1
|
Huang D, Wang X, Takagi H, Mo S, Wang Z, Chow DHK, Huang B. Effects of Different Dietary Supplements on Swimming Performance: A Systematic Review and Network Meta-Analysis. Nutrients 2024; 17:33. [PMID: 39796467 PMCID: PMC11722695 DOI: 10.3390/nu17010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Nutritional supplements are widely used by swimmers, but the effectiveness of various supplements and the identification of the most effective intervention require further investigation. PURPOSE This paper evaluated and compared the effectiveness of various nutrition-based interventions on swimming performance through both direct and indirect comparisons. METHODS PubMed, Embase, Web of Science, Cochrane Library, and SPORTDiscus databases were thoroughly searched up to 4 April 2024. The risk of bias was judged using the Cochrane risk of bias tool. A random-effect model was adopted to compute standardized mean differences (SMD) and 95% confidence intervals (CI). RESULTS L-arginine (Arg) demonstrated superior performance to the placebo (SMD = -1.66, 95% CI [-2.92, -0.44]), emerging as the most effective intervention for reducing 100 swimming time (SUCRA = 89.5%). Beta-alanine (BA) was the best intervention for improving blood lactate (SUCRA = 80%). Creatine combined with sodium bicarbonate (Creatine_NaHCO3) significantly increased blood pH compared to the placebo (SMD = 3.79, 95% CI [1.85, 5.80]), with a SUCRA score of 99.9%, suggesting it is the most effective intervention for this parameter. No prominent differences were noted among the interventions in 50 m time, 200 m time, heart rate, and body mass. CONCLUSIONS Dietary supplements might provide benefits for improving swimming performance. Arg emerged as the most efficacious modality for reducing 100 m time. BA proved to be the preeminent strategy for decreasing blood lactate. Creatine_NaHCO3 was distinguished as the optimal approach for improving blood pH.
Collapse
Affiliation(s)
- Dongxiang Huang
- School of Physical Education, Shaoguan University, Shaoguan 512005, China; (D.H.); (X.W.)
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong 999077, China
| | - Xiaobing Wang
- School of Physical Education, Shaoguan University, Shaoguan 512005, China; (D.H.); (X.W.)
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 3058555, Japan;
| | - Shiwei Mo
- School of Physical Education, Shenzhen University, Shenzhen 518060, China;
| | - Zhongzheng Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China;
| | - Daniel Hung-Kay Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong 999077, China
| | - Bo Huang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China;
| |
Collapse
|
2
|
Trujillo-Colmena D, Fernández-Sánchez J, Rodríguez-Castaño A, Casado A, Del Coso J. Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists. Nutrients 2024; 16:668. [PMID: 38474796 PMCID: PMC10933887 DOI: 10.3390/nu16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The ergogenic effects of acute caffeine intake on endurance cycling performance lasting ~1 h have been well documented in controlled laboratory studies. However, the potential benefits of caffeine supplementation in cycling disciplines such as cross-country/mountain biking have been rarely studied. In cross-country cycling, performance is dependent on endurance capacity, which may be enhanced by caffeine, but also on the technical ability of the cyclist to overcome the obstacles of the course. So, it is possible that the potential benefits of caffeine are not translated to cross-country cycling. The main objective of this study was to investigate the effects of acute caffeine intake, in the form of coffee, on endurance performance during a cross-country cycling time trial. Eleven recreational cross-country cyclists (mean ± SD: age: 22 ± 3 years; nine males and two females) participated in a single-blinded, randomised, counterbalanced and crossover experiment. After familiarisation with the cross-country course, participants completed two identical experimental trials after the ingestion of: (a) 3.00 mg/kg of caffeine in the form of soluble coffee or (b) 0.04 mg/kg of caffeine in the form of decaffeinated soluble coffee as a placebo. Drinks were ingested 60 min before performing a 13.90 km cross-country time trial over a course with eight sectors of varying technical difficulty. The time to complete the trial and the mean and the maximum speed were measured through Global Positioning System (GPS) technology. Heart rate was obtained through a heart rate monitor. At the end of the time trial, participants indicated their perceived level of fatigue using the traditional Borg scale. In comparison to the placebo, caffeine intake in the form of coffee significantly reduced the time to complete the trial by 4.93 ± 4.39% (43.20 ± 7.35 vs. 41.17 ± 6.18 min; p = 0.011; effect size [ES] = 0.300). Caffeine intake reduced the time to complete four out of eight sectors with different categories of technical difficulty (p ≤ 0.010; ES = 0.386 to 0.701). Mean heart rate was higher with caffeine (169 ± 6 vs. 162 ± 13 bpm; p = 0.046; ES = 0.788) but the rating of perceived exertion at the end of the trial was similar with caffeinated coffee than with the placebo (16 ± 1 vs. 16 ± 2 a.u.; p = 0.676; ES = 0.061). In conclusion, the intake of 3 mg/kg of caffeine delivered via soluble coffee reduced the time to complete a cross-country cycling trial in recreational cyclists. These results suggest that caffeine ingested as coffee may be an ergogenic substance for cross-country cycling.
Collapse
Affiliation(s)
- Daniel Trujillo-Colmena
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (D.T.-C.); (J.F.-S.); (A.R.-C.); (A.C.)
- Program of Epidemiology and Public Health (Interuniversity), Ph.D. International School, Rey Juan Carlos University, 28943 Madrid, Spain
| | - Javier Fernández-Sánchez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (D.T.-C.); (J.F.-S.); (A.R.-C.); (A.C.)
| | - Adrián Rodríguez-Castaño
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (D.T.-C.); (J.F.-S.); (A.R.-C.); (A.C.)
| | - Arturo Casado
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (D.T.-C.); (J.F.-S.); (A.R.-C.); (A.C.)
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (D.T.-C.); (J.F.-S.); (A.R.-C.); (A.C.)
| |
Collapse
|
3
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Prado E, Magalhães-Neto A, Neto JR, Bassini A, Cameron LC. Caffeine decreases ammonemia in athletes using a ketogenic diet during prolonged exercise. Nutrition 2021; 91-92:111377. [PMID: 34273681 DOI: 10.1016/j.nut.2021.111377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Both exercise and a ketogenic (low-carbohydrate) diet favor glycogen depletion and increase ammonemia, which can impair physical performance. Caffeine supplementation has been routinely used to improve exercise performance. Herein, the effect of xanthine was evaluated on ammonemia in cyclists who were placed on a ketogenic diet and engaged in prolonged exercise. METHODS Fourteen male cyclists followed a ketogenic diet for 2 d before and during the experimental trial. The cyclists were assigned to either the caffeine- (CEx; n = 7) or placebo-supplemented (LEx; n = 7) group. Blood samples were obtained during cycling and the recovery periods. RESULTS The CEx group showed a significant decrease (up to 25%) in blood ammonia at 60, 90, and 120 min after beginning exercise compared with the LEx group. A higher concentration of apparent blood urea was observed in the LEx group than in the CEx group at 60 to 90 min of exercise (~10%). In addition, a significant increase in blood glucose levels was evident at 30 min of exercise (~28%), and an increase in blood lactate levels was visible during the first 30 to 60 min of exercise (~80%) in the CEx group. CONCLUSIONS Our results suggest that the consumption of caffeine might attenuate the increase in ammonemia that occurs during exercise.
Collapse
Affiliation(s)
- Eduardo Prado
- Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió, Brazil
| | - Aníbal Magalhães-Neto
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - José Rezende Neto
- Department of Pharmacy, Federal University of Sergipe, Lagarto, Brazil
| | - Adriana Bassini
- Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz-Claudio Cameron
- Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Grgic J. Effects of Combining Caffeine and Sodium Bicarbonate on Exercise Performance: A Review with Suggestions for Future Research. J Diet Suppl 2020; 18:444-460. [DOI: 10.1080/19390211.2020.1783422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
6
|
De Salles Painelli V, Brietzke C, Franco-Alvarenga PE, Canestri R, Vinícius Í, Pires FO. Comment on: “Caffeine and Exercise: What Next?”. Sports Med 2020; 50:1211-1218. [DOI: 10.1007/s40279-020-01278-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Bello ML, Walker AJ, McFadden BA, Sanders DJ, Arent SM. The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players. J Int Soc Sports Nutr 2019; 16:20. [PMID: 30999897 PMCID: PMC6472067 DOI: 10.1186/s12970-019-0287-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Theacrine (1,3,7,9-tetramethyluric-acid) is a pure alkaloid with a similar structure to caffeine and acts comparably as an adenosine receptor antagonist. Early studies have shown non-habituating effects, including increases in energy and focus in response to Teacrine®, the compound containing pure theacrine. The purpose of this study was to determine and compare the effects of Teacrine® and caffeine on cognitive performance and time-to-exhaustion during a simulated soccer game in high-level male and female athletes. METHODS Male and female soccer players (N = 24; MAge = 20.96 ± 2.05y, MMaleVO2max = 55.31 ± 3.39 mL/O2/kg, MFemaleVO2max = 50.97 ± 3.90 mL/O2/kg) completed a 90-min simulated treadmill soccer match over four randomized sessions (TeaCrine®, caffeine, TeaCrine® + caffeine, placebo). Cognitive testing at halftime and end-of-game including simple reaction time (SRT), choice RT (CRT), and cognitive-load RT with distraction questions (COGRT/COGRTWrong) was performed, with a run time-to-exhaustion (TTE) at 85% VO2max following end-of-game cognitive testing. Session times and pre-exercise nutrition were controlled. RM-MANOVAs with univariate follow-ups were conducted and significance was set at P < 0.05. RESULTS TTE trended towards significance in TeaCrine® and TeaCrine® + caffeine conditions compared to placebo (P < 0.052). A condition main effect (P < 0.05) occurred with faster CRT in caffeine and TeaCrine® + caffeine compared to placebo. COGRTWrong showed a significant time main effect, with better accuracy at end-of-game compared to halftime (P < 0.05). A time x condition interaction in SRT (P < 0.05) showed placebo improved from halftime to end-of-game. CONCLUSIONS The 27-38% improvements in TTE reflect increased performance capacity that may have important implications for overtime scenarios. These findings suggest TeaCrine® favorably impacts endurance and the combination with caffeine provides greater benefits on cognitive function than either supplement independently.
Collapse
Affiliation(s)
- Marissa L Bello
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Alan J Walker
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Bridget A McFadden
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - David J Sanders
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Shawn M Arent
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
8
|
Southward K, Rutherfurd-Markwick KJ, Ali A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:1913-1928. [PMID: 29876876 DOI: 10.1007/s40279-018-0939-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caffeine is a widely used ergogenic aid with most research suggesting it confers the greatest effects during endurance activities. Despite the growing body of literature around the use of caffeine as an ergogenic aid, there are few recent meta-analyses that quantitatively assess the effect of caffeine on endurance exercise. OBJECTIVES To summarise studies that have investigated the ergogenic effects of caffeine on endurance time-trial performance and to quantitatively analyse the results of these studies to gain a better understanding of the magnitude of the ergogenic effect of caffeine on endurance time-trial performance. METHODS A systematic review was carried out on randomised placebo-controlled studies investigating the effects of caffeine on endurance performance and a meta-analysis was conducted to determine the ergogenic effect of caffeine on endurance time-trial performance. RESULTS Forty-six studies met the inclusion criteria and were included in the meta-analysis. Caffeine has a small but evident effect on endurance performance when taken in moderate doses (3-6 mg/kg) as well as an overall improvement following caffeine compared to placebo in mean power output (3.03 ± 3.07%; effect size = 0.23 ± 0.15) and time-trial completion time (2.22 ± 2.59%; effect size = 0.41 ± 0.2). However, differences in responses to caffeine ingestion have been shown, with two studies reporting slower time-trial performance, while five studies reported lower mean power output during the time-trial. CONCLUSION Caffeine can be used effectively as an ergogenic aid when taken in moderate doses, such as during sports when a small increase in endurance performance can lead to significant differences in placements as athletes are often separated by small margins.
Collapse
Affiliation(s)
- Kyle Southward
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland, 0745, New Zealand
| | - Kay J Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland, New Zealand.,Centre for Metabolic Health Research, Massey University, Auckland, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland, 0745, New Zealand. .,Centre for Metabolic Health Research, Massey University, Auckland, New Zealand.
| |
Collapse
|
9
|
Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J Sci Med Sport 2018; 22:232-238. [PMID: 30170953 DOI: 10.1016/j.jsams.2018.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Caffeine has well-documented benefits on endurance athletic performance. Because of caffeine's ergogenic effects of reducing perceived fatigue, it is hypothesized that as duration of athletic event increases, so will the effect size of caffeine upon performance. This study aims to examine the relationship between duration of endurance athletic event and the effect size of caffeine compared to placebo for athletic performance. DESIGN A systematic review and meta-analysis of placebo-controlled trials assessing the effects of caffeine in adults performing endurance athletic events. METHODS We searched MedLine, Web of Science, and review article references published through March 2016. We performed meta-analyses on placebo-controlled trials to determine the effect of the duration of an endurance athletic event on the standardized mean difference (Cohen's d) between the caffeine and placebo groups for athletic performance. RESULTS Forty articles including 56 unique comparison groups were included. Pooled results showed a Cohen's d of 0.33 (95% CI=0.21, 0.45; p=1.00; I2=0%). The effect of the duration of athletic event was significantly associated with Cohen's d (Relative Risk: 0.005; 95% CI=0.001, 0.009; p=0.024). For a 30min increase in duration of the athletic event, Cohen's d will increase by 0.150. CONCLUSIONS This study is the first to report on the statistical finding that the effect size of caffeine increases along with the increasing duration of the time trial event. Endurance athletes may especially benefit from caffeine for performance enhancement.
Collapse
Affiliation(s)
| | - Meredith B Brooks
- Department of Global Health and Social Medicine, Harvard Medical School, United States; Department of Health Sciences, Northeastern University, United States
| | - Jessica Cincotta
- Department of Health Sciences, Northeastern University, United States
| | | |
Collapse
|
10
|
Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:2425-2441. [DOI: 10.1007/s40279-018-0967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Caffeine Improves Triathlon Performance: A Field Study in Males and Females. Int J Sport Nutr Exerc Metab 2018; 28:228-237. [PMID: 29345161 DOI: 10.1123/ijsnem.2017-0165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ergogenic effect of caffeine on endurance exercise is commonly accepted. We aimed to elucidate realistically the effect of caffeine on triathlon event performance using a field study design, while allowing investigation into potential mechanisms at play. A double-blind, randomized, crossover field trial was conducted. Twenty-six triathletes (14 males and 12 females; mean ± SD: age = 37.8 ± 10.6 years, habitual caffeine intake = 413 ± 505 mg/day, percentage body fat = 14.5 ± 7.2%, and training/week = 12.8 ± 4.5 hr) participated in this study. Microencapsulated caffeine (6 mg/kg body weight) was supplemented 60 min pretrial. Performance data included time to completion, rating of perceived exertion, and profile of mood states. Blood samples taken before, during, and postrace were analyzed for cortisol, testosterone, and full blood count. Capillary blood lactate concentrations were assessed prerace, during transitions, and 3, 6, 9, 12, and 15 min after triathlons. Caffeine supplementation resulted in a 3.7% reduction in swim time (33.5 ± 7.0 vs. 34.8 ± 8.1 min, p < .05) and a 1.3% reduction in time to completion (149.6 ± 19.8 vs. 151.5 ± 18.6 min, p < .05) for the whole group. Gender differences and individual responses are also presented. Caffeine did not alter the rating of perceived exertion significantly, but better performance after caffeine supplementation suggests a central effect resulting in greater overall exercise intensity at the same rating of perceived exertion. Caffeine supplementation was associated with higher postexercise cortisol levels (665 ± 200 vs. 543 ± 169 nmol/L, p < .0001) and facilitated greater peak blood lactate accumulation (analysis of variance main effect, p < .05). We recommend that triathlon athletes with relatively low habitual caffeine intake may ingest 6 mg/kg body weight caffeine, 45-60 min before the start of Olympic-distance triathlon to improve their performance.
Collapse
|
12
|
Domínguez R, Jesús-Sánchez-Oliver A, Cuenca E, Jodra P, Fernandes da Silva S, Mata-Ordóñez F. Nutritional needs in the professional practice of swimming: a review. J Exerc Nutrition Biochem 2017; 21:1-10. [PMID: 29370667 PMCID: PMC5772075 DOI: 10.20463/jenb.2017.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Swimming requires developing a high aerobic and anaerobic capacity for strength and technical efficiency. The purpose of this study was to establish the nutritional requirements and dietary strategies that can optimize swimming performance. [Methods] Several related studies retrieved from the databases, Dialnet, Elsevier, Medline, Pubmed, and Web of Science, through keyword search strategies were reviewed. [Results] The recommended carbohydrate intake ranges between 6-10-12 g/kg/d, protein 2 g/kg/d, and fat should surpass 20-25% of the daily intake. [Conclusion] Performance can be optimized with a hydration plan, as well as adequate periodization of supplements, such as caffeine, creatine, sodium bicarbonate, B-alanine, beetroot juice, Vitamin D, bovine colostrum, and HMB.
Collapse
|
13
|
Matvienko TY, Zavodovskyi DA, Nozdrenko DN, Mishchenko IV, Motuziuk OP, Bogutska KI, Sklyarov YP, Prylutskyy YI. [MUSCLE FATIGUE: FACTORS OF DEVELOPMENT AND WAYS OF CORRECTION]. FIZIOLOHICHNYI ZHURNAL (KIEV, UKRAINE : 1994) 2017; 63:95-104. [PMID: 29975834 DOI: 10.15407/fz63.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The data regarding the analysis of the physiological and biochemical mechanisms of muscle fatigue and ways to prevent it are summarized. The effect of the most common endogenous and exogenous antioxidants in the biochemical processes in muscle fatigue was analyzed. It is shown that biocompatible, non-toxic water-soluble C(60) fullerenes, which possess powerful antioxidative properties, promise great prospects in the correction of skeletal muscle fatigue caused by the destructive action of free radicals.
Collapse
|
14
|
Glaister M, Williams BH, Muniz-Pumares D, Balsalobre-Fernández C, Foley P. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men. PLoS One 2016; 11:e0161375. [PMID: 27532605 PMCID: PMC4988702 DOI: 10.1371/journal.pone.0161375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). METHODS Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; [Formula: see text]: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2-4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. RESULTS Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). CONCLUSIONS The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions.
Collapse
Affiliation(s)
- Mark Glaister
- School of Sport, Health, and Applied Sciences, St Mary’s University, Strawberry Hill, Twickenham, United Kingdom
- * E-mail:
| | - Benjamin Henley Williams
- School of Sport, Health, and Applied Sciences, St Mary’s University, Strawberry Hill, Twickenham, United Kingdom
| | - Daniel Muniz-Pumares
- School of Sport, Health, and Applied Sciences, St Mary’s University, Strawberry Hill, Twickenham, United Kingdom
| | | | - Paul Foley
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Glaister M, Pattison JR, Muniz-Pumares D, Patterson SD, Foley P. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J Strength Cond Res 2015; 29:165-74. [PMID: 24978834 DOI: 10.1519/jsc.0000000000000596] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to examine the acute supplementation effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. Using a randomized, counterbalanced, double-blind Latin-square design, 14 competitive female cyclists (age: 31 ± 7 years; height: 1.69 ± 0.07 m; body mass: 61.6 ± 6.0 kg) completed four 20-km time trials on a racing bicycle fitted to a turbo trainer. Approximately 2.5 hours before each trial, subjects consumed a 70-ml dose of concentrated beetroot juice containing either 0.45 g of dietary nitrate or with the nitrate content removed (placebo). One hour before each trial, subjects consumed a capsule containing either 5 mg·kg of caffeine or maltodextrin (placebo). There was a significant effect of supplementation on power output (p = 0.001), with post hoc tests revealing higher power outputs in caffeine (205 ± 21 W) vs. nitrate (194 ± 22 W) and placebo (194 ± 25 W) trials only. Caffeine-induced improvements in power output corresponded with significantly higher measures of heart rate (caffeine: 166 ± 12 b·min vs. placebo: 159 ± 15 b·min; p = 0.02), blood lactate (caffeine: 6.54 ± 2.40 mmol·L vs. placebo: 4.50 ± 2.11 mmol·L; p < 0.001), and respiratory exchange ratio (caffeine: 0.95 ± 0.04 vs. placebo: 0.91 ± 0.05; p = 0.03). There were no effects (p ≥ 0.05) of supplementation on cycling cadence, rating of perceived exertion, (Equation is included in full-text article.), or integrated electromyographic activity. The results of this study support the well-established beneficial effects of caffeine supplementation on endurance performance. In contrast, acute supplementation with dietary nitrate seems to have no effect on endurance performance and adds nothing to the benefits afforded by caffeine supplementation.
Collapse
Affiliation(s)
- Mark Glaister
- 1School of Sport, Health, and Applied Sciences, St Mary's University College, Strawberry Hill, Twickenham, United Kingdom; and 2Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr 2015; 114:908-14. [PMID: 26279580 DOI: 10.1017/s0007114515002573] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; P<0.05) and maximal force during the handgrip test with the right hand (481 (SD 49) v. 498 (SD 43) N; P<0.05). Furthermore, the caffeinated energy drink reduced the time needed to complete the 50 m simulated swimming competition (27.8 (SD 3.4) v. 27.5 (SD 3.2) s; P<0.05), and it increased peak power (273 (SD 55) v. 303 (SD 49) W; P <0.05) and blood lactate concentration (11.0 (SD 2.0) v. 11.7 (SD 2.1) mM; P<0.05) during the ergometer test. The caffeinated energy drink did not modify the prevalence of insomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage.
Collapse
|
17
|
Pataky MW, Womack CJ, Saunders MJ, Goffe JL, D'Lugos AC, El-Sohemy A, Luden ND. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports 2015; 26:613-9. [DOI: 10.1111/sms.12501] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. W. Pataky
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| | - C. J. Womack
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| | - M. J. Saunders
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| | - J. L. Goffe
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| | - A. C. D'Lugos
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| | - A. El-Sohemy
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| | - N. D. Luden
- Department of Kinesiology; James Madison University; Harrisonburg VA USA
| |
Collapse
|
18
|
López-Samanes A, Ortega Fonseca JF, Fernández Elías VE, Borreani S, Maté-Muñoz JL, Kovacs MS. Nutritional Ergogenic Aids in Tennis. Strength Cond J 2015. [DOI: 10.1519/ssc.0000000000000141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Shearer J, Graham TE. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal. Nutr Rev 2015; 72 Suppl 1:121-36. [PMID: 25293551 DOI: 10.1111/nure.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
Assi H, Bottoms L. The effects of caffeine on rugby passing accuracy while performing the Reactive Agility Test. Sci Sports 2014. [DOI: 10.1016/j.scispo.2014.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Abian-Vicen J, Puente C, Salinero JJ, González-Millán C, Areces F, Muñoz G, Muñoz-Guerra J, Del Coso J. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids 2014; 46:1333-41. [PMID: 24599611 DOI: 10.1007/s00726-014-1702-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 02/18/2014] [Indexed: 11/29/2022]
Abstract
This study aimed at investigating the effects of a commercially available energy drink on shooting precision, jump performance and endurance capacity in young basketball players. Sixteen young basketball players (first division of a junior national league; 14.9 ± 0.8 years; 73.4 ± 12.4 kg; 182.3 ± 6.5 cm) volunteered to participate in the research. They ingested either (a) an energy drink that contained 3 mg of caffeine per kg of body weight or (b) a placebo energy drink with the same appearance and taste. After 60 min for caffeine absorption, they performed free throw shooting and three-point shooting tests. After that, participants performed a maximal countermovement jump (CMJ), a repeated maximal jumps test for 15 s (RJ-15), and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). Urine samples were obtained before and 30 min after testing. In comparison to the placebo, the ingestion of the caffeinated energy drink did not affect precision during the free throws (Caffeine = 70.7 ± 11.8 % vs placebo = 70.3 ± 11.0 %; P = 0.45), the three-point shooting test (39.9 ± 11.8 vs 38.1 ± 12.8 %; P = 0.33) or the distance covered in the Yo-Yo IR1 (2,000 ± 706 vs 1,925 ± 702 m; P = 0.19). However, the energy drink significantly increased jump height during the CMJ (38.3 ± 4.4 vs 37.5 ± 4.4 cm; P < 0.05) mean jump height during the RJ-15 (30.2 ± 3.6 vs 28.8 ± 3.4 cm; P < 0.05) and the excretion of urinary caffeine (1.2 ± 0.7 vs 0.1 ± 0.1 μg/mL; P < 0.05). The intake of a caffeine-containing energy drink (3 mg/kg body weight) increased jump performance although it did not affect basketball shooting precision.
Collapse
Affiliation(s)
- Javier Abian-Vicen
- Exercise Physiology Laboratory, Sport Science Institute, Camilo José Cela University, C/Castillo de Alarcon, 49. Villafranca del Castillo, 28692, Madrid, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schrader P, Panek LM, Temple JL. Acute and chronic caffeine administration increases physical activity in sedentary adults. Nutr Res 2013; 33:457-63. [PMID: 23746561 DOI: 10.1016/j.nutres.2013.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022]
Abstract
Caffeine is a commonly used stimulant thought to have ergogenic properties. Most studies on the ergogenic effects of caffeine have been conducted in athletes. The purpose of this study was to test the hypothesis that caffeine reduces ratings of perceived exertion and increases liking of physical activity in sedentary adults. Participants completed treadmill walking at 60% to 70% of their maximal heart rate at baseline and for 6 subsequent visits, during which half of the participants were given caffeine (3 mg/kg) and half given placebo in a sports drink vehicle. To investigate the potential synergistic effects of acute and chronic caffeine on self-determined exercise duration, participants were rerandomized to either the same or different condition for the last visit, creating 4 chronic/acute treatment groups (placebo/placebo, placebo/caffeine, caffeine/placebo, caffeine/caffeine). Participants rated how much they liked the activity and perceived exertion at each visit. There was a main effect of time on liking of physical activity, with liking increasing over time and an interaction of sex and caffeine treatment on liking, with liking of activity increasing in female participants treated with caffeine, but not with placebo. There was no effect of caffeine on ratings of perceived exertion. Individuals who received caffeine on the final test day exercised for significantly longer than those who received placebo. These data suggest that repeated exposure to physical activity significantly increases liking of exercise and reduces ratings of perceived exertion and that caffeine does little to further modify these effects.
Collapse
Affiliation(s)
- Patrick Schrader
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | | | | |
Collapse
|
23
|
Van Thuyne W, Van Eenoo P, Delbeke FT. Nutritional supplements: prevalence of use and contamination with doping agents. Nutr Res Rev 2012; 19:147-58. [PMID: 19079882 DOI: 10.1079/nrr2006122] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Based upon recent sales numbers, nutritional supplements play a key role in the lifestyle of a substantial proportion of the population. As well as products such as vitamins or minerals, several precursors of anabolic steroids are marketed as nutritional supplements. Another group of commercially available supplements are products for weight loss based upon herbal formulations originating from Ephedra species. Apart from supplements indicating the presence of these active compounds, numerous non-hormonal nutritional supplements were found that were contaminated with non-labelled anabolic steroids. Stimulating agents other than naturally occurring analogues of ephedrine were detected. A major group using dietary supplements are sportsmen, ranging from amateur level to elite athletes. Besides the possible health risks associated with the use of dietary supplements, athletes should take care not to violate the rules of the World Anti-Doping Agency because athletes remain responsible for substances detected in their biofluids, irrespective of their origin. Several analytical methods have been developed to determine the presence of doping agents as contaminants. The present review attempts to address the issues concerning the use of nutritional supplements and the detection of doping agents as contaminants in dietary supplements.
Collapse
Affiliation(s)
- W Van Thuyne
- Doping Control Laboratory, Department of Clinical Biology, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University - UGent, Technologiepark 30B, B-9052 Zwijnaarde, Belgium
| | | | | |
Collapse
|
24
|
Del Coso J, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab 2011; 36:555-61. [DOI: 10.1139/h11-052] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography–mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL–1. The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL–1. Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL–1). Triathlon (3.3 ± 2.2 µg·mL–1), cycling (2.6 ± 2.0 µg·mL–1), and rowing (1.9 ± 1.4 µg·mL–1) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL–1). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL–1. Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.
Collapse
Affiliation(s)
- Juan Del Coso
- Camilo Jose Cela University, Madrid, Spain
- Spanish Antidoping Agency, Doping Control Laboratory in Madrid, Spain
| | | | | |
Collapse
|
25
|
Astorino TA, Martin BJ, Schachtsiek L, Wong K, Ng K. Minimal Effect of Acute Caffeine Ingestion on Intense Resistance Training Performance. J Strength Cond Res 2011; 25:1752-8. [DOI: 10.1519/jsc.0b013e3181ddf6db] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Scientific Opinion on the substantiation of health claims related to caffeine and increase in physical performance during short-term high-intensity exercise (ID 737, 1486, 1489), increase in endurance performance (ID 737, 1486), increase in endurance capa. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, Taylor L, Willoughby D, Stout J, Graves BS, Wildman R, Ivy JL, Spano M, Smith AE, Antonio J. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr 2010; 7:5. [PMID: 20205813 PMCID: PMC2824625 DOI: 10.1186/1550-2783-7-5] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/27/2010] [Indexed: 11/10/2022] Open
Abstract
Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.
Collapse
|
28
|
Affiliation(s)
- J K Davis
- Department of Health and Human Performance, Texas A&M University-Commerce, Commerce, Texas, USA.
| | | |
Collapse
|
29
|
Walter AA, Herda TJ, Ryan ED, Costa PB, Hoge KM, Beck TW, Stout JR, Cramer JT. Acute effects of a thermogenic nutritional supplement on cycling time to exhaustion and muscular strength in college-aged men. J Int Soc Sports Nutr 2009; 6:15. [PMID: 19594929 PMCID: PMC2714833 DOI: 10.1186/1550-2783-6-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/13/2009] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance. Methods Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO2 PEAK = 3.05 ± 0.59 L/min-1) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO2 PEAK (Parvo Medics TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO2 PEAK followed by 1-RM LP and BP tests. Results There were no differences (p > 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (p ≤ 0.05). Conclusion Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation.
Collapse
Affiliation(s)
- Ashley A Walter
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Trent J Herda
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Eric D Ryan
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Pablo B Costa
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Katherine M Hoge
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Travis W Beck
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Jeffery R Stout
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Joel T Cramer
- Biophysics Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
30
|
Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res 2009; 23:315-24. [PMID: 19077738 DOI: 10.1519/jsc.0b013e31818b979a] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endurance athletes often ingest caffeine because of its reported ergogenic properties. Although there are a vast number of studies quantifying caffeine's effects, many research studies measure endurance performance using a time-to-exhaustion test (subjects exercise at a fixed intensity to volitional exhaustion). Time-to-exhaustion as a performance measure is not ideal because of the high degree of measurement variability between and within subjects. Also, we are unaware of any endurance sports in which individuals win by going a longer distance or for a longer amount of time than their competitors. Measuring performance with a time-trial test (set distance or time with best effort) has high reproducibility and is more applicable to sport. Therefore, the purpose of this review was to critically and objectively evaluate studies that have examined the effect of caffeine on time-trial endurance (>5 minutes) performance. A literature search revealed 21 studies with a total of 33 identifiable caffeine treatments that measured endurance performance with a time-trial component. Each study was objectively analyzed with the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro rating was 9.3 out of 10, indicating a high quality of research in this topic area. The mean improvement in performance with caffeine ingestion was 3.2 +/- 4.3%; however, this improvement was highly variable between studies (-0.3 to 17.3%). The high degree of variability may be dependent on a number of factors including ingestion timing, ingestion mode/vehicle, and subject habituation. Further research should seek to identify individual factors that mediate the large range of improvements observed with caffeine ingestion. In conclusion, caffeine ingestion can be an effective ergogenic aid for endurance athletes when taken before and/or during exercise in moderate quantities (3-6 mg.kg body mass). Abstaining from caffeine at least 7 days before use will give the greatest chance of optimizing the ergogenic effect.
Collapse
Affiliation(s)
- Matthew S Ganio
- Department of Kinesiology, Human Performance Laboratory, University of Connecticut, Storrs, Connecticut, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Athletes are among the groups of people who are interested in the effects of caffeine on endurance and exercise capacity. Although many studies have investigated the effect of caffeine ingestion on exercise, not all are suited to draw conclusions regarding caffeine and sports performance. Characteristics of studies that can better explore the issues of athletes include the use of well-trained subjects, conditions that reflect actual practices in sport, and exercise protocols that simulate real-life events. There is a scarcity of field-based studies and investigations involving elite performers. Researchers are encouraged to use statistical analyses that consider the magnitude of changes, and to establish whether these are meaningful to the outcome of sport. The available literature that follows such guidelines suggests that performance benefits can be seen with moderate amounts (~3 mg.kg-1 body mass) of caffeine. Furthermore, these benefits are likely to occur across a range of sports, including endurance events, stop-and-go events (e.g., team and racquet sports), and sports involving sustained high-intensity activity lasting from 1-60 min (e.g., swimming, rowing, and middle and distance running races). The direct effects on single events involving strength and power, such as lifts, throws, and sprints, are unclear. Further studies are needed to better elucidate the range of protocols (timing and amount of doses) that produce benefits and the range of sports to which these may apply. Individual responses, the politics of sport, and the effects of caffeine on other goals, such as sleep, hydration, and refuelling, also need to be considered.
Collapse
Affiliation(s)
- Louise M Burke
- Department of Sports Nutrition, Australian Institute of Sport, P.O. Box 176, Belconnen, ACT, Canberra 2616, Australia.
| |
Collapse
|
32
|
Tunnicliffe JM, Erdman KA, Reimer RA, Lun V, Shearer J. Consumption of dietary caffeine and coffee in physically active populations: physiological interactions. Appl Physiol Nutr Metab 2008; 33:1301-10. [DOI: 10.1139/h08-124] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caffeine is a proven ergogenic aid, increasing athletic performance, endurance, and mental chronometry at doses as low as 1–3 mg·kg–1. As coffee is a readily available and commonly ingested form of caffeine, the two are often equated. However, coffee also contains hundreds of other biologically active compounds, many of which are metabolically distinct from caffeine. The purpose of this review was to examine the prevalence of coffee and (or) caffeine consumption among elite Canadian athletes, and to delineate the effects of coffee and caffeine on physical activity, weight maintenance, performance, and metabolism. A total of 270 self-reported 3-day food records were examined for caffeine intake from athletes registered with Canadian Sport Centres in 2005 and 2006. Athletes ranged in age from 16–45 years, and competed in 38 different sports. Results showed that 30% of athletes ingested >1 mg·kg–1·day–1 from a variety of sources. Average daily intake was 0.85 ± 13 mg·kg–1. Caffeine intake was not correlated with any 1 sport; the 10 highest caffeine users were athletes from 9 different sports, including skill, endurance, and power sports. No differences were noted for average caffeine ingestion between summer and winter sports. High caffeine intakes corresponded to coffee ingestion, with the 25 highest individual intakes (193–895 mg·day–1) from coffee drinkers. In summary, it can be concluded that the majority of high-level Canadian athletes consume dietary caffeine primarily in the form of coffee. However, levels consumed are insufficient to elicit performance enhancement. Potential detrimental effects of caffeine consumption on exercise performance include gastric upset, withdrawal, sleep disturbance, and interactions with other dietary supplements.
Collapse
Affiliation(s)
- Jasmine M. Tunnicliffe
- Roger Jackson Center for Health and Wellness, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Sports Medicine Center, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kelly Anne Erdman
- Roger Jackson Center for Health and Wellness, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Sports Medicine Center, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raylene A. Reimer
- Roger Jackson Center for Health and Wellness, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Sports Medicine Center, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Victor Lun
- Roger Jackson Center for Health and Wellness, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Sports Medicine Center, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Roger Jackson Center for Health and Wellness, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Sports Medicine Center, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
33
|
Greer F, Morales J, Coles M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl Physiol Nutr Metab 2006; 31:597-603. [PMID: 17111014 DOI: 10.1139/h06-030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ergogenic effect of caffeine and its mechanism of action on short-term, high-intensity exercise are controversial. One proposed mechanism is caffeine’s stimulatory effect on the central nervous system and thus, motor-unit excitation. The latter is non-invasively determined from surface electromyographic signal (EMG) frequency measures. The purpose of this study was to determine if power output and surface EMG frequency variables during high-intensity cycling were altered following caffeine ingestion. Eighteen recreationally active college males (mean ± SD age, 21.5 ± 1.8 y; height, 181.8 ± 0.5 cm; body mass, 84.7 ± 11.4 kg) performed the Wingate test (WG) after ingestion of gelatin capsules containing either placebo (PL; dextrose) or caffeine (CAFF; 5 mg/kg body mass). The trials were separated by 1 week and subjects were asked to withdraw from all caffeine-containing products for 48 h before each trial. From the resulting power–time records, peak power (PP; highest power output in 5 s), minimum power (MP; lowest power output in 5 s), and the percent decline in power (Pd) were calculated. Surface EMG records of the right vastus lateralis (VL) and the gastrocnemius (GA) muscles corresponding to the PP and MP periods were collected and used to determine the integrated electromyogram (IEMG), the mean (MNPF), and the median (MDPF) of the signal’s power spectrum. A 2-way repeated measures analysis of variance (ANOVA) (treatment × time) was conducted to determine the effect of caffeine on these variables across levels of time. Caffeine ingestion had no effect on PP (PL, 1049 ± 192 W; CAFF, 1098 ± 198 W), MP (PL, 762 ± 104 W; CAFF, 802 ± 124 W), or the Pd (PL, 47% ± 8.9%; CAFF, 48.2% ± 7.3%) compared with the placebo. For both muscles, MNPF and MDPF diminished significantly (p < 0.001) across time and to a similar degree in both the CAFF and PL trials. Regardless of muscle, CAFF had no effect on the percent change in IEMG from the first 5 s to the last 5 s. For both treatments, the GA displayed a significantly (p < 0.05) greater pre vs. post percent decline in the EMG signal amplitude compared with the VL. These results indicate that caffeine does not impact power output during a 30 s high-intensity cycling bout. Furthermore, these data suggest that caffeine does not impact the neuromuscular drive as indicated by the similar IEMG scores between treatments. Similarly, caffeine does not seem to impact the frequency content of the surface EMG signal and thus the nature of recruited motor units before and after the expression of fatigue. The lack of decline in the IEMG in the VL despite the decline in power output over the course of the WG suggests a peripheral as opposed to a neural mechanism of fatigue in this muscle. The significant difference in the pre vs. post percent decline in the GA IEMG score further supports this notion. The pre vs. post decline in the IEMG noted in the GA may suggest a fatigue-triggered change in pedaling mechanics that may promote dominance of knee extensors with less reliance on plantar flexors.
Collapse
Affiliation(s)
- Felicia Greer
- Department of Kinesiology, 5275 N. Campus Dr. M/S SG 28, California State University, Fresno, CA 93740, USA.
| | | | | |
Collapse
|
34
|
Abstract
Caffeine is one of the most widely consumed drugs in the world, taken socially and for its alertness- and performance-promoting actions. Extensive reports assert that caffeine increases alertness and cognitive performance levels and, when taken before exercise, demonstrates ergogenic properties. Caffeine ingestion has been associated with increased performance during endurance submaximal, and acute, high-intensity exercise. The exact mechanism of action for the performance effects of caffeine is unknown, although several physiologically and psychologically based theories exist as to how caffeine achieves increased performance capabilities. This paper outlines the known sites of caffeine activity in the body,and discusses these with respect to the effects of caffeine observed during performance assessments.
Collapse
Affiliation(s)
- Naomi L Rogers
- Woolcock Institute of Medical Research, P.O. Box M77, Missenden Road, Camperdown, NSW 2050, Australia.
| | | |
Collapse
|
35
|
Abstract
The aim of this study was to assess the effect of caffeine ingestion on 8 km run performance using an ecologically valid test protocol. A randomized double-blind crossover study was conducted involving eight male distance runners. The participants ran an 8 km race 1 h after ingesting a placebo capsule, a caffeine capsule (3 mg x kg(-1) body mass) or no supplement. Heart rate was recorded at 5 s intervals throughout the race. Blood lactate concentration and ratings of perceived exertion were recorded after exercise. A repeated-measures analysis of variance (ANOVA) identified a significant treatment effect for 8 km performance time (P < 0.05); caffeine resulted in a mean improvement of 23.8 s (95% confidence interval [CI] = 13.1 to 34.5 s) in 8 km performance time (1.2% improvement, 95% CI = 0.7 to 1.8%). In addition, a two-way (time x condition) repeated-measures ANOVA identified a significantly higher blood lactate concentration 3 min after exercise during the caffeine trial (P < 0.05). We conclude that ingestion of 3 mg . kg(-1) body mass of caffeine can improve absolute 8 km run performance in an ecologically valid race setting.
Collapse
Affiliation(s)
- C A Bridge
- Sport and Exercise Research Group, Edge Hill College, Ormskirk, UK.
| | | |
Collapse
|
36
|
Howlett RA, Kelley KM, Grassi B, Gladden LB, Hogan MC. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ. Exp Physiol 2005; 90:873-9. [PMID: 16118234 DOI: 10.1113/expphysiol.2005.031559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In isolated single skeletal myocytes undergoing long-term fatiguing contractions, caffeine (CAF) can result in nearly immediate restoration of generated tension to near-prefatigue levels by increasing Ca2+ release via activation of sarcoplasmic reticulum release channels. This study tested whether arterial CAF infusion (>5 mm) would cause a similar rapid restoration of tetanic isometric tension during contractions to fatigue in perfused canine hindlimb muscle in situ. Tetanic contractions were elicited by electrical stimulation (200 ms trains, 50 Hz, 1 contraction s(-1)), and biopsies were taken from the muscle at rest and during contractions: (1) following the onset of fatigue (tension approximately 60% of initial value); and (2) following CAF administration. Resting muscle ATP, PCr and lactate contents were 25.2 +/- 0.4, 76.9 +/- 3.3 and 14.4 +/- 3.3 mmol (kg dry weight)(-1), respectively. At fatigue, generated tetanic tension was 61.1 +/- 6.9% of initial contractions. There was a small but statistically significant recovery of tetanic tension (64.9 +/- 6.6% of initial value) with CAF infusion, after which the muscle showed incomplete relaxation. At fatigue, muscle ATP and PCr contents had fallen significantly (P < 0.05) to 18.1 +/- 1.1 and 18.9 +/- 2.1 mmol (kg dry weight)(-1), respectively, and lactate content had increased significantly to 27.7 +/- 5.4 mmol (kg dry weight)(-1). Following CAF, skeletal muscle ATP and PCr contents were significantly lower than corresponding fatigue values (15.0 +/- 1.3 and 10.9 +/- 2.2 mmol (kg dry weight)(-1), respectively), while lactate was unchanged (22.2 +/- 3.9 mmol (kg dry weight)(-1)). These results demonstrate that caffeine can result in a small, but statistically significant, recovery of isometric tension in fatigued canine hindlimb muscle in situ, although not nearly to the same degree as seen in isolated single muscle fibres. This suggests that, in this in situ isolated whole muscle model, alteration of Ca2+ metabolism is probably only one cause of fatigue.
Collapse
Affiliation(s)
- Richard A Howlett
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0623, USA.
| | | | | | | | | |
Collapse
|
37
|
Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 2005; 15:69-78. [PMID: 15773860 DOI: 10.1111/j.1600-0838.2005.00445.x] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to use the meta-analytic approach to examine the effects of caffeine ingestion on ratings of perceived exertion (RPE). Twenty-one studies with 109 effect sizes (ESs) met the inclusion criteria. Coding incorporated RPE scores obtained both during constant load exercise (n=89) and upon termination of exhausting exercise (n=20). In addition, when reported, the exercise performance ES was also computed (n=16). In comparison to placebo, caffeine reduced RPE during exercise by 5.6% (95% CI (confidence interval), -4.5% to -6.7%), with an equivalent RPE ES of -0.47 (95% CI, -0.35 to -0.59). These values were significantly greater (P<0.05) than RPE obtained at the end of exercise (RPE % change, 0.01%; 95% CI, -1.9 to 2.0%; RPE ES, 0.00, 95% CI, -0.17 to 0.17). In addition, caffeine improved exercise performance by 11.2% (95% CI; 4.6-17.8%). Regression analysis revealed that RPE obtained during exercise could account for approximately 29% of the variance in the improvement in exercise performance. The results demonstrate that caffeine reduces RPE during exercise and this may partly explain the subsequent ergogenic effects of caffeine on performance.
Collapse
Affiliation(s)
- M Doherty
- Division of Sport and Exercise Science, University of Luton, Luton, Beds LU1 3JU, UK.
| | | |
Collapse
|
38
|
Doherty M, Smith P, Hughes M, Davison R. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci 2005; 22:637-43. [PMID: 15370494 DOI: 10.1080/02640410310001655741] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to determine the effects of caffeine ingestion on a 'preloaded' protocol that involved cycling for 2 min at a constant rate of 100% maximal power output immediately followed by a 1-min 'all-out' effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5 mg. kg(-1)) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle test rig. Ratings of perceived exertion (RPE; 6-20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120 s during the constant rate phase of the preloaded test (P <0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794+/-164 vs 750+/-163 W; P=0.05). Blood lactate concentration 4, 5 and 6 min after exercise was also significantly higher by approximately 1 mmol. l(-1) in the caffeine trial (P <0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.
Collapse
Affiliation(s)
- Mike Doherty
- Department of Sport, Exercise and Biomedical Sciences, University of Luton, Luton LU1 3JU.
| | | | | | | |
Collapse
|
39
|
Abstract
This article reviews the evidence-based ergogenic potential and adverse effects of 14 of the most common products in use by recreational and elite athletes today. Both legal and prohibited products are discussed. This is an aggressively marketed and controversial area of sports medicine worldwide. It is therefore prudent for the clinician to be well versed in the more popular supplements and drugs reputed to be ergogenic in order to distinguish fact from fiction.Antioxidants, proteins and amino acids are essential components of diet, but additional oral supplementation does not increase endurance or strength. Caffeine is ergogenic in certain aerobic activities. Creatine is ergogenic in repetitive anaerobic cycling sprints but not running or swimming. Ephedrine and pseudoephedrine may be ergogenic but have detrimental cardiovascular effects. Erythropoietin is ergogenic but increases the risk of thromboembolic events. beta-Hydroxy-beta-methylbutyrate has ergogenic potential in untrained individuals, but studies are needed on trained individuals. Human growth hormone and insulin growth factor-I decrease body fat and may increase lean muscle mass when given subcutaneously. Pyruvate is not ergogenic. The androgenic precursors androstenedione and dehydroepiandrosterone have not been shown to increase any parameters of strength and have potentially significant adverse effects. Anabolic steroids increase protein synthesis and muscle mass but with many adverse effects, some irreversible. Supplement claims on labels of product content and efficacy can be inaccurate and misleading.
Collapse
Affiliation(s)
- Mark Juhn
- Department of Family Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
40
|
Abstract
Preparations containing caffeine and ephedrine have become increasingly popular among sportspersons in recent years as a means to enhance athletic performance. This is due to a slowly accumulating body of evidence suggesting that combination of the two drugs may be more efficacious than each one alone. Caffeine is a compound with documented ergogenicity in various exercise modalities, while ephedrine and related alkaloids have not been shown, as yet, to result in any significant performance improvements. Caffeine-ephedrine mixtures, however, have been reported in several instances to confer a greater ergogenic benefit than either drug by itself. Although data are limited and heterogeneous in nature to allow for reaching consensus, the increase in performance is a rather uniform finding as it has been observed during submaximal steady-state aerobic exercise, short- and long-distance running, maximal and supramaximal anaerobic cycling, as well as weight lifting. From the metabolic point of view, combined ingestion of caffeine and ephedrine has been observed to increase blood glucose and lactate concentrations during exercise, wheareas qualitatively similar effects on lipid fuels (free fatty acids and glycerol) are less pronounced. In parallel, epinephrine and dopamine concentrations are significantly increased, wheareas the effects on norepinephrine are less clear. With respect to pulmonary gas exchange during short-term intense exercise, no physiologically significant effects have been reported following ingestion of caffeine, ephedrine or their combination. Yet, during longer and/or more demanding efforts, some sporadic enhancements have indeed been shown. On the other hand, a relatively consistent cardiovascular manifestation of the latter preparation is an increase in heart rate, in addition to that caused by exercise alone. Finally, evidence to date strongly suggests that caffeine and ephedrine combined are quite effective in decreasing the rating of perceived exertion and this seems to be independent of the type of activity being performed. In general, our knowledge and understanding of the physiological, metabolic and performance-enhancing effects of caffeine-ephedrine mixtures are still in their infancy. Research in this field is probably hampered by sound ethical concerns that preclude administration of potentially hazardous substances to human volunteers. In contrast, while it is certainly true that caffeine and especially ephedrine have been associated with several acute adverse effects on health, athletes do not seem to be concerned with these, as long as they perceive that their performance will improve. In light of the fact that caffeine and ephedra alkaloids, but not ephedrine itself, have been removed from the list of banned substances, their use in sports can be expected to rise considerably in the foreseeable future. Caffeine-ephedra mixtures may thus become one of most popular ergogenic aids in the years to come and while they may indeed prove to be one of the most effective ones, and probably one of the few legal ones, whether they also turn out to be one of the most dangerous ones awaits to be witnessed.
Collapse
Affiliation(s)
- Faidon Magkos
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
41
|
Conway KJ, Orr R, Stannard SR. Effect of a divided caffeine dose on endurance cycling performance, postexercise urinary caffeine concentration, and plasma paraxanthine. J Appl Physiol (1985) 2003; 94:1557-62. [PMID: 12482764 DOI: 10.1152/japplphysiol.00911.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared the effects of a single and divided dose of caffeine on endurance performance and on postexercise urinary caffeine and plasma paraxanthine concentrations. Nine male cyclists and triathletes cycled for 90 min at 68% of maximal oxygen uptake, followed by a self-paced time trial (work equivalent to 80% of maximal oxygen uptake workload over 30 min) with three randomized, balanced, and double-blind interventions: 1) placebo 60 min before and 45 min into exercise (PP); 2) single caffeine dose (6 mg/kg) 60 min before exercise and placebo 45 min into exercise (CP); and 3) divided caffeine dose (3 mg/kg) 60 min before and 45 min into exercise (CC). Time trial performance was unchanged with caffeine ingestion (P = 0.08), but it tended to be faster in the caffeine trials (CP: 24.2 min and CC: 23.4 min) compared with placebo (PP: 28.3 min). Postexercise urinary caffeine concentration was significantly lower in CC (3.8 micro g/ml) compared with CP (6.8 micro g/ml). Plasma paraxanthine increased in a dose-dependent fashion and did not peak during exercise. In conclusion, dividing a caffeine dose provides no ergogenic effect over a bolus dose but reduces postexercise urinary concentration.
Collapse
Affiliation(s)
- Kylie J Conway
- School of Exercise and Sport Science, University of Sydney, Lidcombe 1825, New South Wales, Australia
| | | | | |
Collapse
|
42
|
Doherty M, Smith PM, Davison RCR, Hughes MG. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med Sci Sports Exerc 2002; 34:1785-92. [PMID: 12439084 DOI: 10.1097/00005768-200211000-00015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this investigation was to assess the acute effects of caffeine ingestion on short-term, high-intensity exercise (ST) after a period of oral creatine supplementation and caffeine abstinence. METHODS Fourteen trained male subjects performed treadmill running to volitional exhaustion (T(lim)) at an exercise intensity equivalent to 125% VO(2max). Three trials were performed, one before 6 d of creatine loading (0.3 g x kg x d(-1) baseline), and two further trials after the loading period. One hour before the postloading trials, caffeine (5 mg x kg(-1)) or placebo was orally ingested in a cross-over, double-blind fashion. Four measurements of rating of perceived exertion were taken, one every 30 s, during the first 120 s of the exercise. Blood samples were assayed for lactate, glucose, potassium, and catecholamines, immediately before and after exercise. RESULTS Body mass increased (P < 0.05) over the creatine supplementation period, and this increase was maintained for both caffeine and placebo trials. There was no increase in the maximal accumulated oxygen deficit between trials; however, total VO(2) was significantly increased in the caffeine trial in comparison with the placebo trial (13.35 +/- 3.89 L vs 11.67 +/- 3.61 L). In addition, caffeine T(lim) (222.1 +/- 48.9 s) was significantly greater (P < 0.05) than both baseline (200.8 +/- 33.4 s) and placebo (198.3 +/- 45.4 s) T(lim). RPE was also lower at 90 s in the caffeine treatment (13.8 +/- 1.8 RPE points) in comparison with baseline (14.6 +/- 1.9 RPE points). CONCLUSION As indicated by a greater T(lim), acute caffeine ingestion was found to be ergogenic after 6-d of creatine supplementation and caffeine abstinence.
Collapse
Affiliation(s)
- Mike Doherty
- Department of Sport, Exercise and Biomedical Sciences, University of Luton, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Abstract
The International Olympic Committee, the World Anti-Doping Agency, and International Sport Federations have banned and restricted the use of many stimulants including prescription and over-the-counter medications and dietary supplements. In addition to elite athletes, people of all ages use stimulants in attempts to improve athletic performance, alter body composition, and increase levels of energy. Here we introduce a seven-stage model designed to facilitate informed decision-making by individuals taking or thinking of taking stimulants for sport, health, and/or appearance reasons. We review for amphetamines, over-the counter sympathomimetics, and caffeine their performance-enhancing and performance-degrading effects, health benefits and mechanisms of action, medical side effects, and legal, ethical, safety, and financial implications.
Collapse
Affiliation(s)
- Ron Bouchard
- Department of Pharmacology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
44
|
Abstract
Caffeine is a common substance in the diets of most athletes and it is now appearing in many new products, including energy drinks, sport gels, alcoholic beverages and diet aids. It can be a powerful ergogenic aid at levels that are considerably lower than the acceptable limit of the International Olympic Committee and could be beneficial in training and in competition. Caffeine does not improve maximal oxygen capacity directly, but could permit the athlete to train at a greater power output and/or to train longer. It has also been shown to increase speed and/or power output in simulated race conditions. These effects have been found in activities that last as little as 60 seconds or as long as 2 hours. There is less information about the effects of caffeine on strength; however, recent work suggests no effect on maximal ability, but enhanced endurance or resistance to fatigue. There is no evidence that caffeine ingestion before exercise leads to dehydration, ion imbalance, or any other adverse effects. The ingestion of caffeine as coffee appears to be ineffective compared to doping with pure caffeine. Related compounds such as theophylline are also potent ergogenic aids. Caffeine may act synergistically with other drugs including ephedrine and anti-inflammatory agents. It appears that male and female athletes have similar caffeine pharmacokinetics, i.e., for a given dose of caffeine, the time course and absolute plasma concentrations of caffeine and its metabolites are the same. In addition, exercise or dehydration does not affect caffeine pharmacokinetics. The limited information available suggests that caffeine non-users and users respond similarly and that withdrawal from caffeine may not be important. The mechanism(s) by which caffeine elicits its ergogenic effects are unknown, but the popular theory that it enhances fat oxidation and spares muscle glycogen has very little support and is an incomplete explanation at best. Caffeine may work, in part, by creating a more favourable intracellular ionic environment in active muscle. This could facilitate force production by each motor unit.
Collapse
Affiliation(s)
- T E Graham
- Human Biology and Nutritional Sciences, University of Guelph, Ontario, Canada.
| |
Collapse
|
45
|
Graham TE. Caffeine, Coffee and Ephedrine: Impact on Exercise Performance and Metabolism. ACTA ACUST UNITED AC 2001. [DOI: 10.1139/h2001-046] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper addresses areas where there is controversy regarding caffeine as an ergogenic aid and also identifies topics that have not been adequately addressed. It is clear that caffeine, in moderate amounts, can be used orally as an ergogenic aid in aerobic activity lasting for more than 1 min. It increases endurance and speed, but not maximal [Formula: see text] and related parameters. While there are fewer well-controlled studies for resistance exercise, the literature would suggest similar improvements: increased endurance at submaximal tension and power generated in repeated contractions and no change in maximal ability to produce force. It is likely that theophylline (a related methylxanthine) has similar actions and it has been suggested that the combination of caffeine and sympathomimetics may be a more potent erogenic aid. The voids in our understanding of caffeine include the dose (what amount is optimal, what vehicle is used to deliver the drug as well as method, pattern, and mode of administration), the potential side effects (particularly in competitive settings), health implications (insulin resistance and if combined with ephedrine, cardiovascular risks) and mechanisms of action. It appears unlikely that increased fat oxidation and glycogen sparing is the prime ergogenic mechanism.
Collapse
Affiliation(s)
- Terry E. Graham
- Department of Human Biology and Nutritional Sciences at the University of Guelph, Guelph, ON
| |
Collapse
|
46
|
Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol 2000; 529 Pt 3:837-47. [PMID: 11118510 PMCID: PMC2270224 DOI: 10.1111/j.1469-7793.2000.00837.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study examined the effect of ingesting caffeine (6 mg kg-1) on muscle carbohydrate and fat metabolism during steady-state exercise in humans. Young male subjects (n = 10) performed 1 h of exercise (70% maximal oxygen consumption (VO2,max)) on two occasions (after ingestion of placebo and caffeine) and leg metabolism was quantified by the combination of direct Fick measures and muscle biopsies. Following caffeine ingestion serum fatty acid and glycerol concentration increased (P< or =0.05) at rest, suggesting enhanced adipose tissue lipolysis. In addition circulating adrenaline concentration was increased (P< or =0.05) at rest following caffeine ingestion and this, as well as leg noradrenaline spillover, was elevated (P< or =0.05) above placebo values during exercise. Caffeine resulted in a modest increase (P< or =0.05) in leg vascular resistance, but no difference was found in leg blood flow. Arterial lactate and glucose concentrations were increased (P< or =0.05) by caffeine, while the rise in plasma potassium was dampened (P< or =0.05). There were no differences in respiratory exchange ratio or in leg glucose uptake, net muscle glycogenolysis, leg lactate release or muscle lactate, or glucose 6-phosphate concentration. Similarly there were no differences between treatments in leg fatty acid uptake, glycerol release or muscle acetyl CoA concentration. These findings indicate that caffeine ingestion stimulated the sympathetic nervous system but did not alter the carbohydrate or fat metabolism in the monitored leg. Other tissues must have been involved in the changes in circulating potassium, fatty acids, glucose and lactate.
Collapse
Affiliation(s)
- T E Graham
- Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
|
49
|
Greer F, McLean C, Graham TE. Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol (1985) 1998; 85:1502-8. [PMID: 9760347 DOI: 10.1152/jappl.1998.85.4.1502] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Investigations examining the ergogenic and metabolic influence of caffeine during short-term high-intensity exercise are few in number and have produced inconsistent results. This study examined the effects of caffeine on repeated bouts of high-intensity exercise in recreationally active men. Subjects (n = 9) completed four 30-s Wingate (WG) sprints with 4 min of rest between each exercise bout on two separate occasions. One hour before exercise, either placebo (P1; dextrose) or caffeine (Caf; 6 mg/kg) capsules were ingested. Caf ingestion did not have any effect on power output (peak or average) in the first two WG tests and had a negative effect in the latter two exercise bouts. Plasma epinephrine concentration was significantly increased 60 min after Caf ingestion compared with P1; however, this treatment effect disappeared once exercise began. Caf ingestion had no significant effect on blood lactate, O2 consumption, or aerobic contribution at any time during the protocol. After the second Wingate test, plasma NH3 concentration increased significantly from the previous WG test and was significantly higher in the Caf trial compared with P1. These data demonstrate no ergogenic effect of caffeine on power output during repeated bouts of short-term, intense exercise. Furthermore, there was no indication of increased anaerobic metabolism after Caf ingestion with the exception of an increase in NH3 concentration.
Collapse
Affiliation(s)
- F Greer
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
50
|
Mohr T, Van Soeren M, Graham TE, Kjaer M. Caffeine ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Physiol (1985) 1998; 85:979-85. [PMID: 9729573 DOI: 10.1152/jappl.1998.85.3.979] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normally, caffeine ingestion results in a wide spectrum of neural and hormonal responses, making it difficult to evaluate which are critical regulatory factors. We examined the responses to caffeine (6 mg/kg) ingestion in a group of spinal cord-injured subjects [7 tetraplegic (C5-7) and 2 paraplegic (T4) subjects] at rest and during functional electrical stimulation of their paralyzed limbs to the point of fatigue. Plasma insulin did not change, caffeine had no effect on plasma epinephrine, and there was a slight increase (P < 0. 05) in norepinephrine after 15 min of exercise. Nevertheless, serum free fatty acids were increased (P < 0.05) after caffeine ingestion after 60 min of rest and throughout the first 15 min of exercise, but the respiratory exchange ratio was not affected. The exercise time was increased (P < 0.05) by 6% or 1.26 +/- 0.57 min. These data suggest that caffeine had direct effects on both the adipose tissue and the active muscle. It is proposed that the ergogenic action of caffeine is occurring, at least in part, by a direct action of the drug on muscle.
Collapse
Affiliation(s)
- T Mohr
- The Copenhagen Muscle Research Centre, Department H, Bispebjerg Hospital, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | | |
Collapse
|