1
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
2
|
Gao H, Liu Q, Wang X, Li T, Li H, Li G, Tan L, Chen Y. Deciphering the role of female reproductive tract microbiome in reproductive health: a review. Front Cell Infect Microbiol 2024; 14:1351540. [PMID: 38562966 PMCID: PMC10982509 DOI: 10.3389/fcimb.2024.1351540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Li
- Department of Obstetrics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynaecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Genlin Li
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingling Tan
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| |
Collapse
|
3
|
Caetano CF, Gaspar C, Oliveira AS, Palmeira-de-Oliveira R, Rodrigues L, Gonçalves T, Martinez-de-Oliveira J, Palmeira-de-Oliveira A, Rolo J. Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections. Microorganisms 2023; 11:2398. [PMID: 37894056 PMCID: PMC10608876 DOI: 10.3390/microorganisms11102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The role of the fungal community, the mycobiota, in the health of the vagina is currently an important area of research. The emergence of new sequencing technologies and advances in bioinformatics made possible the discovery of novel fungi inhabiting this niche. Candida spp. constitutes the most important group of opportunistic pathogenic fungi, being the most prevalent fungal species in vulvovaginal infections. However, fungi such as Rhodotorula spp., Naganishia spp. and Malassezia spp. have emerged as potential pathogens in this niche, and therefore it is clinically relevant to understand their ecological interaction with Candida spp. The main aim of this study was to evaluate the impact of yeasts on Candida albicans' pathogenicity, focusing on in-vitro growth, and biofilm formation at different times of co-culture and germ tube formation. The assays were performed with isolated species or with co-cultures of C. albicans (ATCC10231) with one other yeast species: Rhodotorula mucilaginosa (DSM13621), Malassezia furfur (DSM6170) or Naganishia albida (DSM70215). The results showed that M. furfur creates a symbiotic relationship with C. albicans, enhancing the growth rate of the co-culture (149.69%), and of germ tube formation of C. albicans (119.8%) and inducing a higher amount of biofilm biomass of the co-culture, both when mixed (154.1%) and preformed (166.8%). As for the yeasts R. mucilaginosa and N. albida, the relationship is antagonistic (with a significant decrease in all assays), thus possibly repressing the mixture's pathogenicity. These results shed light on the complex interactions between yeasts in the vaginal mycobiome.
Collapse
Affiliation(s)
- Cátia Filipa Caetano
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Carlos Gaspar
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Labfit-HPRD: Health Products Research and Development Lda, 6200-284 Covilhã, Portugal
| | - Ana Sofia Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Labfit-HPRD: Health Products Research and Development Lda, 6200-284 Covilhã, Portugal
| | - Lisa Rodrigues
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
| | - Ana Palmeira-de-Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Labfit-HPRD: Health Products Research and Development Lda, 6200-284 Covilhã, Portugal
| | - Joana Rolo
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Zhao C, Li Y, Chen B, Yue K, Su Z, Xu J, Xue W, Zhao G, Zhang L. Mycobiome Study Reveals Different Pathogens of Vulvovaginal Candidiasis Shape Characteristic Vaginal Bacteriome. Microbiol Spectr 2023; 11:e0315222. [PMID: 36995230 PMCID: PMC10269694 DOI: 10.1128/spectrum.03152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) can alter the vaginal microbiome composition and structure, and this may be correlated with its variable treatment efficacy. Integrated analysis of the mycobiome and bacteriome in VVC could facilitate accurate diagnosis of infected patients and further decipher the characterized bacteriome in different types of VVC. Our mycobiome analysis determined two common types of VVC, which were clustered into two community state types (CSTs) featured by Candida glabrata (CST I) and Candida albicans (CST II). Subsequently, we compared the vaginal bacteriome in two CSTs of VVC and two other types of reproductive tract infections (RTIs), bacterial vaginosis (BV) and Ureaplasma urealyticum (UU) infection. The vaginal bacteriome in VVC patients was between the healthy and other RTIs (BV and UU) status, it bore the greatest resemblance to that of healthy subjects. While BV and UU patients have the unique vaginal microbiota community structure, which very different with healthy women. Compared with CST II, the vaginal bacteriome of CST I VVC was characterized by Prevotella, a key signature in BV. In comparison, CST II was featured by Ureaplasma, the pathogen of UU. The findings of our study highlight the need for co-analysis and simultaneous consideration of vaginal mycobiome and bacteriome in the diagnosis and treatment of VVC to solve common clinical problems, such as unsatisfactory cure rates and recurrent symptoms. IMPORTANCE Fungi headed by C. albicans play a critical role in VVC but are not sufficient for its occurrence, indicating the involvement of other factors, such as the vaginal bacteriome. We found that different CST correspond to different bacterial composition in patients with VVC, and this could underlie the alteration of vaginal microorganism environment in VVC patients. We believe that this correlation should not be ignored, and it may be related to the unsatisfactory treatment outcomes and high recurrence rate of VVC. Here, we provided evidence for associations between vaginal bacteriome patterns and fungal infection. Screening specific biomarkers for three common RTIs paves a theoretical basis for further development of personalized precision treatment.
Collapse
Affiliation(s)
- Changying Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Children’s Microbiome Center, Children’s Hospital affiliated with Shandong University, Jinan, China
| | - Ying Li
- Qilu Hospital of Shandong University Dezhou Hospital & Dezhou People's Hospital, Dezhou, China
| | - Bin Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenzhen Su
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Xu
- Qilu Hospital of Shandong University Dezhou Hospital & Dezhou People's Hospital, Dezhou, China
| | - Wanhua Xue
- Qilu Hospital of Shandong University Dezhou Hospital & Dezhou People's Hospital, Dezhou, China
| | - Guoping Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Children’s Microbiome Center, Children’s Hospital affiliated with Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
6
|
Liptáková A, Čurová K, Záhumenský J, Visnyaiová K, Varga I. Microbiota of female genital tract – functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol Res 2022. [DOI: 10.33549/physiolres.934960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microorganisms and eukaryotic human cells coexist in synergistic relationships in nearly every niche of the human body. The female genital tract consisting of the vagina, uterus with its cervix and endometrium, uterine tubes and ovaries – harbors its own typical microbiota, which accounts for 9 % of the total bacterial population in females. To this organ system, we also assigned the microbiome of the placenta, which has not been studied much until now. Among the spectrum of microbial species, the female genital tract is mainly dominated by Lactobacillus species, which are considered to be one of the simplest yet most important microbial communities. However, this relationship between macro- and micro-organisms seems to have a number of physiological functions, e.g., the vaginal and cervical microbiota have unique impact on reproductive health. The aim of this review was to provide current view on female genital tract microbiota and its role in reproductive health. We describe in detail the association of vaginal or tubal epithelium with microbiota or the role of microbiota in normal placental function.
Collapse
Affiliation(s)
| | - K Čurová
- Department of Medical and Clinical Microbiology, Faculty of Medicine, University of P. J. Šafárik, Košice, Slovak Republic.
| | | | | | | |
Collapse
|
7
|
Sica VP, Friberg MA, Teufel AG, Streicher-Scott JL, Hu P, Sauer UG, Krivos KL, Price JM, Baker TR, Abbinante-Nissen JM, Woeller KE. Safety assessment scheme for menstrual cups and application for the evaluation of a menstrual cup comprised of medical grade silicone. EBioMedicine 2022; 86:104339. [PMID: 36370636 PMCID: PMC9664401 DOI: 10.1016/j.ebiom.2022.104339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Ensuring menstrual cup safety is paramount, yet a menstrual cup safety assessment scheme is lacking. This paper presents a quadripartite scheme, showing how it can be applied. METHODS The Tampax Menstrual Cup was evaluated in the safety assessment scheme: (1) Biocompatibility and chemical safety of cup constituents. Extractables were obtained under different use condition; exposure-based risk assessments (EBRA) were conducted for extractables exceeding thresholds of toxicological concern. (2) Physical impact to vaginal mucosa. After physical evaluations, the Tampax Cup and another cup were assessed in a randomised double-blinded, two-product, two-period cross-over clinical trial (65 women, mean age 34.2 years). (3) Impact to vaginal microbiota (in vitro mixed microflora assay and evaluation of vaginal swabs). (4) In vitro growth of Staphylococcus aureus and toxic shock syndrome toxin-1 (TSST-1) production. FINDINGS Biocompatibility assessments and EBRA of cup constituents showed no safety concerns. In the randomised clinical trial, all potentially product-related adverse effects were mild, vaginal exams were unremarkable, no clinically relevant pH changes occurred, post-void residual urine volume with and without cup were similar, and self-reported measures of comfort along with reports of burning, itching and stinging between cups were comparable. Cup use had no effect on microbial growth in vitro or in the 62 subjects who completed the trial or on in vitro TSST-1 production. INTERPRETATION The quadripartite safety assessment scheme allows evaluation of menstrual cup safety. The Tampax Cup is safe and well-tolerated upon intended use. As with all feminine hygiene products, post-market safety surveillance confirmed this conclusion. FUNDING By Procter & Gamble.
Collapse
Affiliation(s)
- Vincent P Sica
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Maria A Friberg
- The Procter and Gamble Company, Baby, Feminine and Family Care Microbiology, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Amber G Teufel
- The Procter and Gamble Company, Baby, Feminine and Family Care Microbiology, 6280 Center Hill Rd., Cincinnati, OH, 45224, USA
| | - Jan L Streicher-Scott
- The Procter and Gamble Company, Feminine Care Clinical, 6110 Center Hill Rd., Cincinnati, OH, 45224, USA
| | - Ping Hu
- The Procter and Gamble Company, Corporate Biosciences, 8700 Mason Montgomery Rd., Mason, OH, USA
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany
| | - Kady L Krivos
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Jason M Price
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Timothy R Baker
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Joan M Abbinante-Nissen
- The Procter and Gamble Company, Global Product Stewardship, Feminine Care, 6110 Center Hill Rd., Cincinnati, OH, 45224, USA
| | - Kara E Woeller
- The Procter and Gamble Company, Global Product Stewardship, Feminine Care, 6110 Center Hill Rd., Cincinnati, OH, 45224, USA.
| |
Collapse
|
8
|
LIPTÁKOVÁ A, ČUROVÁ K, ZÁHUMENSKÝ J, VISNYAIOVÁ K, VARGA I. Microbiota of female genital tract - functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol Res 2022; 71:S21-S33. [PMID: 36592438 PMCID: PMC9853993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microorganisms and eukaryotic human cells coexist in synergistic relationships in nearly every niche of the human body. The female genital tract consisting of the vagina, uterus with its cervix and endometrium, uterine tubes and ovaries - harbors its own typical microbiota, which accounts for 9 % of the total bacterial population in females. To this organ system, we also assigned the microbiome of the placenta, which has not been studied much until now. Among the spectrum of microbial species, the female genital tract is mainly dominated by Lactobacillus species, which are considered to be one of the simplest yet most important microbial communities. However, this relationship between macro- and micro-organisms seems to have a number of physiological functions, e.g., the vaginal and cervical microbiota have unique impact on reproductive health. The aim of this review was to provide current view on female genital tract microbiota and its role in reproductive health. We describe in detail the association of vaginal or tubal epithelium with microbiota or the role of microbiota in normal placental function.
Collapse
Affiliation(s)
- Adriana LIPTÁKOVÁ
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic
| | - Katarína ČUROVÁ
- Department of Medical and Clinical Microbiology, Faculty of Medicine, University of P. J. Šafárik in Košice, Slovak Republic
| | - Jozef ZÁHUMENSKÝ
- Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Slovak Republic
| | - Kristína VISNYAIOVÁ
- Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Slovak Republic
| | - Ivan VARGA
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic
| |
Collapse
|
9
|
Lima R, Ribeiro FC, Colombo AL, de Almeida JN. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:957021. [PMID: 37746212 PMCID: PMC10512401 DOI: 10.3389/ffunb.2022.957021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 09/26/2023]
Abstract
Antifungal resistance in humans, animals, and the environment is an emerging problem. Among the different fungal species that can develop resistance, Candida tropicalis is ubiquitous and causes infections in animals and humans. In Asia and some Latin American countries, C. tropicalis is among the most common species related to candidemia, and mortality rates are usually above 40%. Fluconazole resistance is especially reported in Asian countries and clonal spread in humans and the environment has been investigated in some studies. In Brazil, high rates of azole resistance have been found in animals and the environment. Multidrug resistance is still rare, but recent reports of clinical multidrug-resistant isolates are worrisome. The molecular apparatus of antifungal resistance has been majorly investigated in clinical C. tropicalis isolates, revealing that this species can develop resistance through the conjunction of different adaptative mechanisms. In this review article, we summarize the main findings regarding antifungal resistance and Candida tropicalis through an "One Health" approach.
Collapse
Affiliation(s)
- Ricardo Lima
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Felipe C. Ribeiro
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo L. Colombo
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Joăo N. de Almeida
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
10
|
Candida albicans Modulates Murine and Human Beta Defensin-1 during Vaginitis. J Fungi (Basel) 2021; 8:jof8010020. [PMID: 35049960 PMCID: PMC8778459 DOI: 10.3390/jof8010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) and recurrent vulvovaginal candidiasis (RVVC) are two forms of a disease caused by Candida spp. β-defensin (BD) is one of the most important families of antimicrobial peptides in the female genital tract and includes molecules that exert essential local functions as antimicrobial and PMN chemoattractant peptides. However, the information on their role during murine and human VVC and RVVC is limited. Thus, we analyzed the behavior and contribution of BD1 to the local response in a VVC mice model and the local cytokine profile and human BD1 and BD3 expression in cervicovaginal lavage from patients with VVC and RVVC. We demonstrated that, in patients with RVVC BD1, mRNA and protein expression were severely diminished and that the aspartate proteinase and lipase secreted by C. albicans are involved in that decrease. This study provides novel information about the pathogenesis of VVC and describes a highly efficient C. albicans escape strategy for perpetuating the infection; these results may contribute to the development of new or combined treatment approaches.
Collapse
|
11
|
Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity. Clin Microbiol Rev 2021; 34:e0032320. [PMID: 34259567 PMCID: PMC8404691 DOI: 10.1128/cmr.00323-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Emerging studies have highlighted the disproportionate role of Candida albicans in influencing both early community assembly of the bacterial microbiome and dysbiosis during allergic diseases and intestinal inflammation. Nonpathogenic colonization of the human gastrointestinal (GI) tract by C. albicans is common, and the role of this single fungal species in modulating bacterial community reassembly after broad-spectrum antibiotics can be readily recapitulated in mouse studies. One of the most notable features of C. albicans-associated dysbiotic states is a marked change in the levels of lactic acid bacteria (LAB). C. albicans and LAB share metabolic niches throughout the GI tract, and in vitro studies have identified various interactions between these microbes. The two predominant LAB affected are Lactobacillus species and Enterococcus species. Lactobacilli can antagonize enterococci and C. albicans, while Enterococcus faecalis and C. albicans have been reported to exhibit a mutualistic relationship. E. faecalis and C. albicans are also causative agents of a variety of life-threatening infections, are frequently isolated together from mixed-species infections, and share certain similarities in clinical presentation-most notably their emergence as opportunistic pathogens following disruption of the microbiota. In this review, we discuss and model the mechanisms used by Lactobacillus species, E. faecalis, and C. albicans to modulate each other's growth and virulence in the GI tract. With multidrug-resistant E. faecalis and C. albicans strains becoming increasingly common in hospital settings, examining the interplay between these three microbes may provide novel insights for enhancing the efficacy of existing antimicrobial therapies.
Collapse
|
12
|
Baldewijns S, Sillen M, Palmans I, Vandecruys P, Van Dijck P, Demuyser L. The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis. Front Microbiol 2021; 12:705779. [PMID: 34276639 PMCID: PMC8282898 DOI: 10.3389/fmicb.2021.705779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Although the vast majority of women encounters at least one vaginal infection during their life, the amount of microbiome-related research performed in this area lags behind compared to alternative niches such as the intestinal tract. As a result, effective means of diagnosis and treatment, especially of recurrent infections, are limited. The role of the metabolome in vaginal health is largely elusive. It has been shown that lactate produced by the numerous lactobacilli present promotes health by limiting the chance of infection. Short chain fatty acids (SCFA) have been mainly linked to dysbiosis, although the causality of this relationship is still under debate. In this review, we aim to bring together information on the role of the vaginal metabolome and microbiome in infections caused by Candida. Vulvovaginal candidiasis affects near to 70% of all women at least once in their life with a significant proportion of women suffering from the recurrent variant. We assess the role of fatty acid metabolites, mainly SCFA and lactate, in onset of infection and virulence of the fungal pathogen. In addition, we pinpoint where lack of research limits our understanding of the molecular processes involved and restricts the possibility of developing novel treatment strategies.
Collapse
Affiliation(s)
- Silke Baldewijns
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Mart Sillen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
13
|
Griffiths JS, Camilli G, Kotowicz NK, Ho J, Richardson JP, Naglik JR. Role for IL-1 Family Cytokines in Fungal Infections. Front Microbiol 2021; 12:633047. [PMID: 33643264 PMCID: PMC7902786 DOI: 10.3389/fmicb.2021.633047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fungal pathogens kill approximately 1.5 million individuals per year and represent a severe disease burden worldwide. It is estimated over 150 million people have serious fungal disease such as recurrent mucosal infections or life-threatening systemic infections. Disease can ensue from commensal fungi or new infection and involves different fungal morphologies and the expression of virulence factors. Therefore, anti-fungal immunity is complex and requires coordination between multiple facets of the immune system. IL-1 family cytokines are associated with acute and chronic inflammation and are essential for the innate response to infection. Recent research indicates IL-1 cytokines play a key role mediating immunity against different fungal infections. During mucosal disease, IL-1R and IL-36R are required for neutrophil recruitment and protective Th17 responses, but function through different mechanisms. During systemic disease, IL-18 drives protective Th1 responses, while IL-33 promotes Th2 and suppresses Th1 immunity. The IL-1 family represents an attractive anti-fungal immunotherapy target. There is a need for novel anti-fungal therapeutics, as current therapies are ineffective, toxic and encounter resistance, and no anti-fungal vaccine exists. Furthering our understanding of the IL-1 family cytokines and their complex role during fungal infection may aid the development of novel therapies. As such, this review will discuss the role for IL-1 family cytokines in fungal infections.
Collapse
Affiliation(s)
- James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Natalia K Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Farr Zuend C, Noël-Romas L, Hoger S, McCorriser S, Westmacott G, Marrazzo J, Hillier SL, Dezzutti C, Squires K, Bunge KE, Burgener A. Influence of dapivirine vaginal ring use on cervicovaginal immunity and functional microbiome in adolescent girls. AIDS 2021; 35:369-380. [PMID: 33181534 PMCID: PMC7924934 DOI: 10.1097/qad.0000000000002751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The antiretroviral-based dapivirine vaginal ring reduced HIV risk among women in phase III clinical trials. However, limited data exists on the impact of dapivirine on the vaginal microenvironment in adolescents. DESIGN A comprehensive metaproteomics approach was used to assess host proteome and microbiome changes in cervicovaginal mucus with dapivirine ring use in adolescents enrolled in the MTN-023/IPM 030 (MTN-023) trial. METHODS Participants were randomized 3 : 1 to use dapivirine or placebo vaginal rings monthly for 6 months. Cervicovaginal samples from a subset of 35 participants (8 placebo, 27 dapivirine) were analyzed. RESULTS Mass spectrometry analysis identified 405 human and 2467 bacterial proteins belonging to 15 unique genera. The host proteome belonged to many functional pathways primarily related to inflammation. When stratified by study treatment arm, 18 (4.4%) and 28 (6.9%) human proteins were differentially abundant (adjusted P < 0.05) between baseline and follow-up in the placebo and dapivirine arms, respectively. The vaginal microbiome was predominantly composed of Lactobacillus, Gardnerella, and Prevotella. Although bacterial taxa did not differ by arm or change significantly, Lactobacillus crispatus increased (P < 0.001) and Lactobacillus iners decreased (P < 0.001) during the 6-month follow-up. There were no significant differences in bacterial functions by arm or time in the trial. Protected vaginal sex significantly associated with decreased neutrophil inflammatory biomarkers and may be associated with changes in bacterial taxa and metabolism. CONCLUSION Condom use may associate with differences to inflammation and bacterial function but dapivirine ring use does not, thereby supporting the mucosal safety profile of this vaginal ring for adolescents.
Collapse
Affiliation(s)
- Christina Farr Zuend
- Center for Global health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura Noël-Romas
- Center for Global health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Obstetrics and Gynecology and Medical Microbiology, University of Manitoba
| | - Sarah Hoger
- Departments of Obstetrics and Gynecology and Medical Microbiology, University of Manitoba
| | - Stuart McCorriser
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jeanne Marrazzo
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sharon L. Hillier
- University of Pittsburgh School of Medicine
- Magee-Women's Research Institute, Pittsburgh
| | - Charlene Dezzutti
- University of Pittsburgh School of Medicine
- Magee-Women's Research Institute, Pittsburgh
| | - Kathleen Squires
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katherine E. Bunge
- University of Pittsburgh School of Medicine
- Magee-Women's Research Institute, Pittsburgh
| | - Adam Burgener
- Center for Global health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Obstetrics and Gynecology and Medical Microbiology, University of Manitoba
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
The Role of T Helper 17 (Th17) and Regulatory T Cells (Treg) in the Pathogenesis of Vulvovaginal Candidiasis among HIV-Infected Women. Int J Microbiol 2020. [DOI: 10.1155/2020/8841113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. The study sought to describe relationships between 20 cytokines and chemokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1β, TNF-α, TGF-β1, TGF-β2, and TGF-β3) and the presence of vulvovaginal candidiasis (VVC) in women, stratified by HIV status. Methods. Plasma and genital samples were obtained from 51 clinic attendees in KwaZulu-Natal between June 2011 and December 2011. Cytokine and chemokine concentrations were measured by Luminex® multiplex immunoassays. Multiple comparisons of means of cytokine/chemokine levels displaying significant differences in univariate analyses across the study groups were performed using post hoc Bonferroni pairwise tests considering a type I error rate of 0.05. A discriminant analysis (DA) was carried out to identify linear combinations of variates that would maximally discriminate group memberships. Results. Of the 51 participants, 16/26 HIV-infected and 15/25 HIV-uninfected women were diagnosed with VVC. DA identified 2 variables (MIP-1β and TGF-β3) in plasma (Box’s M (5.49),
(0.57) > α (0.001); Wilks’ lambda = 0.116,
) and 1 variable (IL-13) in vaginal secretions (Box’s M (2.063),
(0.37) > α (0.001); Wilks’ lambda = .677,
) as able to discriminate the HIV + VVC + group, whilst TGF-β1 in plasma discriminated the HIV + VVC − group. Mean concentrations of genital IL-6, IL-8, IL-10, IL-17, and TGF-β3 were significantly higher in HIV infected women coinfected with VVC. Conclusions. In HIV-infected women, VVC might be explained by a decline of Th17 cells, hence a decrease of Th17/Treg ratio.
Collapse
|
16
|
Huckabay L, Fisher DG, Reynolds GL, Rannalli D, Erlyana E. Gender differences in risk taking behaviors for Chlamydia trachomatis. Health Care Women Int 2020; 41:1147-1165. [PMID: 32701401 DOI: 10.1080/07399332.2020.1797037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chlamydia trachomatis (CT) is a global problem. We compared the risk taking behaviors for CT infection between men and women. Adults (2299 females, 5559 males) were administered the Risk Behavior Assessment. In women, CT was associated with candidiasis, in men with gonorrhea, genital warts, and syphilis. Risk factors for both genders were trading sex for money, use of marijuana for women, and use of Ecstasy and Viagra for men. Those with CT had higher risk perception for HIV infection and were more likely to obtain HIV testing. Patient teaching and concurrent testing for HIV and CT are imperative.
Collapse
Affiliation(s)
- Loucine Huckabay
- School of Nursing, California State University, Long Beach, Long Beach, California, USA
| | - Dennis G Fisher
- Department of Psychology and Center for Behavioral Research and Services, California State University, Long Beach, Long Beach, California, USA
| | - Grace L Reynolds
- Department of Health Care Administration and Center for Behavioral Research and Services, California State University, Long Beach, Long Beach, California, USA
| | - Debby Rannalli
- School of Nursing, California State University, Long Beach, Long Beach, California, USA
| | - Erlyana Erlyana
- Department of Health Care Administration and Center for Behavioral Research and Services, California State University, Long Beach, Long Beach, California, USA
| |
Collapse
|
17
|
Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob 2020; 19:5. [PMID: 31992328 PMCID: PMC6986042 DOI: 10.1186/s12941-020-0347-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI) has not only become an epidemiological and clinical problem but also include large social and psychological consequences. Understanding the mechanisms of both commensalism and pathogenesis are necessary for the development of efficient diagnosis and treatment strategies for these enigmatic vaginal infections. Through this review, an attempt has been made to analyze vaginal microbiota (VMB) from scratch and to provide an update on its current understanding in relation to health and common RVVI i.e. bacterial vaginosis, vulvovaginal candidiaisis and Trichomoniasis, making the present review first of its kind. For this, potentially relevant studies were retrieved from data sources and critical analysis of the literature was made. Though, culture-independent methods have greatly unfolded the mystery regarding vaginal bacterial microbiome, there are only a few studies regarding the composition and diversity of vaginal mycobiome and different Trichomonas vaginalis strains. This scenario suggests a need of further studies based on comparative genomics of RVVI pathogens to improve our perceptive of RVVI pathogenesis that is still not clear (Fig. 5). Besides this, the review details the rationale for Lactobacilli dominance and changes that occur in healthy VMB throughout a women's life. Moreover, the list of possible agents continues to expand and new species recognised in both health and VVI are updated in this review. The review concludes with the controversies challenging the widely accepted dogma i.e. "VMB dominated with Lactobacilli is healthier than a diverse VMB". These controversies, over the past decade, have complicated the definition of vaginal health and vaginal infections with no definite conclusion. Thus, further studies on newly recognised microbial agents may reveal answers to these controversies. Conversely, VMB of women could be an answer but it is not enough to just look at the microbiology. We have to look at the woman itself, as VMB which is fine for one woman may be troublesome for others. These differences in women's response to the same VMB may be determined by a permutation of behavioural, cultural, genetic and various other anonymous factors, exploration of which may lead to proper definition of vaginal health and disease.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, 143005 India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, 143005 India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005 India
| |
Collapse
|
18
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
19
|
Azzam SZ, Cayme GJ, Martinez LR. Polymicrobial interactions involving fungi and their importance for the environment and in human disease. Microb Pathog 2019; 140:103942. [PMID: 31881258 DOI: 10.1016/j.micpath.2019.103942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
Understanding polymicrobial interactions involving fungi in the environment and the human mycobiome is necessary to address environmental and medically related problems such as drought or antimicrobial resistance. The diversity of these interactions highlights the complexity of fungi, considering how some interactions can be antagonistic, while others synergistic. Over the years, an increase in studies on the mycobiome have revealed similarities between the human and environmental hosts. More recently, studies have focused on microbial commensal relationships and identifying causative agents of human disease. The overlap of some of these interactions is impossible to ignore, indicating that there are areas for medical exploitation that need to be further investigated. This review provides the latest advances in polymicrobial interactions involving fungi and discusses the importance of the fungal lifestyle in the environment and in human disease.
Collapse
Affiliation(s)
- Seham Z Azzam
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Ginelle J Cayme
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Luis R Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Chatzivasileiou P, Vyzantiadis TA. Vaginal yeast colonisation: From a potential harmless condition to clinical implications and management approaches-A literature review. Mycoses 2019; 62:638-650. [PMID: 31038771 DOI: 10.1111/myc.12920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/11/2023]
Abstract
Vaginal yeast colonisation is a common clinical condition in premenopausal women. The potential pathogenicity and the circumstances under which it could evolve into infection are not fully clarified. Extensive review the literature regarding the definition of the vaginal yeast colonisation, its demographic features and causes as well as the risk factors favouring infection along with the necessity of treatment. Databases, namely PubMed-MEDLINE, Google Scholar, the University College London databases, e-journals, e-books and official Health Organisations websites were extensively searched in English, French, German and Greek language with no restriction in the type of publications during the last thirty years. In healthy women, vaginal yeast colonisation is an asymptomatic state with Candida albicans being the most prevalent species. Pregnant, HIV-positive and diabetic hosts are at higher risk. Other risk factors include oral contraceptives, hormonal replacement therapy and previous antibiotic use. Colonisation does not necessitate therapeutic intervention when asymptomatic. Prophylactic therapy during the third trimester of pregnancy is often recommended for reducing the risk of neonatal candidiasis. The distinction between commensalism and vaginitis is often complicated. Clinicians should be aware of the clinical context in order to decide the indicated therapeutic approach.
Collapse
Affiliation(s)
- Panagiota Chatzivasileiou
- First Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
21
|
Li T, Liu Z, Zhang X, Chen X, Wang S. Local Probiotic Lactobacillus crispatus and Lactobacillus delbrueckii Exhibit Strong Antifungal Effects Against Vulvovaginal Candidiasis in a Rat Model. Front Microbiol 2019; 10:1033. [PMID: 31139166 PMCID: PMC6519388 DOI: 10.3389/fmicb.2019.01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
A comprehensive knowledge of the vaginal ecosystem is critical for the development of successful approaches to the treatment of infections. The role of Lactobacilli in preventing vulvovaginal candidiasis (VVC) is controversial. In this study, we investigated the therapeutic effects and mechanism of Lactobacillus crispatus or delbrueckii on vaginitis caused by Candida albicans in a Sprague–Dawley rat model. A microbiological evaluation was performed by Gram staining and fungal colonies were enumerated. The antifungal efficacy of the two Lactobacillus strains was assessed by hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), immunohistochemical detection of interferon-γ (IFN-γ), interleukin (IL)-4, IL-17, and epithelial-derived IgG (RP125). Our in vitro results showed that the inhibitory activity against Candida colony-forming unit (CFU) counts was demonstrated by the two Lactobacillus strains (P < 0.001). Our results indicated that Lactobacillus administration played an indispensable role in maintaining the immune homeostasis, and decreasing the Th1/Th2 ratio (IFN-γ/IL-4) by regulating the epithelial secretion of cytokines that inhibit epithelial proinflammatory cytokine release, while increasing epithelial-derived IgG expression (P < 0.05), suggesting antibody-mediated protection. Our results implicate L. crispatus and L. delbrueckii as a potential adjunct biotherapeutic agent in women with VVC, especially for those with drug resistance, adverse effects or contraindications when using antifungal agents. Further large, long-term, well-planned clinical studies should be performed in clinical practice to determine their clinical potential of L. crispatus and L. delbrueckii as an adjunct treatment for VVC.
Collapse
Affiliation(s)
- Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Xi Chen
- Laboratory of Electron Microscopy, Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Zhang X, Li T, Chen X, Wang S, Liu Z. Nystatin enhances the immune response against Candida albicans and protects the ultrastructure of the vaginal epithelium in a rat model of vulvovaginal candidiasis. BMC Microbiol 2018; 18:166. [PMID: 30359236 PMCID: PMC6202846 DOI: 10.1186/s12866-018-1316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is a common infectious disease of the lower genital tract. Nystatin, a polyene fungicidal antibiotic, is used as a topical antifungal agent for VVC treatment. The aim of the current study was to investigate the possible immunomodulatory effects of nystatin on the vaginal mucosal immune response during Candida albicans infection and examine its role in protection of vaginal epithelial cell (VEC) ultrastructure. Results Following infection with C. albicans, IFN-γ and IL-17 levels in VECs were significantly elevated, while the presence of IgG was markedly decreased as compared to uninfected controls (P < 0.05). No significant differences in IL4 expression were observed. After treatment with nystatin, the level of IFN-γ, IL-17 and IgG was dramatically increased in comparison to the untreated group (P < 0.05). Transmission electron microscopy revealed that C. albicans invades the vaginal epithelium by both induced endocytosis and active penetration. Nystatin treatment protects the ultrastructure of the vaginal epithelium. Compared with the untreated C. albicans-infected group, Flameng scores which measure mitochondrial damage of VECs were markedly decreased (P < 0.001) and the number of adhesive and invasive C. albicans was significantly reduced (P < 0.01) after treatment with nystatin. Conclusions Nystatin plays a protective role in the host defense against C. albicans by up-regulating the IFN-γ-related cellular response, the IL-17 signaling pathway and possibly through enhancing VEC-derived IgG-mediated immunity. Furthermore, nystatin notably improves the ultramorphology of the vaginal mucosa, partially through the protection of mitochondria ultrastructure in VECs and inhibition of adhesion and invasion by C. albicans. Together, these effects enhance the immune response of the vaginal mucosa against C. albicans and protect the ultrastructure of vaginal epithelium in VVC rats.
Collapse
Affiliation(s)
- Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, 100034, China
| | - Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xi Chen
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, 100034, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
23
|
Rodero CF, Fioramonti Calixto GM, Cristina Dos Santos K, Sato MR, Aparecido Dos Santos Ramos M, Miró MS, Rodríguez E, Vigezzi C, Bauab TM, Sotomayor CE, Chorilli M. Curcumin-Loaded Liquid Crystalline Systems for Controlled Drug Release and Improved Treatment of Vulvovaginal Candidiasis. Mol Pharm 2018; 15:4491-4504. [PMID: 30184431 DOI: 10.1021/acs.molpharmaceut.8b00507] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vulvovaginal candidiasis (VVC) is the most common infection caused by Candida albicans and greatly reduces the quality of life of women affected by it. Due to the ineffectiveness of conventional treatments, there is growing interest in research involving compounds of natural origin. One such compound is curcumin (CUR), which has been proven to be effective against this microorganism. However, some of CUR's physicochemical properties, especially its low aqueous solubility, make the therapeutic application of this compound difficult. Thus, the incorporation of CUR in mucoadhesive liquid crystalline systems (MLCSs) for vaginal administration may be an efficient strategy for the treatment of VVC. MLCSs are capable of potentiating the compound's action, releasing it in a controlled manner, and can enable longer exposure at the site of infection. In this study, MLCSs consisting of oleic acid and ergosterol 5:1 (w/w) as the oily phase, PPG-5-CETETH-20 as the surfactant, and a polymer dispersion of 1% chitosan as the aqueous phase, were developed for the application of CUR (MLCS-CUR) in VVC treatment. The formulations were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), oscillatory rheometry, continuous shear rheometry, texture profile analysis, and in vitro mucoadhesion. In addition, the antimicrobial activity was evaluated in vitro, and the effects on local fungal burden and cytokine profiles were investigated in a murine model of VVC. PLM and SAXS showed that the developed formulations presented a characteristic of a microemulsion. However, after the addition of artificial vaginal mucus (AVM), PLM showed that the formulations had structures similar to the "Maltese cross" characteristic of lamellar MLCS. Mucoadhesive test results showed an increase in the mucoadhesive strength of these formulations. Rheology analyses suggested long-lasting action of the formulation at the infected site. The in vitro antimicrobial activity assays suggested that CUR possesses antifungal activity against Candida albicans, determined after its incorporation into the MLCS. Further, MLCS-CUR was also more effective in vivo in the control of vaginal infection than treatment with fluconazole. Immunological assays showed that the ratio of pro-inflammatory (IL-1β) to anti-inflammatory (TGF-β) cytokines has decreased and that there is a reduction in the number of polymorphonuclear neutrophils recruited to the vaginal lumen, showing that treatment with MLCS-CUR was effective in modulating the inflammatory reaction associated with the infection. The results suggest that MLCSs could potentially be used in the treatment of VVC with CUR.
Collapse
Affiliation(s)
- Camila Fernanda Rodero
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Giovana Maria Fioramonti Calixto
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Karen Cristina Dos Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Mariana Rillo Sato
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Biological Sciences, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Maria Soledad Miró
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Emilse Rodríguez
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Cecilia Vigezzi
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Claudia Elena Sotomayor
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Marlus Chorilli
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| |
Collapse
|
24
|
Yano J, Peters BM, Noverr MC, Fidel PL. Novel Mechanism behind the Immunopathogenesis of Vulvovaginal Candidiasis: "Neutrophil Anergy". Infect Immun 2018; 86:e00684-17. [PMID: 29203543 PMCID: PMC5820946 DOI: 10.1128/iai.00684-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For over 3 decades, investigators have studied the pathogenesis of vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) through clinical studies and animal models. While there was considerable consensus that susceptibility was not associated with any apparent deficiencies in adaptive immunity, protective immune mechanisms and the role of innate immunity remained elusive. It was not until an innovative live-challenge design was conducted in women that a fuller understanding of the natural history of infection/disease was achieved. These studies revealed that symptomatic infection is associated with recruitment of polymorphonuclear neutrophils (PMNs) into the vaginal lumen. Subsequent studies in the established mouse model demonstrated that infiltrating PMNs were incapable of reducing the fungal burden, which supported the hypothesis that VVC/RVVC was an immunopathology, whereby Candida and the host response drive symptomatic disease. Further studies in mice revealed the requirement for C. albicans hyphae and identified pattern recognition receptors (PRRs) and proinflammatory mediators responsible for the PMN response, all of which are critical pieces of the immunopathogenesis. However, a mechanism explaining PMN dysfunction at the vaginal mucosa remained an enigma. Ultimately, by employing mouse strains resistant or susceptible to chronic VVC, it was determined that heparan sulfate (HS) in the vaginal environment of susceptible mice serves as a competitive ligand for Mac-1 on PMNs, which effectively renders the PMNs incapable of binding to Candida to initiate killing. Hence, the outcome of symptomatic VVC/RVVC is postulated to be dependent on a PMN-mediated immunopathogenic response involving HS that effectively places the neutrophils in a state of functional anergy.
Collapse
Affiliation(s)
- Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, Louisiana, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Mairi C Noverr
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, Louisiana, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, Louisiana, USA
| |
Collapse
|
25
|
Talaei Z, Sheikhbahaei S, Ostadi V, Ganjalikhani Hakemi M, Meidani M, Naghshineh E, Yaran M, Emami Naeini A, Sherkat R. Recurrent Vulvovaginal Candidiasis: Could It Be Related to Cell-Mediated Immunity Defect in Response to Candida Antigen? INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:134-141. [PMID: 28868834 PMCID: PMC5582140 DOI: 10.22074/ijfs.2017.4883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/05/2016] [Indexed: 02/05/2023]
Abstract
Background Recurrent vulvovaginal candidiasis (RVVC) is a common cause of morbidity affecting millions of women worldwide. Patients with RVVC are thought to have
an underlying immunologic defect. This study has been established to evaluate cell-mediated immunity defect in response to candida antigen in RVVC cases. Materials and Methods Our cross-sectional study was performed in 3 groups of RVVC
patients (cases), healthy individuals (control I) and known cases of chronic mucocutaneous candidiasis (CMC) (control II). Patients who met the inclusion criteria of RVVC
were selected consecutively and were allocated in the case group. Peripheral blood mononuclear cells were isolated and labeled with CFSE and proliferation rate was measured
in exposure to candida antigen via flow cytometry. Results T lymphocyte proliferation in response to candida was significantly lower in
RVVC cases (n=24) and CMC patients (n=7) compared to healthy individuals (n=20,
P<0.001), but no statistically significant difference was seen between cases and control
II group (P>0.05). Family history of primary immunodeficiency diseases (PID) differed
significantly among groups (P=0.01), RVVC patients has family history of PID more than
control I (29.2 vs. 0%, P=0.008) but not statistically different from CMC patients (29.2
vs. 42.9%, P>0.05). Prevalence of atopy was greater in RVVC cases compared to healthy
individuals (41.3 vs. 15%, P=0.054). Lymphoproliferative activity and vaginal symptoms
were significantly different among RVVC cases with and without allergy (P=0.01, P=0.02). Conclusion Our findings revealed that T cells do not actively proliferate in response to
Candida antigen in some RVVC cases. So it is concluded that patients with cell-mediated
immunity defect are more susceptible to recurrent fungal infections of vulva and vagina.
Nonetheless, some other cases of RVVC showed normal function of T cells. Further evaluations showed that these patients suffer from atopy. It is hypothesized that higher frequency
of VVC in patients with history of atopy might be due to allergic response in mucocutaneous
membranes rather than a functional impairment in immune system components.
Collapse
Affiliation(s)
- Zahra Talaei
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Sheikhbahaei
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Ostadi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Meidani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Naghshineh
- Department of Obstetrics Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Yaran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Emami Naeini
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
26
|
Faria DR, Sakita KM, Akimoto-Gunther LS, Kioshima ÉS, Svidzinski TIE, Bonfim-Mendonça PDS. Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. J Med Microbiol 2017; 66:1225-1228. [DOI: 10.1099/jmm.0.000547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Daniella Renata Faria
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Karina Mayumi Sakita
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Luciene Setsuko Akimoto-Gunther
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Érika Seki Kioshima
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Patrícia de Souza Bonfim-Mendonça
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| |
Collapse
|
27
|
Effect of Vaginal Hygiene Module to Attitudes and Behavior of Pathological Vaginal Discharge Prevention Among Female Adolescents in Slemanregency, Yogyakarta, Indonesia. J Family Reprod Health 2017; 11:104-109. [PMID: 29282418 PMCID: PMC5742663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To determine the effect of vaginal hygiene module to attitudes and behavior of pathological vaginal discharge prevention in adolescent girls in Sleman Regency, Yogyakarta, Indonesia. Materials and methods: This present study is a quasi experiment with pretest and post-test control group design. A total of 80 female students was selected randomly from two secondary schools at the study site and then distributed equally to control and experimental group. Only participants in the experimental group were given self-learning vaginal hygiene module to maintain vaginal cleanliness. A questionnaire was used as an instrument to measure the attitudes and behavior of vaginal discharge prevention. Paired and independent sample t-tests with significance level (p value) at 0.05 and Confidence Interval (CI) of 95%were employed to compare the mean difference. Results: There is a significant difference in the students' attitude and practice of pathological vaginal discharge prevention between intervention and control group. The students who have been exposed to vaginal hygiene module for six months showed better attitudes and practice in pathological vaginal discharge prevention compared to their counterpart in control group who do not receive any module. Conclusion: The present study implied that vaginal hygiene module can be provided widely for female adolescents at their early puberty. District health officers may work closely with schools' health promoter to reach the students and create a supportive environment for reproductive health discussion and forum in order to achieve better adolescents' reproductive health status.
Collapse
|
28
|
Bradford LL, Ravel J. The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases. Virulence 2016; 8:342-351. [PMID: 27657355 PMCID: PMC5411243 DOI: 10.1080/21505594.2016.1237332] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most of what is known about fungi in the human vagina has come from culture-based studies and phenotypic characterization of single organisms. Though valuable, these approaches have masked the complexity of fungal communities within the vagina. The vaginal mycobiome has become an emerging field of study as genomics tools are increasingly employed and we begin to appreciate the role these fungal communities play in human health and disease. Though vastly outnumbered by its bacterial counterparts, fungi are important constituents of the vaginal ecosystem in many healthy women. Candida albicans, an opportunistic fungal pathogen, colonizes 20% of women without causing any overt symptoms, yet it is one of the leading causes of infectious vaginitis. Understanding its mechanisms of commensalism and patho-genesis are both essential to developing more effective therapies. Describing the interactions between Candida, bacteria (such as Lactobacillus spp.) and other fungi in the vagina is funda-mental to our characterization of the vaginal mycobiome.
Collapse
Affiliation(s)
- L. Latéy Bradford
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA,CONTACT Jacques Ravel Institute for Genome Sciences, 801 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit Rev Microbiol 2015; 42:905-27. [PMID: 26690853 DOI: 10.3109/1040841x.2015.1091805] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vulvovaginal candidiasis (VVC) is an infection caused by Candida species that affects millions of women every year. Although Candida albicans is the main cause of VVC, the identification of non-Candida albicans Candida (NCAC) species, especially Candida glabrata, as the cause of this infection, appears to be increasing. The development of VVC is usually attributed to the disturbance of the balance between Candida vaginal colonization and host environment by physiological or nonphysiological changes. Several host-related and behavioral risk factors have been proposed as predisposing factors for VVC. Host-related factors include pregnancy, hormone replacement, uncontrolled diabetes, immunosuppression, antibiotics, glucocorticoids use and genetic predispositions. Behavioral risk factors include use of oral contraceptives, intrauterine device, spermicides and condoms and some habits of hygiene, clothing and sexual practices. Despite a growing list of recognized risk factors, much remains to be elucidated as the role of host versus microorganisms, in inducing VVC and its recurrence. Thus, this review provides information about the current state of knowledge on the risk factors that predispose to VVC, also including a revision of the epidemiology and microbiology of VVC, as well as of Candida virulence factors associated with vaginal pathogenicity.
Collapse
Affiliation(s)
- Bruna Gonçalves
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Carina Ferreira
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Carlos Tiago Alves
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Mariana Henriques
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Joana Azeredo
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Sónia Silva
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| |
Collapse
|
30
|
Phenotypic Detection of Genitourinary Candidiasis among Sexually Transmitted Disease Clinic Attendees in Ladoke Akintola University Teaching Hospital, Osogbo, Nigeria. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2015; 2015:401340. [PMID: 26064140 PMCID: PMC4438167 DOI: 10.1155/2015/401340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/12/2023]
Abstract
The management of genitourinary candidiasis (GC) is fraught with challenges, especially, in an era of increasing antifungal resistance. This descriptive cross-sectional study conducted between May 2013 and January 2014 determined the prevalence and characteristics of GC and the species of Candida among 369 attendees of a Sexually Transmitted Disease (STD) clinic of Ladoke Akintola University Teaching Hospital, Osogbo, Nigeria. Appropriate urogenital specimen collected from each attendee was examined by microscopy and culture for Candida, with preliminary species identification by CHROMAgar Candida and confirmation by Analytical Profile Index (API) 20C AUX. The age range of attendees was 1-80 years, mean age was 36.32 ± 11.34 years, and male to female ratio was 1 to 3. The prevalence of genitourinary candidiasis was 47.4%, with 4.9% in males and 42.5% in females (p < 0.0001). The age groups 31-45 and 16-30 have the highest prevalence of 23.3% and 16.8%, respectively. The species of Candida recovered include Candida glabrata 46.9%, Candida albicans 33.7%, Candida dubliniensis 9.7%, Candida tropicalis 5.7%, Candida krusei 1.7%, Candida lusitaniae 1.7%, and Candida utilis 0.6%. This study reported non-C. albicans Candida, especially C. glabrata, as the most frequently isolated species in GC, contrary to previous studies in this environment and elsewhere.
Collapse
|
31
|
Bruno VM, Shetty AC, Yano J, Fidel PL, Noverr MC, Peters BM. Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio 2015; 6:e00182-15. [PMID: 25900651 PMCID: PMC4453569 DOI: 10.1128/mbio.00182-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Treatment of vulvovaginal candidiasis (VVC), caused most frequently by Candida albicans, represents a significant unmet clinical need. C. albicans, as both a commensal and a pathogenic organism, has a complex and poorly understood interaction with the vaginal environment. Understanding the complex nature of this relationship is necessary for the development of desperately needed therapies to treat symptomatic infection. Using transcriptome sequencing (RNA-seq), we characterized the early murine vaginal and fungal transcriptomes of the organism during VVC. Network analysis of host genes that were differentially expressed between infected and naive mice predicted the activation or repression of several signaling pathways that have not been previously associated with VVC, including NLRP3 inflammasome activation. Intravaginal challenge of Nlrp3(-/-) mice with C. albicans demonstrated severely reduced levels of polymorphonuclear leukocytes (PMNs), alarmins, and inflammatory cytokines, including interleukin-1β (IL-1β) (the hallmarks of VVC immunopathogenesis) in vaginal lavage fluid. Intravaginal administration of wild-type (WT) mice with glyburide, a potent inhibitor of the NLRP3 inflammasome, reduced PMN infiltration and IL-1β to levels comparable to those observed in Nlrp3(-/-) mice. Furthermore, RNA-seq analysis of C. albicans genes indicated robust expression of hypha-associated secreted aspartyl proteinases 4, 5, and 6 (SAP4-6), which are known inflammasome activators. Despite colonization similar to that of the WT strain, ΔSAP4-6 triple and ΔSAP5 single mutants induced significantly less PMN influx and IL-1β during intravaginal challenge. Our findings demonstrate a novel role for the inflammasome in the immunopathogenesis of VVC and implicate the hypha-associated SAPs as major C. albicans virulence determinants during vulvovaginal candidiasis. IMPORTANCE Vaginitis, most commonly caused by the fungus Candida albicans, results in significant quality-of-life issues for all women of reproductive age. Recent efforts have suggested that vaginitis results from an immunopathological response governed by host innate immunity, although an explanatory mechanism has remained undefined. Using comprehensive genomic, immunological, and pharmacological approaches, we have elucidated the NLRP3 inflammasome as a crucial molecular mechanism contributing to host immunopathology. We have also demonstrated that C. albicans hypha-associated secreted aspartyl proteinases (SAP4-6 and SAP5, more specifically) contribute to disease immunopathology. Ultimately, this study enhances our understanding of the complex interplay between host and fungus at the vaginal mucosa and provides proof-of-principle evidence for therapeutic targeting of inflammasomes for symptomatic vulvovaginal candidiasis.
Collapse
Affiliation(s)
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junko Yano
- Department of Oral Biology, School of Dentistry, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
32
|
Diverse nitrogen sources in seminal fluid act in synergy to induce filamentous growth of Candida albicans. Appl Environ Microbiol 2015; 81:2770-80. [PMID: 25662979 DOI: 10.1128/aem.03595-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic fungus Candida albicans is the leading cause of vulvovaginal candidiasis (VVC). VVC represents a major quality-of-life issue for women during their reproductive years, a stage of life where the vaginal epithelium is subject to periodic hormonally induced changes associated with menstruation and concomitant exposure to serum as well as potential intermittent contact with seminal fluid. Seminal fluid potently triggers Candida albicans to switch from yeastlike to filamentous modes of growth, a developmental response tightly linked to virulence. Conversely, vaginal fluid inhibits filamentation. Here, we used artificial formulations of seminal and vaginal fluids that faithfully mimic genuine fluids to assess the contribution of individual components within these fluids to filamentation. The high levels of albumin, amino acids, and N-acetylglucosamine in seminal fluid act synergistically as potent inducers of filamentous growth, even at atmospheric levels of CO2 and reduced temperatures (30 °C). Using a simplified in vitro model that mimics the natural introduction of seminal fluid into the vulvovaginal environment, a pulse of artificial seminal fluid (ASF) was found to exert an enduring potential to overcome the inhibitory efficacy of artificial vaginal fluid (AVF) on filamentation. These findings suggest that a transient but substantial change in the nutrient levels within the vulvovaginal environment during unprotected coitus can induce resident C. albicans cells to engage developmental programs associated with virulent growth.
Collapse
|
33
|
Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 2013; 82:783-92. [PMID: 24478092 DOI: 10.1128/iai.00861-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.
Collapse
|
34
|
Hormonal contraception decreases bacterial vaginosis but oral contraception may increase candidiasis: implications for HIV transmission. AIDS 2013; 27:2141-53. [PMID: 23660575 DOI: 10.1097/qad.0b013e32836290b6] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A 2012 WHO consultation concluded that combined oral contraception (COC) does not increase HIV acquisition in women, but the evidence for depot medroxyprogesterone acetate (DMPA) is conflicting. We evaluated the effect of COC and DMPA use on the vaginal microbiome because current evidence suggests that any deviation from a 'healthy' vaginal microbiome increases women's susceptibility to HIV. METHODS We conducted a systematic review and reanalysed the Hormonal Contraception and HIV Acquisition (HC-HIV) study. Vaginal microbiome outcomes included bacterial vaginosis by Nugent scoring, vaginal candidiasis by culture or KOH wet mount and microbiome compositions as characterized by molecular techniques. RESULTS Our review of 36 eligible studies found that COC and DMPA use reduce bacterial vaginosis by 10-20 and 18-30%, respectively. The HC-HIV data showed that COC and DMPA use also reduce intermediate microbiota (Nugent score of 4-6) by 11% each. In contrast, COC use (but not DMPA use) may increase vaginal candidiasis. Molecular vaginal microbiome studies (n=4) confirm that high oestrogen levels favour a vaginal microbiome composition dominated by 'healthy' Lactobacillus species; the effects of progesterone are less clear and not well studied. CONCLUSION DMPA use does not increase HIV risk by increasing bacterial vaginosis or vaginal candidiasis. COC use may predispose for vaginal candidiasis, but is not believed to be associated with increased HIV acquisition. However, the potential role of Candida species, and vaginal microbiome imbalances other than bacterial vaginosis or Candida species, in HIV transmission cannot yet be ruled out. Further in-depth molecular studies are needed.
Collapse
|
35
|
Watson CJ, Fairley CK, Grando D, Garland SM, Myers SP, Pirotta M. Associations with asymptomatic colonization with candida in women reporting past vaginal candidiasis: an observational study. Eur J Obstet Gynecol Reprod Biol 2013; 169:376-9. [DOI: 10.1016/j.ejogrb.2013.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/23/2013] [Accepted: 03/29/2013] [Indexed: 01/10/2023]
|
36
|
Cararach Tur M, Comino Delgado R, Davi Armengol E, Marimon García E, Martínez Escoriza JC, Palacios Gil-Antuñano S, Torres Rodríguez JM. La vulvovaginitis candidiásica recurrente. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.pog.2012.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Prevalence and risk factors for bacterial vaginosis and other vulvovaginitis in a population of sexually active adolescents from Salvador, Bahia, Brazil. Infect Dis Obstet Gynecol 2012; 2012:378640. [PMID: 23133306 PMCID: PMC3485513 DOI: 10.1155/2012/378640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/06/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Bacterial vaginosis, trichomoniasis, and genital candidiasis are considered the main etiologies of vulvovaginitis. Few studies estimate the prevalence of vulvovaginitis among adolescents, especially in Brazil. This study aimed to determine the prevalence and main risk factors associated with bacterial vaginosis and genital infection by C. albicans and Trichomonas vaginalis among a group of adolescents from Salvador, Bahia, Brazil. One hundred sexually active adolescents followed at an adolescent gynecology clinic were included. Endocervical and vaginal samples were obtained during gynecological examination. Nugent criteria were applied for the diagnosis of bacterial vaginosis. For Candida albicans and Trichomonas vaginalis detection, culture in Sabouraud agar plates and Papanicolaou cytology were used, respectively. The mean age of participants was 16.6 ± 1.6 years. The prevalence of bacterial vaginosis was 20% (95% CI 12-28) and of genital infection by Candida was 22% (95% CI 14-30). Vaginal cytology detected Trichomonas vaginalis in one patient. Alcohol, tobacco, and illegal drug use (P = 0.02) and multiple lifetime partners were statistically related to bacterial vaginosis (P = 0.01). The prevalence of bacterial vaginosis and genital candidiasis was similar to other studies carried out among adolescents worldwide.
Collapse
|
38
|
Yano J, Kolls JK, Happel KI, Wormley F, Wozniak KL, Fidel PL. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS One 2012; 7:e46311. [PMID: 23050010 PMCID: PMC3457984 DOI: 10.1371/journal.pone.0046311] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/29/2012] [Indexed: 01/20/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19(-/-), IL-17RA(-/-) and IL-22(-/-) mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway.
Collapse
Affiliation(s)
- Junko Yano
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Jay K. Kolls
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Kyle I. Happel
- Section of Pulmonary/Critical Care Medicine, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Floyd Wormley
- Department of Biology, University of Texas San Antonio, San Antonio, Texas, United States of America
| | - Karen L. Wozniak
- Department of Biology, University of Texas San Antonio, San Antonio, Texas, United States of America
| | - Paul L. Fidel
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
39
|
Lepargneur JP, Abbal M. [Innate and adaptative immunity of the female genital tract]. ACTA ACUST UNITED AC 2012; 41:612-22. [PMID: 22995733 DOI: 10.1016/j.jgyn.2012.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 01/10/2023]
Abstract
Most of molecules and cells involved in both types, innate and adaptive immunity are present within the feminine genital tract. This article attempts to list some of the various actors involved in these immunities, essentially at the vaginal level and to illustrate their implications in the most frequent pathologies. Among these molecules: defensins, collectins lysozyme, lactoferrin, calprotectin, SLP1, HSP and many others as well as Toll receptors and immunoglobulins (IgG and IgA) play a major role. Epithelial cells, antigen presenting cells, lymphocytes T, B, NK also contribute efficiently to the defenses in a coordinated way partially under the influence of sex hormones. The therapeutic perspectives, of which vaccines are briefly mentioned.
Collapse
Affiliation(s)
- J-P Lepargneur
- Faculté de médecine de Toulouse Rangueil, université Paul-Sabatier, Toulouse, France.
| | | |
Collapse
|
40
|
Yano J, Noverr MC, Fidel PL. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine 2011; 58:118-28. [PMID: 22182685 DOI: 10.1016/j.cyto.2011.11.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 01/06/2023]
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4(+) T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators.
Collapse
Affiliation(s)
- Junko Yano
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
41
|
Ogunshe AAO, Adepoju AA, Oladimeji ME. Clinical efficacy and health implications of inconsistency in different production batches of antimycotic drugs in a developing country. J Pharm Bioallied Sci 2011; 3:158-64. [PMID: 21430967 PMCID: PMC3053515 DOI: 10.4103/0975-7406.76501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/05/2010] [Accepted: 09/10/2010] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This study aimed at evaluating the in vitro efficacy and health implications of inconsistencies in different production batches of antimycotic drugs. MATERIALS AND METHODS in vitro susceptibility profiles of 36 Candida spp. - C. albicans (19.4%), C. glabrata (30.6%), C. tropicalis (33.3%), and C. pseudotropicalis (16.7%) - obtained from human endocervical and high vaginal swabs (ECS/HVS) to two different batches (B1 and B2) of six antimycotic drugs (clotrimazole, doxycycline, iconazole, itraconazole, metronidazole and nystatin) was determined using modified agar well-diffusion method. RESULTS None of the Candida strains had entirely the same (100%) susceptibility / resistance profiles in both batches of corresponding antimycotic drugs; while, different multiple antifungal susceptibility (MAS) rates were also recorded in batches 1 and 2 for corresponding antifungals. Only 14.3%, 27.3%, 16.7-33.3%, and 8.3-25.0% of C. albicans, C. glabrata, C. pseudotropicalis, and C. tropicalis strains, respectively, had similar susceptibility/resistance profiles toward coressponding antifungal agents in both batches; while up to 57.1% of C. albicans, 45.5% of C. glabrata, 66.7% of C. pseudotropicalis, and 50.0% of C. tropicalis strains were susceptible to one batch of antifungals but resistant to corresponding antifungals in the second batch. As high as 71.4% (C. albicans), 73.0% (C. glabrata), 50.0% (C. pseudotropicalis), and 66.74% (C. tropicalis) strains had differences of ≥ 10.0 mm among corresponding antimycotic agents. CONCLUSIONS Candida strains exhibited different in vitro susceptibility / resistance patterns toward two batches of corresponding antimycotic agents, which has clinical implications on the efficacy of the drugs and treatment of patients. The findings of the present study will be of benefit in providing additional information in support of submission of drugs for registration to appropriate regulatory agencies.
Collapse
Affiliation(s)
- Adenike A O Ogunshe
- Applied Microbiology and Infectious Diseases, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
42
|
Curran J, Hayward J, Sellers E, Dean H. Severe vulvovaginitis as a presenting problem of type 2 diabetes in adolescent girls: a case series. Pediatrics 2011; 127:e1081-5. [PMID: 21402639 DOI: 10.1542/peds.2010-2311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This article describes the presentation of 4 adolescent girls who sought medical attention for severe vulvovaginitis and were subsequently found to have type 2 diabetes. Symptomatic vulvovaginitis is rare in adolescent girls, and its presence should alert health care providers to test for underlying hyperglycemia. These 4 girls represent 8.5% of the females with new-onset type 2 diabetes during a 3-year period (2007-2009). The 4 cases fulfilled the current Canadian Diabetes Association screening criteria for type 2 diabetes in youth, yet none of these girls had been screened. These cases highlight the need for better awareness of screening criteria for type 2 diabetes in adolescents. Consideration should be given in clinical practice guidelines to including the presence of unusual or severe infections as a risk factor for type 2 diabetes in youth.
Collapse
Affiliation(s)
- Jacqueline Curran
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
43
|
Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun 2010; 78:5126-37. [PMID: 20823201 DOI: 10.1128/iai.00388-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida species, is a significant problem in women of childbearing age. Similar to clinical observations, a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in a subset of mice without affecting vaginal fungal burden. We hypothesize that the vaginal PMN infiltrate and accompanying inflammation are not protective but instead are responsible for the symptoms of infection. The purpose of this study was to identify the signal(s) associated with the PMN response in the established mouse model. Vaginal lavage fluid from inoculated mice were categorized base on PMN counts, evaluated for PMN chemotactic activity and analyzed by SDS-PAGE and mass spectrometry (MS) for unique protein identification. The lavage fluid from inoculated mice with high, but not low, PMN levels showed increased chemotactic activity. Likewise, SDS-PAGE of lavage fluid with high PMN levels showed distinct protein patterns. MS revealed that bands at 6 and 14 kDa matched the PMN chemotactic calcium-binding proteins (CBPs), S100A8 and S100A9, respectively. The presence of the CBPs in lavage fluid was confirmed by Western blots and enzyme-linked immunosorbent assay. Vaginal tissues and epithelial cells from inoculated mice with high PMN levels stained more intensely and exhibited increased mRNA transcripts for both proteins compared to those in mice with low PMN levels. Subsequent antibody neutralization showed significant abrogation of the chemotactic activity when the lavage fluid was treated with anti-S100A8, but not anti-S100A9, antibodies. These results reveal that the PMN chemotactic CBP S100A8 and S100A9 are produced by vaginal epithelial cells following interaction with Candida and that S100A8 is a strong candidate responsible for the robust PMN migration during experimental VVC.
Collapse
|
44
|
Lisboa C, Costa AR, Ricardo E, Santos A, Azevedo F, Pina-Vaz C, Rodrigues AG. Genital candidosis in heterosexual couples. J Eur Acad Dermatol Venereol 2010; 25:145-51. [DOI: 10.1111/j.1468-3083.2010.03721.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Dos Santos AL, Jorge AOC, Dos Santos SSF, Silva CRGE, Leão MVP. Influence of probiotics on Candida presence and IgA anti-Candida in the oral cavity. Braz J Microbiol 2009; 40:960-4. [PMID: 24031447 PMCID: PMC3768569 DOI: 10.1590/s1517-838220090004000030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 04/09/2009] [Accepted: 06/28/2009] [Indexed: 01/27/2023] Open
Abstract
Probiotics are defined as microorganisms that promote benefits to host health, mainly by regulating resident microbiota. Disequilibrium in microbiota can favor the growth of opportunist microorganisms and the development of pathologies, like candidosis caused by yeasts of the Candida genus. This work evaluated whether probiotics consumption was able to influence a specific immunological response to Candida and the presence of these yeasts in the oral cavity. Saliva samples were collected from healthy individuals and plated in Dextrose Saboraud Agar with chloramphenicol. Individuals presenting Candida in the oral cavity used the probiotic Yakult LB® for 20 days, after which new collections and identifications were performed. Anti-Candida IgA analysis was conducted using the ELISA technique. Analysis of the results showed a significant reduction in Candida prevalence (46%) and mean Candida CFU/mL counts (65%). The Candida species identified were C. albicans (98%) and C.tropicalis (2%), before and after probiotics consumption. Immunological analysis demonstrated a significant reduction in anti-Candida IgA levels after probiotics use, probably due to less antigenic stimulation. In conclusion, in the individuals studied, probiotics use significantly reduced the amount of Candida in the oral cavity, possibly due to competition between the yeasts rather than by specific secretory immune response stimulation.
Collapse
|
46
|
Ogbera AO, Chinenye S, Akinlade A, Eregie A, Awobusuyi J. Frequency and correlates of sexual dysfunction in women with diabetes mellitus. J Sex Med 2009; 6:3401-6. [PMID: 19627467 DOI: 10.1111/j.1743-6109.2009.01396.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Sexual dysfunction (SD) in women with diabetes mellitus (DM) is an important but understudied aspect of DM complications in women with DM. AIM This report is an attempt to document the prevalence, clinical correlates, and determinants of SD in a cross sectional study of women with diabetes mellitus (DM). MAIN OUTCOME MEASURES The main outcome measures were demographic, clinical parameters, psychological morbidity, and frequency of SD. METHODS A total of 58 married women with type 2 DM and 30 age-matched women who did not have DM had their sexual function and psychological status assessed using the Female Sexual Function Index (FSFI) and General Health questionnaires (GHQ 12) respectively. Glycemic control was assessed using glycosylated hemoglobin. RESULTS The prevalence of SD in women with DM and in the control population was 88% and 80%, respectively. The mean (standard deviation) FSFI score in the women with DM was significantly lower than that of the control group (16.2 [9.5] vs. 21 [8.5], P = 0.02). Women with DM attempted sex less frequently than those in the control group. Poor mental health status which was found to be associated with SD was noted more in women with DM than those in the control group. CONCLUSIONS SD is high in women with and without DM. A possible determinant of SD in women with DM is psychological morbidity.
Collapse
|
47
|
Ziv E, Stanton SL, Abarbanel J. Efficacy and safety of a novel disposable intravaginal device for treating stress urinary incontinence. Am J Obstet Gynecol 2008; 198:594.e1-7. [PMID: 18377862 DOI: 10.1016/j.ajog.2008.01.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the efficacy and safety of a novel disposable intravaginal device for treatment of stress urinary incontinence (SUI) in women. STUDY DESIGN Sixty women with severe SUI were recruited from 2 sites in Israel to wear preweighed pads during a 7-day control period followed by a 28-day device usage period in which the device and preweighed pads were worn daily for 8 hours. The primary endpoint was the percentage of women who achieved a > or = 70% reduction in pad weight gain (PWG) from the control period to the last 14 days of device usage. RESULTS Sixty women who enrolled into the study and used the device for any period of time were included in the intent to treat (ITT) population. Eighty-five percent of them achieved a > or = 70% reduction in PWG (P = .01). Improvements in overall quality of life, subjective perception of incontinence, and satisfaction with the device were observed. CONCLUSION The intravaginal device is easy to use, well-tolerated, and effective in reducing SUI.
Collapse
|
48
|
Raska M, Bĕláková J, Krupka M, Weigl E. Candidiasis--do we need to fight or to tolerate the Candida fungus? Folia Microbiol (Praha) 2007; 52:297-312. [PMID: 17702470 DOI: 10.1007/bf02931313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Candidiases, infections caused by germination forms of the Candida fungus, represent a heterogeneous group of diseases from systemic infection, through mucocutaneous form, to vulvovaginal form. Although caused by one organism, each form is controlled by distinct host immune mechanisms. Phagocytosis by polymorphonuclears and macrophages is generally accepted as the host immune mechanism for Candida elimination. Phagocytes require proinflammatory cytokine stimulation which could be harmful and must be regulated during the course of infection by the activity of CD8+ and CD4+ T cells. In the vaginal tissue the phagocytes are inefficient and inflammation is generally an unwanted reaction because it could damage mucosal tissue and break the tolerance to common vagina antigens including the otherwise saprophyting Candida yeast. Recurrent form of vulvovaginal candidiasis is probably associated with breaking of such tolerance. Beside the phagocytosis, specific antibodies, complement, and mucosal epithelial cell comprise Candida eliminating immune mechanisms. They are regulated by CD4+ and CD8+ T cells which produce cytokines IL-12, IFN-gamma, IL-10, TGF-beta, etc. as the response to signals from dendritic cells specialized to sense actual Candida morphotypes. During the course of Candida infection proinflammatory signals (if initially necessary) are replaced successively by antiinflammatory signals. This balance is absolutely distinct during each candidiasis form and it is crucial to describe and understand the basic principles before designing new therapeutic and/or preventive approaches.
Collapse
Affiliation(s)
- M Raska
- Department of Immunology, Medical Faculty, Palacký University, 772 00 Olomouc, Czechia.
| | | | | | | |
Collapse
|
49
|
Barousse MM, Theall KP, Van Der Pol B, Fortenberry JD, Orr DP, Fidel PL. Susceptibility of middle adolescent females to sexually transmitted infections: impact of hormone contraception and sexual behaviors on vaginal immunity. Am J Reprod Immunol 2007; 58:159-68. [PMID: 17631009 DOI: 10.1111/j.1600-0897.2007.00504.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PROBLEM The resistance and/or susceptibility to infections can be influenced by patterns of immunomodulators. Based on this and the high rate of sexually transmitted infections (STIs) in adolescents, we examined the longitudinal relationship between sexual behaviors, hormonal contraceptive use, and bacterial vaginosis (BV) with vaginal-associated immunomodulators in adolescent females. METHOD OF STUDY Over 27 months, subjects completed detailed questionnaires, and consented to vaginal swabs for STI testing, and vaginal lavages for identification of immunomodulators including T-helper, proinflammatory, and chemokines. Concentrations of immunomodulators were correlated with each parameter together with prevalence of STIs. RESULTS Each parameter had a limited influence on vaginal immunomodulators with no evidence of any pattern(s) associated with infection. Conversely, the local presence of proinflammatory cytokines and neutrophils in those with an STI indicated some immune responsiveness. CONCLUSION Sexual behaviors, contraceptive usage, and BV do not appear as factors in susceptibility of adolescents to STIs through the influence of local immunomodulators.
Collapse
Affiliation(s)
- Melissa M Barousse
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70772, USA
| | | | | | | | | | | |
Collapse
|
50
|
Cassone A, De Bernardis F, Santoni G. Anticandidal immunity and vaginitis: novel opportunities for immune intervention. Infect Immun 2007; 75:4675-86. [PMID: 17562759 PMCID: PMC2044548 DOI: 10.1128/iai.00083-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Antonio Cassone
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | |
Collapse
|