1
|
Sun P, Gu KJ, Zheng G, Sikora AG, Li C, Zafereo M, Wei P, Wu J, Shete S, Liu J, Li G. Genetic variations associated with telomere length predict the risk of recurrence of non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1722-1737. [PMID: 38837510 DOI: 10.1002/mc.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle J Gu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chao Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL105756 NHLBI NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AI132476 NIAID NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153805 NHLBI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Savage SA. Telomere length and cancer risk: finding Goldilocks. Biogerontology 2024; 25:265-278. [PMID: 38109000 DOI: 10.1007/s10522-023-10080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, 6E456, Bethesda, MD, 20892-6772, USA.
| |
Collapse
|
4
|
Sun P, Wei P, Liu H, Wu J, Gross ND, Sikora AG, Wei Q, Shete S, Zafereo ME, Liu J, Li G. GWAS-identified telomere length associated genetic variants predict risk of recurrence of HPV-positive oropharyngeal cancer after definitive radiotherapy. EBioMedicine 2023; 94:104722. [PMID: 37487414 PMCID: PMC10382868 DOI: 10.1016/j.ebiom.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Lymphocyte telomere length (LTL)-related genetic variants may modulate LTL and affect recurrence of squamous cell carcinoma of the oropharynx (SCCOP). METHODS A total of 1013 patients with incident SCCOP were recruited and genotyped for 16 genome-wide association study (GWAS)-identified TL-related polymorphisms. Of these patients, 489 had tumour HPV16 status determination. Univariate and multivariate analyses were performed to evaluate associations. FINDINGS Of the 16 TL-related polymorphisms, four were significantly associated with LTL: rs1920116, rs3027234, rs6772228, and rs11125529, and the patients with putatively favourable genotypes had approximately 1.5-3 times the likelihood of shorter LTL compared with patients with the corresponding risk genotypes. Moreover, patients with one to four favourable genotypes of the four combined polymorphisms had approximately 3-11 times the likelihood of shorter LTL compared with patients with no favourable genotype. The four LTL-related polymorphisms were significantly associated with approximately 40% reduced risk (for favourable genotypes) or doubled risk (for risk genotypes) of recurrence, and similar but more pronounced associations were observed in patients with tumour HPV16-positive SCCOP. Similarly, patients with one to four risk genotypes had significantly approximately 2.5-4 times increased recurrence risk compared with patients with no risk genotype, and similar but more pronounced associations were observed in patients with tumour HPV16-positive SCCOP. INTERPRETATION Four LTL-related polymorphisms individually or jointly modify LTL and risk of recurrence of SCCOP, particularly HPV-positive SCCOP. These LTL-related polymorphisms could have potential to further stratify patients with HPV-positive SCCOP for individualized treatment and better survival. FUNDING Not applicable.
Collapse
Affiliation(s)
- Peng Sun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA; Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Hongliang Liu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Neil D Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Qingyi Wei
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA; Department of Epidemiology, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Ignatieva EV, Yudin NS, Larkin DM. Compilation and functional classification of telomere length-associated genes in humans and other animal species. Vavilovskii Zhurnal Genet Selektsii 2023; 27:283-292. [PMID: 37293446 PMCID: PMC10244590 DOI: 10.18699/vjgb-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/10/2023] Open
Abstract
Telomeres are the terminal regions of chromosomes that ensure their stability while cell division. Telomere shortening initiates cellular senescence, which can lead to degeneration and atrophy of tissues, so the process is associated with a reduction in life expectancy and predisposition to a number of diseases. An accelerated rate of telomere attrition can serve as a predictor of life expectancy and health status of an individual. Telomere length is a complex phenotypic trait that is determined by many factors, including the genetic ones. Numerous studies (including genome-wide association studies, GWAS) indicate the polygenic nature of telomere length control. The objective of the present study was to characterize the genetic basis of the telomere length regulation using the GWAS data obtained during the studies of various human and other animal populations. To do so, a compilation of the genes associated with telomere length in GWAS experiments was collected, which included information on 270 human genes, as well as 23, 22, and 9 genes identified in the cattle, sparrow, and nematode, respectively. Among them were two orthologous genes encoding a shelterin protein (POT1 in humans and pot-2 in C. elegans). Functional analysis has shown that telomere length can be influenced by genetic variants in the genes encoding: (1) structural components of telomerase; (2) the protein components of telomeric regions (shelterin and CST complexes); (3) the proteins involved in telomerase biogenesis and regulating its activity; (4) the proteins that regulate the functional activity of the shelterin components; (5) the proteins involved in telomere replication and/or capping; (6) the proteins involved in the alternative telomere lengthening; (7) the proteins that respond to DNA damage and are responsible for DNA repair; (8) RNA-exosome components. The human genes identified by several research groups in populations of different ethnic origins are the genes encoding telomerase components such as TERC and TERT as well as STN1 encoding the CST complex component. Apparently, the polymorphic loci affecting the functions of these genes may be the most reliable susceptibility markers for telomere-related diseases. The systematized data about the genes and their functions can serve as a basis for the development of prognostic criteria for telomere length-associated diseases in humans. Information about the genes and processes that control telomere length can be used for marker-assisted and genomic selection in the farm animals, aimed at increasing the duration of their productive lifetime.
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Mahmoodpoor A, Sanaie S, Eskandari M, Behrouzi N, Taghizadeh M, Roudbari F, Emamalizadeh B, Sohrabifar N, Kazeminasab S. Association between leukocyte telomere length and COVID-19 severity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:37. [PMID: 37273887 PMCID: PMC10225776 DOI: 10.1186/s43042-023-00415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Background Inter-individual variations in the clinical manifestations of SARS-CoV-2 infection are among the challenging features of COVID-19. The known role of telomeres in cell proliferation and immune competency highlights their possible function in infectious diseases. Variability in telomere length is an invaluable parameter in the heterogeneity of the clinical presentation of diseases. Result In this study, our aim was to investigate the possible association between leukocyte telomere length (LTL) and COVID-19 severity. LTL was measured in 100 patients with moderate and severe forms of COVID-19 using the quantitative PCR (q-PCR) method. Statistical analysis confirmed a strong inverse correlation between relative LTL and COVID-19 severity. Conclusions These findings suggest that LTL can be a useful parameter for predicting disease severity in patients, as individuals with short telomeres may have a higher risk of developing severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s43042-023-00415-z.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maqsoud Eskandari
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Behrouzi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Taghizadeh
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M, Zalesky A. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat Med 2023; 29:1221-1231. [PMID: 37024597 DOI: 10.1038/s41591-023-02296-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Biological aging of human organ systems reflects the interplay of age, chronic disease, lifestyle and genetic risk. Using longitudinal brain imaging and physiological phenotypes from the UK Biobank, we establish normative models of biological age for three brain and seven body systems. Here we find that an organ's biological age selectively influences the aging of other organ systems, revealing a multiorgan aging network. We report organ age profiles for 16 chronic diseases, where advanced biological aging extends from the organ of primary disease to multiple systems. Advanced body age associates with several lifestyle and environmental factors, leukocyte telomere lengths and mortality risk, and predicts survival time (area under the curve of 0.77) and premature death (area under the curve of 0.86). Our work reveals the multisystem nature of human aging in health and chronic disease. It may enable early identification of individuals at increased risk of aging-related morbidity and inform new strategies to potentially limit organ-specific aging in such individuals.
Collapse
Affiliation(s)
- Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- NorthWestern Mental Health, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Michael Breakspear
- Discipline of Psychiatry, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Telomerase: A prominent oncological target for development of chemotherapeutic agents. Eur J Med Chem 2023; 249:115121. [PMID: 36669398 DOI: 10.1016/j.ejmech.2023.115121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Telomerase is a ribonucleoprotein (RNP) responsible for the maintenance of chromosomal integrity by stabilizing telomere length. Telomerase is a widely expressed hallmark responsible for replicative immortality in 80-90% of malignant tumors. Cancer cells produce telomerase which prevents telomere shortening by adding telomeres sequences beyond Hayflick's limit; which enables them to divide uncontrollably. The activity of telomerase is relatively low in somatic cells and absent in normal cells, but the re-activation of this RNP in normal cells suppresses p53 activity which leads to the avoidance of senescence causing malignancy. Here, we have focused explicitly on various anti-telomerase therapies and telomerase-inhibiting molecules for the treatment of cancer. We have covered molecules that are reported in developmental, preclinical, and clinical trial stages as potent telomerase inhibitors. Apart from chemotherapy, we have also included details of immunotherapy, gene therapy, G-quadruplex stabilizers, and HSP-90 inhibitors. The purpose of this work is to discuss the challenges behind the development of novel telomerase inhibitors and to identify various perspectives for designing anti-telomerase compounds.
Collapse
|
9
|
D’Angiolo M, Yue JX, De Chiara M, Barré BP, Giraud Panis MJ, Gilson E, Liti G. Telomeres are shorter in wild Saccharomyces cerevisiae isolates than in domesticated ones. Genetics 2023; 223:iyac186. [PMID: 36563016 PMCID: PMC9991508 DOI: 10.1093/genetics/iyac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.
Collapse
Affiliation(s)
- Melania D’Angiolo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Jia-Xing Yue
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dongfeng Road East, China
| | - Matteo De Chiara
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Benjamin P Barré
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Marie-Josèphe Giraud Panis
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- Department of Genetics, CHU, 06107 Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
10
|
Yang X, Tang W, He Y, An H, Wang J. A novel fatty-acid metabolism-based classification for triple negative breast cancer. Aging (Albany NY) 2023; 15:1177-1198. [PMID: 36880837 PMCID: PMC10008496 DOI: 10.18632/aging.204552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND The high heterogeneity of triple negative breast cancer (TNBC) is the main clinical challenge for individualized therapy. Considering that fatty acid metabolism (FAM) plays an indispensable role in tumorigenesis and development of TNBC, we proposed a novel FAM-based classification to characterize the tumor microenvironment immune profiles and heterogeneous for TNBC. METHODS Weighted gene correlation network analysis (WGCNA) was performed to identify FAM-related genes from 221 TNBC samples in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. Then, non-negative matrix factorization (NMF) clustering analysis was applied to determine FAM clusters based on the prognostic FAM-related genes, which chosen from the univariate/multivariate Cox regression model and the least absolute shrinkage and selection operator (LASSO) regression algorithm. Then, a FAM scoring scheme was constructed to further quantify FAM features of individual TNBC patient based on the prognostic differentially expressed genes (DEGs) between different FAM clusters. Systematically analyses were performed to evaluate the correlation between the FAM scoring system (FS) with survival outcomes, genomic characteristics, tumor microenvironment (TME) features and immunotherapeutic response for TNBC, which were further validated in the Cancer Genome Atlas (TCGA) and GSE58812 datasets. Moreover, the expression level and clinical significancy of the selected FS gene signatures were further validated in our cohort. RESULTS 1860 FAM-genes were screened out using WGCNA. Three distinct FAM clusters were determined by NMF clustering analysis, which allowed to distinguish different groups of patients with distinct clinical outcomes and tumor microenvironment (TME) features. Then, prognostic gene signatures based on the DEGs between different FAM clusters were identified using univariate Cox regression analysis and Lasso regression algorithm. A FAM scoring scheme was constructed, which could divide TNBC patients into high and low-FS subgroups. Low FS subgroup, characterized by better prognosis and abundance with effective immune infiltration. While patients with higher FS were featured with poorer survival and lack of effective immune infiltration. In addition, two independent immunotherapy cohorts (Imvigor210 and GSE78220) confirmed that patients with lower FS demonstrated significant therapeutic advantages from anti-PD-1/PD-L1 immunotherapy and durable clinical benefits. Further analyses in our cohort found that the differential expression of CXCL13, FBP1 and PLCL2 were significantly associated with clinical outcomes of TNBC samples. CONCLUSIONS This study revealed FAM plays an indispensable role in formation of TNBC heterogeneity and TME diversity. The novel FAM-based classification could provide a promising prognostic predictor and guide more effective immunotherapy strategies for TNBC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Tang
- Department of Pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yongtao He
- Department of Pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin An
- Department of Pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Wang
- Department of Pathology, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
12
|
Wang C, Alfano R, Reimann B, Hogervorst J, Bustamante M, De Vivo I, Plusquin M, Nawrot TS, Martens DS. Genetic regulation of newborn telomere length is mediated and modified by DNA methylation. Front Genet 2022; 13:934277. [PMID: 36267401 PMCID: PMC9576874 DOI: 10.3389/fgene.2022.934277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Telomere length at birth determines later life telomere length and potentially predicts ageing-related diseases. However, the genetic and epigenetic settings of telomere length in newborns have not been analyzed. In addition, no study yet has reported how the interplay between genetic variants and genome-wide cytosine methylation explains the variation in early-life telomere length. In this study based on 281 mother-newborn pairs from the ENVIRONAGE birth cohort, telomere length and whole-genome DNA methylation were assessed in cord blood and 26 candidate single nucleotide polymorphism related to ageing or telomere length were genotyped. We identified three genetic variants associated with cord blood telomere length and 57 cis methylation quantitative trait loci (cis-mQTLs) of which 22 mQTLs confirmed previous findings and 35 were newly identified. Five SNPs were found to have significant indirect effects on cord blood telomere length via the mediating CpGs. The association between rs911874 (SOD2) and newborn telomere length was modified by nearby DNA methylation indicated by a significant statistical interaction. Our results suggest that DNA methylation in cis might have a mediation or modification effect on the genetic difference in newborn telomere length. This novel approach warrants future follow-up studies that are needed to further confirm and extend these findings.
Collapse
Affiliation(s)
- Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, Madrid, Spain
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, United States
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Dries S. Martens,
| |
Collapse
|
13
|
Törn C, Liu X, Onengut-Gumuscu S, Counts KM, Moreno JL, Remedios CL, Chen WM, LeFaive J, Butterworth MD, Akolkar B, Krischer JP, Lernmark Å, Rewers M, She JX, Toppari J, Ziegler AG, Ratan A, Smith AV, Hagopian WA, Rich SS, Parikh HM. Telomere length is not a main factor for the development of islet autoimmunity and type 1 diabetes in the TEDDY study. Sci Rep 2022; 12:4516. [PMID: 35296692 PMCID: PMC8927592 DOI: 10.1038/s41598-022-08058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
The Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8676 children, 3-4 months of age, born with HLA-susceptibility genotypes for islet autoimmunity (IA) and type 1 diabetes (T1D). Whole-genome sequencing (WGS) was performed in 1119 children in a nested case-control study design. Telomere length was estimated from WGS data using five tools: Computel, Telseq, Telomerecat, qMotif and Motif_counter. The estimated median telomere length was 5.10 kb (IQR 4.52-5.68 kb) using Computel. The age when the blood sample was drawn had a significant negative correlation with telomere length (P = 0.003). European children, particularly those from Finland (P = 0.041) and from Sweden (P = 0.001), had shorter telomeres than children from the U.S.A. Paternal age (P = 0.019) was positively associated with telomere length. First-degree relative status, presence of gestational diabetes in the mother, and maternal age did not have a significant impact on estimated telomere length. HLA-DR4/4 or HLA-DR4/X children had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes (P = 0.008). Estimated telomere length was not significantly different with respect to any IA (P = 0.377), IAA-first (P = 0.248), GADA-first (P = 0.248) or T1D (P = 0.861). These results suggest that telomere length has no major impact on the risk for IA, the first step to develop T1D. Nevertheless, telomere length was shorter in the T1D high prevalence populations, Finland and Sweden.
Collapse
Affiliation(s)
- Carina Törn
- Unit for Diabetes and Celiac Disease, Wallenberg/CRC, Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, 21428, Malmö, Sweden.
| | - Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Counts
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Jose Leonardo Moreno
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Cassandra L Remedios
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jonathon LeFaive
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Martha D Butterworth
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Beena Akolkar
- National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Åke Lernmark
- Unit for Diabetes and Celiac Disease, Wallenberg/CRC, Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, 21428, Malmö, Sweden
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany.,Forschergruppe Diabetes, Technical University of Munich, Klinikum Rechts der Isar, Munich, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA.
| | | |
Collapse
|
14
|
Taub MA, Conomos MP, Keener R, Iyer KR, Weinstock JS, Yanek LR, Lane J, Miller-Fleming TW, Brody JA, Raffield LM, McHugh CP, Jain D, Gogarten SM, Laurie CA, Keramati A, Arvanitis M, Smith AV, Heavner B, Barwick L, Becker LC, Bis JC, Blangero J, Bleecker ER, Burchard EG, Celedón JC, Chang YPC, Custer B, Darbar D, de las Fuentes L, DeMeo DL, Freedman BI, Garrett ME, Gladwin MT, Heckbert SR, Hidalgo BA, Irvin MR, Islam T, Johnson WC, Kaab S, Launer L, Lee J, Liu S, Moscati A, North KE, Peyser PA, Rafaels N, Seidman C, Weeks DE, Wen F, Wheeler MM, Williams LK, Yang IV, Zhao W, Aslibekyan S, Auer PL, Bowden DW, Cade BE, Chen Z, Cho MH, Cupples LA, Curran JE, Daya M, Deka R, Eng C, Fingerlin TE, Guo X, Hou L, Hwang SJ, Johnsen JM, Kenny EE, Levin AM, Liu C, Minster RL, Naseri T, Nouraie M, Reupena MS, Sabino EC, Smith JA, Smith NL, Lasky-Su J, Taylor JG, Telen MJ, Tiwari HK, Tracy RP, White MJ, Zhang Y, Wiggins KL, Weiss ST, Vasan RS, Taylor KD, Sinner MF, Silverman EK, Shoemaker MB, Sheu WHH, Sciurba F, Schwartz DA, Rotter JI, Roden D, Redline S, Raby BA, Psaty BM, Peralta JM, Palmer ND, Nekhai S, Montgomery CG, Mitchell BD, Meyers DA, McGarvey ST, Mak AC, Loos RJ, Kumar R, Kooperberg C, Konkle BA, Kelly S, Kardia SL, Kaplan R, He J, Gui H, Gilliland FD, Gelb BD, Fornage M, Ellinor PT, de Andrade M, Correa A, Chen YDI, Boerwinkle E, Barnes KC, Ashley-Koch AE, Arnett DK, Albert C, Laurie CC, Abecasis G, Nickerson DA, Wilson JG, Rich SS, Levy D, Ruczinski I, Aviv A, Blackwell TW, Thornton T, O’Connell J, Cox NJ, Perry JA, Armanios M, Battle A, Pankratz N, Reiner AP, Mathias RA. Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. CELL GENOMICS 2022; 2:S2666-979X(21)00105-1. [PMID: 35530816 PMCID: PMC9075703 DOI: 10.1016/j.xgen.2021.100084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023]
Abstract
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.
Collapse
Affiliation(s)
- Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P. Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Kruthika R. Iyer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua S. Weinstock
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Lane
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Tyne W. Miller-Fleming
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin P. McHugh
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Stephanie M. Gogarten
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Cecelia A. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ali Keramati
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Benjamin Heavner
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R. Bleecker
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen Pei C. Chang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E. Garrett
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Talat Islam
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Stefan Kaab
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilian’s University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lenore Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jiwon Lee
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Simin Liu
- Department of Epidemiology and Brown Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholas Rafaels
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fayun Wen
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Marsha M. Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Brian E. Cade
- Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Zhanghua Chen
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tasha E. Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, Aurora, CO, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jill M. Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- University of Washington, Department of Medicine, Seattle, WA, USA
| | - Eimear E. Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Chunyu Liu
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
- Department of Epidemiology & International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ester C. Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholas L. Smith
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James G. Taylor
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Marilyn J. Telen
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Russell P. Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, VT, USA
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Moritz F. Sinner
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilian’s University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M. Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wayne H.-H. Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Frank Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Schwartz
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Daniel Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Susan Redline
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin A. Raby
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Deborah A. Meyers
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Stephen T. McGarvey
- Department of Epidemiology & International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | | | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajesh Kumar
- Division of Allergy and Clinical Immunology, The Ann and Robert H. Lurie Children’s Hospital of Chicago, and Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barbara A. Konkle
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- University of Washington, Department of Medicine, Seattle, WA, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- UCSF Benioff Children’s Hospital, Oakland, CA, USA
| | - Sharon L.R. Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Frank D. Gilliland
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick T. Ellinor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Adolfo Correa
- Jackson Heart Study and Departments of Medicine and Population Health Science, Jackson, MS, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathleen C. Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Allison E. Ashley-Koch
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | - Cathy C. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MI, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas W. Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeff O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nancy J. Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
- Departments of Computer Science and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Schoepf IC, Thorball CW, Ledergerber B, Kootstra NA, Reiss P, Raffenberg M, Engel T, Braun DL, Hasse B, Thurnheer C, Marzolini C, Seneghini M, Bernasconi E, Cavassini M, Buvelot H, Arribas JR, Kouyos RD, Fellay J, Günthard HF, Tarr PE. Telomere Length Declines In Persons Living With HIV Before Antiretroviral Therapy Start But Not After Viral Suppression: A Longitudinal Study Over >17 Years. J Infect Dis 2021; 225:1581-1591. [PMID: 34910812 DOI: 10.1093/infdis/jiab603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In people living with HIV (PWH), long-term telomere length (TL) change without/with suppressive antiretroviral therapy (ART) and the contribution of genetic background to TL are incompletely understood. METHODS We measured TL change in peripheral blood mononuclear cells by quantitative PCR in 107 Swiss HIV Cohort Study participants with longitudinal samples available both before and during suppressive ART. We applied mixed effects multi-level regression to obtain uni-/multivariable estimates for longitudinal TL dynamics including age, sex, and CD4:CD8 ratio. We assessed the effect of individual antiretrovirals and of an individual TL-polygenic risk score (TL-PRS; based on 239 single nucleotide polymorphisms) on TL in 798 additional participants from our previous longitudinal studies. RESULTS During untreated HIV infection (median observation, 7.7 [interquartile range, IQR, 4.7-11] years), TL declined significantly (median -2.12%/year; IQR, -3.48% to -0.76%/year; p=0.002). During suppressive ART (median observation, 9.8 [IQR, 7.1-11.1] years), there was no evidence of TL decline or increase (median +0.54%/year; IQR, -0.55% to +1.63%/year; p=0.329). TL-PRS contributed to TL change (global p=0.019) but particular antiretrovirals did not (all p>0.15). DISCUSSION In PWH, TL is associated with an individual polygenic risk score. TL declined significantly during untreated chronic HIV infection but no TL change occurred during suppressive ART.
Collapse
Affiliation(s)
- Isabella C Schoepf
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland.,Hepatology, Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Switzerland
| | | | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Peter Reiss
- Department of Global Health and Division of Infectious Disease, Amsterdam University Medical Centers, University of Amsterdam, and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Marieke Raffenberg
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland.,Department of Intensive Care Medicine, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tanja Engel
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland.,Department of Internal Medicine, Kantonsspital Uri, Altdorf, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Christine Thurnheer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Marco Seneghini
- Division of Infectious Diseases, Kantonsspital St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ospedale Regionale, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Matthias Cavassini
- Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Hélène Buvelot
- Division of Infectious Disease, Geneva University Hospital, Switzerland
| | - José R Arribas
- HIV/AIDS and Infectious Diseases Research Group , Department of Internal Medicine, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, CHUV, University of Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philip E Tarr
- University Department of Medicine and Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland
| | | |
Collapse
|
16
|
Pisanu C, Vitali E, Meloni A, Congiu D, Severino G, Ardau R, Chillotti C, Trabucchi L, Bortolomasi M, Gennarelli M, Minelli A, Squassina A. Investigating the Role of Leukocyte Telomere Length in Treatment-Resistant Depression and in Response to Electroconvulsive Therapy. J Pers Med 2021; 11:jpm11111100. [PMID: 34834452 PMCID: PMC8622097 DOI: 10.3390/jpm11111100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders seem to be characterized by premature cell senescence. However, controversial results have also been reported. In addition, the relationship between accelerated aging and treatment-resistance has scarcely been investigated. In the current study, we measured leukocyte telomere length (LTL) in 148 patients with treatment-resistant depression (TRD, 125 with major depressive disorder, MDD, and 23 with bipolar disorder, BD) treated with electroconvulsive therapy (ECT) and analyzed whether LTL was associated with different response profiles. We also compared LTL between patients with TRD and 335 non-psychiatric controls. For 107 patients for which genome-wide association data were available, we evaluated whether a significant overlap among genetic variants or genes associated with LTL and with response to ECT could be observed. LTL was negatively correlated with age (Spearman’s correlation coefficient = −0.25, p < 0.0001) and significantly shorter in patients with treatment-resistant MDD (Quade’s F = 35.18, p < 0.0001) or BD (Quade’s F = 20.84, p < 0.0001) compared to controls. Conversely, baseline LTL was not associated with response to ECT or remission. We did not detect any significant overlap between genetic variants or genes associated with LTL and response to ECT. Our results support previous findings suggesting premature cell senescence in patients with severe psychiatric disorders and suggest that LTL could not be a predictive biomarker of response to ECT.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Erika Vitali
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Anna Meloni
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Donatella Congiu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Giovanni Severino
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, 09123 Cagliari, Italy; (R.A.); (C.C.)
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, 09123 Cagliari, Italy; (R.A.); (C.C.)
| | - Luigi Trabucchi
- Psychiatric Hospital “Villa Santa Chiara”, 37142 Verona, Italy; (L.T.); (M.B.)
| | - Marco Bortolomasi
- Psychiatric Hospital “Villa Santa Chiara”, 37142 Verona, Italy; (L.T.); (M.B.)
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessio Squassina
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
- Correspondence: ; Tel.: +39-070-675-4323
| |
Collapse
|
17
|
Saunders CN, Kinnersley B, Culliford R, Cornish AJ, Law PJ, Houlston RS. Relationship between genetically determined telomere length and glioma risk. Neuro Oncol 2021; 24:171-181. [PMID: 34477880 PMCID: PMC8804896 DOI: 10.1093/neuonc/noab208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Telomere maintenance is increasingly recognized as being fundamental to glioma oncogenesis with longer leukocyte telomere length (LTL) reported to increase risk of glioma. To gain further insight into the relationship between telomere genetics and risk of glioma, we conducted several complementary analyses, using genome-wide association studies data on LTL (78 592 individuals) and glioma (12 488 cases and 18 169 controls). Methods We performed both classical and summary Mendelian randomization (SMR), coupled with heterogeneity in dependent instruments tests, at genome-wide significant LTL loci to examine if an association was mediated by the same causal variant in glioma. To prioritize genes underscoring glioma-LTL associations, we analyzed gene expression and DNA methylation data. Results Genetically increased LTL was significantly associated with increased glioma risk, random-effects inverse variance weighted ORs per 1 SD unit increase in the putative risk factor (odds ratio [OR]SD) 4.79 (95% confidence interval: 2.11-10.85; P = 1.76 × 10−4). SMR confirmed the previously reported LTL associations at 3q26.2 (TERC; PSMR = 1.33 × 10−5), 5p15.33 (TERT; PSMR = 9.80 × 10−27), 10q24.33 (STN1 alias OBFC1; PSMR = 4.31 × 10−5), and 20q13.3 (STMN3/RTEL1; PSMR = 2.47 × 10−4) glioma risk loci. Our analysis implicates variation at 1q42.12 (PSMR = 1.55 × 10−2), 6p21.3 (PSMR = 9.76 × 10−3), 6p22.2 (PSMR = 5.45 × 10−3), 7q31.33 (PSMR = 6.52 × 10−3), and 11q22.3 (PSMR = 8.89 × 10−4) as risk factors for glioma risk. While complicated by patterns of linkage disequilibrium, genetic variation involving PARP1, PRRC2A, CARMIL1, POT1, and ATM-NPAT1 was implicated in the etiology of glioma. Conclusions These observations extend the role of telomere-related genes in the development of glioma.
Collapse
Affiliation(s)
- Charlie N Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard Culliford
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| |
Collapse
|
18
|
Glioblastomas within the Subventricular Zone Are Region-Specific Enriched for Mesenchymal Transition Markers: An Intratumoral Gene Expression Analysis. Cancers (Basel) 2021; 13:cancers13153764. [PMID: 34359668 PMCID: PMC8345101 DOI: 10.3390/cancers13153764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. In this study, we demonstrate that patient-derived glioblastoma samples from within the SVZ region show increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling as compared to glioblastoma samples from the same patient from outside the SVZ. These results suggest that intratumoral alterations in oncogenic signaling could be mediated by the SVZ microenvironment. Our findings offer rationale for specific targeting of the SVZ in the development of glioblastoma therapy. Abstract Background: Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. The SVZ microenvironment can influence gene expression in glioblastoma cells in preclinical models. We aimed to investigate whether the SVZ microenvironment has any influence on intratumoral gene expression patterns in glioblastoma patients. Methods: The publicly available Ivy Glioblastoma database contains clinical, radiological and whole exome sequencing data from multiple regions from resected glioblastomas. SVZ involvement of the various tissue samples was evaluated on MRI scans. In tumors that contacted the SVZ, we performed gene expression analyses and gene set enrichment analyses to compare gene (set) expression in tumor regions within the SVZ to tumor regions outside the SVZ. We also compared these samples to glioblastomas that did not contact the SVZ. Results: Within glioblastomas that contacted the SVZ, tissue samples within the SVZ showed enrichment of gene sets involved in (epithelial-)mesenchymal transition, NF-κB and STAT3 signaling, angiogenesis and hypoxia, compared to the samples outside of the SVZ region from the same tumors (p < 0.05, FDR < 0.25). Comparison of glioblastoma samples within the SVZ region to samples from tumors that did not contact the SVZ yielded similar results. In contrast, we observed no differences when comparing the samples outside of the SVZ from SVZ-contacting glioblastomas with samples from glioblastomas that did not contact the SVZ at all. Conclusion: Glioblastoma samples in the SVZ region are enriched for increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling, possibly mediated by the SVZ microenvironment.
Collapse
|
19
|
Demanelis K, Tong L, Pierce BL. Genetically Increased Telomere Length and Aging-Related Traits in the U.K. Biobank. J Gerontol A Biol Sci Med Sci 2021; 76:15-22. [PMID: 31603979 DOI: 10.1093/gerona/glz240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
Telomere length (TL) shortens over time in most human cell types and is a potential biomarker of aging. However, the causal association of TL on physical and cognitive traits that decline with age has not been extensively examined in middle-aged adults. Using a Mendelian randomization (MR) approach, we utilized genetically increased TL (GI-TL) to estimate the impact of TL on aging-related traits among U.K. Biobank (UKB) participants (age 40-69 years). We manually curated 53 aging-related traits from the UKB and restricted to unrelated participants of British ancestry (n = 337,522). We estimated GI-TL as a linear combination of nine TL-associated single nucleotide polymorphisms (SNPs), each weighted by its previously-reported association with leukocyte TL. Regression models were used to assess the associations between GI-TL and each trait. We obtained MR estimates using the two-sample inverse variance weighted (IVW) approach. We identified six age-related traits associated with GI-TL (Bonferroni-corrected threshold p < .001): pulse pressure (PP) (p = 5.2 × 10-14), systolic blood pressure (SBP) (p = 2.9 × 10-15), diastolic blood pressure (DBP) (p = 5.5 × 10-6), hypertension (p = 5.5 × 10-11), forced expiratory volume (FEV1) (p = .0001), and forced vital capacity (FVC) (p = 3.8 × 10-6). Under MR assumptions, one standard deviation increase in TL (~1,200 base pairs) increased PP, SBP, and DBP by 1.5, 2.3, and 0.8 mmHg, respectively, while FEV1 and FVC increased by 34.7 and 52.2 mL, respectively. The observed associations appear unlikely to be due to selection bias based on analyses including inverse probability weights and analyses of simulated data. These findings suggest that longer TL increases pulmonary function and blood pressure traits among middle-aged UKB participants.
Collapse
Affiliation(s)
| | - Lin Tong
- Department of Public Health Sciences
| | - Brandon L Pierce
- Department of Public Health Sciences.,Department of Human Genetics, University of Chicago, Illinois.,University of Chicago Comprehensive Cancer Center University of Chicago, University of Chicago, Illinois
| |
Collapse
|
20
|
Crocco P, De Rango F, Dato S, Rose G, Passarino G. Telomere length as a function of age at population level parallels human survival curves. Aging (Albany NY) 2021; 13:204-218. [PMID: 33431711 PMCID: PMC7835060 DOI: 10.18632/aging.202498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023]
Abstract
Telomeres are subject to age related shortening which can be accelerated by oxidative stress and inflammation. Many studies have reported an inverse correlation between telomere length and survival, but such inverse correlation has not been always confirmed in different populations. We analyzed the trend of Leukocyte Telomere Length (LTL) as a function of age in a cohort of 516 subjects aged 65-106 years from Southern Italy. The trend of LTL obtained was quite similar to demographic survival curves reported with data of western societies. We observed a decrease of LTL after 70 years of age and then an increase after 92 years, in agreement with the sharp decrease of survival after 70 years of age and its increase after 90 years, due to the deceleration of mortality at old ages. Our data suggest that a generalized LTL attrition after 70 years of age, associated to organismal decline, affects most of the population. Such generalized attrition may exacerbate senescence in these subjects, predisposing them to high mortality risk. Conversely, the subjects with better physical conditions, experience a lower attrition and, consequently, a delayed senescence, contributing to the deceleration of mortality which has been observed among very old subjects in modern societies.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| |
Collapse
|
21
|
Protsenko E, Rehkopf D, Prather AA, Epel E, Lin J. Are long telomeres better than short? Relative contributions of genetically predicted telomere length to neoplastic and non-neoplastic disease risk and population health burden. PLoS One 2020; 15:e0240185. [PMID: 33031470 PMCID: PMC7544094 DOI: 10.1371/journal.pone.0240185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Mendelian Randomization (MR) studies exploiting single nucleotide polymorphisms (SNPs) predictive of leukocyte telomere length (LTL) have suggested that shorter genetically determined telomere length (gTL) is associated with increased risks of degenerative diseases, including cardiovascular and Alzheimer’s diseases, while longer gTL is associated with increased cancer risks. These varying directions of disease risk have long begged the question: when it comes to telomeres, is it better to be long or short? We propose to operationalize and answer this question by considering the relative impact of long gTL vs. short gTL on disease incidence and burden in a population. Methods and findings We used odds ratios (OR) of disease associated with gTL from a recently published MR meta-analysis to approximate the relative contributions of gTL to the incidence and burden of neoplastic and non-neoplastic disease in a European population. We obtained incidence data of the 9 cancers associated with long gTL and 4 non-neoplastic diseases associated with short gTL from the Institute of Health Metrics (IHME). Incidence rates of individual cancers from SEER, a database of United States cancer records, were used to weight the ORs in order to align with the available IHME data. These data were used to estimate the excess incidences due to long vs. short gTL, expressed as per 100,000 persons per standard deviation (SD) change in gTL. To estimate the population disease burden, we used the Disability Adjusted Life Years (DALY) metric from the IHME, a measure of overall disease burden that accounts for both mortality and morbidity, and similarly calculated the excess DALY associated with long vs. short gTL. Results Our analysis shows that, despite the markedly larger ORs of neoplastic disease, the large incidence of degenerative diseases causes the excess incidence attributable to gTL to balance that of neoplastic diseases. Long gTL is associated with an excess incidence of 94.04 cases/100,000 persons/SD (45.49–168.84, 95%CI) from the 9 cancer, while short gTL is associated with an excess incidence of 121.49 cases/100,000 persons/SD (48.40–228.58, 95%CI) from the 4 non-neoplastic diseases. When considering disease burden using the DALY metric, long gTL is associated with an excess 1255.25 DALYs/100,000 persons/SD (662.71–2163.83, 95%CI) due to the 9 cancers, while short gTL is associated with an excess 1007.75 DALYs/100,000 persons/SD (411.63–1847.34, 95%CI) due to 4 non-neoplastic diseases. Conclusions Our results show that genetically determined long and short telomere length are associated with disease risk and burden of approximately equal magnitude. These results provide quantitative estimates of the relative impact of genetically-predicted short vs. long TL in a human population, and provide evidence in support of the cancer-aging paradox, wherein human telomere length is balanced by opposing evolutionary forces acting to minimize both neoplastic and non-neoplastic diseases. Importantly, our results indicate that odds ratios alone can be misleading in different clinical scenarios, and disease risk should be assessed from both an individual and population level in order to draw appropriate conclusions about the risk factor’s role in human health.
Collapse
Affiliation(s)
| | - David Rehkopf
- Stanford Department of Primary Care and Population Health, Stanford, CA, United States of America
| | - Aric A. Prather
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Elissa Epel
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Jue Lin
- UCSF Department of Biochemistry and Biophysics, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, Zhang C, Shinkle J, Sabarinathan M, Lin H, Ramirez E, Oliva M, Kim-Hellmuth S, Stranger BE, Lai TP, Aviv A, Ardlie KG, Aguet F, Ahsan H, Doherty JA, Kibriya MG, Pierce BL. Determinants of telomere length across human tissues. Science 2020; 369:eaaz6876. [PMID: 32913074 PMCID: PMC8108546 DOI: 10.1126/science.aaz6876] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied extensively as a biomarker of human aging and disease; however, little is known regarding variability in TL in nonblood, disease-relevant tissue types. Here, we characterize variability in TLs from 6391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue Expression (GTEx) project. We describe differences across tissue types, positive correlation among tissue types, and associations with age and ancestry. We show that genetic variation affects TL in multiple tissue types and that TL may mediate the effect of age on gene expression. Our results provide the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological studies of TL and human health.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Hannah Lin
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Eduardo Ramirez
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
| | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | | | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
23
|
van der Spek A, Warner SC, Broer L, Nelson CP, Vojinovic D, Ahmad S, Arp PP, Brouwer RWW, Denniff M, van den Hout MCGN, van Rooij JGJ, Kraaij R, van IJcken WFJ, Samani NJ, Ikram MA, Uitterlinden AG, Codd V, Amin N, van Duijn CM. Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length. Front Genet 2020; 11:337. [PMID: 32425970 PMCID: PMC7204400 DOI: 10.3389/fgene.2020.00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10–7, minor allele frequency of 0.2–0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10−6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10–4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,SkylineDx B.V., Rotterdam, Netherlands
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Pepper C, Norris K, Fegan C. Clinical utility of telomere length measurements in cancer. Curr Opin Genet Dev 2020; 60:107-111. [PMID: 32220800 DOI: 10.1016/j.gde.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 10/24/2022]
Abstract
Cancer remains one of the leading causes of death in the developed world and despite impressive advances in therapeutic modalities, only a small subset of patients are currently cured. The underlying genetic heterogeneity of cancers clearly plays a crucial role in determining both the clinical course of individual pathologies and their responses to standard treatments. Although every tumour is to some extent distinct, there are recurrent features of cancers that can be exploited as therapeutic targets and as prognostic and predictive biomarkers; one such attribute is telomere length. Here we discuss the utility of telomere length evaluation in cancer and describe some of the promise and challenges of bringing this into clinical practice.
Collapse
Affiliation(s)
- Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, United Kingdom.
| | - Kevin Norris
- Division of Cancer & Genetics, Cardiff University Medical School, Cardiff, CF14 4XN, United Kingdom
| | - Christopher Fegan
- Division of Cancer & Genetics, Cardiff University Medical School, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
25
|
Nelson CP, Codd V. Genetic determinants of telomere length and cancer risk. Curr Opin Genet Dev 2020; 60:63-68. [PMID: 32171108 DOI: 10.1016/j.gde.2020.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The relationship of telomere length with cancer risk has been the source of much debate within epidemiological studies, which have produced inconsistent finding both between and within different cancer types. Over recent years, genome-wide association studies of increasing size have identified variants that determine human telomere length. These variants have subsequently been utilised as instrumental variables in Mendelian randomisation based studies, allowing the investigation of potential causal relationships between telomere length and cancer. Here we discuss recent advances in both genomic discovery, studies that give increasing evidence towards a causal role for telomere length in cancer risk and considerations for future studies.
Collapse
Affiliation(s)
- Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
26
|
Li C, Stoma S, Lotta LA, Warner S, Albrecht E, Allione A, Arp PP, Broer L, Buxton JL, Da Silva Couto Alves A, Deelen J, Fedko IO, Gordon SD, Jiang T, Karlsson R, Kerrison N, Loe TK, Mangino M, Milaneschi Y, Miraglio B, Pervjakova N, Russo A, Surakka I, van der Spek A, Verhoeven JE, Amin N, Beekman M, Blakemore AI, Canzian F, Hamby SE, Hottenga JJ, Jones PD, Jousilahti P, Mägi R, Medland SE, Montgomery GW, Nyholt DR, Perola M, Pietiläinen KH, Salomaa V, Sillanpää E, Suchiman HE, van Heemst D, Willemsen G, Agudo A, Boeing H, Boomsma DI, Chirlaque MD, Fagherazzi G, Ferrari P, Franks P, Gieger C, Eriksson JG, Gunter M, Hägg S, Hovatta I, Imaz L, Kaprio J, Kaaks R, Key T, Krogh V, Martin NG, Melander O, Metspalu A, Moreno C, Onland-Moret NC, Nilsson P, Ong KK, Overvad K, Palli D, Panico S, Pedersen NL, Penninx BWJH, Quirós JR, Jarvelin MR, Rodríguez-Barranco M, Scott RA, Severi G, Slagboom PE, Spector TD, Tjonneland A, Trichopoulou A, Tumino R, Uitterlinden AG, van der Schouw YT, van Duijn CM, Weiderpass E, Denchi EL, Matullo G, Butterworth AS, Danesh J, Samani NJ, Wareham NJ, Nelson CP, Langenberg C, Codd V. Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. Am J Hum Genet 2020; 106:389-404. [PMID: 32109421 PMCID: PMC7058826 DOI: 10.1016/j.ajhg.2020.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.
Collapse
Affiliation(s)
- Chen Li
- MRC Epidemiology Unit, University of Cambridge, CB2 0SL, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Svetlana Stoma
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, CB2 0SL, United Kingdom
| | - Sophie Warner
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom
| | - Eva Albrecht
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, D-85764 Neuherberg, Germany
| | - Alessandra Allione
- Department of Medical Science, Genomic Variation and Translational Research Unit, University of Turin, 10126 Turin, Italy; Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus Medical Centre, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Centre, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Jessica L Buxton
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, United Kingdom; Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Alexessander Da Silva Couto Alves
- School of Public Health, Imperial College London, St Mary's Hospital, London W2 1PG, United Kingdom; School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, D-50931, Cologne, Germany; Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Iryna O Fedko
- Department of Biological Psychology, Vrije Universteit, 1081 BT Amsterdam, the Netherlands
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland, 4006 Australia
| | - Tao Jiang
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, United Kingdom
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Nicola Kerrison
- MRC Epidemiology Unit, University of Cambridge, CB2 0SL, United Kingdom
| | - Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, United Kingdom; NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London SE1 9RT, United Kingdom
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit, 1081HJ, Amsterdam, the Netherlands
| | - Benjamin Miraglio
- Institute for Molecular Medicine Finland (FIMM), PO Box 20, 00014 University of Helsinki, Finland
| | - Natalia Pervjakova
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Alessia Russo
- Department of Medical Science, Genomic Variation and Translational Research Unit, University of Turin, 10126 Turin, Italy; Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM), PO Box 20, 00014 University of Helsinki, Finland; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashley van der Spek
- Department of Epidemiology, Erasmus Medical Centre, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Josine E Verhoeven
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit, 1081HJ, Amsterdam, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Centre, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Alexandra I Blakemore
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom; Department of Medicine, Imperial College London, London, W12 0HS, United Kingdom
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Stephen E Hamby
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universteit, 1081 BT Amsterdam, the Netherlands
| | - Peter D Jones
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom
| | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, PO Box 30, FI-00271 Helsinki, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Sarah E Medland
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland, 4006 Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, 4072, Queensland, Australia
| | - Dale R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland, 4006 Australia; School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, 4059, Australia
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, PO Box 30, FI-00271 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, Biomedicum 1, PO Box 63, 00014 University of Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland; Obesity Center, Abdominal Center, Endocrinology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, PO Box 30, FI-00271 Helsinki, Finland
| | - Elina Sillanpää
- Institute for Molecular Medicine Finland (FIMM), PO Box 20, 00014 University of Helsinki, Finland; Gerontology Research Center, Faculty of Sport and Health Sciences, PO Box 35, 40014 University of Jyväskylä, Finland
| | - H Eka Suchiman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universteit, 1081 BT Amsterdam, the Netherlands
| | - Antonio Agudo
- Unit of Nutrition, Environment, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-ICO, Group of Research on Nutrition and Cancer, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet of Llobregat, 08908 Barcelona, Spain
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universteit, 1081 BT Amsterdam, the Netherlands
| | - Maria-Dolores Chirlaque
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008, Murcia, Spain; CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Guy Fagherazzi
- Center of Research in Epidemiology and Population Health, UMR 1018 Inserm, Institut Gustave Roussy, Paris-Sud Paris-Saclay University, 94805 Villejuif, France; Digital Epidemiology Research Hub, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Pietro Ferrari
- International Agency for Research on Cancer, 69372 Lyon, France
| | - Paul Franks
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden; Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, D-85764 Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD e.V.), D-85764 Neuherberg, Germany
| | - Johan Gunnar Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, PO Box 20, 00014 University of Helsinki, Finland; Folkhälsan Research Centre, PO Box 20, 00014 University of Helsinki, Finland; Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Marc Gunter
- International Agency for Research on Cancer, 69372 Lyon, France
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Iiris Hovatta
- SleepWell Research Program, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Psychology and Logopedics, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Liher Imaz
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, 20013 Donostia-San Sebastian, Spain; Biodonostia Health Research Institute, 20014 Donostia-San Sebastian, Spain
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), PO Box 20, 00014 University of Helsinki, Finland; Department of Public Health, PO Box 20, 00014 University of Helsinki, Finland
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Timothy Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, OX3 7LF, United Kingdom
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS-Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland, 4006 Australia
| | - Olle Melander
- Department of Clinical Sciences, Hypertension, and Cardiovascular Disease, Lund University, 21428 Malmö, Sweden
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | | | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Peter Nilsson
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge, CB2 0SL, United Kingdom; Department of Paediatrics, University of Cambridge, CB2 0QQ, United Kingdom
| | - Kim Overvad
- Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark; Department of Cardiology, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research-ISPRO, 50139 Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit, 1081HJ, Amsterdam, the Netherlands
| | - J Ramón Quirós
- Consejería de Sanidad, Public Health Directorate, 33006 Asturias, Spain
| | - Marjo Riitta Jarvelin
- School of Public Health, Imperial College London, St Mary's Hospital, London W2 1PG, United Kingdom; School of Epidemiology and Biostatistics, Imperial College London, SW7 2AZ, United Kingdom
| | - Miguel Rodríguez-Barranco
- Center of Research in Epidemiology and Population Health, UMR 1018 Inserm, Institut Gustave Roussy, Paris-Sud Paris-Saclay University, 94805 Villejuif, France; Andalusian School of Public Health (EASP), 18080 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, CB2 0SL, United Kingdom
| | - Gianluca Severi
- CESP, Facultés de médecine, Université Paris, 94805 Villejuif, France; Gustave Roussy, 94805 Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti," University of Florence, 50134 Firenze, Italy
| | - P Eline Slagboom
- Max Planck Institute for Biology of Ageing, D-50931, Cologne, Germany; Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, United Kingdom
| | - Anne Tjonneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP), 97100 Ragusa, Italy; Hyblean Association for Research on Epidemiology, No Profit Organization, 97100 Ragusa, Italy
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Centre, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Postbus 2040, 3000 CA, Rotterdam, the Netherlands; Nuffield Department of Population Health, University of Oxford, OX3 7LF, United Kingdom
| | | | - Eros Lazzerini Denchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Laboratory of Chromosome Instability, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Giuseppe Matullo
- Department of Medical Science, Genomic Variation and Translational Research Unit, University of Turin, 10126 Turin, Italy; Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, United Kingdom; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, CB10 1SA, United Kingdom; NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, United Kingdom; BHF Cambridge Centre of Excellence, School of Clinical Medicine, Addenbrookes' Hospital, Cambridge, CB2 0QQ, United Kingdom; NIHR Cambridge Biomedical Research Centre, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, United Kingdom; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, CB10 1SA, United Kingdom; NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom; BHF Cambridge Centre of Excellence, School of Clinical Medicine, Addenbrookes' Hospital, Cambridge, CB2 0QQ, United Kingdom; NIHR Cambridge Biomedical Research Centre, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | | | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, CB2 0SL, United Kingdom.
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, LE3 9QP, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom.
| |
Collapse
|
27
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
28
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
29
|
Lin H, Lunetta KL, Zhao Q, Mandaviya PR, Rong J, Benjamin EJ, Joehanes R, Levy D, van Meurs JBJ, Larson MG, Murabito JM. Whole Blood Gene Expression Associated With Clinical Biological Age. J Gerontol A Biol Sci Med Sci 2019; 74:81-88. [PMID: 30010802 DOI: 10.1093/gerona/gly164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Biologic age may better reflect an individual's rate of aging than chronologic age. Methods We conducted a transcriptome-wide association study with biologic age estimated with clinical biomarkers, which included: systolic blood pressure, forced expiratory volume at 1 second (FEV1), total cholesterol, fasting glucose, C-reactive protein, and serum creatinine. We assessed the association between the difference between biologic age and chronologic age (∆age) and gene expression in whole blood measured using the Affymetrix Human Exon 1.0st Array. Results Our discovery sample included 2,163 participants from the Framingham Offspring cohort (mean age 67 ± 9 years, 55% women). A total of 481 genes were significantly associated with ∆age (p < 2.8 × 10-6). Among them, 415 genes were validated (p < .05/481 = 1.0 × 10-4) in 2,946 participants from the Framingham Third Generation cohort (mean age 46 ± 9 years, 53% women). Many of the significant genes were involved in the ubiquitin-mediated proteolysis pathway. The replication in 414 Rotterdam Study participants (mean age 59 ± 8, 52% women) found 104 of 415 validated genes reached nominal significance (p < .05). Conclusion We identified and validated 415 genes associated with ∆age in a community-based cohort. Future functional characterization of the biologic age-related gene network may identify targets to test for interventions to delay aging in older adults.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Massachusetts
| | - Kathryn L Lunetta
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Qiang Zhao
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Pooja R Mandaviya
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jian Rong
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Emelia J Benjamin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Section of Cardiovascular Medicine and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Massachusetts.,Department of Epidemiology, Boston University School of Public Health, Massachusetts
| | - Roby Joehanes
- Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| | - Daniel Levy
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin G Larson
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Joanne M Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Massachusetts
| |
Collapse
|
30
|
Lee Y, Sun D, Ori AP, Lu AT, Seeboth A, Harris SE, Deary IJ, Marioni RE, Soerensen M, Mengel-From J, Hjelmborg J, Christensen K, Wilson JG, Levy D, Reiner AP, Chen W, Li S, Harris JR, Magnus P, Aviv A, Jugessur A, Horvath S. Epigenome-wide association study of leukocyte telomere length. Aging (Albany NY) 2019; 11:5876-5894. [PMID: 31461406 PMCID: PMC6738430 DOI: 10.18632/aging.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022]
Abstract
Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) - the Framingham Heart Study, the Jackson Heart Study, the Women's Health Initiative, the Bogalusa Heart Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts. Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly significant relationships between two hallmarks of aging: telomere biology and epigenetic changes.
Collapse
Affiliation(s)
- Yunsung Lee
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Anil P.S. Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anne Seeboth
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 20892, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Seattle, MD 20892, USA
| | - Alex P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Jennifer R. Harris
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Wang L, Koenig HG, He Z, Sun X, Shohaib SA, Wang Z. Religiosity and Telomere Length: Moderating Effect of Religiosity on the Relationship Between High-Risk Polymorphisms of the Apolipoprotein E and TOMM40 Gene and Telomere Length. J Appl Gerontol 2019; 39:627-634. [PMID: 31339412 DOI: 10.1177/0733464819865415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The current study seeks to examine the relationship between religiosity and telomere length (TL) in an older Chinese Muslim sample and to explore the moderating effect of religiosity on the relationship between high-risk polymorphisms and TL. Methods: A cross-sectional study of 1,692 community-dwelling adults aged 55 or older was conducted. Apolipoprotein E and TOMM40 (rs2075650) gene polymorphisms and TL were determined using standard procedures. Ordinal logistic regression was used to examine the associations. Results: Religiosity was significantly and positively related to TL. A significant interaction emerged between religiosity and the rs2075650 G polymorphism in predicting TL. Stratified multivariate analyses demonstrated that the relationship between the rs2075650 G state and TL was particularly strong among those who were more religious, as hypothesized. Conclusion: The findings revealed that religiosity may influence cellular aging in part by modifying the effect that high-risk genes have on increasing vulnerability to dementia and cognitive impairment.
Collapse
Affiliation(s)
- Liqun Wang
- Ningxia Medical University, Yinchuan, China
| | - Harold G Koenig
- Ningxia Medical University, Yinchuan, China.,Duke University Medical Center, Durham, NC, USA.,King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Xiaoya Sun
- Ningxia Medical University, Yinchuan, China
| | | | - Zhizhong Wang
- Ningxia Medical University, Yinchuan, China.,Zunyi Medical University, China
| |
Collapse
|
32
|
Dorajoo R, Chang X, Gurung RL, Li Z, Wang L, Wang R, Beckman KB, Adams-Haduch J, M Y, Liu S, Meah WY, Sim KS, Lim SC, Friedlander Y, Liu J, van Dam RM, Yuan JM, Koh WP, Khor CC, Heng CK. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat Commun 2019; 10:2491. [PMID: 31171785 PMCID: PMC6554354 DOI: 10.1038/s41467-019-10443-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
Genetic factors underlying leukocyte telomere length (LTL) may provide insights into telomere homeostasis, with direct links to disease susceptibility. Genetic evaluation of 23,096 Singaporean Chinese samples identifies 10 genome-wide loci (P < 5 × 10-8). Several of these contain candidate genes (TINF2, PARP1, TERF1, ATM and POT1) with potential roles in telomere biology and DNA repair mechanisms. Meta-analyses with additional 37,505 European individuals reveals six more genome-wide loci, including associations at MPHOSPH6, NKX2-3 and TYMS. We demonstrate that longer LTL associates with protection against respiratory disease mortality [HR = 0.854(0.804-0.906), P = 1.88 × 10-7] in the Singaporean Chinese samples. We further show that the LTL reducing SNP rs7253490 associates with respiratory infections (P = 7.44 × 10-4) although this effect may not be strongly mediated through LTL. Our data expands on the genetic basis of LTL and may indicate on a potential role of LTL in immune competence.
Collapse
Affiliation(s)
- Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore
| | - Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Wee Yang Meah
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Kar Seng Sim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yechiel Friedlander
- School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, 12272, Israel
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Health Systems and Services Research, Duke-NUS Medical School Singapore, Singapore, 169857, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore.
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore.
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore.
| |
Collapse
|
33
|
Chahine MN, Toupance S, El-Hakim S, Labat C, Gautier S, Moussallem T, Yared P, Asmar R, Benetos A. Telomere length and age-dependent telomere attrition: the blood-and-muscle model. Can J Physiol Pharmacol 2019; 97:328-334. [DOI: 10.1139/cjpp-2018-0582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short telomere length (TL) is associated with atherosclerotic cardiovascular disease (ACVD) and other age-related diseases. It is unclear whether these associations originate from having inherently short TL or a faster TL attrition before or during disease development. We proposed the blood-and-muscle model to assess TL dynamics throughout life course. Our objective was to measure TL in leukocytes (LTL) and in skeletal muscle (MTL), which served as a proxy of TL at birth. The delta (MTL–LTL) represented life-long telomere attrition. Blood draws and skeletal muscle biopsies were performed on 35 Lebanese individuals undergoing surgery. Following DNA extraction, LTL and MTL were measured by Southern blot. In every individual aged between 30 and 85 years, MTL was longer than LTL. With age, MTL and LTL decreased, but the delta (MTL–LTL) increased by 14 bp/year. We validated the blood-and-muscle model that allowed us to identify TL, TL at birth, and lifelong TL attrition in a cross-sectional study. This model can be used in larger cross-sectional studies to evaluate the association of telomere dynamics with age-related diseases onset and progression.
Collapse
Affiliation(s)
- Mirna N. Chahine
- Foundation-Medical Research Institutes, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Simon Toupance
- Université de Lorraine, Inserm, DCAC, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs”, F-54000, France
- Nancyclotep-GIE, F-54000 Nancy, France
| | - Sandy El-Hakim
- Faculty of Public Health II, Lebanese University, Fanar, Lebanon
| | - Carlos Labat
- Université de Lorraine, Inserm, DCAC, F-54000 Nancy, France
| | - Sylvie Gautier
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs”, F-54000, France
| | | | - Pierre Yared
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Roland Asmar
- Foundation-Medical Research Institutes, Beirut, Lebanon
| | - Athanase Benetos
- Université de Lorraine, Inserm, DCAC, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs”, F-54000, France
| |
Collapse
|
34
|
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0436. [PMID: 29335375 PMCID: PMC5784057 DOI: 10.1098/rstb.2016.0436] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have principally relied on measurements of telomere length (TL) in leucocytes, which reflects TL in other somatic cells. Leucocyte TL (LTL) displays vast variation across individuals—a phenomenon already observed in newborns. It is highly heritable, longer in females than males and in individuals of African ancestry than European ancestry. LTL is also longer in offspring conceived by older men. The traditional view regards LTL as a passive biomarker of human ageing. However, new evidence suggests that a dynamic interplay between selective evolutionary forces and TL might result in trade-offs for specific health outcomes. From a biological perspective, an active role of TL in ageing-related human diseases could occur because short telomeres increase the risk of a category of diseases related to restricted cell proliferation and tissue degeneration, including cardiovascular disease, whereas long telomeres increase the risk of another category of diseases related to increased proliferative growth, including major cancers. To understand the role of telomere biology in ageing-related diseases, it is essential to expand telomere research to newborns and children and seek further insight into the underlying causes of the variation in TL due to ancestry and geographical location. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Delgado DA, Zhang C, Gleason K, Demanelis K, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Doherty JA, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum Genet 2018; 138:49-60. [PMID: 30536049 DOI: 10.1007/s00439-018-1964-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
Leukocyte telomere length (LTL) is a heritable trait with two potential sources of heritability (h2): inherited variation in non-telomeric regions (e.g., SNPs that influence telomere maintenance) and variability in the lengths of telomeres in gametes that produce offspring zygotes (i.e., "direct" inheritance). Prior studies of LTL h2 have not attempted to disentangle these two sources. Here, we use a novel approach for detecting the direct inheritance of telomeres by studying the association between identity-by-descent (IBD) sharing at chromosome ends and phenotypic similarity in LTL. We measured genome-wide SNPs and LTL for a sample of 5069 Bangladeshi adults with substantial relatedness. For each of the 6318 relative pairs identified, we used SNPs near the telomeres to estimate the number of chromosome ends shared IBD, a proxy for the number of telomeres shared IBD (Tshared). We then estimated the association between Tshared and the squared pairwise difference in LTL ((ΔLTL)2) within various classes of relatives (siblings, avuncular, cousins, and distant), adjusting for overall genetic relatedness (ϕ). The association between Tshared and (ΔLTL)2 was inverse among all relative pair types. In a meta-analysis including all relative pairs (ϕ > 0.05), the association between Tshared and (ΔLTL)2 (P = 0.01) was stronger than the association between ϕ and (ΔLTL)2 (P = 0.43). Our results provide strong evidence that telomere length (TL) in parental germ cells impacts TL in offspring cells and contributes to LTL h2 despite telomere "reprogramming" during embryonic development. Applying our method to larger studies will enable robust estimation of LTL h2 attributable to direct transmission of telomeres.
Collapse
Affiliation(s)
- Dayana A Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kevin Gleason
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control, Atlanta, GA, 30333, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | | | | | | | | | | | | | - Muhammad Yunus
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jennifer A Doherty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.,Department of Medicine, University of Chicago, Chicago, IL, 60615, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA. .,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA. .,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
36
|
Behrens G, Niedermaier T, Berneburg M, Schmid D, Leitzmann MF. Physical activity, cardiorespiratory fitness and risk of cutaneous malignant melanoma: Systematic review and meta-analysis. PLoS One 2018; 13:e0206087. [PMID: 30379884 PMCID: PMC6209223 DOI: 10.1371/journal.pone.0206087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Numerous epidemiologic studies have examined the relation of physical activity or cardiorespiratory fitness to risk of cutaneous melanoma but the available evidence has not yet been quantified in a systematic review and meta-analysis. METHODS Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA), we identified 3 cohort studies (N = 12,605 cases) and 5 case-control studies (N = 1,295 cases) of physical activity and melanoma incidence, and one cohort study (N = 49 cases) of cardiorespiratory fitness and melanoma risk. RESULTS Cohort studies revealed a statistically significant positive association between high versus low physical activity and melanoma risk (RR = 1.27, 95% CI = 1.16-1.40). In contrast, case-control studies yielded a statistically non-significant inverse risk estimate for physical activity and melanoma (RR = 0.85, 95% CI = 0.63-1.14; P-difference = 0.02). The only available cohort study of cardiorespiratory fitness and melanoma risk reported a positive but statistically not significant association between the two (RR = 2.19, 95% CI = 0.99-4.96). Potential confounding by ultraviolet (UV) radiation-related risk factors was a major concern in cohort but not case-control studies. CONCLUSIONS It appears plausible that the positive relation of physical activity and cardiorespiratory fitness to melanoma observed in cohort studies is due to residual confounding by UV radiation-related risk factors. IMPACT Future prospective studies need to examine the association between physical activity, cardiorespiratory fitness and melanoma after detailed adjustment for UV radiation-related skin damage.
Collapse
Affiliation(s)
- Gundula Behrens
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Tobias Niedermaier
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Daniela Schmid
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Michael F. Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Gramatges MM, Morton LM, Yasui Y, Arnold MA, Neglia JP, Leisenring WM, Machiela MJ, Dagnall CL, Chanock SJ, Armstrong GT, Robison LL, Bhatia S, Lupo PJ. Telomere Length-Associated Genetic Variants and the Risk of Thyroid Cancer in Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study (CCSS). Cancer Epidemiol Biomarkers Prev 2018; 28:417-419. [PMID: 30377209 DOI: 10.1158/1055-9965.epi-18-0972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Given the inverse relationship described previously between telomere content and thyroid subsequent malignant neoplasm (thyroid SMN) in survivors of childhood cancer, we investigated the relationship between known genetic determinants of leukocyte telomere length (LTL) and thyroid SMN among survivors. METHODS Leveraging data from a large, genotyped survivor cohort, the Childhood Cancer Survivor Study, we used a well-described genetic risk score method to estimate the HR for thyroid SMN among 5,324 genotyped survivors. RESULTS We identified 118 survivors with thyroid SMN and 5,206 without thyroid SMN. No association between genetically estimated LTL and risk for thyroid SMN was identified. CONCLUSIONS Our results suggest that variation in common SNPs influencing LTL is not strongly associated with risk for thyroid SMN in survivors of childhood cancer. IMPACT The previously observed inverse relationship between LTL and thyroid SMN risk in survivors of childhood cancer may be related to alternative molecular mechanisms and warrants further study.
Collapse
Affiliation(s)
- Maria M Gramatges
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael A Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Wendy M Leisenring
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Casey L Dagnall
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Rachakonda S, Kong H, Srinivas N, Garcia-Casado Z, Requena C, Fallah M, Heidenreich B, Planelles D, Traves V, Schadendorf D, Nagore E, Kumar R. Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes Cancer 2018; 57:564-572. [PMID: 30203894 DOI: 10.1002/gcc.22669] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Telomere repeats at chromosomal ends, critical for genomic integrity, undergo age-dependent attrition and telomere length has been associated with different disorders including cancers. In this study, based on 1469 patients and 1158 healthy controls, we show a statistically significant (P = 6 × 10-10 ) association between increased telomere length and melanoma risk. Mendelian randomization, using 5 telomere length-associated polymorphisms, ruled out confounding factors or reverse causality and showed association between increased telomere length and melanoma risk with odds ratio of 2.66 (95% confidence interval: 2.07-3.25). Age-dependent telomere attrition was faster in melanoma cases than controls (P = .01). The carriers of a highly penetrant germline -57A>C TERT promoter mutation, in a previously reported melanoma family, had longer telomeres than the noncarriers. The mutation causes increased TERT and telomerase levels through creation of a binding motif for E-twenty six (ETS) transcription factors and the carriers develop melanoma with an early age of onset and rapid progression to metastasis. In analogy, we hypothesize that increased telomere length in melanoma patients reflects stochastic increased telomerase levels due to common genetic variation. Paradoxically, we observed shorter telomeres (P = 1 × 10-5 ) in primary tumors from unrelated melanoma patients with (121) than without (170) somatic TERT promoter mutations that similar to the germline mutation, also create binding motifs for ETS transcription factors. However, the age-dependent telomere attrition was faster in tumors with the TERT promoter mutations than in those without such mutations. Besides a robust association between increased telomere length and risk, our data show a perturbed telomere homeostasis in melanoma.
Collapse
Affiliation(s)
| | - Haiying Kong
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Nalini Srinivas
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Zaida Garcia-Casado
- Laboratory of Molecular Biology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Mahdi Fallah
- Division of Preventive Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Victor Traves
- Department of Pathology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany.,German Consortium for Translational Research (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.,German Consortium for Translational Research (DKTK), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
39
|
Joyce BT, Zheng Y, Nannini D, Zhang Z, Liu L, Gao T, Kocherginsky M, Murphy R, Yang H, Achenbach CJ, Roberts LR, Hoxha M, Shen J, Vokonas P, Schwartz J, Baccarelli A, Hou L. DNA Methylation of Telomere-Related Genes and Cancer Risk. Cancer Prev Res (Phila) 2018; 11:511-522. [PMID: 29895583 PMCID: PMC6800137 DOI: 10.1158/1940-6207.capr-17-0413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/03/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Researchers hypothesized that telomere shortening facilitates carcinogenesis. Previous studies found inconsistent associations between blood leukocyte telomere length (LTL) and cancer. Epigenetic reprogramming of telomere maintenance mechanisms may help explain this inconsistency. We examined associations between DNA methylation in telomere-related genes (TRG) and cancer. We analyzed 475 participants providing 889 samples 1 to 3 times (median follow-up, 10.1 years) from 1999 to 2013 in the Normative Aging Study. All participants were cancer-free at each visit and blood leukocytes profiled using the Illumina 450K array. Of 121 participants who developed cancer, 34 had prostate cancer, 10 melanoma, 34 unknown skin malignancies, and 43 another cancer. We examined 2,651 CpGs from 80 TRGs and applied a combination of Cox and mixed models to identify CpGs prospectively associated with cancer (at FDR < 0.05). We also explored trajectories of DNA methylation, logistic regression stratified by time to diagnosis/censoring, and cross-sectional models of LTL at first blood draw. We identified 30 CpGs on 23 TRGs whose methylation was positively associated with cancer incidence (β = 1.0-6.93) and one protective CpG in MAD1L1 (β = -0.65), of which 87% were located in TRG promoters. Methylation trajectories of 21 CpGs increased in cancer cases relative to controls; at 4 to 8 years prediagnosis/censoring, 17 CpGs were positively associated with cancer. Three CpGs were cross-sectionally associated with LTL. TRG methylation may be a mechanism through which LTL dynamics reflect cancer risk. Future research should confirm these findings and explore potential mechanisms underlying these findings, including telomere maintenance and DNA repair dysfunction. Cancer Prev Res; 11(8); 511-22. ©2018 AACR.
Collapse
Affiliation(s)
- Brian T Joyce
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Yinan Zheng
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Drew Nannini
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zhou Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lei Liu
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - Tao Gao
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert Murphy
- Center for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hushan Yang
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chad J Achenbach
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mirjam Hoxha
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Andrea Baccarelli
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
40
|
Rachakonda S, Srinivas N, Mahmoudpour SH, Garcia-Casado Z, Requena C, Traves V, Soriano V, Cardelli M, Pjanova D, Molven A, Gruis N, Nagore E, Kumar R. Telomere length and survival in primary cutaneous melanoma patients. Sci Rep 2018; 8:10947. [PMID: 30026606 PMCID: PMC6053393 DOI: 10.1038/s41598-018-29322-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/10/2018] [Indexed: 01/16/2023] Open
Abstract
Telomere repeats at chromosomal ends, critical to genomic integrity, undergo age-dependent attrition. Telomere length, a polygenic trait, has been associated with risk of several disorders including cancers. In contrast to association of long telomeres with increased risk of several cancers, including melanoma, emerging reports suggest that short telomeres predict poor survival in patients with different cancers. In this study based on 1019 stage I and II cutaneous melanoma patients, we show an association between the patients with short telomeres and poor melanoma-specific survival (HR 2.05, 95% CI 1.33-3.16) compared to patients with long telomeres. Due to inverse correlation between age and telomere length (r -0.19, P < 0.0001), we stratified the patients into quantiles based on age at diagnosis and also carried out age-matched analysis. The effect of short telomeres on survival was determined by using multivariate Cox regression that included composite genetic risk score computed from genotyping of the patients for telomere-length associated polymorphisms. The effect of decreased telomere length on poor melanoma-specific survival was particularly strong in patients within the age quantile below 30 years (HR 3.82, 95% CI 1.10-13.30) and between 30-40 years (HR 2.69, 95% CI 1.03-7.03). Our study shows that in contrast to increased melanoma risk associated with increased telomere length, decreased telomere length predicts poor survival in melanoma subgroups.
Collapse
Affiliation(s)
| | - Nalini Srinivas
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Seyed Hamidreza Mahmoudpour
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Institute of Medical Biostatistics, University Medical Center of Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Zaida Garcia-Casado
- Labortory of Molecular Biology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Victor Traves
- Department of Pathology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Virtudes Soriano
- Department of Medical Oncology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Italian National Research Center on Aging (INRCA), Ancona, Italy
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Anders Molven
- Department of Clinical Medicine, Gade Laboratory of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
- German Consortium for Translational Research, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
41
|
Hellwege JN, Russell SB, Williams SM, Edwards TL, Velez Edwards DR. Gene-based evaluation of low-frequency variation and genetically-predicted gene expression impacting risk of keloid formation. Ann Hum Genet 2018; 82:206-215. [PMID: 29484647 DOI: 10.1111/ahg.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Keloids are benign dermal tumors occurring approximately 20 times more often in individuals of African descent as compared to individuals of European descent. While most keloids occur sporadically, a genetic predisposition is supported by both familial aggregation of some keloids and large differences in risk among populations. Despite Africans and African Americans being at increased risk over lighter-skinned individuals, little genetic research exists into this phenotype. Using a combination of admixture mapping and exome analysis, we reported multiple common variants within chr15q21.2-22.3 associated with risk of keloid formation in African Americans. Here we describe a gene-based association analysis using 478 African American samples with exome genotyping data to identify genes containing low-frequency variants associated with keloids, with evaluation of genetically-predicted gene expression in skin tissues using association summary statistics. The strongest signal from gene-based association was located in C15orf63 (P-value = 6.6 × 10-6 ) located at 15q15.3. The top result from gene expression was increased predicted DCAF4 expression (P-value = 5.5 × 10-4 ) in non-sun-exposed skin, followed by increased predicted OR10A3 expression in sun-exposed skin (P-value = 6.9 × 10-4 ). Our findings identify variation with putative roles in keloid formation, enhanced by the use of predicted gene expression to support the biological roles of variation identified only though genetic association studies.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shirley B Russell
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
42
|
Verhulst S, Susser E, Factor-Litvak PR, Simons M, Benetos A, Steenstrup T, Kark JD, Aviv A. Response to: Reliability and validity of telomere length measurements. Int J Epidemiol 2018; 45:1298-1301. [PMID: 27880696 PMCID: PMC6068938 DOI: 10.1093/ije/dyw194] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen, Groningen, The Netherland
| | - Ezra Susser
- Imprints Center for Genetic and Environmental Lifecourse Studies, Columbia University Mailman School of Public Health, and New York State Psychiatric Institute, New York, NY, USA
| | - Pam R Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health New York, NY, USA
| | - Mirre Simons
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Athanase Benetos
- Département de Médecine Gériatrique, CHU de Nancy, and INSERM, U1116, Vandoeuvre-les-Nancy, France
| | | | - Jeremy D Kark
- Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Abraham Aviv
- Center of Human Development and Aging, State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
43
|
Reduced telomere length is associated with fibrotic joint disease suggesting that impaired telomere repair contributes to joint fibrosis. PLoS One 2018; 13:e0190120. [PMID: 29293561 PMCID: PMC5749754 DOI: 10.1371/journal.pone.0190120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/20/2017] [Indexed: 11/19/2022] Open
Abstract
Objective Joint fibrosis affects many synovial joints (including hip, knee and shoulder) causing stiffness and pain. The mechanism of joint fibrosis remains unknown, although genetic factors may contribute. Defects in maintenance of telomere length resulting from impaired telomere repair have been shown to cause lung and liver fibrotic disease. Here we tested the hypothesis that joint fibrosis and other soft tissue fibrotic conditions are also associated with telomere length. Patients and methods 5,200 participants in the TwinsUK registry had data on telomere length (measured by qPCR) and the traits of interest (hip and knee stiffness, total joint replacement (TJR, hip or knee) and fibrotic conditions (Dupuytren’s disease, frozen shoulder). Results Multivariable logistic regression analyses showed a significant association between telomere length and fibrotic conditions (hip stiffness, knee stiffness and frozen shoulder, p = ≤0.002) even after taking age into account. No association was found between TJR and telomere length. Conclusion These findings suggest that defects in telomere repair contribute to joint fibrosis, and that fibrosis shares a common mechanistic pathway in different organs. Therapeutic strategies to combat telomere shortening may offer novel treatments for fibrotic joint disease.
Collapse
|
44
|
Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci 2017; 18:ijms18122573. [PMID: 29186077 PMCID: PMC5751176 DOI: 10.3390/ijms18122573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
Telomeres are repetitive tandem DNA sequences that cap chromosomal ends protecting genomic DNA from enzymatic degradation. Telomeres progressively shorten with cellular replication and are therefore assumed to correlate with biological and chronological age. An expanding body of evidence suggests (i) a predictable inverse association between telomere length, aging and age-related diseases and (ii) a positive association between physical activity and telomere length. Both hypotheses have garnered tremendous research attention and broad consensus; however, the evidence for each proposition is inconsistent and equivocal at best. Telomere length does not meet the basic criteria for an aging biomarker and at least 50% of key studies fail to find associations with physical activity. In this review, we address the evidence in support and refutation of the putative associations between telomere length, aging and physical activity. We finish with a brief review of plausible mechanisms and potential future research directions.
Collapse
|
45
|
Delgado DA, Zhang C, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. Genome-wide association study of telomere length among South Asians identifies a second RTEL1 association signal. J Med Genet 2017; 55:64-71. [PMID: 29151059 PMCID: PMC5749304 DOI: 10.1136/jmedgenet-2017-104922] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023]
Abstract
Background Leucocyte telomere length (TL) is a potential biomarker of ageing and risk for age-related disease. Leucocyte TL is heritable and shows substantial differences by race/ethnicity. Recent genome-wide association studies (GWAS) report ~10 loci harbouring SNPs associated with leucocyte TL, but these studies focus primarily on populations of European ancestry. Objective This study aims to enhance our understanding of genetic determinants of TL across populations. Methods We performed a GWAS of TL using data on 5075 Bangladeshi adults. We measured TL using one of two technologies (qPCR or a Luminex-based method) and used standardised variables as TL phenotypes. Results Our results replicate previously reported associations in the TERC and TERT regions (P=2.2×10−8 and P=6.4×10−6, respectively). We observed a novel association signal in the RTEL1 gene (intronic SNP rs2297439; P=2.82×10−7) that is independent of previously reported TL-associated SNPs in this region. The minor allele for rs2297439 is common in South Asian populations (≥0.25) but at lower frequencies in other populations (eg, 0.07 in Northern Europeans). Among the eight other previously reported association signals, all were directionally consistent with our study, but only rs8105767 (ZNF208) was nominally significant (P=0.003). SNP-based heritability estimates were as high as 44% when analysing close relatives but much lower when analysing distant relatives only. Conclusions In this first GWAS of TL in a South Asian population, we replicate some, but not all, of the loci reported in prior GWAS of individuals of European ancestry, and we identify a novel second association signal at the RTEL1 locus.
Collapse
Affiliation(s)
- Dayana A Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control, Atlanta, Georgia, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | - Mohammad Yunus
- Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA.,Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Vasu V, Turner KJ, George S, Greenall J, Slijepcevic P, Griffin DK. Preterm infants have significantly longer telomeres than their term born counterparts. PLoS One 2017; 12:e0180082. [PMID: 28658264 PMCID: PMC5489189 DOI: 10.1371/journal.pone.0180082] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/09/2017] [Indexed: 11/18/2022] Open
Abstract
There are well-established morbidities associated with preterm birth including respiratory, neurocognitive and developmental disorders. However several others have recently emerged that characterise an 'aged' phenotype in the preterm infant by term-equivalent age. These include hypertension, insulin resistance and altered body fat distribution. Evidence shows that these morbidities persist into adult life, posing a significant public health concern. In this study, we measured relative telomere length in leukocytes as an indicator of biological ageing in 25 preterm infants at term equivalent age. Comparing our measurements with those from 22 preterm infants sampled at birth and from 31 term-born infants, we tested the hypothesis that by term equivalent age, preterm infants have significantly shorter telomeres (thus suggesting that they are prematurely aged). Our results demonstrate that relative telomere length is highly variable in newborn infants and is significantly negatively correlated with gestational age and birth weight in preterm infants. Further, longitudinal assessment in preterm infants who had telomere length measurements available at both birth and term age (n = 5) suggests that telomere attrition rate is negatively correlated with increasing gestational age. Contrary to our initial hypothesis however, relative telomere length was significantly shortest in the term born control group compared to both preterm groups and longest in the preterm at birth group. In addition, telomere lengths were not significantly different between preterm infants sampled at birth and those sampled at term equivalent age. These results indicate that other, as yet undetermined, factors may influence telomere length in the preterm born infant and raise the intriguing hypothesis that as preterm gestation declines, telomere attrition rate increases.
Collapse
Affiliation(s)
- Vimal Vasu
- Department of Child Health, East Kent Hospitals University Foundation NHS Trust, William Harvey Hospital, Ashford, Kent, United Kingdom
- University of Kent, School of Biosciences, Giles Lane, Canterbury, Kent, United Kingdom
| | - Kara J. Turner
- University of Kent, School of Biosciences, Giles Lane, Canterbury, Kent, United Kingdom
| | - Shermi George
- Department of Child Health, East Kent Hospitals University Foundation NHS Trust, William Harvey Hospital, Ashford, Kent, United Kingdom
| | - John Greenall
- Department of Child Health, East Kent Hospitals University Foundation NHS Trust, William Harvey Hospital, Ashford, Kent, United Kingdom
| | - Predrag Slijepcevic
- Brunel University London, Department of Life Sciences, College of Health and Life Sciences, Uxbridge, Middlesex, United Kingdom
| | - Darren K. Griffin
- University of Kent, School of Biosciences, Giles Lane, Canterbury, Kent, United Kingdom
| |
Collapse
|
47
|
Liu H, Liu Z, Wang Y, Stinchcombe TE, Owzar K, Han Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Brüske I, Risch A, Wu X, Ye Y, Christiani DC, Amos CI, Wei Q. Functional variants in DCAF4 associated with lung cancer risk in European populations. Carcinogenesis 2017; 38:541-551. [PMID: 28383684 PMCID: PMC6074950 DOI: 10.1093/carcin/bgx033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 11/14/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) responsible for substrate specificity of ubiquitination play a key role in cell-cycle control and DNA damage response. In this study, we assessed associations between 16 599 SNPs in 115 CRL genes and lung cancer risk by using summary data of six published genome-wide association studies (GWASs) of 12 160 cases and 16 838 cases of European ancestry. As a result, we identified three independent SNPs in DCAF4 (rs117781739, rs12587742 and rs2240980) associated with lung cancer risk (odds ratio = 0.91, 1.09 and 1.09, respectively; 95% confidence interval = 0.88-0.95, 1.05-1.14 and 1.05-1.13, respectively; and P = 3.99 × 10-6, 4.97 × 10-5 and 1.44 × 10-5, respectively) after multiple comparison correction by a false discovery rate <0.05. Since SNP rs12587742 is located within the promoter region and one CpG island of DCAF4, we further performed in silico functional analyses and found that the rs12587742 variant A allele was associated with an increased mRNA expression (P = 2.20 × 10-16, 1.79 × 10-13 and 0.001 in blood cells, normal lung tissues and tumor tissues of lung squamous carcinoma, respectively) and a decreased methylation status (P = 2.48 × 10-9 and 0.032 in adipose and lung tumor tissues, respectively). Moreover, evidence from differential expression analyses further supported an oncogenic effect of DCAF4 on lung cancer, with higher mRNA levels in both lung squamous carcinoma and adenocarcinoma (P = 4.48 × 10-11 and 1.22 × 10-9, respectively) than in adjacent normal tissues. Taken together, our results suggest that rs12587742 is associated with an increased lung cancer risk, possibly by up-regulating mRNA expression and decreasing methylation status of DCAF4.
Collapse
Affiliation(s)
- Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas E Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5,Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5,Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, 69372 Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Richard S Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London SW7 3RP, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David C Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA and
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
48
|
Steenstrup T, Kark JD, Verhulst S, Thinggaard M, Hjelmborg JVB, Dalgård C, Kyvik KO, Christiansen L, Mangino M, Spector TD, Petersen I, Kimura M, Benetos A, Labat C, Sinnreich R, Hwang SJ, Levy D, Hunt SC, Fitzpatrick AL, Chen W, Berenson GS, Barbieri M, Paolisso G, Gadalla SM, Savage SA, Christensen K, Yashin AI, Arbeev KG, Aviv A. Telomeres and the natural lifespan limit in humans. Aging (Albany NY) 2017; 9:1130-1142. [PMID: 28394764 PMCID: PMC5425118 DOI: 10.18632/aging.101216] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/23/2017] [Indexed: 02/04/2023]
Abstract
An ongoing debate in demography has focused on whether the human lifespan has a maximal natural limit. Taking a mechanistic perspective, and knowing that short telomeres are associated with diminished longevity, we examined whether telomere length dynamics during adult life could set a maximal natural lifespan limit. We define leukocyte telomere length of 5 kb as the 'telomeric brink', which denotes a high risk of imminent death. We show that a subset of adults may reach the telomeric brink within the current life expectancy and more so for a 100-year life expectancy. Thus, secular trends in life expectancy should confront a biological limit due to crossing the telomeric brink.
Collapse
Affiliation(s)
- Troels Steenstrup
- Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark
| | - Jeremy D. Kark
- Epidemiology Unit, Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem 91120, Israel
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Mikael Thinggaard
- Department of Clinical Genetics, Odense University Hospital, Odense 5220, Denmark
- Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark
| | - Jacob V. B. Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark
- The Danish Twin Registry, University of Southern Denmark, Odense 5220, Denmark
| | - Christine Dalgård
- Department of Public Health, Environmental Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Kirsten Ohm Kyvik
- Department of Clinical Research, University of Southern Denmark and Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark
- Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark
- The Danish Twin Registry, University of Southern Denmark, Odense 5220, Denmark
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHI Biomedical Research Center at Guy’s and St Thomas Foundation Trust, London SE1 9RT, UK
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Inge Petersen
- Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark
| | - Masayuki Kimura
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy, F54500, France
- INSERM, U1116, Vandoeuvre-les-Nancy, F54500, France
- Université de Lorraine, Nancy, F54000, France
| | - Carlos Labat
- INSERM, U1116, Vandoeuvre-les-Nancy, F54500, France
- Université de Lorraine, Nancy, F54000, France
| | - Ronit Sinnreich
- Epidemiology Unit, Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem 91120, Israel
| | - Shih-Jen Hwang
- Population Sciences Branch of the National Heart, Lung and Blood Institute, Bethesda, MD and the Framingham Heart Study, Framingham, MA 01702, USA
| | - Daniel Levy
- Population Sciences Branch of the National Heart, Lung and Blood Institute, Bethesda, MD and the Framingham Heart Study, Framingham, MA 01702, USA
| | - Steven C. Hunt
- Cardiovascular Genetics Division, Department of Medicine, Cornell University, Ithaca, NY 14850 USA
| | | | - Wei Chen
- Center for Cardiovascular Health, Tulane University, New Orleans, LA 07118, USA
| | - Gerald S. Berenson
- Center for Cardiovascular Health, Tulane University, New Orleans, LA 07118, USA
| | - Michelangela Barbieri
- Department of Medical, Surgery, Neurologic, Metabolic and Aging Science, University of Campania “Luigi Vanvtelli” 80138 Naples, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgery, Neurologic, Metabolic and Aging Science, University of Campania “Luigi Vanvtelli” 80138 Naples, Italy
| | - Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20890, USA
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20890, USA
| | - Kaare Christensen
- Department of Clinical Genetics, Odense University Hospital, Odense 5220, Denmark
- Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark
- The Danish Twin Registry, University of Southern Denmark, Odense 5220, Denmark
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
49
|
Aviv A, Anderson JJ, Shay JW. Mutations, Cancer and the Telomere Length Paradox. Trends Cancer 2017; 3:253-258. [PMID: 28718437 PMCID: PMC5903276 DOI: 10.1016/j.trecan.2017.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Abstract
Individuals with short telomeres should be at increased risk for cancer, since short telomeres lead to genomic instability - a hallmark of cancer. However, individuals with long telomeres also display an increased risk for major cancers, thus creating a cancer-telomere length (TL) paradox. The two-stage clonal expansion model we propose is based on the thesis that a series of mutational hits (1st Hit) at the stem-cell level generates a clone with replicative advantage. A series of additional mutational hits (2nd Hit) transforms the expanding clone into cancer. By proposing that the 1st Hit is largely telomere length-independent, while the 2nd Hit is largely TL-dependent, we resolve the paradox, highlighting a regulatory role of telomeres in cancer.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA.
| | - James J Anderson
- Center for Statistics and the Social Sciences and Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98105, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX, 75390, USA; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Karami S, Han Y, Pande M, Cheng I, Rudd J, Pierce BL, Nutter EL, Schumacher FR, Kote-Jarai Z, Lindstrom S, Witte JS, Fang S, Han J, Kraft P, Hunter DJ, Song F, Hung RJ, McKay J, Gruber SB, Chanock SJ, Risch A, Shen H, Haiman CA, Boardman L, Ulrich CM, Casey G, Peters U, Amin Al Olama A, Berchuck A, Berndt SI, Bezieau S, Brennan P, Brenner H, Brinton L, Caporaso N, Chan AT, Chang-Claude J, Christiani DC, Cunningham JM, Easton D, Eeles RA, Eisen T, Gala M, Gallinger SJ, Gayther SA, Goode EL, Grönberg H, Henderson BE, Houlston R, Joshi AD, Küry S, Landi MT, Le Marchand L, Muir K, Newcomb PA, Permuth-Wey J, Pharoah P, Phelan C, Potter JD, Ramus SJ, Risch H, Schildkraut J, Slattery ML, Song H, Wentzensen N, White E, Wiklund F, Zanke BW, Sellers TA, Zheng W, Chatterjee N, Amos CI, Doherty JA. Telomere structure and maintenance gene variants and risk of five cancer types. Int J Cancer 2016; 139:2655-2670. [PMID: 27459707 PMCID: PMC5198774 DOI: 10.1002/ijc.30288] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/21/2016] [Indexed: 01/20/2023]
Abstract
Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10-5 ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk.
Collapse
Affiliation(s)
- Sara Karami
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Younghun Han
- The Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Mala Pande
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, CA; Stanford Cancer Institute, Stanford, CA
| | - James Rudd
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Brandon L Pierce
- Departments of Public Health Sciences and Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Ellen L Nutter
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Fredrick R Schumacher
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Zsofia Kote-Jarai
- Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sara Lindstrom
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. School of Public Health, Boston, MA
| | - John S Witte
- Division of Genetic and Cancer Epidemiology, Department of Epidemiology and Biostatistics and Institute of Human Genetics, University of California, San Francisco, CA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Simon Cancer Center, Indiana University, Indianapolis, IN
| | - Peter Kraft
- Department of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA
| | - David J Hunter
- Department of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Centre of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - James McKay
- Genetic Cancer Susceptibility Group, Genetic Epidemiology Group International Agency for Research on Cancer (IARC), Lyon, France
| | - Stephen B Gruber
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Christopher A Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Graham Casey
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ali Amin Al Olama
- Department of Public Health and Primary Care, Center for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | | | - Paul Brennan
- Genetic Cancer Susceptibility Group, Genetic Epidemiology Group International Agency for Research on Cancer (IARC), Lyon, France
| | - Hermann Brenner
- Klinische Epidemiologie und Alternsforschung, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Louise Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David C Christiani
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. School of Public Health, Boston, MA
| | | | - Douglas Easton
- Department of Public Health and Primary Care, Center for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Rosalind A Eeles
- Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Timothy Eisen
- Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Steven J Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Simon A Gayther
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Brian E Henderson
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Amit D Joshi
- Department of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Mari T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Loic Le Marchand
- Division of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI
| | - Kenneth Muir
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul Pharoah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Susan J Ramus
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | | | | - Honglin Song
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Brent W Zanke
- Division of Hematology, The University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON
| | | | - Wei Zheng
- Vanderbilt Epidemiology Center and Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Christopher I Amos
- The Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Jennifer A Doherty
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH.
| |
Collapse
|