1
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
2
|
Alkhouri N, Charlton M, Gray M, Noureddin M. The pleiotropic effects of glucagon-like peptide-1 receptor agonists in patients with metabolic dysfunction-associated steatohepatitis: a review for gastroenterologists. Expert Opin Investig Drugs 2025. [PMID: 40016997 DOI: 10.1080/13543784.2025.2473062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dual GLP-1/glucose-dependent insulinotropic peptide (GIP) or glucagon receptor agonists have emerged as promising agents to treat metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). Although the beneficial effects of GLP-1RAs on glycemic control and weight are well-established, clinicians may be unfamiliar with other potential benefits of this class. AREAS COVERED We examined the pleiotropic effects of GLP-1RAs and how they relate to gastroenterologists for MASLD/MASH treatment. Our narrative review of English articles included four GLP-1RAs (subcutaneous semaglutide, liraglutide, dulaglutide, and efpeglenatide), a dual GLP-1/GIP agonist (tirzepatide), a dual GLP-1/glucagon receptor agonist (survodutide), MASLD/MASH, related disorders, clinical management, treatment outcomes and landscape. EXPERT OPINION In Phase I - III trials, GLP-1RAs are associated with clinically relevant hepatic improvements including MASH resolution, liver fat reduction, and preventing worsening fibrosis. Effects on cardiometabolic parameters align with type 2 diabetes/obesity Phase III data, comprising substantial improvements in glycemic, weight, and cardiovascular outcomes. Promising data also suggest benefits in common comorbidities, including obstructive sleep apnea, polycystic ovary syndrome, chronic kidney disease, and heart failure with preserved ejection fraction.GLP-1RAs represent a valuable pharmacotherapeutic option for gastroenterologists managing individuals with MASLD/MASH and cardiometabolic comorbid conditions.
Collapse
Affiliation(s)
| | - Michael Charlton
- Transplant Institute, Center for Liver Diseases, University of Chicago Biological Sciences, Chicago, IL, USA
| | - Meagan Gray
- Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, TX, USA
| |
Collapse
|
3
|
Yu T, Biswas A, Dube N, Okafor CD. Simulations Reveal Unique Roles for the FXR Hinge in the FXR-RXR Nuclear Receptor Heterodimer. ACS BIO & MED CHEM AU 2025; 5:194-203. [PMID: 39990948 PMCID: PMC11843329 DOI: 10.1021/acsbiomedchemau.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 02/25/2025]
Abstract
Nuclear receptors are multidomain transcription factors whose full-length quaternary architecture is poorly described and understood. Most nuclear receptors bind DNA as heterodimers or homodimers, which could encompass a variety of arrangements of the individual domains. Only a handful of experimental structures currently exist describing these architectures. Given that domain interactions and protein-DNA interactions within transcriptional complexes are tightly linked to function, understanding the arrangement of nuclear receptor domains on DNA is of utmost importance. Here, we employ modeling and molecular dynamics (MD) simulations to describe the structure of the full-length farnesoid X receptor (FXR) and retinoid X receptor alpha (RXR) heterodimer bound to DNA. Combining over 100 μs of atomistic MD simulations with enhanced sampling simulations, we characterize the dynamic behavior of eight FXR-RXR-DNA complexes, showing that these complexes support a range of quaternary architectures. Our simulations reveal critical roles for the hinge in the DNA-bound dimer in facilitating interdomain allostery, mediating DNA binding and driving the dynamic flexibility of the complex. These roles have been hard to appreciate previously due to experimental limitations in studying the flexible hinge. These studies provide a much-needed framework that will enable the field to obtain a complete understanding of nuclear receptor quaternary architectures.
Collapse
Affiliation(s)
- Tracy Yu
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Arumay Biswas
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Namita Dube
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - C. Denise Okafor
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Lee CH, Lui DTW, Mak LY, Fong CHY, Chan KSW, Mak JHC, Cheung CYY, Chow WS, Woo YC, Yuen MF, Seto WK, Lam KSL. Benefits of combining SGLT2 inhibitors and pioglitazone on risk of MASH in type 2 diabetes-A real-world study. Diabetes Obes Metab 2025; 27:574-582. [PMID: 39497579 DOI: 10.1111/dom.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 01/07/2025]
Abstract
AIMS Both pioglitazone and glucagon-like peptide 1 receptor agonists (GLP1RA) alone improve metabolic dysfunction-associated steatohepatitis (MASH) in randomized clinical trials, whereas preclinical studies suggested MASH benefits with sodium glucose co-transporter 2 inhibitors (SGLT2i). In the real world, patients with type 2 diabetes often require multiple agents for glycaemic control. Here, we investigated the benefits of combining these agents on risks of MASH. MATERIALS AND METHODS Longitudinal changes in FibroScan-aspartate aminotransferase (FAST) score were measured in 888 patients with type 2 diabetes. Use of pioglitazone, GLP1RA and/or SGLT2i was defined as continuous prescriptions of ≥180 days prior to their last reassessment FibroScan. Multivariable logistic regression analysis was conducted to evaluate the associations between use of these agents and FAST score changes. RESULTS Over a median follow-up of 3.9 years, the increasing number of these agents used was significantly associated with more reductions in FAST score (p for trend <0.01). Dual combination was independently associated with a higher likelihood of achieving low FAST score at reassessment than single use of any of these agents (odds ratio [OR] 2.84, p = 0.01). Among the different drug combinations, using SGLT2i and pioglitazone (median dose 15 mg daily) together, as compared to not using any of these three agents, was associated with a higher likelihood of both low FAST score at reassessment (OR 6.51, p = 0.008) and FAST score regression (OR 12.52, p = 0.009), after adjusting for changes in glycaemic control and body weight during the study. CONCLUSIONS Combining SGLT2i and pioglitazone is a potentially useful strategy to ameliorate 'at-risk' MASH in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Chi-Ho Lee
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - David Tak-Wai Lui
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Lung-Yi Mak
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Carol Ho-Yi Fong
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Kylie Sze-Wing Chan
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Jimmy Ho-Cheung Mak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Chloe Yu-Yan Cheung
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wing-Sun Chow
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yu-Cho Woo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Karen Siu-Ling Lam
- Division of Endocrinology and Metabolism, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Shi C, Hu S, Liu S, Jia X, Feng Y. Emerging role of exosomes during the pathogenesis of viral hepatitis, non-alcoholic steatohepatitis and alcoholic hepatitis. Hum Cell 2024; 38:26. [PMID: 39630211 DOI: 10.1007/s13577-024-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025]
Abstract
Extracellular vesicles (EVs) refer to a diverse range of membranous vesicles that are secreted by various cell types, they can be categorized into two primary subgroups: exosomes and microvesicles. Specifically, exosomes constitute a nanosized subset of EVs characterized by their intact lipid bilayer and diameters ranging from 30 to 150 nm. These vesicles play a crucial role in intercellular communication by transporting a diverse array of biomolecules, which act as cargoes for this communication process. Exosomes have demonstrated significant implications in a wide range of biologic processes and pathologic conditions, including immunity, development, cancer, neurodegenerative diseases, and liver diseases. Liver diseases significantly contribute to the global burden of morbidity and mortality, yet their pathogenesis remains complex and effective therapies are relatively scarce. Emerging evidence suggests that exosomes play a modulatory role in the pathogenesis of liver diseases, including viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcoholic hepatitis (AH). These findings bolster our confidence in the potential of exosomes as biomarkers and therapeutic tools for the diagnosis and treatment of liver diseases. In this comprehensive review, we offer a straightforward overview of exosomes and summarize the current understanding of their role in the pathogenesis of liver diseases. This provides a foundation for novel diagnostic and therapeutic approaches in the treatment of liver diseases.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Shen Liu
- Department of Pharmacy, Linquan County People's Hospital, Fuyang, 236400, Anhui, China
| | - Xiaodi Jia
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yubin Feng
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, Anhui, China.
| |
Collapse
|
6
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
7
|
Lin RT, Sun QM, Xin X, Ng CH, Valenti L, Hu YY, Zheng MH, Feng Q. Comparative efficacy of THR-β agonists, FGF-21 analogues, GLP-1R agonists, GLP-1-based polyagonists, and Pan-PPAR agonists for MASLD: A systematic review and network meta-analysis. Metabolism 2024; 161:156043. [PMID: 39357599 DOI: 10.1016/j.metabol.2024.156043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
AIMS To compare the efficacy of thyroid hormone receptor beta (THR-β) agonists, fibroblast growth factor 21 (FGF-21) analogues, glucagon-like peptide-1 receptor agonists (GLP-1RAs), GLP-1-based polyagonists, and pan-peroxisome proliferator-activated receptor (Pan-PPAR) agonists in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS A database search for relevant randomized double-blind controlled trials published until July 11, 2024, was conducted. Primary outcomes were the relative change in hepatic fat fraction (HFF) and liver stiffness assessed non-invasively by magnetic resonance imaging proton density fat fraction and elastography. Secondary outcomes included histology, liver injury index, lipid profile, glucose metabolism, blood pressure, and body weight. RESULTS Twenty-seven trials (5357 patients with MASLD) were identified. For HFF reduction, GLP-1-based polyagonists were most potentially effective (mean difference [MD] -51.47; 95 % confidence interval [CI]: -68.25 to -34.68; surface under the cumulative ranking curve [SUCRA] 84.9) vs. placebo, followed by FGF-21 analogues (MD -47.08; 95 % CI: -58.83 to -35.34; SUCRA 75.5), GLP-1R agonists (MD -37.36; 95 % CI: -69.52 to -5.21; SUCRA 52.3) and THR-β agonists (MD -33.20; 95 % CI: -43.90 to -22.51; SUCRA 36.9). For liver stiffness, FGF-21 analogues were most potentially effective (MD -9.65; 95 % CI: -19.28 to -0.01; SUCRA 82.2) vs. placebo, followed by THR-β agonists (MD -5.79; 95 % CI: -9.50 to -2.09; SUCRA 58.2), and GLP-1RAs (MD -5.58; 95 % CI: -15.02 to 3.86; SUCRA 54.7). For fibrosis improvement in histology, GLP-1-based polyagonists were most potentially effective, followed by FGF-21 analogues, THR-β agonists, Pan-PPAR agonists, and GLP-1R agonists; For MASH resolution in histology, GLP-1-based polyagonists were most potentially effective, followed by THR-β agonists, GLP-1R agonists, FGF-21 analogues, and Pan-PPAR agonists. THR-β agonists are well-balanced in liver steatosis and fibrosis, and excel at improving lipid profiles; FGF-21 analogues are effective at improving steatosis and particularly exhibit strong antifibrotic abilities. GLP-1R agonists showed significant benefits in improving liver steatosis, glucose metabolism, and body weight. GLP-1-based polyagonists have demonstrated the most potential efficacy overall in terms of comprehensive curative effect. Pan-PPAR agonists showed distinct advantages in improving liver function and glucose metabolism. CONCLUSION These results illustrate the relative superiority of the five classes of therapy in the treatment of MASLD and may serve as guidance for the development of combination therapies.
Collapse
Affiliation(s)
- Ru-Tao Lin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin-Mei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore; Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Precision Medicine and Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2024:10.1038/s41573-024-01084-2. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
9
|
Wang K, Zhang P, Sun H, Cui S, Ao L, Cui M, Xu X, Wang L, Xu Y, Wang G, Wang H, Hao H. Dual-function natural products: Farnesoid X receptor agonist/inflammation inhibitor for metabolic dysfunction-associated steatotic liver disease therapy. Chin J Nat Med 2024; 22:965-976. [PMID: 39510639 DOI: 10.1016/s1875-5364(24)60706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 11/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease globally, with only one Food and Drug Administration (FDA)-approved drug for its treatment. Given MASLD's complex pathophysiology, therapies that simultaneously target multiple pathways are highly desirable. One promising approach is dual-modulation of the farnesoid X receptor (FXR), which regulates lipid and bile acid metabolism. However, FXR agonists alone are insufficient due to their limited anti-inflammatory effects. This study aimed to dto identify natural products capable of both FXR activation and inflammation inhibition to provide a comprehensive therapeutic approach for MASLD. Potential FXR ligands from the Natural Product Library were predicted via virtual screening using the Protein Preparation Wizard module in Schrodinger (2018) for molecular docking. Direct binding and regulation of candidate compounds on FXR were analyzed using surface plasmon resonance (SPR) binding assay, reporter gene analysis, and reverse transcription-polymerase chain reaction (RT-PCR). The anti-inflammatory properties of these compounds were evaluated in AML12 cells treated with tumor necrosis factor-alpha (TNF-α). Dual-function compounds with FXR agonism and inflammation inhibition were further identified in cells transfected with Fxr siRNA and treated with TNF-α. The effects of these dual-function compounds on lipid accumulation and inflammation were evaluated in cells treated with palmitic acid. Results revealed that 17 natural products were predicted via computational molecular docking as potential FXR agonists, with 15 exhibiting a strong affinity for FXR recombinant protein. Nine isoflavone compounds significantly enhanced FXR reporter luciferase activity and the mRNA expressions of Shp and Ostb. Structure-activity relationship analysis indicated that introducing isopropyl or methoxy groups at the C7 position or a methoxy group at the C6 position could enhance the agonistic efficacy of isoflavones. Three compounds (2, 6, and 8) were identified as dual-function natural products functioning as FXR agonists and inflammatory inhibitors, while one compound (12) acted as an FXR agonist to inhibit inflammation. These natural products protected hepatocytes against palmitic acid-induced lipid accumulation and inflammation. In conclusion, compounds 2, 6, and 8 (genistein, biochanin A, and 7-methoxyisoflavone, respectively) were identified as dual-function bioactive products that transactivate FXR and inhibit inflammation, serving as potential candidates or lead compounds for MASLD therapy.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Lanjia Ao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Wang
- Basic Science Research Center Base (Pharmaceutical Science), Shandong province, Yantai University, Yantai 264005, China
| | - Yuanyuan Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Tasly Diyi Pharmaceutical Co., Ltd, Huaian 223002, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Shan GY, Wan H, Zhang YX, Cheng JY, Qiao DR, Liu YY, Shi WN, Li HJ. Pathogenesis and research progress of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Hepatol 2024; 16:1142-1150. [PMID: 39474575 PMCID: PMC11514618 DOI: 10.4254/wjh.v16.i10.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
In this editorial, we comment on the article by Mei et al. Nonalcoholic steatohepatitis (NASH) is a severe inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) with pathological features including steatosis, hepatocellular damage, and varying degrees of fibrosis. With the epidemic of metabolic diseases and obesity, the prevalence of NAFLD in China has increased, and it is now similar to that in developed countries; thus, NAFLD has become a major chronic liver disease in China. Human epidemiological data suggest that estrogen has a protective effect on NASH in premenopausal women and that sex hormones influence the development of liver disease. This review focuses on the pathogenesis, treatment, and relationship between NASH and other diseases as well as on the relationship between NASH and sex hormone metabolism, with the aim of providing new strategies for the treatment of NASH.
Collapse
Affiliation(s)
- Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hui Wan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yu-Xin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130061, Jilin Province, China
| | - Duan-Rui Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yi-Ying Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wen-Na Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hai-Jun Li
- Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
11
|
Shan GY, Wan H, Zhang YX, Cheng JY, Qiao DR, Liu YY, Shi WN, Li HJ. Pathogenesis and research progress of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Hepatol 2024; 16:1322-1330. [DOI: 10.4254/wjh.v16.i10.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 11/22/2024] Open
Abstract
In this editorial, we comment on the article by Mei et al. Nonalcoholic steatohepatitis (NASH) is a severe inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) with pathological features including steatosis, hepatocellular damage, and varying degrees of fibrosis. With the epidemic of metabolic diseases and obesity, the prevalence of NAFLD in China has increased, and it is now similar to that in developed countries; thus, NAFLD has become a major chronic liver disease in China. Human epidemiological data suggest that estrogen has a protective effect on NASH in premenopausal women and that sex hormones influence the development of liver disease. This review focuses on the pathogenesis, treatment, and relationship between NASH and other diseases as well as on the relationship between NASH and sex hormone metabolism, with the aim of providing new strategies for the treatment of NASH.
Collapse
Affiliation(s)
- Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hui Wan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yu-Xin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130061, Jilin Province, China
| | - Duan-Rui Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yi-Ying Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wen-Na Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hai-Jun Li
- Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
12
|
Mori T, Yoshio S, Kakazu E, Kanto T. Active role of the immune system in metabolic dysfunction-associated steatotic liver disease. Gastroenterol Rep (Oxf) 2024; 12:goae089. [PMID: 39411101 PMCID: PMC11479709 DOI: 10.1093/gastro/goae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a complex multifactorial disease that progresses from steatohepatitis (MASH) to liver cirrhosis and liver cancer. Recent research has revealed that crosstalk between innate immune cells and hepatic parenchymal and non-parenchymal cells is involved in the pathogenesis of liver disease in MASLD/MASH. Of particular importance, novel inflammatory mechanisms, including macrophage diversity, neutrophil NETosis, B-cell biology, auto-reactive T cells, unconventional T cells, and dendritic cell-T cell interactions, are considered key drivers for disease progression. These mechanisms and factors are potential targets for the therapeutic intervention of MASLD/MASH. In this review, we focus on recent discoveries related to liver inflammation and discuss the role of innate immune cell subsets in MASLD/MASH.
Collapse
Affiliation(s)
- Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
13
|
Ho HT, Shih YL, Huang TY, Fang WH, Liu CH, Lin JC, Hsiang CW, Chu KM, Hsiong CH, Chen GJ, Wu YE, Hao JY, Liang CW, Hu OYP. Mixed active metabolites of the SNP-6 series of novel compounds mitigate metabolic dysfunction-associated steatohepatitis and fibrosis: promising results from pre-clinical and clinical trials. J Transl Med 2024; 22:936. [PMID: 39402603 PMCID: PMC11476197 DOI: 10.1186/s12967-024-05686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a growing global health concern with no effective pharmacological treatments. SNP-630, a newly developed synthetic molecule with multiple mechanisms of action, and a mixture of two of its active metabolites (SNP-630-MS) inhibit CYP2E1 expression to prevent reactive oxygen species generation, thereby reducing the accumulation of hepatic triglycerides and lowering chemokine levels. This study investigated the SNP-630's potential to alleviate the liver injury in MASH and its efficacy in both a mouse model and patients with MASH to identify a drug candidate that targets multiple pathways implicated in MASH. METHODS SNP-630 and SNP-630-MS were separately administered to the MASH mouse model. The tolerability, safety, and efficacy of SNP-630-MS were also evaluated in 35 patients with MASH. The primary endpoint of the study was assessment of the changes in serum alanine aminotransferase (ALT) levels from baseline to week 12, while the secondary endpoints included the evaluation of liver inflammation, steatosis, and fibrosis parameters and markers. RESULTS SNP-630 treatment in mice improved inflammation, liver steatosis, and fibrosis compared with that in the MASH control group. Both SNP-630 and SNP-630-MS treatments markedly reduced ALT levels, hepatic triglyceride content, and the expression of inflammatory cytokines monocyte chemoattractant protein 1 and fibrotic collagen (i.e., Col1a1, Col3a1, and Timp1) in mice. In the clinical trial, patients treated with SNP-630-MS exhibited significant improvement in ALT levels at week 12 compared with baseline levels, with no reports of severe adverse events. This improvement in ALT levels surpassed that achieved with most other MASH candidates. SNP-630-MS demonstrated potential antifibrotic effects, as evidenced by a significant decrease in the levels of fibrogenesis-related biomarkers such as CCL4, CCL5, and caspase 3. Subgroup analysis using FibroScan measurements further indicated the efficacy of SNP-630-MS in ameliorating liver fibrosis. CONCLUSIONS SNP-630 and SNP-630-MS demonstrated favorable results in mice. SNP-630-MS showed excellent tolerability in mice and patients with MASH. Efficacy analyses indicated that SNP-630-MS improved liver steatosis and injury in patients with MASH, suggesting that SNP-630 and 630-MS are promising therapeutic options for MASH. Larger scale clinical trials remain warranted to assess the efficacy and safety of SNP-630 in MASH. TRIAL REGISTRATION ClinicalTrials.gov NCT03868566. Registered 06 March 2019-Retrospectively registered, https://clinicaltrials.gov/study/NCT03868566.
Collapse
Affiliation(s)
- Hsin-Tien Ho
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Wen-Hui Fang
- Division of Family and Community Health, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Chang-Hsien Liu
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
- Department of Medical Imaging, China Medical University Hsinchu Hospital and China Medical University, Hsinchu, 302, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Chih-Weim Hsiang
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Kai-Min Chu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Cheng-Huei Hsiong
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Guan-Ju Chen
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yung-En Wu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Jia-Yu Hao
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Chih-Wen Liang
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Oliver Yoa-Pu Hu
- School of Pharmacy, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan.
- Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
14
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
15
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
16
|
Shan X, Zhao Z, Lai P, Liu Y, Li B, Ke Y, Jiang H, Zhou Y, Li W, Wang Q, Qin P, Xue Y, Zhang Z, Wei C, Ma B, Liu W, Luo C, Lu X, Lin J, Shu L, Jie Y, Xian X, Delcassian D, Ge Y, Miao L. RNA nanotherapeutics with fibrosis overexpression and retention for MASH treatment. Nat Commun 2024; 15:7263. [PMID: 39191801 DOI: 10.1038/s41467-024-51571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) poses challenges for targeted delivery and retention of therapeutic proteins due to excess extracellular matrix (ECM). Here we present a new approach to treat MASH, termed "Fibrosis overexpression and retention (FORT)". In this strategy, we design (1) retinoid-derivative lipid nanoparticle (LNP) to enable enhanced mRNA overexpression in fibrotic regions, and (2) mRNA modifications which facilitate anchoring of therapeutic proteins in ECM. LNPs containing carboxyl-retinoids, rather than alcohol- or ester-retinoids, effectively deliver mRNA with over 10-fold enhancement of protein expression in fibrotic livers. The carboxyl-retinoid rearrangement on the LNP surface improves protein binding and membrane fusion. Therapeutic proteins are then engineered with an endogenous collagen-binding domain. These fusion proteins exhibit increased retention in fibrotic lesions and reduced systemic toxicity. In vivo, fibrosis-targeting LNPs encoding fusion proteins demonstrate superior therapeutic efficacy in three clinically relevant male-animal MASH models. This approach holds promise in fibrotic diseases unsuited for protein injection.
Collapse
Affiliation(s)
- Xinzhu Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiqiang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuxiu Liu
- Chinese Institute for Brain Research, Beijing, China
| | - Buyao Li
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Hanqiu Jiang
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengxia Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yizhe Xue
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zihan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chenlong Wei
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bin Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Liu
- Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Li Shu
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yin Jie
- Chinese Institute for Brain Research, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Yifan Ge
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China.
| |
Collapse
|
17
|
Fernández-Tussy P, Cardelo MP, Zhang H, Sun J, Price NL, Boutagy NE, Goedeke L, Cadena-Sandoval M, Xirouchaki CE, Brown W, Yang X, Pastor-Rojo O, Haeusler RA, Bennett AM, Tiganis T, Suárez Y, Fernández-Hernando C. miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression. JCI Insight 2024; 9:e168476. [PMID: 39190492 PMCID: PMC11466198 DOI: 10.1172/jci.insight.168476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The complexity of the mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction-associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Magdalena P. Cardelo
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Nabil E. Boutagy
- Vascular Biology and Therapeutics Program
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Leigh Goedeke
- Cardiovascular Research Institute and Division of Cardiology, Department of Medicine; and
- Diabetes, Obesity and Metabolism Institute and Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martí Cadena-Sandoval
- Department of Pathology & Cell Biology and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Chrysovalantou E. Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Wendy Brown
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Xiaoyong Yang
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Oscar Pastor-Rojo
- Vascular Biology and Therapeutics Program
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal IRYCIS, Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Rebecca A. Haeusler
- Department of Pathology & Cell Biology and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Anton M. Bennett
- Yale Center for Molecular and System Metabolism, and
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024; 157:155937. [PMID: 38782182 DOI: 10.1016/j.metabol.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) closely associates with obesity and type 2 diabetes. Lifestyle intervention and bariatric surgery aiming at substantial weight loss are cornerstones of MASLD treatment by improving histological outcomes and reducing risks of comorbidities. Originally developed as antihyperglycemic drugs, incretin (co-)agonists and SGLT2 inhibitors also reduce steatosis and cardiorenovascular events. Certain incretin agonists effectively improve histological features of MASLD, but not fibrosis. Of note, beneficial effects on MASLD may not necessarily require weight loss. Despite moderate weight gain, one PPARγ agonist improved adipose tissue and MASLD with certain benefit on fibrosis in post-hoc analyses. Likewise, the first THRβ-agonist was recently provisionally approved because of significant improvements of MASLD and fibrosis. We here discuss liver-related and metabolic effects induced by different MASLD treatments and their association with weight loss. Therefore, we compare results from clinical trials on drugs acting via weight loss (incretin (co)agonists, SGLT2 inhibitors) with those exerting no weight loss (pioglitazone; resmetirom). Furthermore, other drugs in development directly targeting hepatic lipid metabolism (lipogenesis inhibitors, FGF21 analogs) are addressed. Although THRβ-agonism may effectively improve hepatic outcomes, MASLD treatment concepts should consider all cardiometabolic risk factors for effective reduction of morbidity and mortality in the affected people.
Collapse
Affiliation(s)
- Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
19
|
Alshehade SA. Resmetirom's approval: Highlighting the need for comprehensive approaches in NASH therapeutics. Clin Res Hepatol Gastroenterol 2024; 48:102377. [PMID: 38772519 DOI: 10.1016/j.clinre.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/23/2024]
Abstract
The recent FDA approval of Rezdiffra (resmetirom), an oral partial agonist of the thyroid hormone receptor-beta (THR-beta), for the treatment of noncirrhotic non-alcoholic steatohepatitis (NASH) with moderate to advanced fibrosis, has challenged conventional approaches to NASH drug development. Despite extensive efforts targeting typical pathways involved in NASH progression, such as lipogenesis, oxidative stress, and inflammation, these approaches have yet to yield any approved therapies. The success of resmetirom highlights the potential advantages of targeting THR-beta, which exerts pleiotropic effects on multiple pathways involved in NASH pathogenesis, including lipid metabolism, glucose homeostasis, and inflammation. In the phase 3 MAESTRONASH trial, resmetirom significantly improved NASH resolution, fibrosis, and LDL cholesterol levels compared to placebo, with a favorable safety profile. The tissue-specific action of resmetirom may also contribute to its efficacy and safety. The approval of resmetirom has opened new avenues for NASH drug development, emphasizing the importance of exploring novel mechanisms of action, developing targeted therapies, and embracing a more comprehensive approach to treatment. As the global burden of NASH continues to grow, the lessons learned from the success of resmetirom should inform future drug development strategies, offering hope to the millions of patients affected by this disease worldwide.
Collapse
Affiliation(s)
- Salah Abdalrazak Alshehade
- Department of Pharmacology, Faculty of Pharmacy & Bio-Medical Sciences, MAHSA University, Selangor 42610, Malaysia.
| |
Collapse
|
20
|
Koh B, Xiao J, Ng CH, Law M, Gunalan SZ, Danpanichkul P, Ramadoss V, Sim BKL, Tan EY, Teo CB, Nah B, Teng M, Wijarnpreecha K, Seko Y, Lim MC, Takahashi H, Nakajima A, Noureddin M, Muthiah M, Huang DQ, Loomba R. Comparative efficacy of pharmacologic therapies for MASH in reducing liver fat content: Systematic review and network meta-analysis. Hepatology 2024:01515467-990000000-00972. [PMID: 39028914 DOI: 10.1097/hep.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of liver disease. Dynamic changes in MRI proton-density-fat fraction (PDFF) are associated with MASH resolution. We aimed to determine the relative efficacy of therapeutic agents for reducing hepatic fat, assessed by MRI-PDFF. APPROACH AND RESULTS In this systematic review and network meta-analysis, we searched MEDLINE and Embase from inception until December 26, 2023, for published randomized controlled trials comparing pharmacological interventions in patients with MASH that assessed changes in MRI-PDFF. The primary outcome was the absolute change in MRI-PDFF. The secondary outcome was a ≥30% decline in MRI-PDFF. A surface under-the-curve cumulative ranking probabilities (SUCRA) analysis was performed. Of 1550 records, a total of 39 randomized controlled trials (3311 participants) met the inclusion criteria. For MRI-PDFF decline at 24 weeks, aldafermin (SUCRA: 83.65), pegozafermin (SUCRA: 83.46), and pioglitazone (SUCRA: 71.67) were ranked the most effective interventions. At 24 weeks, efinopegdutide (SUCRA: 67.02), semaglutide + firsocostat (SUCRA: 62.43), and pegbelfermin (SUCRA: 61.68) were ranked the most effective interventions for achieving a ≥30% decline in MRI-PDFF. CONCLUSIONS This study provides an updated, relative rank-order efficacy of therapies for MASH in reducing hepatic fat. These data may help inform the design and sample size calculation of future clinical trials and assist in the selection of combination therapy.
Collapse
Affiliation(s)
- Benjamin Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jieling Xiao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore, Singapore
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Kurume, Japan
| | - Michelle Law
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shyna Zhuoying Gunalan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pojsakorn Danpanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vijay Ramadoss
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore, Singapore
| | - Benedix Kuan Loon Sim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - En Ying Tan
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore, Singapore
| | - Chong Boon Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Benjamin Nah
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore, Singapore
| | - Margaret Teng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karn Wijarnpreecha
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mei Chin Lim
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Department of Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mazen Noureddin
- Department of Medicine, Houston Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Mark Muthiah
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore, Singapore
| | - Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore, Singapore
- Department of Medicine, National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, MASLD Research Center, University of California at San Diego, La Jolla, California, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, MASLD Research Center, University of California at San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health, Division of Epidemiology, University of California at San Diego, San Diego, California, USA
| |
Collapse
|
21
|
Finamore C, De Marino S, Cassiano C, Napolitano G, Rapacciuolo P, Marchianò S, Biagioli M, Roselli R, Di Giorgio C, Festa C, Fiorucci S, Zampella A. BAR502/fibrate conjugates: synthesis, biological evaluation and metabolic profile. Front Chem 2024; 12:1425867. [PMID: 39086986 PMCID: PMC11289669 DOI: 10.3389/fchem.2024.1425867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | |
Collapse
|
22
|
Zhang L, El-Shabrawi M, Baur LA, Byrne CD, Targher G, Kehar M, Porta G, Lee WS, Lefere S, Turan S, Alisi A, Weiss R, Faienza MF, Ashraf A, Sundaram SS, Srivastava A, De Bruyne R, Kang Y, Bacopoulou F, Zhou YH, Darma A, Lupsor-Platon M, Hamaguchi M, Misra A, Méndez-Sánchez N, Ng NBH, Marcus C, Staiano AE, Waheed N, Alqahtani SA, Giannini C, Ocama P, Nguyen MH, Arias-Loste MT, Ahmed MR, Sebastiani G, Poovorawan Y, Al Mahtab M, Pericàs JM, Reverbel da Silveira T, Hegyi P, Azaz A, Isa HM, Lertudomphonwanit C, Farrag MI, Nugud AAA, Du HW, Qi KM, Mouane N, Cheng XR, Al Lawati T, Fagundes EDT, Ghazinyan H, Hadjipanayis A, Fan JG, Gimiga N, Kamal NM, Ștefănescu G, Hong L, Diaconescu S, Li M, George J, Zheng MH. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. MED 2024; 5:797-815.e2. [PMID: 38677287 DOI: 10.1016/j.medj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).
Collapse
Affiliation(s)
- Le Zhang
- Department of Paediatrics, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Mortada El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, Sau Paulo, Brazil
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Sander Lefere
- Hepatology Research Unit, Department Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Serap Turan
- Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center and the Bruce Rappaport School of Medicine, Technion, Haifa, Israel
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ambika Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shikha S Sundaram
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Pediatric Liver Center, Children's Hospital Colorado, University of Colorado School of Medicine and Anschutz Medical Campus, Aurora, CO, USA
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andy Darma
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Monica Lupsor-Platon
- Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation, New Delhi, India
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nicholas Beng Hui Ng
- Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nadia Waheed
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Saleh A Alqahtani
- Organ Transplantation Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maria Teresa Arias-Loste
- Hospital Universitario Marqués de Valdecilla, Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Mohamed Rabea Ahmed
- Department of Pediatrics, Jahra Hospital, Kuwait and Department of Pediatrics, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Division of Infectious Diseases, McGill University Health Centre, Montreal, QC, Canada
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Amer Azaz
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Hasan M Isa
- Pediatric Department, Salmaniya Medical Complex and Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Department of Paediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mona Issa Farrag
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abd Alwahab Nugud
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hong-Wei Du
- Department of Paediatrics, First Hospital of Jilin University, Changchun, China
| | - Ke-Min Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nezha Mouane
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Academic Children's Hospital Ibn Sina, Mohammed V University, Rabat, Morocco
| | - Xin-Ran Cheng
- Department of Paediatric Genetics, Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Eleonora D T Fagundes
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hasmik Ghazinyan
- Department of Hepatology, Nikomed Medical Center, Yerevan, Armenia
| | | | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Nicoleta Gimiga
- Clinical Department of Pediatric Gastroenterology, "St. Mary" Emergency Children's Hospital, Iași, Romania; Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Naglaa M Kamal
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt; Pediatric Hepatology and Gastroenterology, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Gabriela Ștefănescu
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University "Titu Maiorescu", Bucuresti, Romania
| | - Ming Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
23
|
Hou W, Watson C, Cecconie T, Bolaki MN, Brady JJ, Lu Q, Gatto GJ, Day TA. Biochemical and functional characterization of the p.A165T missense variant of mitochondrial amidoxime-reducing component 1. J Biol Chem 2024; 300:107353. [PMID: 38723751 PMCID: PMC11190489 DOI: 10.1016/j.jbc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.
Collapse
Affiliation(s)
- Wangfang Hou
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christian Watson
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ted Cecconie
- MEDDesign-NCE-MD SPMB US, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | - Quinn Lu
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Gregory J Gatto
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Zeng W, Hou Y, Gu W, Chen Z. Proteomic Biomarkers of Intrahepatic Cholestasis of Pregnancy. Reprod Sci 2024; 31:1573-1585. [PMID: 38177949 PMCID: PMC11111573 DOI: 10.1007/s43032-023-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease, which can lead to adverse fetal outcomes, including preterm labor and intrauterine death. The pathogenesis of ICP is still unclear. We hypothesized that pathological index leads to abnormal placenta changes in ICP. Investigation of these differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying ICP. The present study screened differentially expressed proteins (DEPs) as novel diagnostic markers for ICP. Proteomic profiles of placental tissues from 32 ICP patients and 24 healthy volunteers (controls) were analyzed. Our founding was valid by following western blotting and immunohistochemistry staining, respectively. The association of the key protein expression with clinicopathological features of ICP was further analyzed. A total of 178 DEPs were identified between the ICP and control groups. Functional enrichment analysis showed these proteins were significantly enriched in the PPAR singling pathway by KEGG and PPARα/RXRα activation by IPA. Apolipoprotein A2 (APOA2) was the only upregulated protein, which uniquely identified in ICP groups and related to both pathways. Validation of western blotting and immunohistochemical staining analysis showed significantly higher APOA2 expression in the ICP group than in the control group. Furthermore, the expression of APOA2 is associated with clinicopathological features in ICP groups. Receiver operating characteristic (ROC) curve analyses showed that the AUC of APOA2 was 0.8984 (95% confidence interval (CI): 0.772-1.000). This study has identified up-regulated APOA2 associated with PPAR singling pathway and PPARα/RXRα activation in ICP. Thus, APOA2 may be involved in ICP pathogenesis, serving as a novel biomarker for its diagnosis.
Collapse
Affiliation(s)
- Weijian Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yanyan Hou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
| | - Zheng Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
25
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
26
|
Jirapinyo P, Jaroenlapnopparat A, Zucker SD, Thompson CC. Combination Therapy of Endoscopic Gastric Remodeling with GLP-1RA for the Treatment of MASLD. Obes Surg 2024; 34:1471-1478. [PMID: 38512644 DOI: 10.1007/s11695-024-07178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The mainstay of treatment for metabolic dysfunction-associated steatotic liver disease (MASLD) is weight loss. Endoscopic gastric remodeling (EGR) and glucagon-like peptide-1 receptor agonist (GLP-1RA) are effective weight loss therapies. This study aims to assess the effect of combining EGR with GLP-1RA on liver-related outcomes and weight profile. MATERIALS AND METHODS This is a retrospective study of a prospectively collected registry of patients with MASLD and compensated advanced chronic liver disease (cACLD) who underwent EGR. Patients were categorized as (1) monotherapy: EGR alone and (2) combination therapy: GLP-1RA prescribed within 6 months prior to or after EGR. Outcomes included changes in noninvasive tests of hepatic fibrosis, weight profile, and insulin resistance status at 12 months. RESULTS Thirty patients (body mass index 40.7 ± 9.3 kg/m2) were included. Of these, 12 patients (40%) underwent EGR monotherapy, and 18 patients (60%) underwent EGR + GLP-1RA combination therapy. Combination therapy group experienced greater improvements in fibrosis compared to monotherapy group (alanine aminotransferase: reduction by 55 ± 23% vs 29 ± 22% (p = 0.008), NAFLD fibrosis score: reduction by 181 ± 182% vs 30 ± 83% (p = 0.04), liver stiffness measurement on transient elastography: reduction by 54 ± 12% vs 14 ± 45% (p = 0.05)). There were greater reductions in hemoglobin A1c and homeostatic model assessment for insulin resistance in combination therapy compared to monotherapy (p < 0.05). At 12 months, the combination therapy group experienced 18.2 ± 6.6% TWL, while monotherapy group experienced 9.6 ± 3.3% TWL (p = 0.004). CONCLUSIONS In patients with MASLD and cACLD, combination of EGR with GLP-1RA is associated with greater improvements in hepatic fibrosis, weight profile, and insulin resistance compared to EGR alone.
Collapse
Affiliation(s)
- Pichamol Jirapinyo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Aunchalee Jaroenlapnopparat
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Department of Medicine, Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, MA, 02138, USA
| | - Stephen D Zucker
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher C Thompson
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
27
|
Brouwers B, Rao G, Tang Y, Rodríguez Á, Glass LC, Hartman ML. Incretin-based investigational therapies for the treatment of MASLD/MASH. Diabetes Res Clin Pract 2024; 211:111675. [PMID: 38636848 DOI: 10.1016/j.diabres.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most common form of chronic liver disease. It exists as either simple steatosis or its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH), formerly, non-alcoholic steatohepatitis (NASH). The global prevalence of MASLD is estimated to be 32% among adults and is projected to continue to rise with increasing rates of obesity, type 2 diabetes, and metabolic syndrome. While simple steatosis is often considered benign and reversible, MASH is progressive, potentially leading to the development of cirrhosis, liver failure, and hepatocellular carcinoma. Treatment of MASH is therefore directed at slowing, stopping, or reversing the progression of disease. Evidence points to improved liver histology with therapies that result in sustained body weight reduction. Incretin-based molecules, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs), alone or in combination with glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon receptor agonists, have shown benefit here, and several are under investigation for MASLD/MASH treatment. In this review, we discuss current published data on GLP-1, GIP/GLP-1, GLP-1/glucagon, and GLP-1/GIP/glucagon RAs in MASLD/MASH, focusing on their efficacy on liver histology, liver fat, and MASH biomarkers.
Collapse
Affiliation(s)
| | - Girish Rao
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
28
|
Xu T, Gao W, Zhu L, Chen W, Niu C, Yin W, Ma L, Zhu X, Ling Y, Gao S, Liu L, Jiao N, Chen W, Zhang G, Zhu R, Wu D. NAFLDkb: A Knowledge Base and Platform for Drug Development against Nonalcoholic Fatty Liver Disease. J Chem Inf Model 2024; 64:2817-2828. [PMID: 37167092 DOI: 10.1021/acs.jcim.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with a broad spectrum of histologic manifestations. The rapidly growing prevalence and the complex pathologic mechanisms of NAFLD pose great challenges for treatment development. Despite tremendous efforts devoted to drug development, there are no FDA-approved medicines yet. Here, we present NAFLDkb, a specialized knowledge base and platform for computer-aided drug design against NAFLD. With multiperspective information curated from diverse source materials and public databases, NAFLDkb presents the associations of drug-related entities as individual knowledge graphs. Practical drug discovery tools that facilitate the utilization and expansion of NAFLDkb have also been implemented in the web interface, including chemical structure search, drug-likeness screening, knowledge-based repositioning, and research article annotation. Moreover, case studies of a knowledge graph repositioning model and a generative neural network model are presented herein, where three repositioning drug candidates and 137 novel lead-like compounds were newly established as NAFLD pharmacotherapy options reusing data records and machine learning tools in NAFLDkb, suggesting its clinical reliability and great potential in identifying novel drug-disease associations of NAFLD and generating new insights to accelerate NAFLD drug development. NAFLDkb is freely accessible at https://www.biosino.org/nafldkb and will be updated periodically with the latest findings.
Collapse
Affiliation(s)
- Tingjun Xu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, P. R. China
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center, Sun Yat-sen University, Guangzhou 510655, P. R. China
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Wanning Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Chaoqun Niu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Wenjing Yin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Liangxiao Ma
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xinyue Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Yunchao Ling
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Sheng Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Lei Liu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| | - Weiming Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, P. R. China
| | - Guoqing Zhang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
29
|
Videla LA, Valenzuela R, Zúñiga-Hernández J, Del Campo A. Relevant Aspects of Combined Protocols for Prevention of N(M)AFLD and Other Non-Communicable Diseases. Mol Nutr Food Res 2024; 68:e2400062. [PMID: 38506156 DOI: 10.1002/mnfr.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Obesity is a global health issue characterized by the excessive fat accumulation, leading to an increased risk of chronic noncommunicable diseases (NCDs), including metabolic dysfunction-associated fatty liver disease (MAFLD), which can progress from simple steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, there are no approved pharmacological protocols for prevention/treatment of MAFLD, and due the complexity lying beneath these mechanisms, monotherapies are unlikely to be efficacious. This review article analyzes the possibility that NCDs can be prevented or attenuated by the combination of bioactive substances, as they could promote higher response rates, maximum reaction results, additive or synergistic effects due to compounds having similar or different mechanisms of action and/or refraining possible side effects, related to the use of lower doses and exposures times than monotherapies. Accordingly, prevention of mouse MAFLD is observed with the combination of the omega-3 docosahexaenoic acid with the antioxidant hydroxytyrosol, whereas attenuation of mild cognitive impairment is attained by folic acid plus cobalamin in elderly patients. The existence of several drawbacks underlying published monotherapies or combined trials, opens space for adequate and stricter experimental and clinical tryouts to achieve meaningful outcomes with human applicability.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca, 3465548, Chile
| | - Andrea Del Campo
- Cellular Physiology and Bioenergetic Laboratory, School of Chemistry and Pharmacy, Faculty of Chemistry and Pharmacy, Pontifical Catholic University of Chile, Santiago, 7820436, Chile
| |
Collapse
|
30
|
Zhu S, Wu Z, Wang W, Wei L, Zhou H. A revisit of drugs and potential therapeutic targets against non-alcoholic fatty liver disease: learning from clinical trials. J Endocrinol Invest 2024; 47:761-776. [PMID: 37839037 DOI: 10.1007/s40618-023-02216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a worldwide prevalence of 25%. Although numerous clinical trials have been conducted over the last few decades, an effective treatment has not been approved yet. Extensive research has accumulated a large amount of data and experience; however, the vast number of clinical trials and new therapeutic targets for NAFLD make it impossible to keep abreast of the relevant information. Therefore, a systematic analysis of the existing trials is necessary. METHODS Here, we reviewed clinical trials on NAFLD registered in the mandated federal database, ClinicalTrials.gov, to generate a detailed overview of the trials related to drugs and therapeutic targets for NAFLD treatment. Following screening for pertinence to therapy, a total of 440 entries were identified that included active trials as well as those that have already been completed, suspended, terminated, or withdrawn. RESULTS We summarize and systematically analyze the state, drug development pipeline, and discovery of treatment targets for NAFLD. We consider possible factors that may affect clinical outcomes. Furthermore, we discussed these results to explore the mechanisms responsible for clinical outcomes. CONCLUSION We summarised the landscape of current clinical trials and suggested the directions for future NAFLD therapy to assist internal medicine specialists in treating the whole clinical spectrum of this highly prevalent liver disease.
Collapse
Affiliation(s)
- S Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Z Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - W Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - L Wei
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - H Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
31
|
Jimenez Ramos M, Kendall TJ, Drozdov I, Fallowfield JA. A data-driven approach to decode metabolic dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 29:101278. [PMID: 38135251 PMCID: PMC10907333 DOI: 10.1016/j.aohep.2023.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), defined by the presence of liver steatosis together with at least one out of five cardiometabolic factors, is the most common cause of chronic liver disease worldwide, affecting around one in three people. Yet the clinical presentation of MASLD and the risk of progression to cirrhosis and adverse clinical outcomes is highly variable. It, therefore, represents both a global public health threat and a precision medicine challenge. Artificial intelligence (AI) is being investigated in MASLD to develop reproducible, quantitative, and automated methods to enhance patient stratification and to discover new biomarkers and therapeutic targets in MASLD. This review details the different applications of AI and machine learning algorithms in MASLD, particularly in analyzing electronic health record, digital pathology, and imaging data. Additionally, it also describes how specific MASLD consortia are leveraging multimodal data sources to spark research breakthroughs in the field. Using a new national-level 'data commons' (SteatoSITE) as an exemplar, the opportunities, as well as the technical challenges of large-scale databases in MASLD research, are highlighted.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK; Edinburgh Pathology, University of Edinburgh, 51 Little France Crescent, Old Dalkeith Rd, Edinburgh EH16 4SA, UK
| | - Ignat Drozdov
- Bering Limited, 54 Portland Place, London, W1B 1DY, UK
| | - Jonathan A Fallowfield
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
32
|
Hegazi OE, Alalalmeh SO, Shahwan M, Jairoun AA, Alourfi MM, Bokhari GA, Alkhattabi A, Alsharif S, Aljehani MA, Alsabban AM, Almtrafi M, Zakri YA, AlMahmoud A, Alghamdi KM, Ashour AM, Alorfi NM. Exploring Promising Therapies for Non-Alcoholic Fatty Liver Disease: A ClinicalTrials.gov Analysis. Diabetes Metab Syndr Obes 2024; 17:545-561. [PMID: 38327733 PMCID: PMC10847589 DOI: 10.2147/dmso.s448476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common disease and has been increasing in recent years. To date, no FDA-approved drug specifically targets NAFLD. Methods The terms "Non-alcoholic Fatty Liver Disease" and "NAFLD" were used in a search of ClinicalTrials.gov on August 24, 2023. Two evaluators independently examined the trials using predetermined eligibility criteria. Studies had to be interventional, NAFLD focused, in Phase IV, and completed to be eligible for this review. Results The ClinicalTrials.gov database was searched for trials examining pharmacotherapeutics in NAFLD. The search revealed 1364 trials, with 31 meeting the inclusion criteria. Out of these, 19 were finalized for evaluation. The dominant intervention model was Parallel. The most prevalent studies were in Korea (26.3%) and China (21.1%). The most common intervention was metformin (12.1%), with others like Exenatide and Pioglitazone accounting for 9.1%. Conclusion Therapeutics used to manage NAFLD are limited. However, various medications offer potential benefits. Further investigations are definitely warranted.
Collapse
Affiliation(s)
- Omar E Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mansour M Alourfi
- Internal medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
- Department of gastroenterology, East Jeddah hospital, Jeddah, Saudi Arabia
| | | | | | - Saeed Alsharif
- Gastroenterology Department, Armed force Hospital of southern region, Khamis Mushait, Saudi Arabia
| | - Mohannad Abdulrahman Aljehani
- Division of Gastroenterology, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | | | - Mohammad Almtrafi
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ysear Abdulaziz Zakri
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdullah AlMahmoud
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Khalid Mohammed Alghamdi
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
33
|
Choi YJ, Johnson JD, Lee JJ, Song J, Matthews M, Hellerstein MK, McWherter CA. Seladelpar combined with complementary therapies improves fibrosis, inflammation, and liver injury in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G120-G132. [PMID: 38014444 PMCID: PMC11208022 DOI: 10.1152/ajpgi.00158.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.
Collapse
Affiliation(s)
- Yun-Jung Choi
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jeff D Johnson
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jin-Ju Lee
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Jiangao Song
- CymaBay Therapeutics, Inc., Fremont, California, United States
| | - Marcy Matthews
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States
| | | |
Collapse
|
34
|
Dufour JF. A pivotal year for NAFLD and NASH therapeutics. Nat Rev Endocrinol 2024; 20:75-76. [PMID: 38097670 DOI: 10.1038/s41574-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
|
35
|
Guan L, Guo L, Zhang H, Liu H, Zhou W, Zhai Y, Yan X, Men X, Peng L. Naringin Protects against Non-Alcoholic Fatty Liver Disease by Promoting Autophagic Flux and Lipophagy. Mol Nutr Food Res 2024; 68:e2200812. [PMID: 38054638 DOI: 10.1002/mnfr.202200812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/07/2023] [Indexed: 12/07/2023]
Abstract
The autophagic degradation of lipid droplets, termed lipophagy, is the main mechanism contributing to lipid consumption in hepatocytes. Identifying effective and safe natural compounds that target lipophagy to eliminate excess lipids may be a potential therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Here the effects of naringin on NAFLD and the underlying mechanisms involved are investigated. Naringin treatment effectively relieves HFD-induced hepatic steatosis in mice and inhibits PA-induced lipid accumulation in hepatocytes. Increased p62 and LC3-II levels are observed with excess lipid support autophagosome accumulation and impaired autophagic flux. Treatment with naringin restores TFEB-mediated lysosomal biogenesis, thereby promoting the fusion of autophagosomes and lysosomes, restoring impaired autophagic flux and further inducing lipophagy. However, the knockdown of TFEB in hepatocytes or the hepatocyte-specific knockout of TFEB in mice abrogates naringin-induced lipophagy, eliminating its therapeutic effect on hepatic steatosis. These results demonstrate that TFEB-mediated lysosomal biogenesis and subsequent lipophagy play essential roles in the ability of naringin to mitigate hepatic steatosis and suggest that naringin is a promising drug for treating NAFLD.
Collapse
Affiliation(s)
- Lingling Guan
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
- The fifth affiliated hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Lan Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
| | - Heng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Wenling Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Yuanyuan Zhai
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Xu Yan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| | - Xiuli Men
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063000, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100000, China
| |
Collapse
|
36
|
Ding H, Ge K, Fan C, Liu D, Wu C, Li R, Yan FJ. Chlorogenic Acid Attenuates Hepatic Steatosis by Suppressing ZFP30. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:245-258. [PMID: 38148374 DOI: 10.1021/acs.jafc.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major global health problem with no approved pharmacological treatment for this disease. Thus, it is urgent to develop effective therapeutic targets for clinical intervention. Here, we show for the first time that ZFP30, a member of the KRAB-ZFP family, is significantly increased in NAFLD models. ZFP30 silencing ameliorates free fatty acid (FFA)-induced lipid accumulation; in contrast, the ZFP30 overexpression exacerbates the triglyceride accumulation and steatosis in hepatocytes. Further investigation revealed that the effects of ZFP30 on hepatic lipid accumulation were mainly attributed to the PPARα downregulation in the NAFLD model. Mechanistically, ZFP30 directly binded to the promoter of PPARα and recruited KAP1 to suppress its transcription. Moreover, chlorogenic acid (CGA) reversed the upregulation of ZFP30 in NAFLD, promoting the PPARα expression, resulting in enhanced fatty acid oxidation and alleviated hepatic steatosis. Collectively, our study indicates ZFP30 as a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Han Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Kunyi Ge
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Changyu Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dandan Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chenyu Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Rongpeng Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Feng-Juan Yan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
37
|
Arnold J, Idalsoaga F, Díaz LA, Cabrera D, Barrera F, Arab JP, Arrese M. Emerging Drug Therapies for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Glimpse into the Horizon. CURRENT HEPATOLOGY REPORTS 2024; 23:204-219. [DOI: 10.1007/s11901-023-00629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/03/2025]
|
38
|
Melander SA, Kayed A, Andreassen KV, Karsdal MA, Henriksen K. OXM-104, a potential candidate for the treatment of obesity, NASH and type 2 diabetes. Eur J Pharmacol 2024; 962:176215. [PMID: 38056618 DOI: 10.1016/j.ejphar.2023.176215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
39
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
40
|
Majeed M, Nagabhushanam K, Noureddin M, Paulose S, Barik C, Saklecha S, Mundkur L. A scientifically validated combination of garcinol, curcuminoids, and piperine for mild to moderate nonalcoholic steatohepatitis patients-results from a randomized, double-blind, placebo-controlled study. Front Nutr 2023; 10:1201186. [PMID: 38170037 PMCID: PMC10760641 DOI: 10.3389/fnut.2023.1201186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Background Garcinol is a naturally occurring compound from the fruit rind of the Garcinia indica, with antioxidant, anti-inflammatory, and anticancer properties. Curcuminoids are the active molecule from the rhizome of Curcuma longa, studied extensively for its health benefits as an anti-inflammatory and antioxidant activities. Non-alcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic steatohepatitis characterized by liver fat and inflammation. Objective To evaluate the clinical efficacy and safety of Garcinol, Curcuminoids and piperine (GCP) combination in patients with mild to moderate NASH in a randomized, double-blind, placebo-controlled study. Methods The patients received one tablet (450 mg) of GCP containing garcinol-50 mg, curcuminoids -250 mg and piperine 5 mg or a placebo (450 mg of microcrystalline cellulose) twice daily for 90 days. Changes in circulating aspartate aminotransferase (AST), alanine transaminase (ALT) levels, liver stiffness measurement (LSM), and controlled attenuation parameter (CAP) using Fibroscan were compared from baseline to day 90. Anthropometric parameters, serum levels of lipids, Interleukin (IL-6), hsCRP, and adiponectin were estimated. Safety was evaluated by laboratory parameters and by monitoring adverse events. Results Seventy-two patients were randomized and 63 (GCP = 32, Placebo = 31) completed the study. The mean age of the patients was 48.3 ± 8.7 years (36 males and 27 females). The mean reduction in AST (U/L) was 9.53 in GCP and 3.16 in placebo (p < 0.001) and that of ALT (U/L) was 13.47 in GCP and 7.43 in Placebo (p = 0.002). The liver stiffness and CAP scores showed a better reduction in GCP (0.56 kPa and 12.38 db/m) compared to placebo (0.064 kPa and 10.42 db/m) p < 0.05. Consequently, the noninvasive Fibroscan-AST (FAST) score reduction was also found to be significant in GCP compared to placebo. Additionally, body weight, lipid levels, hsCRP, and IL-6 in serum decreased, while adiponectin levels increased in GCP-supplemented participants compared to placebo. The combination of garcinol and curcuminoids was well tolerated with no significant changes in hematological and clinical laboratory parameters during the 90-day supplementation. Conclusion Our results suggest that GCP could be a possible supplement for the management of NASH.Clinical trial registration: https://clinicaltrials.gov/, identifier CTRI/2019/11/022147.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
- Sabinsa Corporation, East Windsor, NJ, United States
| | | | - Mazen Noureddin
- Houston Liver Institute, Houston Research Institute, Houston, TX, United States
| | - Shaji Paulose
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
41
|
Burmeister Y, Weyer K, Dörre A, Seilheimer B. The Multicomponent Medicinal Product Hepar Compositum Reduces Hepatic Inflammation and Fibrosis in a Streptozotocin- and High-Fat Diet-Induced Model of Metabolic Dysfunction-Associated Steatotic Liver Disease/Metabolic Dysfunction-Associated Steatohepatitis. Biomedicines 2023; 11:3216. [PMID: 38137437 PMCID: PMC10740479 DOI: 10.3390/biomedicines11123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD)-formerly known as non-alcoholic fatty liver disease (NAFLD)-is the most common chronic liver disease worldwide. Since there is currently no approved pharmacotherapy for MASLD, there is an urgent unmet need for efficacious therapeutics for this disease. Hepar compositum (HC-24) is a multicomponent medicinal product that consists of 24 natural ingredients. It has been shown to have anti-inflammatory properties in an obesity-associated MASLD mouse model, but its potential to reduce MASLD-associated fibrosis had not been explored before this study. Here, we investigated the hepatic anti-inflammatory and anti-fibrotic potential of HC-24 in a streptozotocin (STZ)- and high-fat diet (HFD)-induced model of MASLD. Mice received a single injection of low-dose STZ at 2 days of age, followed by HFD feeding from 4 to 9 weeks of age. Mice were treated every second day with HC-24 or daily with the positive control telmisartan from 6 to 9 weeks of age. A non-diseased control group was included as a healthy reference. An explorative small-scale pilot study demonstrated that HC-24 improved liver histology, resulting in a lower NAFLD activity score and reduced liver fibrosis. A subsequent full study confirmed these effects and showed that HC-24 reduced hepatic inflammation, specifically reducing T helper cell and neutrophil influx, and decreased hepatic fibrosis (with qualitatively reduced collagen type I and type III immunopositivity) in the absence of an effect on body and liver weight, blood glucose or liver steatosis. These results show that HC-24 has hepatoprotective, anti-inflammatory, and anti-fibrotic properties in an STZ- and HFD-induced model of MASLD/MASH, suggesting that this multicomponent medicine has therapeutic potential for MASLD patients.
Collapse
Affiliation(s)
| | - Kathrin Weyer
- Heel GmbH, 76532 Baden-Baden, Germany; (Y.B.); (B.S.)
| | - Achim Dörre
- Independent Researcher, 14641 Nauen, Germany;
| | | |
Collapse
|
42
|
Xu F, Wang X, Huang Y, Zhang X, Sun W, Du Y, Xu Z, Kou H, Zhu S, Liu C, Wei X, Li X, Jiang Q, Xu Y. Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8 + T cell. Cell Rep 2023; 42:113424. [PMID: 37963015 DOI: 10.1016/j.celrep.2023.113424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/12/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Depletion of CD8+ T cells is a major obstacle in immunotherapy; however, the relevant mechanisms remain largely unknown. Here, we showed that prostate cancer (PCa) cell-derived exosomes hamper CD8+ T cell function by transporting interleukin-8 (IL-8). Compared to the low IL-8 levels detected in immune cells, PCa cells secreted the abundance of IL-8 and further accumulated in exosomes. The delivery of PCa cell-derived exosomes into CD8+ T cells exhausted the cells through enhanced starvation. Mechanistically, exosomal IL-8 overactivated PPARα in recipient cells, thereby decreasing glucose utilization by downregulating GLUT1 and HK2 but increasing fatty acid catabolism via upregulation of CPT1A and ACOX1. PPARα further activates uncoupling protein 1 (UCP1), leading to fatty acid catabolism for thermogenesis rather than ATP synthesis. Consequently, inhibition of PPARα and UCP1 restores CD8+ T cell proliferation by counteracting the effect of exosomal IL-8. This study revealed that the tumor exosome-activated IL-8-PPARα-UCP1 axis harms tumor-infiltrating CD8+ T cells by interfering with energy metabolism.
Collapse
Affiliation(s)
- Fan Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Xiumei Wang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Ying Huang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Xiaoqian Zhang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Yuanyuan Du
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Zhi Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Hengyuan Kou
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Shuyi Zhu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Caidong Liu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiao Li
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| | - Qin Jiang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China.
| | - Yong Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| |
Collapse
|
43
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
44
|
Sangro P, de la Torre Aláez M, Sangro B, D'Avola D. Metabolic dysfunction-associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem 2023; 79:869-879. [PMID: 36976456 PMCID: PMC10635944 DOI: 10.1007/s13105-023-00954-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is nowadays considered the liver manifestation of metabolic syndrome. Its prevalence is increasing worldwide in parallel to the epidemic of diabetes and obesity. MAFLD includes a wide spectrum of liver injury including simple steatosis and non-alcoholic steatohepatitis (NASH) that may lead to serious complications such as liver cirrhosis and liver cancer. The complexity of its pathophysiology and the intricate mechanisms underlying disease progression explains the huge variety of molecules targeting diverse biological mechanisms that have been tested in preclinical and clinical settings in the last two decades. Thanks to the large number of clinical trials of the last few years, most of them still ongoing, the pharmacotherapy scenario of MAFLD is rapidly evolving. The three major components of MAFLD, steatosis, inflammation, and fibrosis seem to be safely targeted with different agents at least in a large proportion of patients. Likely, in the next few years more than one drug will be approved for the treatment of MAFLD at different disease stages. The aim of this review is to synthesize the characteristics and the results of the most advanced clinical trials for the treatment of NASH to evaluate the recent advances of pharmacotherapy in this disease.
Collapse
Affiliation(s)
- Paloma Sangro
- Liver Unit Clínica, Universidad de Navarra, Madrid, Spain.
| | | | - Bruno Sangro
- Liver Unit Clínica, Universidad de Navarra, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Delia D'Avola
- Liver Unit Clínica, Universidad de Navarra, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| |
Collapse
|
45
|
Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol 2023; 79:1317-1331. [PMID: 37562746 DOI: 10.1016/j.jhep.2023.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/19/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
The farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor highly expressed in the liver and intestine, regulates the expression of genes involved in cholesterol and bile acid homeostasis, hepatic gluconeogenesis, lipogenesis, inflammation and fibrosis, in addition to controlling intestinal barrier integrity, preventing bacterial translocation and maintaining gut microbiota eubiosis. Non-alcoholic steatohepatitis (NASH), an advanced stage of non-alcoholic fatty liver disease, is characterized by hepatic steatosis, hepatocyte damage (ballooning) and inflammation, leading to fibrosis, cirrhosis and hepatocellular carcinoma. NASH represents a major unmet medical need, but no pharmacological treatments have yet been approved. The pleiotropic mechanisms involved in NASH development offer a range of therapeutic opportunities and among them FXR activation has emerged as an established pharmacological target. Various FXR agonists with different physicochemical properties, which can be broadly classified as BA derivatives, non-BA-derived steroidal FXR agonists, non-steroidal FXR agonists, and partial FXR agonists, are in advanced clinical development. In this review we will summarize key preclinical and clinical features of the most advanced FXR agonists and critically evaluate their potential in NASH treatment.
Collapse
Affiliation(s)
- Luciano Adorini
- Intercept Pharmaceuticals Inc., 305 Madison Ave., Morristown, NJ 07960, USA.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
46
|
Kim H, Lee K, Kim JY, Shim JJ, Lim J, Kim JY, Lee JL. Lactobacillus helveticus Isolated from Raw Milk Improves Liver Function, Hepatic Steatosis, and Lipid Metabolism in Non-Alcoholic Fatty Liver Disease Mouse Model. Microorganisms 2023; 11:2466. [PMID: 37894124 PMCID: PMC10609090 DOI: 10.3390/microorganisms11102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Here, we show that Lactiplantibacillus plantarum LP158 (LP158), Lactobacillus helveticus HY7804 (HY7804), and Lacticaseibacillus paracasei LPC226 (LPC226) isolated from raw milk alleviate non-alcoholic fatty acid disease (NAFLD) in a C57BL/6 mouse model. Lactic acid bacteria (LAB) were screened for their ability to inhibit fatty acid accumulation in palmitic acid (PA)-treated HepG2 cells, and three strains were selected based on the results. We also investigated hemolytic activity and antibiotic resistance of the three strains. LP158, HY7804, and LPC226 suppressed expression of mRNA encoding genes related to lipogenesis, and increased expression of genes related to β-oxidation, in a PA-induced HepG2 cell model. Moreover, when LP158, HY7804, and LPC226 were administered at 109 CFU/kg/day for 8 weeks to mice with dietary-induced NAFLD, they all modulated blood biochemistry markers and reduced steatosis in liver tissue. Also, all three strains significantly reduced expression of mRNA encoding lipogenesis genes (Fasn, Acaca, and Srebp-1c) and inflammatory factors (Tnfα and Ccl-2) and fibrosis factors, and increased expression of a β-oxidation gene (Acox1) in the liver. In particular, HY7804 showed the strongest effects both in vitro and in vivo. Therefore, HY7804, LP158, and LPC226 can be proposed as potential supplements that can improve NAFLD through anti-steatosis, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Hyeonji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Kippeum Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Ju-Yeon Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| |
Collapse
|
47
|
Xu ST, Jin HW, Jin X, Xu BX, Zhang Y, Xie T, Wang G, Wang J, Zhen L. Development and validation for bioanalysis of VK2809, its active metabolite VK2809A and glutathione-conjugated metabolite MB06588 in rat liver using LC-MS/MS. J Pharm Biomed Anal 2023; 234:115595. [PMID: 37487290 DOI: 10.1016/j.jpba.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
VK2809 is a promising drug candidate in Phase II clinical trials for the treatment of non-alcoholic steatohepatitis (NASH). It is a prodrug with a HepDirect strategy, which can achieve selective hepatic metabolic activation, generating an active metabolite VK2809A as a potent and selective agonist for thyroid hormone receptor beta (TRβ), a concomitant reactive metabolite VK2809B, and a glutathione (GSH) conjugate MB06588. Currently, there is no convenient and sensitive bioanalytical method for the simultaneous determination of the above three metabolites. Herein, we established an LC-MS/MS method to separate VK2809 and its metabolites on the XSelect HSS T3 column and quantified them in negative electrospray ionization mode. Subsequently, several factors were investigated such as the use of 60% acetonitrile for homogenization to stabilize the analytes, the addition of 20 mM glutathione for the derivation of VK2809B, and the protein precipitation with methanol containing Sobetirome as the internal standard (IS). The method exhibited good linearity for all compounds (19.4-388.4 nM for VK2809; 27.4-2744.4 nM for VK2809A and 10.6-211.0 nM for MB06588) with great correlation coefficients (r > 0.996). The method validation also demonstrated acceptable precision (RSD < 13.0% for VK2809, RSD < 7.9% for VK2809A, RSD < 14.4% for MB06588) and accuracy (92.7%-103% for VK2809, 91.2%-107.3% for VK2809A, 96%-106.7% for MB06588). The matrix effect, recovery, and stability were also suitable to determine all the analytes. This method is suitable for the bioanalysis of VK2809 and its metabolites and has been successfully applied to the study of intrahepatic exposure in rats. It is expected to be further practiced in drug design, optimization, and metabolism study in the following research.
Collapse
Affiliation(s)
- Si-Tao Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hao-Wen Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bi-Xin Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tao Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiankun Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Le Zhen
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Desjardins EM, Wu J, Lavoie DCT, Ahmadi E, Townsend LK, Morrow MR, Wang D, Tsakiridis EE, Batchuluun B, Fayyazi R, Kwiecien JM, Tsakiridis T, Lally JSV, Paré G, Pinkosky SL, Steinberg GR. Combination of an ACLY inhibitor with a GLP-1R agonist exerts additive benefits on nonalcoholic steatohepatitis and hepatic fibrosis in mice. Cell Rep Med 2023; 4:101193. [PMID: 37729871 PMCID: PMC10518624 DOI: 10.1016/j.xcrm.2023.101193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Increased liver de novo lipogenesis (DNL) is a hallmark of nonalcoholic steatohepatitis (NASH). A key enzyme controlling DNL upregulated in NASH is ATP citrate lyase (ACLY). In mice, inhibition of ACLY reduces liver steatosis, ballooning, and fibrosis and inhibits activation of hepatic stellate cells. Glucagon-like peptide-1 receptor (GLP-1R) agonists lower body mass, insulin resistance, and steatosis without improving fibrosis. Here, we find that combining an inhibitor of liver ACLY, bempedoic acid, and the GLP-1R agonist liraglutide reduces liver steatosis, hepatocellular ballooning, and hepatic fibrosis in a mouse model of NASH. Liver RNA analyses revealed additive downregulation of pathways that are predictive of NASH resolution, reductions in the expression of prognostically significant genes compared with clinical NASH samples, and a predicted gene signature profile that supports fibrosis resolution. These findings support further investigation of this combinatorial therapy to treat obesity, insulin resistance, hypercholesterolemia, steatohepatitis, and fibrosis in people with NASH.
Collapse
Affiliation(s)
- Eric M Desjardins
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jianhan Wu
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Population Health Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Declan C T Lavoie
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elham Ahmadi
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Marisa R Morrow
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Dongdong Wang
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Evangelia E Tsakiridis
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Battsetseg Batchuluun
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Russta Fayyazi
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jacek M Kwiecien
- Department of Pathology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - James S V Lally
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Guillaume Paré
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Population Health Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton ON L8S 4L8, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada.
| |
Collapse
|
49
|
McGlone ER, Siebert M, Dore M, Hope DCD, Davies I, Owen B, Khoo B, Goldin R, Carling D, Bloom S, Le Gall M, Tan TM. Sleeve gastrectomy causes weight-loss independent improvements in hepatic steatosis. Liver Int 2023; 43:1890-1900. [PMID: 37208943 PMCID: PMC10947097 DOI: 10.1111/liv.15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Sleeve gastrectomy (VSG) leads to improvement in hepatic steatosis, associated with weight loss. The aims of this study were to investigate whether VSG leads to weight-loss independent improvements in liver steatosis in mice with diet-induced obesity (DIO); and to metabolically and transcriptomically profile hepatic changes in mice undergoing VSG. METHODS Mice with DIO were treated with VSG, sham surgery with subsequent food restriction to weight-match to the VSG group (Sham-WM), or sham surgery with return to unrestricted diet (Sham-Ad lib). Hepatic steatosis, glucose tolerance, insulin and glucagon resistance, and hepatic transcriptomics were investigated at the end of the study period and treatment groups were compared with mice undergoing sham surgery only (Sham-Ad lib). RESULTS VSG led to much greater improvement in liver steatosis than Sham-WM (liver triglyceride mg/mg 2.5 ± 0.1, 2.1 ± 0.2, 1.6 ± 0.1 for Sham-AL, Sham-WM and VSG respectively; p = 0.003). Homeostatic model assessment of insulin resistance was improved following VSG only (51.2 ± 8.8, 36.3 ± 5.3, 22.3 ± 6.1 for Sham-AL, Sham-WM and VSG respectively; p = 0.03). The glucagon-alanine index, a measure of glucagon resistance, fell with VSG but was significantly increased in Sham-WM (9.8 ± 1.7, 25.8 ± 4.6 and 5.2 ± 1.2 in Sham Ad-lib, Sham-WM and VSG respectively; p = 0.0003). Genes downstream of glucagon receptor signalling which govern fatty acid synthesis (Acaca, Acacb, Me1, Acly, Fasn and Elovl6) were downregulated following VSG but upregulated in Sham-WM. CONCLUSIONS Changes in glucagon sensitivity may contribute to weight-loss independent improvements in hepatic steatosis following VSG.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and CancerImperial College LondonLondonUK
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Matthieu Siebert
- Centre de Recherche sur l'Inflammation, UMRS1149, Inserm, Université Paris CitéParisFrance
| | - Marian Dore
- Genomics FacilityMRC London Institute of Medical Sciences (LMS), Imperial College LondonLondonUK
| | - David C. D. Hope
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Iona Davies
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Bryn Owen
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Bernard Khoo
- Division of MedicineUniversity College London, Royal Free HospitalLondonUK
| | - Rob Goldin
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Dave Carling
- Cellular Stress GroupMRC LMS, Imperial College LondonLondonUK
| | - Stephen Bloom
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, UMRS1149, Inserm, Université Paris CitéParisFrance
| | - Tricia M‐M. Tan
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
50
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|