1
|
Warnakulasuriya T, Medagoda K, Kottahachchi D, Luke D, Wadasinghe D, Rathnayake P, Ariyawansa J, Dissanayake T, Sandeepani P, De Silva DC, Devanarayana NM. Exploring the impact of occupational exposure: A study on cardiovascular autonomic functions of male gas station attendants in Sri Lanka. Physiol Rep 2024; 12:e70071. [PMID: 39462981 PMCID: PMC11513408 DOI: 10.14814/phy2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Fuel dispensing at fuel stations is performed manually by unprotected male gas station attendants in Sri Lanka, who have long working hours. These workers are exposed to hydrocarbon fuels associated with multiple health effects by modulation of the autonomic nervous system. This study was performed to determine cardiovascular autonomic functions among fuel pump attendants in Sri Lanka. Fuel pump attendants (n = 50) aged between 19 and 65 years were identified for the study from seven fuel stations. They were compared with age- and gender-matched controls (n = 46) without occupational exposure to fuel. A physical examination was performed before the autonomic function and heart rate variability (HRV) assessment. There were no significant differences in weight, height, or BMI between the study and the control populations (p > 0.05). Both the systolic blood pressure (SBP) (Mann Whitney U (MWU) = 743.5, p = 0.003) and diastolic blood pressure (DBP) (MWU = 686.5, p = 0.001) were significantly higher among the gas station attendants compared to controls. Valsalva ratio was significantly higher among the study group (MW U = 874.00, p = 0.043) compared to controls. The HRV analysis showed significantly higher SDNN and SD2 (MWU = 842.00, p = 0.034, and MWU = 843.50, p = 0.035 respectively) among the gas station attendants compared to controls. The changes to the cardiovascular autonomic parameters among those exposed to fuel vapor as a gas station attendant indicate an increase in sympathetic outflow to the vessels. In the occupational setting as fuel pump attendants need periodic monitoring.
Collapse
Affiliation(s)
| | - Kushan Medagoda
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dulani Kottahachchi
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dunya Luke
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dilesha Wadasinghe
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Prasanna Rathnayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Janaki Ariyawansa
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Tharuka Dissanayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Pavani Sandeepani
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Deepthi C. De Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | | |
Collapse
|
2
|
Ding E, Deng F, Fang J, Liu J, Yan W, Yao Q, Miao K, Wang Y, Sun P, Li C, Liu Y, Dong H, Dong L, Zhang X, Lu Y, Lin X, Ding C, Li T, Shi Y, Cai Y, Liu X, Godri Pollitt KJ, Ji JS, Tong S, Tang S, Shi X. Exposome-Wide Ranking to Uncover Environmental Chemicals Associated with Dyslipidemia: A Panel Study in Healthy Older Chinese Adults from the BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97005. [PMID: 39240788 PMCID: PMC11379127 DOI: 10.1289/ehp13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
BACKGROUND Environmental contaminants (ECs) are increasingly recognized as crucial drivers of dyslipidemia and cardiovascular disease (CVD), but the comprehensive impact spectrum and interlinking mechanisms remain uncertain. OBJECTIVES We aimed to systematically evaluate the association between exposure to 80 ECs across seven divergent categories and markers of dyslipidemia and investigate their underpinning biomolecular mechanisms via an unbiased integrative approach of internal chemical exposome and multi-omics. METHODS A longitudinal study involving 76 healthy older adults was conducted in Jinan, China, and participants were followed five times from 10 September 2018 to 19 January 2019 in 1-month intervals. A broad spectrum of seven chemical categories covering the prototypes and metabolites of 102 ECs in serum or urine as well as six serum dyslipidemia markers [total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein (Apo)A1, ApoB, and ApoE4] were measured. Multi-omics, including the blood transcriptome, serum/urine metabolome, and serum lipidome, were profiled concurrently. Exposome-wide association study and the deletion/substitution/addition algorithms were applied to explore the associations between 80 EC exposures detection frequency > 50 % and dyslipidemia markers. Weighted quantile sum regression was used to assess the mixture effects and relative contributions. Multi-omics profiling, causal inference model, and pathway analysis were conducted to interpret the mediating biomolecules and underlying mechanisms. Examination of cytokines and electrocardiograms was further conducted to validate the observed associations and biomolecular pathways. RESULTS Eight main ECs [1-naphthalene, 1-pyrene, 2-fluorene, dibutyl phosphate, tri-phenyl phosphate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, chromium, and vanadium] were significantly associated with most dyslipidemia markers. Multi-omics indicated that the associations were mediated by endogenous biomolecules and pathways, primarily pertinent to CVD, inflammation, and metabolism. Clinical measures of cytokines and electrocardiograms further cross-validated the association of these exogenous ECs with systemic inflammation and cardiac function, demonstrating their potential mechanisms in driving dyslipidemia pathogenesis. DISCUSSION It is imperative to prioritize mitigating exposure to these ECs in the primary prevention and control of the dyslipidemia epidemic. https://doi.org/10.1289/EHP13864.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yu Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NIEH, China CDC, Beijing, China
| |
Collapse
|
3
|
Liu K, Bai Y, Wu D, Zhang Z, Liao X, Wu H, Deng Q. Healthy lifestyle and essential metals attenuated association of polycyclic aromatic hydrocarbons with heart rate variability in coke oven workers. Int J Hyg Environ Health 2024; 256:114323. [PMID: 38237548 DOI: 10.1016/j.ijheh.2024.114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Whether adopting healthy lifestyles and maintaining moderate levels of essential metals could attenuate the reduction of heart rate variability (HRV) related to polycyclic aromatic hydrocarbons (PAHs) exposure are largely unknown. In this study, we measured urinary metals and PAHs as well as HRV, and constructed a healthy lifestyle score in 1267 coke oven workers. Linear regression models were used to explore the association of healthy lifestyle score and essential metals with HRV, and interaction analysis was performed to investigate the potential interaction between healthy lifestyle score, essential metals, and PAHs on HRV. Mean age of the participants was 41.9 years (84.5% male). Per one point higher healthy lifestyle score was associated with a 2.5% (95% CI, 1.0%-3.9%) higher standard deviation of all normal to normal intervals (SDNN), 2.1% (95% CI, 0.5%-3.6%) higher root mean square of successive differences in adjacent NN intervals (r-MSSD), 4.3% (95% CI, 0.4%-8.2%) higher low frequency, 4.4% (95% CI, 0.2%-8.5%) higher high frequency, and 4.4% (95% CI, 1.2%-7.6%) higher total power, respectively. Urinary level of chromium was positively associated with HRV indices, with the corresponding β (95% CI) (%) was 5.17 (2.84, 7.50) for SDNN, 4.29 (1.74, 6.84) for r-MSSD, 12.26 (6.08, 18.45) for low frequency, 12.61 (5.87, 19.36) for high frequency, and 11.31 (6.19, 16.43) for total power. Additionally, a significant interaction was found between healthy lifestyle score and urinary total hydroxynaphthalene on SDNN (Pinteraction = 0.04), and higher level of urinary chromium could attenuate the adverse effect of total hydroxynaphthalene level on HRV (all Pinteraction <0.05). Findings of our study suggest adopting healthy lifestyle and maintaining a relatively high level of chromium might attenuate the reduction of HRV related to total hydroxynaphthalene exposure.
Collapse
Affiliation(s)
- Kang Liu
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yansen Bai
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Degang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Zhaorui Zhang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaojing Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haimei Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
4
|
Liu C, Liu Q, Song S, Li W, Feng Y, Cong X, Ji Y, Li P. The association between internal polycyclic aromatic hydrocarbons exposure and risk of Obesity-A systematic review with meta-analysis. CHEMOSPHERE 2023; 329:138669. [PMID: 37059208 DOI: 10.1016/j.chemosphere.2023.138669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is emerging as a risk factor for obesity, but with conflicting findings. The aim of this systematic review is to investigate and summarize the current evidence towards the associations between PAHs exposure and risk of obesity. We conducted a systematic search of online databases, including PubMed, Embase, Cochrane Library, and Web of Science up to April 28, 2022. Eight cross-sectional studies with data from 68,454 participants were included. The present study illustrated that there was a significant positive association between naphthalene (NAP), phenanthrene (PHEN), and total OH-PAH metabolites and risk of obesity, the pooled OR (95% CI) was estimated at 1.43 (1.07, 1.90), 1.54 (1.18, 2.02), and 2.29 (1.32, 3.99), respectively. However, there was no significant association between fluorene (FLUO) and1-hydroxypyrene (1-OHP) metabolite and risk of obesity. Subgroup analyses showed that associations between PAHs exposure and risk of obesity were more apparent in children, female, smokers and developing regions.
Collapse
Affiliation(s)
- Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qisijing Liu
- Research Institute of Public Health, Nankai University, Tianjin, 300071, China
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China; National Institute of Metrology, Beijing, 100029, China.
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Feng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China.
| |
Collapse
|
5
|
Mallah MA, Basnet TB, Ali M, Xie F, Li X, Feng F, Wang W, Shang P, Zhang Q. Association between urinary polycyclic aromatic hydrocarbon metabolites and diabetes mellitus among the US population: a cross-sectional study. Int Health 2023; 15:161-170. [PMID: 35751578 PMCID: PMC9977221 DOI: 10.1093/inthealth/ihac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The primary aim of this study is to examine the association between urinary polycyclic aromatic hydrocarbons (PAHs) and diabetes mellitus (DM) among the US population. METHODS We used data from the National Health and Nutritional Examination Survey 2003-16, which is a nationally representative population-based survey of the US non-institutionalized population. Logistic regression analysis was performed to evaluate the association between urinary PAHs and the prevalence of DM using odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The study sample including 13 792 individuals ≥18 y of age. The average ages of the three PAH tertiles were 42.56±19.67, 42.21±19.51 and 43.39±17.99 y. An increased risk of DM was found with increased odds for the second (OR 1.56 [95% CI 1.36 to 1.79]) and third tertile (OR 1.79 [95% CI 1.55 to 2.06)] of urinary PAH as compared with the first tertile. Similarly, higher chances of DM were observed in the second (men: OR 1.42 [95% CI 1.18 to 1.71]; women: OR 1.76 [95% CI 1.44 to 2.14]) and third tertile (men: OR 1.69 [95% CI 1.38 to 2.08]; women: OR 1.79 [95% CI 1.46 to 2.19]) of urinary PAHs as compared with the first tertile in both men and women. CONCLUSIONS A population-based cross-sectional study found a positive association between urinary PAHs and DM in the US population.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Til Bahadur Basnet
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian 350122, China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah 67480, Sindh, Pakistan
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
| | - Feifei Feng
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Wang
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology and Occupational health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Xing W, Gu W, Liang M, Wang Z, Fan D, Zhang B, Wang L. Sex-specific effect of urinary metabolites of polycyclic aromatic hydrocarbons on thyroid profiles: results from NHANES 2011-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47168-47181. [PMID: 36735133 DOI: 10.1007/s11356-023-25693-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The current study aims to evaluate the associations between 10 urinary polycyclic aromatic hydrocarbon (PAH) metabolites and thyroid profiles. The levels of 10 PAH metabolites and thyroid profiles were obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2012. Spearman analysis was utilized to evaluate the correlation coefficients among these 10 PAH metabolites. Multivariate linear and logistic regression models assessed the relationship between urinary PAH metabolite levels, thyroid hormones, and thyroid autoantibodies after adjusting potential confounders. Stratified analysis by gender was performed to evaluate sex-specific effect of urinary metabolites of PAH on thyroid profiles. One thousand six hundred forty-five eligible adult participants with complete research data were enrolled. Of note, the concentrations of the majority of urinary PAH metabolites were remarkedly higher in females compared with males. 2-hydroxyfluorene (2-FLU) was associated with higher total triiodothyronine (T3) levels in whole population (β = 2.113, 95% CI 0.339-3.888). In males, positive associations were observed in 1-hydroxynaphthalene (1-NAP) and free thyroxine (T4) (β = 0.0002, 95% CI 0.0000-0.0004). 2-FLU was also found positively associated with total T3 (β = 2.528, 95% CI 0.115-4.940) in male subjects. While in female participants, 2-hydroxynaphthalene (2-NAP) was associated with free T3 (β = 0.002, 95% CI 0.000-0.005). 2-FLU was associated with total T3 (β = 2.683, 95% CI 0.038-5.328), free T3 (β = 0.050, 95% CI 0.012-0.087), and total T4 (β = 0.195, 95% CI 0.008-0.382). 2-Hydroxyphenanthrene (2-OHP), 1-hydroxypyrene (1-HP), and 9-hydroxyfluorene (9-FLU) were all positively related to total T3 levels, and the corresponding coefficients were 16.504, 6.587, and 3.010. 9-FLU was also associated with free T3 (β = 0.049, 95% CI 0.008-0.090). No statistical significances were found between PAH metabolite levels and increased prevalence of increased thyroglobulin antibody (TgAb)/thyroid peroxidase antibody (TPOAb) when PAH metabolites were treated as continuous variables. Meanwhile, in the quartile analyses, increased prevalence of elevated TgAb was observed in participants with quartile 2 2-NAP compared with lowest quartile (OR = 1.753, 95% CI 1.021-3.008). Male subgroup analyses indicated that increased prevalence of elevated TgAb was observed in higher quartile of 1-NAP, 2-NAP, and 3-hydroxyfluorene (3-FLU). Increased prevalence of elevated TPOAb was associated with higher 2-NAP quartile. However, in subgroup analysis of females, no statistical significances were found between PAH quartiles and increased TgAb/TPOAb. Significant correlations were found among these 10 PAH metabolites. In conclusion, the cross-sectional study indicated that exposure to PAH might disturb the concentrations of thyroid hormones and thyroid autoantibodies. It is noteworthy that significant differences existed in males and females. Further prospective research is warranted to explore the causal relationship and underlying mechanism of PAH exposure on thyroid dysfunction.
Collapse
Affiliation(s)
- Weilong Xing
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China.
| | - Wen Gu
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Mengyuan Liang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Zhen Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Deling Fan
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Bing Zhang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Lei Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| |
Collapse
|
7
|
Wang XS, Liu YL, Xue LX, Song H, Pan XR, Huang Z, Xu SY, Ma J, Wang L. Anthracite Releases Aromatic Carbons and Reacts with Chlorine to Form Disinfection Byproducts in Drinking Water Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1103-1113. [PMID: 36574338 DOI: 10.1021/acs.est.2c05192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthracite is globally used as a filter material for water purification. Herein, it was found that up to 15 disinfection byproducts (DBPs) were formed in the chlorination of anthracite-filtered pure water, while the levels of DBPs were below the detection limit in the chlorination of zeolite-, quartz sand-, and porcelain sandstone-filtered pure water. In new-anthracite-filtered water, the levels of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonia nitrogen (NH3-N) ranged from 266.3 to 305.4 μg/L, 37 to 61 μg/L, and 8.6 to 17.1 μg/L, respectively. In aged anthracite (collected from a filter at a DWTP after one year of operation) filtered water, the levels of the above substances ranged from 475.1 to 597.5 μg/L, 62.1 to 125.6 μg/L, and 14 to 28.9 μg/L, respectively. Anthracite would release dissolved substances into filtered water, and aged anthracite releases more substances than new anthracite. The released organics were partly (around 5%) composed by the μg/L level of toxic and carcinogenic aromatic carbons including pyridine, paraxylene, benzene, naphthalene, and phenanthrene, while over 95% of the released organics could not be identified. Organic carbon may be torn off from the carbon skeleton structure of anthracite due to hydrodynamic force in the water filtration process.
Collapse
Affiliation(s)
- Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Xu Xue
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiang-Rui Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Yue Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat AA, Wang W, Jabar A, Naveed M, Li JH, Zhang Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. CHEMOSPHERE 2022; 296:133948. [PMID: 35151703 DOI: 10.1016/j.chemosphere.2022.133948] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals of considerable environmental significance. PAHs are chemical contaminants of fused carbon and hydrogen aromatic rings, basically white, light-yellow, or solid compounds without color. Natural sources of pollution are marginal or less significant, such as volcanic eruptions, natural forest fires, and moorland fires that trigger lightning bursts. The significant determinants of PAH pollution are anthropogenic pollution sources, classified into four groups, i.e., industrial, mobile, domestic, and agricultural pollution sources. Humans can consume PAHs via different routes, such as inhalation, dermal touch, and ingestion. The Effect of PAHs on human health is primarily based on the duration and route of exposure, the volume or concentration of PAHs to which one is exposed, and the relative toxicity of PAHs. Many PAHs are widely referred to as carcinogens, mutagens, and teratogens and thus pose a significant danger to human health and the well-being of humans. Skin, lung, pancreas, esophagus, bladder, colon, and female breast are numerous organs prone to tumor development due to long-term PAH exposure. PAH exposure may increase the risk of lung cancer as well as cardiovascular disease (CVD), including atherosclerosis, thrombosis, hypertension, and myocardial infarction (MI). Preclinical studies have found a relationship between PAH exposure, oxidative stress, and atherosclerosis. In addition, investigations have discovered a relationship between PAH exposure at work and CVD illness and mortality development. This review aims to explain PAH briefly, its transportation, its effects on human health, and a relationship between environmental exposures to PAHs and CVD risk in humans.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, 67480, Sindh, Pakistan
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 6300, Pakistan
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Saeed
- The Cholestane University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Ahmed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ali Asghar Mirjat
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Jabar
- Faculty of Pharmacy, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China.
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Ma J, Tan Q, Nie X, Zhou M, Wang B, Wang X, Cheng M, Ye Z, Xie Y, Wang D, Chen W. Longitudinal relationships between polycyclic aromatic hydrocarbons exposure and heart rate variability: Exploring the role of transforming growth factor-β in a general Chinese population. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127770. [PMID: 34823955 DOI: 10.1016/j.jhazmat.2021.127770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/16/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
We aim to investigate the long-term adverse effects of polycyclic aromatic hydrocarbons (PAHs) exposure on heart rate variability (HRV) reduction, and to assess the potential role of transforming growth factor-β1 (TGF-β1) in such relationship. We enrolled 2985 adult residents with 4100 observations who participated at baseline and 6-years follow-up from Wuhan-Zhuhai cohort. Ten detectable urinary PAHs metabolites and two HRV indices were repeatedly measured at baseline and follow-up; and plasma TGF-β1 levels were also determined for all subjects. We observed that both total urinary low molecular weight PAHs (ΣLWM OH-PAH) and total urinary high molecular weight PAHs (ΣHWM OH-PAH) were negatively associated with HRV reductions (P < 0.05). Subjects with persistent high levels of ΣHWM OH-PAH had a significant reduction in HRV over 6 years, and the incensement of TGF-β1 could aggravate above adverse effects in a dose-response manner. All kinds of PAHs were positively associated with plasma TGF-β1 elevation, which in turn, were negatively related to HRV indices. Increased TGF-β1 significant mediated 1.34-3.62% of PAHs-associated HRV reduction. Our findings demonstrated that long-term high levels of PAHs exposure could cause HRV reductions, and TGF-β1 may play an essential role in such association.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
Rossi S, Buccarello A, Caffarra Malvezzi C, Pinelli S, Alinovi R, Guerrero Gerboles A, Rozzi G, Leonardi F, Bollati V, De Palma G, Lagonegro P, Rossi F, Lottici PP, Poli D, Statello R, Macchi E, Miragoli M. Exposure to nanoparticles derived from diesel particulate filter equipped engine increases vulnerability to arrhythmia in rat hearts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117163. [PMID: 33910133 DOI: 10.1016/j.envpol.2021.117163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.
Collapse
Affiliation(s)
- Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Andrea Buccarello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giacomo Rozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Humanitas Clinical and Research Center -IRCCS, 20090, Rozzano, Milan, Italy
| | - Fabio Leonardi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milano, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Paola Lagonegro
- National Research Council (CNR), Istituto Dei Materiali per L'Elettronica Ed Il Magnetismo (IMEM), Parma, Italy
| | - Francesca Rossi
- National Research Council (CNR), Istituto Dei Materiali per L'Elettronica Ed Il Magnetismo (IMEM), Parma, Italy
| | - Pier Paolo Lottici
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078, Monte Porzio Catone, Rome, Italy
| | - Rosario Statello
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilio Macchi
- CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy; Humanitas Clinical and Research Center -IRCCS, 20090, Rozzano, Milan, Italy; National Research Council (CNR), Istituto di Ricerca Genetica e Biomedica (IRGB), Milan, Italy.
| |
Collapse
|
11
|
Chrysochou E, Kanellopoulos PG, Koukoulakis KG, Sakellari A, Karavoltsos S, Minaidis M, Bakeas E. Heart Failure and PAHs, OHPAHs, and Trace Elements Levels in Human Serum: Results from a Preliminary Pilot Study in Greek Population and the Possible Impact of Air Pollution. Molecules 2021; 26:3207. [PMID: 34071927 PMCID: PMC8199329 DOI: 10.3390/molecules26113207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been associated with environmental pollutants. The scope of this study is to assess any potential relation of polycyclic aromatic hydrocarbons (PAHs), their hydroxylated derivatives, and trace elements with heart failure via their direct determination in human serum of Greek citizens residing in different areas. Therefore, we analyzed 131 samples including cases (heart failure patients) and controls (healthy donors), and the respective demographic data were collected. Significantly higher concentrations (p < 0.05) were observed in cases' serum regarding most of the examined PAHs and their derivatives with phenanthrene, fluorene, and fluoranthene being the most abundant (median of >50 μg L-1). Among the examined trace elements, As, Cd, Cu, Hg, Ni, and Pb were measured at statistically higher concentrations (p < 0.05) in cases' samples, with only Cr being significantly higher in controls. The potential impact of environmental factors such as smoking and area of residence has been evaluated. Specific PAHs and trace elements could be possibly related with heart failure development. Atmospheric degradation and smoking habit appeared to have a significant impact on the analytes' serum concentrations. PCA-logistic regression analysis could possibly reveal common mechanisms among the analytes enhancing the hypothesis that they may pose a significant risk for CVD development.
Collapse
Affiliation(s)
- Eirini Chrysochou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| | - Panagiotis Georgios Kanellopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| | - Konstantinos G. Koukoulakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (A.S.); (S.K.)
| | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (A.S.); (S.K.)
| | | | - Evangelos Bakeas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| |
Collapse
|
12
|
Khosravipour M, Khosravipour H. The association between urinary metabolites of polycyclic aromatic hydrocarbons and diabetes: A systematic review and meta-analysis study. CHEMOSPHERE 2020; 247:125680. [PMID: 32069705 DOI: 10.1016/j.chemosphere.2019.125680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
To examine the association between urinary metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) and diabetes, online databases, including PubMed, Scopus, and Web of Science, were searched on July 17, 2019. Of the 668 articles identified through searching, six cross-sectional studies involving 24,406 participants were included. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effect model. Heterogeneity was measured by reporting the I-square index. Moreover, subgroup analysis according to types of metabolites was performed. We found a significantly higher odds of diabetes in the highest versus the lowest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total OH-PAH metabolites. The pooled OR (95% CI) was estimated at 1.47 (1.17, 1.78), 1.50 (1.29, 1.71), 1.41 (1.21, 1.60), and 1.61 (1.01, 2.21), respectively. We also found a significant association per 1-fold increase in FLU (OR = 1.09, 95% CI [1.00, 1.19]) and PHEN (OR = 1.19, 95% CI [1.08, 1.30]) metabolites. In subgroup analysis stratified by types of OH-PAH metabolites, A significant stronger odds of diabetes was observed in the highest versus the lowest category of 2-PHEN (OR = 1.66, 95% CI [1.32, 2.00]), 2-NAP (OR = 1.66, 95% CI [1.16, 2.17]), 2-FLU (OR = 1.62, 95% CI [1.28, 1.97]), and 9-FLU (OR = 1.62, 95% CI [1.21, 2.04]) metabolites. Furthermore, there was a meaningfully greater likelihood of diabetes per 1-fold increase in 2-FLU (OR = 1.34, 95% CI [1.10, 1.57]), 2-PHEN (OR = 1.33, 95% CI [1.14, 1.51]), and 3-PHEN (OR = 1.19, 95% CI [1.04, 1.34]) metabolites. In conclusion, our study suggests the significant odds of association between urinary OH-PAH metabolites and diabetes.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadis Khosravipour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Leachi HFL, Marziale MHP, Martins JT, Aroni P, Galdino MJQ, Ribeiro RP. Polycyclic aromatic hydrocarbons and development of respiratory and cardiovascular diseases in workers. Rev Bras Enferm 2020; 73:e20180965. [PMID: 32321136 DOI: 10.1590/0034-7167-2018-0965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES to identify the scientific evidence on the development of cardiovascular and respiratory diseases due to workplace contamination by polycyclic aromatic hydrocarbons. METHODS integrative literature review. The search for primary articles was held in October 2017 in the Medical Literature Analysis and Retrieval System Online (through Pubmed), Web of Science and Latin American and Caribbean Literature in Health Sciences (LILACS). RESULTS the 16 studies analyzed showed that exposure to polycyclic aromatic hydrocarbons was associated with cardiovascular diseases, such as increased blood pressure, heart rate variation, and ischemic heart disease; and respiratory disorders, such as decreased lung function, chronic obstructive pulmonary disease, asthma, wheeze, coughing, pulmonary wheezing, chest tightness, effort dyspnea, and sore throat. CONCLUSIONS polycyclic aromatic hydrocarbons cause deleterious effects on the cardiovascular and respiratory systems through mutations and cellular inflammation, being a risk to exposed individuals.
Collapse
Affiliation(s)
| | | | | | - Patricia Aroni
- Universidade Estadual de Londrina. Londrina, Paraná, Brazil
| | | | | |
Collapse
|
14
|
Carll AP, Salatini R, Pirela SV, Wang Y, Xie Z, Lorkiewicz P, Naeem N, Qian Y, Castranova V, Godleski JJ, Demokritou P. Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol 2020; 17:7. [PMID: 31996220 PMCID: PMC6990551 DOI: 10.1186/s12989-019-0335-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.1 μm aerodynamic diameter) may bear toxicity unique from larger particles. Toxicological studies suggest that PM impairs left ventricular (LV) performance; however, such investigations have heretofore required animal restraint, anesthesia, or ex vivo preparations that can confound physiologic endpoints and/or prohibit LV mechanical assessments during exposure. To assess the acute and chronic effects of PEPs on cardiac physiology, male Sprague Dawley rats were exposed to PEPs (21 days, 5 h/day) while monitoring LV pressure (LVP) and electrocardiogram (ECG) via conscious telemetry, analyzing LVP and heart rate variability (HRV) in four-day increments from exposure days 1 to 21, as well as ECG and baroreflex sensitivity. At 2, 35, and 70 days after PEPs exposure ceased, rats received stress tests. RESULTS On day 21 of exposure, PEPs significantly (P < 0.05 vs. Air) increased LV end systolic pressure (LVESP, + 18 mmHg) and rate-pressure-product (+ 19%), and decreased HRV indicating sympathetic dominance (root means squared of successive differences [RMSSD], - 21%). Overall, PEPs decreased LV ejection time (- 9%), relaxation time (- 3%), tau (- 5%), RMSSD (- 21%), and P-wave duration (- 9%). PEPs increased QTc interval (+ 5%) and low:high frequency HRV (+ 24%; all P < 0.05 vs. Air), while tending to decrease baroreflex sensitivity and contractility index (- 15% and - 3%, P < 0.10 vs. Air). Relative to Air, at both 2 and 35 days after PEPs, ventricular arrhythmias increased, and at 70 days post-exposure LVESP increased. PEPs impaired ventricular repolarization at 2 and 35 days post-exposure, but only during stress tests. At 72 days post-exposure, PEPs increased urinary dopamine 5-fold and protein expression of ventricular repolarizing channels, Kv1.5, Kv4.2, and Kv7.1, by 50%. CONCLUSIONS Our findings suggest exposure to PEPs increases cardiovascular risk by augmenting sympathetic influence, impairing ventricular performance and repolarization, and inducing hypertension and arrhythmia. PEPs may present significant health risks through adverse cardiovascular effects, especially in occupational settings, among susceptible individuals, and with long-term exposure.
Collapse
Affiliation(s)
- Alex P. Carll
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Renata Salatini
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Yun Wang
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
- Department of Occupational and Environmental Health Sciences,School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Nazratan Naeem
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV USA
| | - John J. Godleski
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| |
Collapse
|
15
|
Tang CS, Chuang KJ, Chang TY, Chuang HC, Chen LH, Lung SCC, Chang LT. Effects of Personal Exposures to Micro- and Nano-Particulate Matter, Black Carbon, Particle-Bound Polycyclic Aromatic Hydrocarbons, and Carbon Monoxide on Heart Rate Variability in a Panel of Healthy Older Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234672. [PMID: 31771182 PMCID: PMC6926945 DOI: 10.3390/ijerph16234672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
As a non-invasive method, heart rate variability (HRV) has been widely used to study cardiovascular autonomous control. Environmental epidemiological studies indicated that the increase in an average concentration of particulate matter (PM) would result in a decrease in HRV, which was related to the increase of cardiovascular mortality in patients with myocardial infarction and the general population. With rapid economic and social development in Asia, how air pollutants, such as PM of different sizes and their components, affect the cardiovascular health of older people, still need to be further explored. The current study includes a 72 h personal exposure monitoring of seven healthy older people who lived in the Taipei metropolitan area. Mobile equipment, a portable electrocardiogram recorder, and the generalized additive mixed model (GAMM) were adopted to evaluate how HRV indices were affected by size-fractionated PM, particle-bound polycyclic aromatic hydrocarbons (p-PAHs), black carbon (BC), and carbon monoxide (CO). Other related confounding factors, such as age, sex, body mass index (BMI), temperature, relative humidity (RH), time, and monitoring week were controlled by fixed effects of the GAMM. Statistical analyses of multi-pollutant models showed that PM2.5–10, PM1, and nanoparticle (NP) could cause heart rate (HR), time-domain indices, and frequency-domain indices to rise; PM1–2.5 and BC would cause the frequency-domain index to rise; p-PAHs would cause HR to rise, and CO would cause time-domain index and frequency-domain index to decline. In addition, the moving average time all fell after one hour and might appear at 8 h in HRVs’ largest percentage change caused by each pollutant, results of which suggested that size-fractionated PM, p-PAHs, BC, and CO exposures have delayed effects on HRVs. In conclusion, the results of the study showed that the increase in personal pollutant exposure would affect cardiac autonomic control function of healthy older residents in metropolitan areas, and the susceptibility of cardiovascular effects was higher than that of healthy young people. Since the small sample size would limit the generalizability of this study, more studies with larger scale are warranted to better understand the HRV effects of simultaneous PM and other pollution exposures for subpopulation groups.
Collapse
Affiliation(s)
- Chin-Sheng Tang
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 40402, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Li-Hsin Chen
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: ; Tel.: +886-4-2451-7250
| |
Collapse
|
16
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
17
|
Yang L, Guo W, Zeng D, Ma L, Lai X, Fang Q, Guo H, Zhang X. Heart rate variability mediates the association between polycyclic aromatic hydrocarbons exposure and atherosclerotic cardiovascular disease risk in coke oven workers. CHEMOSPHERE 2019; 228:166-173. [PMID: 31029962 DOI: 10.1016/j.chemosphere.2019.04.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) metabolites was related to heart rate variability (HRV) reduction and atherosclerotic cardiovascular disease (ASCVD), and ASCVD was also affected by HRV. However, the mediating role of HRV in the association between PAHs exposure and ASCVD risk was largely unknown. We aimed to investigate whether the relation of PAHs exposure with ASCVD risk was mediated by HRV among coke oven workers. A total of 1100 subjects with complete data were qualified in the current study. We measured 12 urinary PAHs metabolites by gas chromatography-mass spectrometry (GC-MS) and HRV indices by 3-channel digital Holter monitors. The associations between urinary PAHs metabolites, HRV indices, and ASCVD risk were explored using generalized linear models or multivariate logistic regression models. A mediation analysis was conducted to examine the role of HRV on the association between PAHs exposure and ASCVD risk. We found that urinary 1-hydroxynaphthalene (1-OHNa), 2-OHNa, and total PAH metabolites (ΣOH-PAH) were dose-responsive associated with increased risk of ASCVD. Compared with lowest quartile, the adjusted odds ratio (OR) for ASCVD risk in the highest quartile were 2.36 for 1-OHNa, 6.58 for 2-OHNa, and 1.60 for ΣOH-PAH (all Ptrend<0.05). In addition, significant dose-dependent relationships were found across 2-OHNa quartiles with decreasing HRV indices, which in turn, were positively associated with elevated risk of ASCVD (all Ptrend<0.05). Mediation analyses indicated that HRV mediate 2.7%-4.3% of the association between 2-OHNa exposure and higher ASCVD risk. Our data suggested that occupational exposure to PAHs may increase ASCVD risk, which was partially mediated by HRV.
Collapse
Affiliation(s)
- Liangle Yang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zeng
- Institute of Industrial Health, Wuhan Iron & Steel (Group) Corporation, Wuhan, 430070, China
| | - Lin Ma
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Masri S, Li L, Dang A, Chung JH, Chen JC, Fan ZH(T, Wu J. Source Characterization and Exposure Modeling of Gas-Phase Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Southern California. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2018; 177:175-186. [PMID: 29808078 PMCID: PMC5968832 DOI: 10.1016/j.atmosenv.2018.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
Collapse
Affiliation(s)
- Shahir Masri
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, U.S.A
| | - Lianfa Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, U.S.A
| | - Andy Dang
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, U.S.A
| | - Judith H. Chung
- University of California, Irvine Medical Center, Orange, 92868, CA, U.S.A
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, U.S.A
| | - Zhi-Hua (Tina) Fan
- New Jersey Department of Health and Senior Services, Program of Chemical Terrorism, Biomonitoring, and Food Service ECLS/PHILEP, Trenton, NJ, 08625 U.S.A
| | - Jun Wu
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, U.S.A
| |
Collapse
|
19
|
Oliveira M, Slezakova K, Fernandes A, Teixeira JP, Delerue-Matos C, Pereira MDC, Morais S. Occupational exposure of firefighters to polycyclic aromatic hydrocarbons in non-fire work environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:277-287. [PMID: 28319714 DOI: 10.1016/j.scitotenv.2017.03.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
This work aims to characterize personal exposure of firefighters to polycyclic aromatic hydrocarbons (PAHs) in non-fire work environments (fire stations), and assesses the respective risks. Eighteen PAHs (16 considered by USEPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were monitored in breathing zones of workers at five Portuguese fire stations during a normal shift. The obtained levels of PAHs fulfilled all existent occupational exposure limits as well as air quality guidelines with total concentrations (ΣPAHs) in range of 46.8-155ngm-3. Light compounds (2-3 rings) were the most predominant congeners (74-96% of ΣPAHs) whereas PAHs with 5-6 rings accounted 3-9% of ΣPAHs. Fuel and biomass combustions, vehicular traffic emissions, and use of lubricant oils were identified as the main sources of PAHs exposure at the studied fire corporations. Incremental lifetime cancer risks were below the recommend USEPA guideline of 10-6 and thus negligible for all the studied subjects, but WHO health-based guideline level of 10-5 was exceeded (9-44 times) at all fire corporations. These results thus show that even during non-fire situations firefighters are exposed to PAHs at levels that may promote some adverse health outcomes; therefore the respective occupational exposures to these compounds should be carefully controlled.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adília Fernandes
- Escola Superior de Saúde, Instituto Politécnico de Bragança, Avenida D. Afonso V, 5300-121, Bragança, Portugal
| | - João Paulo Teixeira
- Instituto Nacional de Saúde Pública, Departamento de Saúde Ambiental, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; Universidade do Porto, Instituto de Saúde Pública, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
20
|
Yang K, Jiang X, Cheng S, Chen C, Cao X, Tu B. Effects of coke oven emissions and benzo[a]pyrene on blood pressure and electrocardiogram in coke oven workers. J Occup Health 2016; 59:1-7. [PMID: 27885241 PMCID: PMC5388607 DOI: 10.1539/joh.15-0264-oa] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: To evaluate the effects of occupational exposures to coke oven emissions (COEs) and benzo[a]pyrene (B[a]P) on the prevalence of hypertension and abnormal electrocardiogram (ECG) in coke oven workers. Methods: We included 880 coke oven workers and 710 oxygen employees in the exposed and control groups, respectively. Blood pressure (BP), ECG, blood lipid levels, and glucose levels of all subjects were measured. COE and B[a]P concentrations at the bottom, side, and top of the oven and control plants were estimated by weighing and high-performance liquid chromatography. Results: The COE concentration at the top and side was higher than that at the bottom (P < 0.05). The levels of B[a]P at the top and side significantly exceeded the limit value. Abnormal BP, ECG, the detection ratio of hypertension and left ventricular high voltage were significantly greater in the exposed group than in the control group (P < 0.05). The logistic regression analysis results revealed that age and B[a]P exposure were risk factors for hypertension in coke oven workers (P < 0.05) and both were risk factors for abnormal ECG (P < 0.05). Moreover, B[a]P exposure, age, and gender were risk factors for impaired fasting glucose in coke oven workers (P < 0.05). Conclusions: B[a]P and COE exposures are risk factors for hypertension and abnormal ECG in coke oven workers.
Collapse
Affiliation(s)
- Kai Yang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University
| | | | | | | | | | | |
Collapse
|
21
|
Deng Q, Guo H, Deng N, Zhang W, Li X, Deng H, Xiao Y. Polycyclic aromatic hydrocarbon exposure, miR-146a rs2910164 polymorphism, and heart rate variability in coke oven workers. ENVIRONMENTAL RESEARCH 2016; 148:277-284. [PMID: 27093470 DOI: 10.1016/j.envres.2016.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Exposure to ubiquitous polycyclic aromatic hydrocarbons (PAHs) has been associated with decreased heart rate variability (HRV). Evidence accumulates that microRNAs (miRNAs) might be the intermediate factors between environmental exposures and their adverse health effects. Single nucleotide polymorphisms (SNPs) in miRNA genes may affect phenotypes and disease morbidity. OBJECTIVE We sought to investigate the influences of four well-studied SNPs in miRNA genes (rs2910164, rs11614913, rs2292832, and rs3746444) on HRV, and their modifying effects on the associations between PAH exposure and HRV. METHODS We measured the concentrations of ten urinary monohydroxy PAHs (OH-PAHs), seven HRV parameters, and genotypes of these four SNPs in 1222 coke oven workers. RESULTS There were significant differences among different rs2910164 genotype carriers in terms of all seven HRV indices: workers with rs2910164 CC genotype had significant lower HRV than those with GG or GC genotype (P<0.05). The number of rs2910164 C allele was negatively associated with HRV indices in the high PAH exposure group (β<0, P<0.05), and the association between rs2910164 and high-frequency (HF) power was significantly stronger in high exposure group (Pinteraction=0.042). Interestingly, the negative associations between the sum of 10 OH-PAHs and HRV (β<0, P<0.05) were significantly or marginally significantly stronger in workers with rs2910164 CC genotype (Pinteraction≤0.050). CONCLUSIONS Coke oven workers with miR-146a rs2910164 CC genotype may be more susceptible to decreased HRV. The modifying effect of rs2910164 on the PAHs-HRV associations suggested miR-146a may mediate the effects of PAH exposure on HRV.
Collapse
Affiliation(s)
- Qifei Deng
- Faculty of Preventive Medicine, Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Deng
- Faculty of Preventive Medicine, Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wangzhen Zhang
- Institute of Industrial Health, Wuhan Iron and Steel Corporation, Wuhan, Hubei, China
| | - Xiaohai Li
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaxin Deng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongmei Xiao
- Faculty of Preventive Medicine, Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Yang B, Deng Q, Zhang W, Feng Y, Dai X, Feng W, He X, Huang S, Zhang X, Li X, Lin D, He M, Guo H, Sun H, Yuan J, Lu J, Hu FB, Zhang X, Wu T. Exposure to Polycyclic Aromatic Hydrocarbons, Plasma Cytokines, and Heart Rate Variability. Sci Rep 2016; 6:19272. [PMID: 26758679 PMCID: PMC4725366 DOI: 10.1038/srep19272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Epidemiological studies have suggested associations between polycyclic aromatic hydrocarbons (PAHs) and heart rate variability (HRV). However, the roles of plasma cytokines in these associations are limited. In discovery stage of this study, we used Human Cytokine Antibody Arrays to examine differences in the concentrations of 280 plasma cytokines between 8 coke-oven workers and 16 community residents. We identified 19 cytokines with significant different expression (fold change ≥2 or ≤-2, and q-value <5%) between exposed workers and controls. 4 cytokines were selected to validate in 489 coke-oven workers by enzyme-linked immunosorbent assays in validation stage. We found OH-PAHs were inversely associated with brain-derived neurotrophic factor (BDNF) (p < 0.05), and interquartile range (IQR) increases in OH-PAHs were associated with >16% BDNF decreases. Additionally, OH-PAHs were positively associated with activated leukocyte cell adhesion molecule (ALCAM) and C-reactive protein (CRP) (p < 0.05), and IQR increases in OH-PAHs were associated with >20% increases in CRP. We also found significant associations between these cytokines and HRV (p < 0.05), and IQR increases in BDNF and CRP were associated with >8% decreases in HRV. Our results indicated PAH exposure was associated with plasma cytokines, and higher cytokines were associated with decreased HRV, but additional human and potential mechanistic studies are needed.
Collapse
Affiliation(s)
- Binyao Yang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qifei Deng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wangzhen Zhang
- Institute of Industrial Health, Wuhan Iron and Steel Corporation, Wuhan, Hubei, China
| | - Yingying Feng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiayun Dai
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Feng
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaosheng He
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suli Huang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Zhang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohai Li
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dafeng Lin
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Sun
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Frank B. Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
- Department of Nutrition, Harvard School of Public Health, Boston, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA
| | - Xiaomin Zhang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangchun Wu
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Bangia KS, Symanski E, Strom SS, Bondy M. A cross-sectional analysis of polycyclic aromatic hydrocarbons and diesel particulate matter exposures and hypertension among individuals of Mexican origin. Environ Health 2015; 14:51. [PMID: 26068905 PMCID: PMC4471931 DOI: 10.1186/s12940-015-0039-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/29/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Epidemiological studies have found that particulate matter is associated with increases in blood pressure. Yet, less is known about the effects of specific sources or constituents of particulate matter, such as diesel particulate matter or polycyclic aromatic hydrocarbons (PAHs). We evaluated associations between self-reported hypertension and residential air levels of diesel particulate matter and PAHs among individuals of Mexican origin living in a large inner city. METHODS The Mano a Mano cohort (established in 2001 by the University of Texas MD Anderson Cancer Center) is comprised of individuals of Mexican origin residing in Houston, Texas. Using geographical information systems, we linked modeled annual estimates of PAHs and diesel particulate matter at the census tract level from the 2002 and 2005 U.S. Environmental Protection Agency's National-Scale Air Toxics Assessment to baseline residential addresses of cohort members who enrolled from 2001 to 2003 or 2004 to 2006, respectively. For each enrollment period, we applied mixed-effects logistic regression models to determine associations between diesel particulate matter and PAHs, separately, and self-reported hypertension while adjusting for confounders and the clustering of observations within census tracts and households. RESULTS The study population consisted of 11218 participants of which 77% were women. The mean participant age at baseline was 41 years. Following adjustment for age, there was a dose-dependent, positive association between PAHs and hypertension (medium exposure, adjusted odds ratio (OR) = 1.09, 95% CI: 0.88-1.36; high exposure, OR = 1.40, 95% CI: 1.01-1.94) for individuals enrolled during 2001-2003; associations were generally similar in magnitude, but less precise, following adjustment for age, gender, smoking, and BMI. No association was detected for the later period. There was no evidence of an association between residential levels of diesel particulate matter and hypertension. CONCLUSIONS This study builds on a limited number of prior investigations of the association between ambient air levels of PAHs or diesel particulate matter and hypertension by focusing on a relatively young cohort of predominantly adult women of Mexican origin. Future analyses are warranted to explore associations in the cohort using incident hypertension when sufficient data become available and to further examine associations between specific chemical constituents of particulate matter and hypertension in this and other populations.
Collapse
Affiliation(s)
- Komal S Bangia
- Office of Environmental Health Hazard Assessment, 1515 Clay St. Suite 1600, Oakland, CA, 94612, USA.
| | - Elaine Symanski
- Department of Epidemiology, Human Genetics and Environmental Sciences, Southwest Center for Occupational and Environmental Health, 1200 Herman Pressler St. Suite W-1028, Houston, TX, 77030, USA.
| | - Sara S Strom
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Unit 1340, 1155 Pressler Street, Houston, TX, 77030-4009, USA.
| | - Melissa Bondy
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Jeng HA, Pan CH. 1-Hydroxypyrene as a Biomarker for Environmental Health. BIOMARKERS IN DISEASE: METHODS, DISCOVERIES AND APPLICATIONS 2015. [DOI: 10.1007/978-94-007-7696-8_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Lee MS, Eum KD, Fang SC, Rodrigues EG, Modest GA, Christiani DC. Oxidative stress and systemic inflammation as modifiers of cardiac autonomic responses to particulate air pollution. Int J Cardiol 2014; 176:166-70. [PMID: 25074558 DOI: 10.1016/j.ijcard.2014.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/05/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The role of oxidative stress and systemic inflammation on the association between personal exposures to ambient fine particulate matter ≤ 2.5 μm in diameter (PM2.5) and cardiac autonomic dysfunction, indicated by reduction in heart rate variability (HRV), has not been examined. METHODS We performed a repeated measures study on community adults in a densely populated inner city neighborhood in Boston, Massachusetts. Continuous ambulatory electrocardiogram (ECG) monitoring and personal exposure to PM2.5 were measured for up to two consecutive days. Peripheral blood and spot urine samples were collected at 12-hour intervals for the measurements of markers of inflammation including C-reactive protein (CRP), fibrinogen, white blood cell (WBC) and platelet counts as well as for the analysis of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. RESULTS After adjusting for confounders, we found a pronounced decrease in nighttime standard deviation of normal-to normal intervals (SDNN): an interquartile range (IQR) increase in PM2.5 (13.6 μg/m(3)) was associated with an 8.4% decrease in SDNN (95% CI: -11.3 to -5.5). Compared with the lower eightieth percentile, significantly greater PM2.5 associated nighttime SDNN reductions were observed among subjects in the upper twentieth percentile of 8-OHdG by -25.3%, CRP by -24.9%, fibrinogen by -28.7%, WBC by -23.4%, and platelet counts by -24.0% (all P<0.0001; all P interaction<0.01). CONCLUSIONS These data suggest that oxidative stress and systemic inflammation exacerbate the adverse effects of PM2.5 on the cardiac autonomic function even at ambient levels of exposure.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Ki-Do Eum
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Shona C Fang
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; New England Research Institutes, Inc., Watertown, MA, USA
| | - Ema G Rodrigues
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Geoffrey A Modest
- Upham's Corner Health Center, Boston University School of Medicine, Boston, MA, USA
| | - David C Christiani
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites. PLoS One 2014; 9:e92964. [PMID: 24722336 PMCID: PMC3982957 DOI: 10.1371/journal.pone.0092964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/27/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with reduced heart rate variability (HRV), a strong predictor of cardiovascular diseases, but the mechanism is not well understood. OBJECTIVES We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function. METHODS HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6) and heat shock protein 70 (Hsp70) were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs) were measured by gas chromatography-mass spectrometry. RESULTS We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all Ptrend<0.05); and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP) and low frequency (LF) (Ptrend = 0.014 and 0.006, respectively). In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all Ptrend<0.05), but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN), TP and LF in the low-PAHs metabolites groups (all Ptrend<0.05). We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV. CONCLUSIONS In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.
Collapse
|
27
|
Feng Y, Sun H, Song Y, Bao J, Huang X, Ye J, Yuan J, Chen W, Christiani DC, Wu T, Zhang X. A community study of the effect of polycyclic aromatic hydrocarbon metabolites on heart rate variability based on the Framingham risk score. Occup Environ Med 2014; 71:338-45. [PMID: 24627303 DOI: 10.1136/oemed-2013-101884] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate the effects of the urinary metabolite profiles of background exposure to the atmospheric pollutants polycyclic aromatic hydrocarbon (PAH) and Framingham risk score (FRS), which assesses an individual's cardiovascular disease risk, on heart rate variability (HRV). METHODS The study conducted from April to May 2011 in Wuhan, China, included 1978 adult residents with completed questionnaires, physical examinations, blood and urine samples, and 5-min HRV indices (including SD of all normal to normal intervals (SDNN), root mean square successive difference (rMSSD), low frequency (LF), high frequency (HF) and their ratio (LF/HF), and total power) obtained from 3-channel Holter monitor. 12 urinary PAH metabolites were measured by gas chromatography-mass spectrometry. FRS was calculated by age, sex, lipid profiles, blood pressure, diabetes and smoking status. Linear regression models were constructed after adjusting for potential confounders. RESULTS Elevated total concentration of hydroxynaphthalene (ΣOHNa) was significantly associated, in a dose-responsive manner, with decreased SDNN and LF/HF (ptrend=0.014 and 0.007, respectively); elevated total concentration of hydroxyfluorene (ΣOHFlu) was significantly associated with reduced SDNN, LF and LF/HF (ptrend=0.027, 0.003, and <0.0001, respectively); and elevated total concentration of all PAH metabolites (ΣOH-PAHs) was associated with decreased LF and LF/HF (ptrend=0.005 and <0.0001, respectively). Moreover, increasing quartiles of FRS were significantly associated with decreased HRV indices, except LF/HF (all ptrend<0.0001). Interestingly, individuals in low-risk subgroups had greater decreases in SDNN, LF and LF/HF in relation to ΣOH-PAHs, ΣOHNa and ΣOHFlu than those in high-risk subgroups (all p<0.05). CONCLUSIONS Environmental PAH exposure may differentially affect HRV based on individual coronary risk profiles.
Collapse
Affiliation(s)
- Yingying Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 762:24-9. [DOI: 10.1016/j.mrgentox.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/31/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
29
|
Kioumourtzoglou MA, Spiegelman D, Szpiro AA, Sheppard L, Kaufman JD, Yanosky JD, Williams R, Laden F, Hong B, Suh H. Exposure measurement error in PM2.5 health effects studies: a pooled analysis of eight personal exposure validation studies. Environ Health 2014; 13:2. [PMID: 24410940 PMCID: PMC3922798 DOI: 10.1186/1476-069x-13-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/06/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. METHODS Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects' homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. RESULTS When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. CONCLUSIONS Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies.
Collapse
Affiliation(s)
| | - Donna Spiegelman
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lianne Sheppard
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ronald Williams
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Francine Laden
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Biling Hong
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Helen Suh
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Kioumourtzoglou MA, Spiegelman D, Szpiro AA, Sheppard L, Kaufman JD, Yanosky JD, Williams R, Laden F, Hong B, Suh H. Exposure measurement error in PM2.5 health effects studies: a pooled analysis of eight personal exposure validation studies. Environ Health 2014; 13:2. [PMID: 24410940 DOI: 10.1186/1476-069x-13-2/figures/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/06/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. METHODS Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects' homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. RESULTS When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. CONCLUSIONS Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies.
Collapse
|
31
|
Ciarrocca M, Rosati MV, Tomei F, Capozzella A, Andreozzi G, Tomei G, Bacaloni A, Casale T, Andrè JC, Fioravanti M, Cuartas MF, Caciari T. Is urinary 1-hydroxypyrene a valid biomarker for exposure to air pollution in outdoor workers? A meta-analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:17-26. [PMID: 23299300 DOI: 10.1038/jes.2012.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/10/2012] [Indexed: 05/22/2023]
Abstract
The aim of this study was to evaluate the usefulness and specificity of urinary 1-hydroxypyrene (1-OHPu) as a biomarker of the exposure from urban pollution to polycyclic aromatic hydrocarbons (PAHs) among outdoor workers in a meta-analysis. Our meta-analysis was performed according to standard methods, and the results show that the concentrations of 1-OHPu tend to be higher in exposed workers than in unexposed workers (if we exclude two highly heterogeneous articles), in exposed non-smokers than in unexposed non-smokers and in exposed than in unexposed workers who were carriers of the CYP1A1 genotype and in those with the glutathione-S-transferase M1 (-)genotype. These genotypes enhance the effect of exposure, particularly in non-smokers. Smoking reduces the differences between exposed and unexposed subjects. In conclusion, our results suggest that the use of the 1-OHPu biomarker appears to be reliable for studying occupational exposure to PAHs from urban pollution, as long as environmental and behavioural factors are considered.
Collapse
Affiliation(s)
- Manuela Ciarrocca
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | - Maria Valeria Rosati
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | - Francesco Tomei
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | - Assuntina Capozzella
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | - Giorgia Andreozzi
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | - Gianfranco Tomei
- Department of Psychiatric and Psychological Science, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome, Italy
| | - Alessandro Bacaloni
- Department of Chemistry, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome, Italy
| | - Teodorico Casale
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | | | - Mario Fioravanti
- Department of Psychiatric and Psychological Science, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome, Italy
| | - Maria Fernanda Cuartas
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| | - Tiziana Caciari
- Unit of Occupational Medicine, Department of Anatomy, Histology, Medical-Legal and the Orthopedics, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
32
|
Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, Anderson KA, Waters KM, Tanguay RL. Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol 2013; 271:266-75. [PMID: 23684558 PMCID: PMC3976560 DOI: 10.1016/j.taap.2013.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/01/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptional responses at 48hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ, BEZO, 7,12-B[a]AQ, and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms.
Collapse
Affiliation(s)
- Andrea L Knecht
- Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Goodale BC, Tilton SC, Corvi MM, Wilson GR, Janszen DB, Anderson KA, Waters KM, Tanguay RL. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. Toxicol Appl Pharmacol 2013; 272:656-70. [PMID: 23656968 DOI: 10.1016/j.taap.2013.04.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/28/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li X, Feng Y, Deng H, Zhang W, Kuang D, Deng Q, Dai X, Lin D, Huang S, Xin L, He Y, Huang K, He M, Guo H, Zhang X, Wu T. The dose-response decrease in heart rate variability: any association with the metabolites of polycyclic aromatic hydrocarbons in coke oven workers? PLoS One 2012; 7:e44562. [PMID: 23024753 PMCID: PMC3443084 DOI: 10.1371/journal.pone.0044562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background Air pollution has been associated with an increased risk of cardiopulmonary mortality and decreased heart rate variability (HRV). However, it is unclear whether coke oven emissions (COEs) and polycyclic aromatic hydrocarbons (PAHs) are associated with HRV. Objectives Our goal in the present study was to investigate the association of exposure to COEs and the urinary metabolite profiles of PAHs with HRV of coke oven workers. Methods We measured benzene soluble matter, carbon monoxide, sulfur dioxide, particulate matters, and PAHs at different workplaces of a coke oven plant. We determined 10 urinary PAH metabolites and HRV indices of 1333 workers using gas chromatography–mass spectrometry and a 3-channel digital Holter monitor, respectively. Results Our results showed that there was a significant COEs-related dose-dependent decrease in HRV, and an inverse relationship between the quartiles of urinary 2-hydroxynaphthalene and five HRV indices (ptrend<0.01 for all). After adjustment for potential confounders, elevation per interquartile range (IQR) (1.81 µg/mmol creatinine) of urinary 2-hydroxynaphthalene was associated with a 5.46% (95% CI, 2.50–8.32) decrease in standard deviation of NN intervals (SDNN). As workers worked more years, SDNN gradually declined in the same quartiles of 2-hydroxynaphthalene levels (ptrend = 1.40×10−4), especially in workers with the highest levels of 2-hydroxynaphthalene. Conclusions Occupational exposure to COEs is associated with a dose-response decrease in HRV. In particular, increased exposure to 2-hydroxynaphthalene is associated with significantly decreased HRV. Increase of working years and exposure levels has resulted in a gradual decline of HRV.
Collapse
Affiliation(s)
- Xiaohai Li
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Feng
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaxin Deng
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangzhen Zhang
- Institute of Industrial Health, Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Dan Kuang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qifei Deng
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiayun Dai
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dafeng Lin
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Huang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xin
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfeng He
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
35
|
Wu J, Tjoa T, Li L, Jaimes G, Delfino RJ. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California. Environ Health 2012; 11:47. [PMID: 22784481 PMCID: PMC3436775 DOI: 10.1186/1476-069x-11-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/11/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. METHODS We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. RESULTS We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total sampling time) explained 48% of the variance in daily personal PB-PAH exposure and 39% of the variance in subject-level exposure. The other major predictors of PB-PAH exposures included length-weighted traffic count, work-related exposures, and percent of weekday time. CONCLUSION We successfully developed regression models to estimate PB-PAH exposures based on GPS-tracking data, traffic data, and simple questionnaire information. Time in vehicle was the most important determinant of personal PB-PAH exposure in this population. We demonstrated the importance of coupling real-time exposure measures with GPS time-activity tracking in personal air pollution exposure assessment.
Collapse
Affiliation(s)
- Jun Wu
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
- Department of Epidemiology, School of Medicine, University of California, Irvine, USA
| | - Thomas Tjoa
- Department of Epidemiology, School of Medicine, University of California, Irvine, USA
| | - Lianfa Li
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
| | - Guillermo Jaimes
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, USA
| | - Ralph J Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
36
|
Polycyclic aromatic hydrocarbons in electrocautery smoke during peritonectomy procedures. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:929053. [PMID: 22685482 PMCID: PMC3364671 DOI: 10.1155/2012/929053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/08/2012] [Accepted: 03/23/2012] [Indexed: 12/21/2022]
Abstract
Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed.
Collapse
|
37
|
Fan R, Ramage R, Wang D, Zhou J, She J. Determination of ten monohydroxylated polycyclic aromatic hydrocarbons by liquid–liquid extraction and liquid chromatography/tandem mass spectrometry. Talanta 2012; 93:383-91. [DOI: 10.1016/j.talanta.2012.02.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 11/30/2022]
|