288 DOI: 10.3390/cancers11081082] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
The interaction between tumor cells and the immune system is considered to be a dynamic process. Dendritic cells (DCs) play a pivotal role in anti-tumor immunity owing to their outstanding T cell activation ability. Their functions and activities are broad ranged, triggering different mechanisms and responses to the DC subset. Several studies identified in situ human tumor-infiltrating DCs by immunostaining using a limited number of markers. However, considering the heterogeneity of DC subsets, the identification of each subtype present in the immune infiltrate is essential. To achieve this, studies initially relied on flow cytometry analyses to provide a precise characterization of tumor-associated DC subsets based on a combination of multiple markers. The concomitant development of advanced technologies, such as mass cytometry or complete transcriptome sequencing of a cell population or at a single cell level, has provided further details on previously identified populations, has unveiled previously unknown populations, and has finally led to the standardization of the DCs classification across tissues and species. Here, we review the evolution of tumor-associated DC description, from in situ visualization to their characterization with high-dimensional technologies, and the clinical use of these findings specifically focusing on the prognostic impact of DCs in cancers.
Collapse
Affiliation(s)
- Margaux Hubert
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Elisa Gobbini
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | | | | |
Collapse
|
49
|
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2019; 141:1900-1916. [PMID: 29860380 DOI: 10.1093/brain/awy131] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan B Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Seo SU, Kweon MN. Virome-host interactions in intestinal health and disease. Curr Opin Virol 2019; 37:63-71. [PMID: 31295677 DOI: 10.1016/j.coviro.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The enteric virome consists largely of bacteriophages and prophages related to commensal bacteria. Bacteriophages indirectly affect the host immune system by targeting their associated bacteria; however, studies suggest that bacteriophages also have distinct pathways that enable them to interact directly with the host. Eukaryotic viruses are less abundant than bacteriophages but are more efficient in the stimulation of host immune responses. Acute, permanent, and latent viral infections are detected by different types of pattern recognition receptors and induce host immune responses, including the antiviral type I interferon response. Understanding the complex interplay between commensal microorganisms and the host immune system is a prerequisite to elucidating their role in intestinal diseases.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| |
Collapse
|