1
|
Ao Y, Wang Z, Yang X, Knops JMH, Wang J, Shi Y, Wang J. Preferential Carbon Allocation Into Vegetative Ramets and Belowground Organs During the Seed-Filling Stage Limits Seed Set in Leymus chinensis. PLANT, CELL & ENVIRONMENT 2025; 48:1286-1296. [PMID: 39440579 DOI: 10.1111/pce.15228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Clonal perennial grasses are the dominant species in almost all natural grasslands, however their seed production is typically low. The reasons why seed set is so low remains unclear. We studied a rhizomatous grass (Leymus chinensis) using 13C tracing the different photosynthetic organs to investigate carbon fixation and allocation during the seed-filling stage. We found that the vegetative ramet leaves are the largest (81%) source for total plant fixed carbon, whereas almost all carbon is allocated to vegetative reproduction. The spike is the largest (54%) carbon source for the seeds. However, the spike produced carbon only allocated 37% to the seeds, with the majority allocated to vegetative reproduction. This preferential carbon allocation to vegetative reproduction limits sexual reproduction. Nitrogen application significantly increased assimilated carbon. However, nearly all increased carbon accumulated in the vegetative reproduction rather than in the seeds. Only the carbon produced by the spike increased its allocation to the seeds by 13%. Taken together, we conclude that the predominance of vegetative reproduction, combined with self-incompatibility, results in low ovule fertilization and very weak seed sink strength for carbon competition, suggests that the weak seed sink strength is the key reason causing low seed set in L. chinensis.
Collapse
Affiliation(s)
- Yunna Ao
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Zhiqi Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xinran Yang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jiao Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yujie Shi
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Junfeng Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
2
|
Kim S, Lee BD, Lee CW, Park HJ, Hwang JE, Park HB, Kim YJ, Jeon D, Yoon YJ. Strict biennial lifecycle and anthropogenic interventions affect temporal genetic differentiation in the endangered endemic plant, Pedicularis hallaisanensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1468395. [PMID: 39512478 PMCID: PMC11542022 DOI: 10.3389/fpls.2024.1468395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024]
Abstract
Strict biennials are among the least known lifecycles in plant ecology due to their rarity in nature, and their population genetics still remain unknown. The present study addressed the strict biennial lifecycle and associated population genetics of Pedicularis hallaisanensis, an endangered endemic plant in Korea. All P. hallaisanensis individuals were counted in August from 2021 to 2023 in the wild population of Gayasan National Park, and lifecycle and morphological changes were monitored monthly. A de novo draft genome and single nucleotide polymorphism (SNP) analysis were used to study the population's genetic structure. P. hallaisanensis strictly requires a 2-year lifecycle per generation, including 8 and 10 months of growing periods as a first-year seedling and second-year adult, respectively. Facultative annual and perennial lifecycles were undetected, resulting in odd-year and even-year flowering cohorts. Permutational multivariate analysis of variance on the detected 3,716 SNPs demonstrated that the flowering group (p < 0.005), microhabitat (p < 0.001), and their interaction (p < 0.01) had a significant effect on genetic structure, which was differentiated between odd-year and even-year flowering cohorts. Other cluster analyses also showed that a microhabitat under historical anthropogenic interventions contained lowered genetic diversity due to a decreased genetic distance between odd-year and even-year flowering cohorts (p < 0.05). Overall, the findings suggest that excessive anthropogenic interventions should be avoided to preserve genetic diversity in the wild P. hallaisanensis population. Moreover, conservation programs for similar biennial plants should collect wild breeds from both odd-year and even-year flowering cohorts to improve the genetic diversity of artificially propagated individuals.
Collapse
Affiliation(s)
- Seongjun Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Gyeongbuk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Duret M, Wallner A, Buée M, Aziz A. Rhizosphere microbiome assembly, drivers and functions in perennial ligneous plant health. Microbiol Res 2024; 287:127860. [PMID: 39089083 DOI: 10.1016/j.micres.2024.127860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge. To date, such attempts were mainly investigated in herbaceous plants, due to their phenotypic characteristics and their short life cycle. However, only few studies have focused on the microbial structure, dynamic and their drivers in perennial ligneous plants. Ligneous plants coevolved in interaction with specific fungal and bacterial communities that differ from those of annual plants. The specificities of such ligneous plants in shaping their own functional microbial communities could be dependent on their high heterozygosis, physiological and molecular status associated to seasonality and their aging processes, root system and above-ground architectures, long-lasting climatic variations, and specific cultural practices. This article provides an overview of the specific characteristics of perennial ligneous plants that are likely to modulate symbiotic interactions in the rhizosphere, thus affecting the plant's fitness and systemic immunity. Plant and microbial traits contributing to the establishment of plant-microbiome interactions and the adaptation of this holobiont are also discussed.
Collapse
Affiliation(s)
- Morgane Duret
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Adrian Wallner
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Marc Buée
- Centre INRAE Grand Est-Nancy, UMR Interactions Arbres-Microorganismes, Champenoux 54280, France
| | - Aziz Aziz
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France.
| |
Collapse
|
4
|
Pålsson A, Walther U, Fior S, Widmer A. Early Life History Divergence Mediates Elevational Adaptation in a Perennial Alpine Plant. Ecol Evol 2024; 14:e70454. [PMID: 39440209 PMCID: PMC11493492 DOI: 10.1002/ece3.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Spatially divergent natural selection can drive adaptation to contrasting environments and thus the evolution of ecotypes. In perennial plants, selection shapes life history traits by acting on subsequent life stages, each contributing to fitness. While evidence of adaptation in perennial plants is common, the expression of life history traits is rarely characterized, limiting our understanding of their role in adaptive evolution. We conducted a multi-year reciprocal transplant experiment with seedlings from low and high elevation populations of the alpine carnation Dianthus carthusianorum to test for adaptation linked to contrasting climates and inferred specific contributions of early life stages to fitness. We assessed genotype by environment interactions in single fitness components, applied matrix population models to achieve an integrated estimate of fitness through population growth rates, and performed trade-off analyses to investigate the advantage of alternate life history traits across environments. We found evidence of genotype by environment interactions consistent with elevational adaptation at multiple stages of the early life cycle. Estimates of population growth rates corroborated a strong advantage of the local genotype. Early reproduction and survival are alternate major contributors to adaptation at low and high elevation, respectively, and are linked by trade-offs that underlie the evolution of divergent life history traits across environments. While these traits have a strong genetic basis, foreign populations express co-gradient plasticity, reflecting the adaptive strategy of the local populations. Our study reveals that selection associated to climate has driven the evolution of divergent life histories and the formation of elevational ecotypes. While the high energy environment and strong competition favor investment in early reproduction at low elevation, limiting resources favor a more conservative strategy relying on self-maintenance at high elevation. The co-gradient plasticity expressed by high-elevation populations may facilitate their persistence under warming climatic conditions.
Collapse
Affiliation(s)
- Aksel Pålsson
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Ursina Walther
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Xue JS, Feng YF, Zhang MQ, Xu QL, Xu YM, Shi JQ, Liu LF, Wu XF, Wang S, Yang ZN. The regulatory mechanism of rapid lignification for timely anther dehiscence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1788-1800. [PMID: 38888227 DOI: 10.1111/jipb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Feng Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Lin Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Min Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun-Qin Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Fang Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Feng Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
6
|
Burnett NP, Ricart AM, Winquist T, Saley AM, Edwards MS, Hughes B, Hodin J, Baskett ML, Gaylord B. Bimodal spore release heights in the water column enhance local retention and population connectivity of bull kelp, Nereocystis luetkeana. Ecol Evol 2024; 14:e70177. [PMID: 39145038 PMCID: PMC11322238 DOI: 10.1002/ece3.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Dispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp, Nereocystis luetkeana, can release propagules (spores) from two heights in the water column ("bimodal release"): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column. N. luetkeana is a foundation species that occurs from central California to Alaska and is experiencing unprecedented levels of population declines near its southern range limit. We know little of the kelp's dispersal distributions, which could influence population recovery and restoration. Here, we quantify how bimodal spore release heights affect dispersal outcomes based on a numerical model specifically designed for N. luetkeana. The model incorporates oceanographic conditions typical of the species' coastal range and kelp biological traits. With bimodal release heights, 34% of spores are predicted to settle within 10 m of the parental alga and 60% are predicted to disperse beyond 100 m. As an annual species, bimodal release heights can facilitate the local regeneration of adults within a source kelp forest while also supporting connectivity among multiple forests within broader bull kelp metapopulations. To leverage this pattern of bimodal spore dispersal in bull kelp restoration management, directing resources toward strategically located focal populations that can seed other ones could amplify the scale of recovery.
Collapse
Affiliation(s)
- Nicholas P. Burnett
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Department of Neurobiology, Physiology, and BehaviorUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
| | - Aurora M. Ricart
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
- Institut de Ciències del Mar (ICM‐CSIC)BarcelonaSpain
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| | - Tallulah Winquist
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Alisha M. Saley
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
| | | | - Brent Hughes
- Department of BiologySonoma State UniversityRohnert ParkCaliforniaUSA
| | - Jason Hodin
- Friday Harbor LabsUniversity of WashingtonFriday HarborWashingtonUSA
| | - Marissa L. Baskett
- Deparment of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| | - Brian Gaylord
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
| |
Collapse
|
7
|
Zhao L, Li J, Barrett RL, Liu B, Hu H, Lu L, Chen Z. Spatial heterogeneity of extinction risk for flowering plants in China. Nat Commun 2024; 15:6352. [PMID: 39069525 PMCID: PMC11284212 DOI: 10.1038/s41467-024-50704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Understanding the variability of extinction risk and its potential drivers across different spatial extents is crucial to revealing the underlying processes of biodiversity loss and sustainability. However, in countries with high climatic and topographic heterogeneity, studies on extinction risk are often challenged by complexities associated with extent effects. Here, using 2.02 million fine-grained distribution records and a phylogeny including 27,185 species, we find that the extinction risk of flowering plants in China is spatially concentrated in southwestern China. Our analyses suggest that spatial extinction risks of flowering plants in China may be caused by multiple drivers and are extent dependent. Vegetation structure based on proportion of growth forms is likely the dominant extinction driver at the national extent, followed by climatic and evolutionary drivers. Finer extent analyses indicate that the potential dominant extinction drivers vary across zones and vegetation regions. Despite regional heterogeneity, we detect a geographical continuity potential in extinction drivers, with variation in West China dominated by vegetation structure, South China by climate, and North China by evolution. Our findings highlight that identification of potential extent-dependent drivers of extinction risk is crucial for targeted conservation practice in countries like China.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Jinya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haihua Hu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
8
|
Des Marais DL. Timing is everything: How plants optimize reproduction in a variable environment. Cell 2024; 187:3504-3505. [PMID: 38996485 DOI: 10.1016/j.cell.2024.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Organisms experience a constantly changing environment and must adjust their development to maximize fitness. These "life histories" are fantastically diverse and have fascinated biologists for decades. Recent work published in Cell reveals the complex genetic mechanisms that drive life-history variation within and among species in the Brassicaceae plant family.
Collapse
Affiliation(s)
- David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Sovegnon PM, Akoton R, Stopard IJ, Churcher TS, McCall PJ, Ranson H, Foster GM, Djogbénou LS. Efficacy of Interceptor G2, Royal Guard and PermaNet 3.0 against pyrethroid-resistant Anopheles gambiae s.l. from Za-Kpota, southern Benin: an experimental hut trial. Parasit Vectors 2024; 17:300. [PMID: 38992693 PMCID: PMC11238393 DOI: 10.1186/s13071-024-06372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.
Collapse
Affiliation(s)
- Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Cotonou, Benin.
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Cotonou, Benin
| | - Isaac J Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Geraldine M Foster
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Luc Salako Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Cotonou, Benin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
10
|
Kulesza E, Thomas P, Prewitt SF, Shalit-Kaneh A, Wafula E, Knollenberg B, Winters N, Esteban E, Pasha A, Provart N, Praul C, Landherr L, dePamphilis C, Maximova SN, Guiltinan MJ. The cacao gene atlas: a transcriptome developmental atlas reveals highly tissue-specific and dynamically-regulated gene networks in Theobroma cacao L. BMC PLANT BIOLOGY 2024; 24:601. [PMID: 38926852 PMCID: PMC11201900 DOI: 10.1186/s12870-024-05171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest. To accelerate gene discovery, we developed a gene atlas composed of a large dataset of replicated transcriptomes with the long-term goal of progressing breeding towards developing high-yielding elite varieties of cacao. RESULTS We describe the creation of the Cacao Transcriptome Atlas, its global characterization and define sets of genes co-regulated in highly organ- and temporally-specific manners. RNAs were extracted and transcriptomes sequenced from 123 different tissues and stages of development representing major organs and developmental stages of the cacao lifecycle. In addition, several experimental treatments and time courses were performed to measure gene expression in tissues responding to biotic and abiotic stressors. Samples were collected in replicates (3-5) to enable statistical analysis of gene expression levels for a total of 390 transcriptomes. To promote wide use of these data, all raw sequencing data, expression read mapping matrices, scripts, and other information used to create the resource are freely available online. We verified our atlas by analyzing the expression of genes with known functions and expression patterns in Arabidopsis (ACT7, LEA19, AGL16, TIP13, LHY, MYB2) and found their expression profiles to be generally similar between both species. We also successfully identified tissue-specific genes at two thresholds in many tissue types represented and a set of genes highly conserved across all tissues. CONCLUSION The Cacao Gene Atlas consists of a gene expression browser with graphical user interface and open access to raw sequencing data files as well as the unnormalized and CPM normalized read count data mapped to several cacao genomes. The gene atlas is a publicly available resource to allow rapid mining of cacao gene expression profiles. We hope this resource will be used to help accelerate the discovery of important genes for key cacao traits such as disease resistance and contribute to the breeding of elite varieties to help farmers increase yields.
Collapse
Affiliation(s)
- Evelyn Kulesza
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick Thomas
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah F Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- USDA Animal and Plant Health Inspection Service (APHIS), Riverdale, MD, 20737, USA
| | - Akiva Shalit-Kaneh
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Plant Sciences, Volcani-ARO (Agricultural and Rural Organization), Gilat, Israel
| | - Eric Wafula
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Benjamin Knollenberg
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Mars Inc, Davis, CA, 95616, USA
| | - Noah Winters
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Eddi Esteban
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Craig Praul
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lena Landherr
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Claude dePamphilis
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Siela N Maximova
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark J Guiltinan
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell 2024; 187:3319-3337.e18. [PMID: 38810645 DOI: 10.1016/j.cell.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.
Collapse
Affiliation(s)
- Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiao-Li Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
12
|
Landoni B, Suárez-Montes P, Habeahan RHF, Brennan AC, Pérez-Barrales R. Local climate and vernalization sensitivity predict the latitudinal patterns of flowering onset in the crop wild relative Linum bienne Mill. ANNALS OF BOTANY 2024; 134:117-130. [PMID: 38482916 PMCID: PMC11161566 DOI: 10.1093/aob/mcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.
Collapse
Affiliation(s)
- Beatrice Landoni
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | | | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- Botany Department, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Wadgymar SM, Sheth S, Josephs E, DeMarche M, Anderson J. Defining fitness in evolutionary ecology. INTERNATIONAL JOURNAL OF PLANT SCIENCES 2024; 185:218-227. [PMID: 39035046 PMCID: PMC11257499 DOI: 10.1086/729360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An understanding of biological fitness is central to theory and practice in ecology and evolution, yet fitness remains an elusive concept to define and challenging to measure accurately. Fitness reflects an individual's ability to pass its alleles on to subsequent generations. Researchers often quantify proxies for fitness, such as survival, growth or reproductive success. However, it can be difficult to determine lifetime fitness, especially for species with long lifespans. The abiotic and biotic environment strongly affects the expression of fitness, which means that fitness components can vary through both space and time. This spatial and temporal heterogeneity results in the impressive range of adaptations that we see in nature. Here, we review definitions of fitness and approaches to measuring fitness at the level of genes, individuals, genotypes, and populations and highlight that fitness is a key concept linking ecological and evolutionary thought.
Collapse
Affiliation(s)
| | - Seema Sheth
- Department of Plant and Microbial Biology, North Carolina State University
| | - Emily Josephs
- Department of Plant Biology, Michigan State University
| | | | - Jill Anderson
- Department of Genetics & Odum School of Ecology, University of Georgia
| |
Collapse
|
14
|
Prochazka LS, Alcantara S, Rando JG, Vasconcelos T, Pizzardo RC, Nogueira A. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. THE NEW PHYTOLOGIST 2024; 242:760-773. [PMID: 38379443 DOI: 10.1111/nph.19601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention. We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches. Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource-rich environments. Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource-limited habitat and the other relying on reserves and root resprouting systems in resource-abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low-resource and high-disturbance environments.
Collapse
Affiliation(s)
- Luana S Prochazka
- Programa de Pós-graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, São Paulo, SP, CEP 04301-902, Brazil
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Suzana Alcantara
- Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP 88040-900, Brazil
| | - Juliana Gastaldello Rando
- Programa de Pós-Graduação em Ciências Ambientais, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, CEP 47808-021, Brazil
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Raquel C Pizzardo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| |
Collapse
|
15
|
Jones DM, Hepworth J, Wells R, Pullen N, Trick M, Morris RJ. A transcriptomic time-series reveals differing trajectories during pre-floral development in the apex and leaf in winter and spring varieties of Brassica napus. Sci Rep 2024; 14:3538. [PMID: 38347020 PMCID: PMC10861513 DOI: 10.1038/s41598-024-53526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Oilseed rape (Brassica napus) is an important global oil crop, with spring and winter varieties grown commercially. To understand the transcriptomic differences between these varieties, we collected transcriptomes from apex and leaf tissue from a spring variety, Westar, and a winter variety, Tapidor, before, during, and after vernalisation treatment, until the plants flowered. Large transcriptomic differences were noted in both varieties during the vernalisation treatment because of temperature and day length changes. Transcriptomic alignment revealed that the apex transcriptome reflects developmental state, whereas the leaf transcriptome is more closely aligned to the age of the plant. Similar numbers of copies of genes were expressed in both varieties during the time series, although key flowering time genes exhibited expression pattern differences. BnaFLC copies on A2 and A10 are the best candidates for the increased vernalisation requirement of Tapidor. Other BnaFLC copies show tissue-dependent reactivation of expression post-cold, with these dynamics suggesting some copies have retained or acquired a perennial nature. BnaSOC1 genes, also related to the vernalisation pathway, have expression profiles which suggest tissue subfunctionalisation. This understanding may help to breed varieties with more consistent or robust vernalisation responses, of special importance due to the milder winters resulting from climate change.
Collapse
Affiliation(s)
- D Marc Jones
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Synthace, The WestWorks, 195 Wood Lane, 4th Floor, London, W12 7FQ, UK.
| | - Jo Hepworth
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Rachel Wells
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nick Pullen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J Morris
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
16
|
Liu G, Fu P, Mao Q, Xia J, Zhao W. Effect of life cycle and venation pattern on the coordination between stomatal and vein densities of herbs. AOB PLANTS 2024; 16:plae007. [PMID: 38435969 PMCID: PMC10908534 DOI: 10.1093/aobpla/plae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Life cycle (annual vs perennial) and leaf venation pattern (parallel and reticular) are known to be related to water use strategies in herb species and critical adaptation to certain climatic conditions. However, the effect of these two traits and how they influence the coordination between vein density (vein length per area, VLA) and stomatal density (SD) remains unclear. In this study, we examined the leaves of 53 herb species from a subtropical botanical garden in Guangdong Province, China, including herbs with different life cycles and leaf venation patterns. We assessed 21 leaf water-related functional traits for all species, including leaf area (LA), major and minor VLA, major and minor vein diameter (VD), SD and stomatal length (SL). The results showed no significant differences in mean SD and SL between either functional group (parallel venation vs reticular venation and annual vs perennial). However, parallel vein herbs and perennial herbs displayed a significantly higher mean LA and minor VD, and lower minor VLA compared to reticular vein herbs and annual herbs, respectively. There was a linear correlation between total VLA and SD in perennial and reticular vein herbs, but this kind of correlation was not found in annual and parallel vein herbs. The major VLA and minor VD were significantly affected by the interaction between life cycle and leaf venation pattern. Our findings suggested that VLA, rather than SD, may serve as a more adaptable structure regulated by herbaceous plants to support the coordination between leaf water supply and demand in the context of different life cycles and leaf venation patterns. The results of the present study provide mechanistic understandings of functional advantages of different leaf types, which may involve in species fitness in community assembly and divergent responses to climate changes.
Collapse
Affiliation(s)
- Guolan Liu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Peili Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, Yunnan, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan, China
| | - Qinggong Mao
- Key Laboratory of Vegetatcion Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Wanli Zhao
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| |
Collapse
|
17
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
18
|
Poppenwimer T, Mayrose I, DeMalach N. Revising the global biogeography of annual and perennial plants. Nature 2023; 624:109-114. [PMID: 37938778 PMCID: PMC10830411 DOI: 10.1038/s41586-023-06644-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
There are two main life cycles in plants-annual and perennial1,2. These life cycles are associated with different traits that determine ecosystem function3,4. Although life cycles are textbook examples of plant adaptation to different environments, we lack comprehensive knowledge regarding their global distributional patterns. Here we assembled an extensive database of plant life cycle assignments of 235,000 plant species coupled with millions of georeferenced datapoints to map the worldwide biogeography of these plant species. We found that annual plants are half as common as initially thought5-8, accounting for only 6% of plant species. Our analyses indicate that annuals are favoured in hot and dry regions. However, a more accurate model shows that the prevalence of annual species is driven by temperature and precipitation in the driest quarter (rather than yearly means), explaining, for example, why some Mediterranean systems have more annuals than desert systems. Furthermore, this pattern remains consistent among different families, indicating convergent evolution. Finally, we demonstrate that increasing climate variability and anthropogenic disturbance increase annual favourability. Considering future climate change, we predict an increase in annual prevalence for 69% of the world's ecoregions by 2060. Overall, our analyses raise concerns for ecosystem services provided by perennial plants, as ongoing changes are leading to a higher proportion of annual plants globally.
Collapse
Affiliation(s)
- Tyler Poppenwimer
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| | - Niv DeMalach
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
19
|
Wunder J, Fulgione A, Toräng P, Wötzel S, Herzog M, Obeso JR, Kourmpetis Y, van Ham R, Odong T, Bink M, Kemi U, Ågren J, Coupland G. Adaptation of perennial flowering phenology across the European range of Arabis alpina. Proc Biol Sci 2023; 290:20231401. [PMID: 37989245 PMCID: PMC10688268 DOI: 10.1098/rspb.2023.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.
Collapse
Affiliation(s)
- Jörg Wunder
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andrea Fulgione
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Wötzel
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Michel Herzog
- Laboratoire d’Écologie Alpine, LECA, Université Grenoble Alpes, 38000 Grenoble, France
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Spain
| | - Yiannis Kourmpetis
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Roeland van Ham
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
- KeyGene, 6708 PW Wageningen, The Netherlands
| | - Thomas Odong
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Marco Bink
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Ulla Kemi
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
20
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
21
|
Boyko JD, Hagen ER, Beaulieu JM, Vasconcelos T. The evolutionary responses of life-history strategies to climatic variability in flowering plants. THE NEW PHYTOLOGIST 2023; 240:1587-1600. [PMID: 37194450 DOI: 10.1111/nph.18971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The evolution of annual or perennial strategies in flowering plants likely depends on a broad array of temperature and precipitation variables. Previous documented climate life-history correlations in explicit phylogenetic frameworks have been limited to certain clades and geographic regions. To gain insights which generalize to multiple lineages we employ a multi-clade approach analyzing 32 groups of angiosperms across eight climatic variables. We utilize a recently developed method that accounts for the joint evolution of continuous and discrete traits to evaluate two hypotheses: annuals tend to evolve in highly seasonal regions prone to extreme heat and drought; and annuals tend to have faster rates of climatic niche evolution than perennials. We find that temperature, particularly highest temperature of the warmest month, is the most consistent climatic factor influencing the evolution of annual strategy in flowering plants. Unexpectedly, we do not find significant differences in rates of climatic niche evolution between perennial and annual lineages. We propose that annuals are consistently favored in areas prone to extreme heat due to their ability to escape heat stress as seeds, but they tend to be outcompeted by perennials in regions where extreme heat is uncommon or nonexistent.
Collapse
Affiliation(s)
- James D Boyko
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Michigan Institute of Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Kumawat S, Choi JY. No end in sight: Mysteries of the telomeric variation in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16244. [PMID: 37733763 PMCID: PMC10873042 DOI: 10.1002/ajb2.16244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Surbhi Kumawat
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Jae Young Choi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
23
|
Karami O, Mueller-Roeber B, Rahimi A. The central role of stem cells in determining plant longevity variation. PLANT COMMUNICATIONS 2023; 4:100566. [PMID: 36840355 PMCID: PMC10504568 DOI: 10.1016/j.xplc.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vascular plants display a huge variety of longevity patterns, from a few weeks for several annual species up to thousands of years for some perennial species. Understanding how longevity variation is structured has long been considered a fundamental aspect of the life sciences in view of evolution, species distribution, and adaptation to diverse environments. Unlike animals, whose organs are typically formed during embryogenesis, vascular plants manage to extend their life by continuously producing new tissues and organs in apical and lateral directions via proliferation of stem cells located within specialized tissues called meristems. Stem cells are the main source of plant longevity. Variation in plant longevity is highly dependent on the activity and fate identity of stem cells. Multiple developmental factors determine how stem cells contribute to variation in plant longevity. In this review, we provide an overview of the genetic mechanisms, hormonal signaling, and environmental factors involved in controlling plant longevity through long-term maintenance of stem cell fate identity.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
24
|
Lou Y, Wang R, Che P, Zhao C, Chen Y, Yang Y, Mu J. Nitrogen Addition Affects Interannual Variation in Seed Production in a Tibetan Perennial Herb. BIOLOGY 2023; 12:1132. [PMID: 37627016 PMCID: PMC10452069 DOI: 10.3390/biology12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
The variability observed in the annual seed production of perennial plants can be seen as an indication of changes in the allocation of resources between growth and reproduction, which can be attributed to fluctuations in the environment. However, a significant knowledge gap exists concerning the impacts of nitrogen addition on the interannual seed production patterns of perennial plants. We hypothesized that the addition of nitrogen would impact the annual variations in the seed production of perennial plants, ultimately affecting their overall reproductive efficiency. A multiyear field experiment was conducted to investigate the effects of varying nitrogen supply levels (e.g., 0, 4, and 8 kg N ha-1 yr-1 of N0, N4, and N8) on vegetative and floral traits, pollinator visitation rates, and seed traits over a period of four consecutive years. The results showed that the N0 treatment exhibited the highest levels of seed production and reproductive efficiency within the initial two years. In contrast, the N4 treatment displayed its highest level of performance in these metrics in the second and third years, whereas the N8 treatment showcased its most favorable outcomes in the third and fourth years. Similar patterns were found in the number of flowers per capitulum and the number of capitula per plant. There exists a positive correlation between aboveground biomass and several factors, including the number of flowers per capitulum, the number of capitula per plant, the volume of nectar per capitulum, and the seed production per plant. A positive correlation was found between pollinator visitation and the number of flowers per capitulum or the number of capitula per plant. This implies that the addition of N affected the maintenance of plant aboveground biomass, flower trait stability, pollinator visitation, and, subsequently, the frequency of seed production and reproductive efficiency. Our results suggest that augmenting the nitrogen content in the soil may have the capacity to modify the inherent variability in seed production that is observed across various years and enhance the effectiveness of reproductive processes. These findings have the potential to enhance our comprehension of the impact of nitrogen addition on the reproductive performance of perennial herbaceous plants and the underlying mechanisms of biodiversity in the context of global environmental changes.
Collapse
Affiliation(s)
- Yuanxin Lou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Y.L.); (R.W.); (P.C.); (Y.C.)
| | - Ruolan Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Y.L.); (R.W.); (P.C.); (Y.C.)
| | - Peiyue Che
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Y.L.); (R.W.); (P.C.); (Y.C.)
| | - Chuan Zhao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Yali Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Y.L.); (R.W.); (P.C.); (Y.C.)
| | - Yangheshan Yang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
| | - Junpeng Mu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Y.L.); (R.W.); (P.C.); (Y.C.)
| |
Collapse
|
25
|
Taylor LU, Prum RO. SOCIAL CONTEXT AND THE EVOLUTION OF DELAYED REPRODUCTION IN BIRDS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551693. [PMID: 37577720 PMCID: PMC10418290 DOI: 10.1101/2023.08.02.551693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Classic life history theory makes generalized predictions about phenotypic correlations across large clades. Modern comparative tests of these correlations account for the underlying structure of phylogenetic trees. Yet neither life history theory nor phylogenetic comparative methods automatically specify how biological mechanisms generate correlations. This problem is evident in comparative analyses of birds. Birds show a correlation between body size and age at first reproduction, but do not actually grow larger if they delay reproduction. Instead, field studies raise the hypothesis that social contexts-especially cooperative breeding, coloniality, and lekking-generate unique demands for behavioral development, which in turn result in delayed reproduction. Here, we support that hypothesis with a comparative dataset spanning 961 species in 155 avian families. Continuous (Ornstein-Uhlenbeck), discrete (hidden state Markov), and phylogenetic regression models revealed delayed reproduction in colonial birds, a weaker signal in cooperative birds, and the consistent evolution of sexual bimaturism in polygynous, lekking birds. These results show an association between diverse social contexts, sex-specific developmental demands, and life history evolution in birds. Considering this diversity, we discuss how even statistically powerful phylogenetic correlations-whether focused on mass, lifespan, or broad social categories-can ultimately fail to model the history of life history evolution.
Collapse
Affiliation(s)
- Liam U. Taylor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
26
|
van Katwijk MM, van Tussenbroek BI. Facultative Annual Life Cycles in Seagrasses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2002. [PMID: 37653920 PMCID: PMC10223934 DOI: 10.3390/plants12102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Plant species usually have either annual or perennial life cycles, but facultative annual species have annual or perennial populations depending on their environment. In terrestrial angiosperms, facultative annual species are rare, with wild rice being one of the few examples. Our review shows that in marine angiosperms (seagrasses) facultative annual species are more common: six (of 63) seagrass species are facultative annual. It concerns Zostera marina, Z. japonica, Halophila decipiens, H. beccarii, Ruppia maritima, and R. spiralis. The annual populations generally produce five times more seeds than their conspecific perennial populations. Facultative annual seagrass species occur worldwide. Populations of seagrasses are commonly perennial, but the facultative annual species had annual populations when exposed to desiccation, anoxia-related factors, shading, or heat stress. A system-wide 'experiment' (closure of two out of three connected estuaries for large-scale coastal protection works) showed that the initial annual Z. marina population could shift to a perennial life cycle within 5 years, depending on environmental circumstances. We discuss potential mechanisms and implications for plant culture. Further exploration of flexible life histories in plant species, and seagrasses in particular, may aid in answering questions about trade-offs between vegetative and sexual reproduction, and preprogrammed senescence.
Collapse
Affiliation(s)
- Marieke M. van Katwijk
- Department of Environmental Science, Radboud Institute of Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Brigitta I. van Tussenbroek
- Institute of Ocean Sciences and Limnology, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico;
| |
Collapse
|
27
|
dos Santos WL, Pôrto KC, Bordin J, Pinheiro F, Bisang I. The spatial arrangement of sexes is related to reproductive allocation in mosses: a comparative study of reproductive allocation in three different monoicous sexual systems. ANNALS OF BOTANY 2023; 131:885-896. [PMID: 37004162 PMCID: PMC10184451 DOI: 10.1093/aob/mcad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS We examined the relationship between reproductive allocation and vegetative growth in three monoicous sexual systems of bryophytes. The sexual systems show a gradient of increasing distance between the sexes, from gonioautoicous to cladautoicous to rhizautoicous. Here, we investigated the following two hypotheses: (1) reproductive allocation differs between sexes and sexual systems, and male reproductive allocation increases with increasing distance between male and female gametangia; and (2) reproductive allocation is negatively related to vegetative growth. METHODS We sampled the three sexual systems, represented by three moss species of the genus Fissidens in the Atlantic Forest of Southeastern Brazil. Ramets were washed in the laboratory; the reproductive structures were detached from the vegetative ramets and sorted regarding sex and individual, dried at 70 °C for 72 h, and weighed in an ultramicrobalance. We calculated the mean reproductive and vegetative mass and reproductive allocation and used generalized linear models to test our predictions. KEY RESULTS Reproductive allocation differed between species and sexes. It was higher in the rhizautoicous than in the cladautoicous and gonioautoicous species. Mean reproductive allocation was greater in males than in females of the rhizautoicous species, greater in females than males of the cladautoicous species, and did not differ between the sexes in the gonioautoicous species. Estimates of reproductive and vegetative mass were positively related in females of the rhizautoicous species. Vegetative mass was not related to reproductive allocation in the gonioautoicous species, but negatively related to reproductive allocation in the male and female branchlets of the cladautoicous species and in the female ramets of the rhizautoicous species. CONCLUSIONS The reproductive allocation patterns differ between the rhizautoicous species and the 'truly' monoicous species, with shorter intersexual distances, which implies that our hypotheses were supported only in part. We suggest that the hypotheses should be reformulated and tested further by comparing 'truly' monoicous species with dioicous species and by including other genera.
Collapse
Affiliation(s)
- Wagner Luiz dos Santos
- Department of Plant Biology, University of Campinas, Rua Monteiro Lobato 255, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Kátia Cavalcanti Pôrto
- Department of Botany, Federal University of Pernambuco, Avenida Moraes Rego, s/n, University City, Recife, Pernambuco, Brazil
| | - Juçara Bordin
- State University of Rio Grande do Sul, Machado de Assis, 1456, RS 95520-000, Brasil
| | - Fábio Pinheiro
- Department of Plant Biology, University of Campinas, Rua Monteiro Lobato 255, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Irene Bisang
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
28
|
Grossman JJ. Phenological physiology: seasonal patterns of plant stress tolerance in a changing climate. THE NEW PHYTOLOGIST 2023; 237:1508-1524. [PMID: 36372992 DOI: 10.1111/nph.18617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The physiological challenges posed by climate change for seasonal, perennial plants include increased risk of heat waves, postbudbreak freezing ('false springs'), and droughts. Although considerable physiological work has shown that the traits conferring tolerance to these stressors - thermotolerance, cold hardiness, and water deficit stress, respectively - are not static in time, they are frequently treated as such. In this review, I synthesize the recent literature on predictable seasonal - and therefore, phenological - patterns of acclimation and deacclimation to heat, cold, and water-deficit stress in perennials, focusing on woody plants native to temperate climates. I highlight promising, high-throughput techniques for quantifying thermotolerance, cold hardiness, and drought tolerance. For each of these forms of stress tolerance, I summarize the current balance of evidence regarding temporal patterns over the course of a year and suggest a characteristic temporal scale in these responses to environmental stress. In doing so, I offer a synthetic framework of 'phenological physiology', in which understanding and leveraging seasonally recurring (phenological) patterns of physiological stress acclimation can facilitate climate change adaptation and mitigation.
Collapse
Affiliation(s)
- Jake J Grossman
- Department of Biology, St. Olaf College, 1520 St Olaf Ave., St Olaf, MN, 55057, USA
- Department of Environmental Studies, St Olaf College, 1520 St Olaf Ave., St Olaf, MN, 55057, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02131, USA
| |
Collapse
|
29
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
30
|
Vaudo AD, Erickson E, Patch HM, Grozinger CM, Mu J. Impacts of soil nutrition on floral traits, pollinator attraction, and fitness in cucumbers (Cucumis sativus L.). Sci Rep 2022; 12:21802. [PMID: 36526706 PMCID: PMC9758155 DOI: 10.1038/s41598-022-26164-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Annual plants allocate soil nutrients to floral display and pollinator rewards to ensure pollination success in a single season. Nitrogen and phosphorus are critical soil nutrients whose levels are altered by intensive land use that may affect plants' fitness via pollinator attractiveness through floral display and rewards. In a controlled greenhouse study, we studied in cucumbers (Cucumis sativus) how changes in soil nitrogen and phosphorus influence floral traits, including nectar and pollen reward composition. We evaluated how these traits affect bumble bee (Bombus impatiens, an important cucumber pollinator) visitation and ultimately fruit yield. While increasing nitrogen and phosphorus increased growth and floral display, excess nitrogen created an asymptotic or negative effect, which was mitigated by increasing phosphorus. Male floral traits exhibited higher plasticity in responses to changes in soil nutrients than female flowers. At 4:1 nitrogen:phosphorus ratios, male flowers presented increased nectar volume and pollen number resulting in increased bumble bee visitation. Interestingly, other pollinator rewards remained consistent across all soil treatments: male and female nectar sugar composition, female nectar volume, and pollen protein and lipid concentrations. Therefore, although cucumber pollination success was buffered in conditions of nutrient stress, highly skewed nitrogen:phosphorus soil ratios reduced plant fitness via reduced numbers of flowers and reward quantity, pollinator attraction, and ultimately yield.
Collapse
Affiliation(s)
- Anthony D Vaudo
- Department of Biology, University of Nevada Reno, Reno, NV, 89557, USA.
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Emily Erickson
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Harland M Patch
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Junpeng Mu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
| |
Collapse
|
31
|
Hempson GP, Parr CL, Lehmann CER, Archibald S. Grazing lawns and overgrazing in frequently grazed grass communities. Ecol Evol 2022; 12:e9268. [PMID: 36172293 PMCID: PMC9468907 DOI: 10.1002/ece3.9268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022] Open
Abstract
Frequent grazing can establish high forage value grazing lawns supporting high grazer densities, but can also produce overgrazed grass communities with unpalatable or low grass basal cover, supporting few grazers. Attempts to create grazing lawns via concentrated grazing, with a goal to increase grazer numbers, are thus risky without knowing how environmental conditions influence the likelihood of each outcome. We collected grass species and trait data from 33 frequently grazed grass communities across eastern South Africa (28 sites) and the Serengeti National Park, Tanzania (five sites), covering wide rainfall (336-987 mm year-1) and soil (e.g., 44%-93% sand) gradients. We identified four grass growth forms using hierarchical clustering on principal components analyses of trait data and assessed trait-environment and growth form-environment relationships using fourth corner and principal components analyses. We distinguished two palatable grass growth forms that both attract yet resist grazers and comprise grazing lawns: (1) "lateral attractors" that spread vegetatively via stolons and rhizomes, and (2) "tufted attractors" that form isolated tufts and may have alternate tall growth forms. By contrast, (3) tough, upright, tufted "resisters," and (4) "avoiders" with sparse architectures or that grow appressed to the soil surface, are of little forage value and avoided by grazers. Grazing lawns occurred across a wide range of conditions, typically comprising lateral attractor grasses in drier, sandy environments, and tufted attractor grasses in wetter, low-sand environments. Resisters occurred on clay-rich soils in mesic areas, while avoiders were widespread but scarce. While grazing lawns can be established under most conditions, monitoring their composition and cover is important, as the potential for overgrazing seems as widely relevant. Tufted attractor-dominated lawns appear somewhat more vulnerable to degradation than lateral attractor-dominated lawns. Increased avoider and resister abundance both reduce forage value, although resisters may provide better soil protection.
Collapse
Affiliation(s)
- Gareth P. Hempson
- Centre for African Ecology, School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- South African Environmental Observation Network (SAEON), Ndlovu NodePhalaborwaSouth Africa
| | - Catherine L. Parr
- Centre for African Ecology, School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of Earth, Ocean & Ecological SciencesUniversity of LiverpoolLiverpoolUK
- Department of Zoology & EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Caroline E. R. Lehmann
- Centre for African Ecology, School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- School of GeoSciencesUniversity of EdinburghEdinburghUK
- Tropical DiversityRoyal Botanic Garden EdinburghEdinburghUK
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
32
|
Van Drunen WE, Friedman J. Autopolyploid establishment depends on life-history strategy and the mating outcomes of clonal architecture. Evolution 2022; 76:1953-1970. [PMID: 35861365 DOI: 10.1111/evo.14582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023]
Abstract
Polyploidy is a significant component in the evolution of many taxa, particularly plant groups. However, new polyploids face substantial fitness disadvantages due to a lack of same-cytotype mates, and the factors promoting or preventing polyploid establishment in natural populations are often unclear. We develop spatially explicit agent-based simulation models to test the hypothesis that a perennial life history and clonal propagation facilitate the early stages of polyploid establishment and persistence. Our models show that polyploids are more likely to establish when they have longer life spans than diploids, especially when self-fertilization rates are high. Polyploids that combine sexual and clonal reproduction can establish across a wide range of life histories, but their success is moderated by clonal strategy. By tracking individuals and mating events, we reveal that clonal architecture has a substantial impact on the spatial structure of the mixed diploid-polyploid population during polyploid establishment: altering patterns of mating within or between cytotypes via geitonogamous self-fertilization, the mechanisms through which polyploid establishment proceeds, and the final composition of the polyploid population. Overall, our findings provide novel insight into the role of clonal structure in modulating the complex relationship between polyploidy, perenniality, and clonality and offer testable predictions for future empirical work.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jannice Friedman
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
33
|
Zuo (左胜) S, Guo (郭新异) X, Mandáková T, Edginton M, Al-Shehbaz IA, Lysak MA. Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution. PLANT PHYSIOLOGY 2022; 190:403-420. [PMID: 35670733 PMCID: PMC9434143 DOI: 10.1093/plphys/kiac268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.
Collapse
Affiliation(s)
| | | | - Terezie Mandáková
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Mark Edginton
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, QLD 4066, Australia
| | | | | |
Collapse
|
34
|
McSteen P, Kellogg EA. Molecular, cellular, and developmental foundations of grass diversity. Science 2022; 377:599-602. [PMID: 35926032 DOI: 10.1126/science.abo5035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans have cultivated grasses for food, feed, beverages, and construction materials for millennia. Grasses also dominate the landscape in vast parts of the world, where they have adapted morphologically and physiologically, diversifying to form ~12,000 species. Sequences of hundreds of grass genomes show that they are essentially collinear; nonetheless, not all species have the same complement of genes. Here, we focus on the molecular, cellular, and developmental bases of grain yield and dispersal-traits that are essential for domestication. Distinct genes, networks, and pathways were selected in different crop species, reflecting underlying genomic diversity. With increasing genomic resources becoming available in nondomesticated species, we anticipate advances in coming years that illuminate the ecological and economic success of the grasses.
Collapse
Affiliation(s)
- Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | | |
Collapse
|
35
|
Pathirana R, Carimi F. Management and Utilization of Plant Genetic Resources for a Sustainable Agriculture. PLANTS 2022; 11:plants11152038. [PMID: 35956515 PMCID: PMC9370719 DOI: 10.3390/plants11152038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022]
Abstract
Despite the dramatic increase in food production thanks to the Green Revolution, hunger is increasing among human populations around the world, affecting one in nine people. The negative environmental and social consequences of industrial monocrop agriculture is becoming evident, particularly in the contexts of greenhouse gas emissions and the increased frequency and impact of zoonotic disease emergence, including the ongoing COVID-19 pandemic. Human activity has altered 70–75% of the ice-free Earth’s surface, squeezing nature and wildlife into a corner. To prevent, halt, and reverse the degradation of ecosystems worldwide, the UN has launched a Decade of Ecosystem Restoration. In this context, this review describes the origin and diversity of cultivated species, the impact of modern agriculture and other human activities on plant genetic resources, and approaches to conserve and use them to increase food diversity and production with specific examples of the use of crop wild relatives for breeding climate-resilient cultivars that require less chemical and mechanical input. The need to better coordinate in situ conservation efforts with increased funding has been highlighted. We emphasise the need to strengthen the genebank infrastructure, enabling the use of modern biotechnological tools to help in genotyping and characterising accessions plus advanced ex situ conservation methods, identifying gaps in collections, developing core collections, and linking data with international databases. Crop and variety diversification and minimising tillage and other field practices through the development and introduction of herbaceous perennial crops is proposed as an alternative regenerative food system for higher carbon sequestration, sustaining economic benefits for growers, whilst also providing social and environmental benefits.
Collapse
Affiliation(s)
- Ranjith Pathirana
- Plant & Food Research Australia Pty Ltd., Waite Campus Research Precinct—Plant Breeding WT46, University of Adelaide, Waite Rd, Urrbrae, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Campus Research Precinct—Plant Breeding WT46, University of Adelaide, Waite Rd, Urrbrae, SA 5064, Australia
- Correspondence:
| | - Francesco Carimi
- Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy
| |
Collapse
|
36
|
Harris ZN, Pratt JE, Bhakta N, Frawley E, Klein LL, Kwasniewski MT, Migicovsky Z, Miller AJ. Temporal and environmental factors interact with rootstock genotype to shape leaf elemental composition in grafted grapevines. PLANT DIRECT 2022; 6:e440. [PMID: 35999957 PMCID: PMC9389545 DOI: 10.1002/pld3.440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 05/19/2023]
Abstract
Plants take up elements through their roots and transport them to their shoot systems for use in numerous biochemical, physiological, and structural functions. Elemental composition of above-ground plant tissues, such as leaves, reflects both above- and below-ground activities of the plant, as well the local environment. Perennial, grafted plants, where the root system of one individual is fused to the shoot system of a genetically distinct individual, offer a powerful experimental system in which to study how genetically distinct root systems influence the elemental composition of a common shoot system. We measured elemental composition of over 7,000 leaves in the grapevine cultivar "Chambourcin" growing ungrafted and grafted to three rootstock genotypes. Leaves were collected over multiple years and phenological stages (across the season) and along a developmental time series. Temporal components of this study had the largest effect on leaf elemental composition, and rootstock genotype interacted with year, phenological stage, and leaf age to differentially modulate leaf elemental composition. Further, the local, above-ground environment affected leaf elemental composition, an effect influenced by rootstock genotype. This work highlights the dynamic nature by which root systems interact with shoot systems to respond to temporal and environmental variation.
Collapse
Affiliation(s)
- Zachary N. Harris
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Julia E. Pratt
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Niyati Bhakta
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Emma Frawley
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Laura L. Klein
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Misha T. Kwasniewski
- Department of Food SciencePennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of AgricultureDalhousie UniversityTruroNova ScotiaCanada
| | - Allison J. Miller
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| |
Collapse
|
37
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
38
|
Wang B, Wei H, Chen Z, Li Y, Zhang WH. Carbonate-Induced Chemical Reductants Are Responsible for Iron Acquisition in Strategy I Wild Herbaceous Plants Native to Calcareous Grasslands. PLANT & CELL PHYSIOLOGY 2022; 63:770-784. [PMID: 35348776 DOI: 10.1093/pcp/pcac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Significant progress has been made in understanding Strategy I iron (Fe) acquisition using crop/model plants under controlled conditions in laboratories. However, plant species native to calcareous soils may have evolved unique strategies for adaptation to high carbonate/pH-induced Fe deficiency. Until now, little information is available on the Fe acquisition mechanisms in these plants. Here, we explored the Fe acquisition mechanisms in wild dicot species native to calcareous grasslands, by monitoring the Fe nutrition-related rhizosphere processes in field and greenhouse conditions. Most of these wild species displayed comparable shoot Fe concentration to those of crops, and some dicots actually accumulated very high shoot Fe. However, these species did not exhibit ferric reductase oxidase (FRO)-dependent Strategy I responses to Fe deficiency, including visual rhizosphere acidification and increased Fe3+ reduction. In contrast, chemical reductants exuded by roots of dicots were responsible for Fe3+ reduction in these wild plants. These features were not observed in the FRO-dependent Strategy I crop plant cucumber. Neither leaf chlorophyll nor shoot/root Fe was depressed by 10% CaCO3 application in all the examined wild species. Furthermore, their root exudation was significantly activated by CaCO3, leading to an increased Fe3+ reduction. We show that chemical reductant-mediated Fe3+ reduction occurs preferentially in these wild dicots and that these mechanisms are not sensitive to high soil carbonate/pH. Our findings support that Fe acquisition in Strategy I wild plants native to calcareous soils is substantially different from the enzyme-dependent system of Strategy I plants.
Collapse
Affiliation(s)
- Baolan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Haifang Wei
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Velappan Y, Chabikwa TG, Considine JA, Agudelo-Romero P, Foyer CH, Signorelli S, Considine MJ. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2061-2076. [PMID: 35022731 PMCID: PMC8982382 DOI: 10.1093/jxb/erac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/10/2022] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.
Collapse
Affiliation(s)
- Yazhini Velappan
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Tinashe G Chabikwa
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John A Considine
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
40
|
Perennials have evolved a greater resistance to exogenous H2O2 than annuals, consistent with the oxidative stress theory of aging. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
de Pedro M, Mayol M, González-Martínez SC, Regalado I, Riba M. Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness-related traits. AMERICAN JOURNAL OF BOTANY 2022; 109:602-615. [PMID: 35067917 DOI: 10.1002/ajb2.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion. Here we study adaptation in the short-lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route. METHODS We assessed the phenological patterns of variation, and their effect on fitness-related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level. RESULTS We found significant within-species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect. CONCLUSIONS Our results show the crucial role of phenological patterns in shaping adaptive clines for major life-history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.
Collapse
Affiliation(s)
| | - Maria Mayol
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | | | | | - Miquel Riba
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
42
|
Kolis KM, Berg CS, Nelson TC, Fishman L. Population genomic consequences of life-history and mating system adaptation to a geothermal soil mosaic in yellow monkeyflowers. Evolution 2022; 76:765-781. [PMID: 35266558 DOI: 10.1111/evo.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
Local selection can promote phenotypic divergence despite gene flow across habitat mosaics, but adaptation itself may generate substantial barriers to genetic exchange. In plants, life-history, phenology, and mating system divergence have been proposed to promote genetic differentiation in sympatry. In this study, we investigate phenotypic and genetic variation in Mimulus guttatus (yellow monkeyflowers) across a geothermal soil mosaic in Yellowstone National Park (YNP). Plants from thermal annual and nonthermal perennial habitats were heritably differentiated for life-history and mating system traits, consistent with local adaptation to the ephemeral thermal-soil growing season. However, genome-wide genetic variation primarily clustered plants by geographic region, with little variation sorting by habitat. The one exception was an extreme thermal population also isolated by a 200 m geographical gap of no intermediate habitat. Individual inbreeding coefficients (FIS ) were higher (and predicted by trait variation) in annual plants and annual pairs showed greater isolation by distance at local (<1 km) scales. Finally, YNP adaptation does not reuse a widespread inversion that underlies M. guttatus life-history ecotypes range-wide, suggesting a novel genetic mechanism. Overall, this work suggests that life-history and mating system adaptation strong enough to shape individual mating patterns does not necessarily generate incipient speciation without geographical barriers.
Collapse
Affiliation(s)
- Kory M Kolis
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: O'Connor Center for the Rocky Mountain West, University of Montana, Missoula, MT, 59812
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: Embark Veterinary, Inc., Boston, Massachusetts, 02210
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
43
|
Zhuang Y, Wang X, Li X, Hu J, Fan L, Landis JB, Cannon SB, Grimwood J, Schmutz J, Jackson SA, Doyle JJ, Zhang XS, Zhang D, Ma J. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. NATURE PLANTS 2022; 8:233-244. [PMID: 35288665 DOI: 10.1038/s41477-022-01102-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polyploidy and life-strategy transitions between annuality and perenniality often occur in flowering plants. However, the evolutionary propensities of polyploids and the genetic bases of such transitions remain elusive. We assembled chromosome-level genomes of representative perennial species across the genus Glycine including five diploids and a young allopolyploid, and constructed a Glycine super-pangenome framework by integrating 26 annual soybean genomes. These perennial diploids exhibit greater genome stability and possess fewer centromere repeats than the annuals. Biased subgenomic fractionation occurred in the allopolyploid, primarily by accumulation of small deletions in gene clusters through illegitimate recombination, which was associated with pre-existing local subgenomic differentiation. Two genes annotated to modulate vegetative-reproductive phase transition and lateral shoot outgrowth were postulated as candidates underlying the perenniality-annuality transition. Our study provides insights into polyploid genome evolution and lays a foundation for unleashing genetic potential from the perennial gene pool for soybean improvement.
Collapse
Affiliation(s)
- Yongbin Zhuang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Xutong Wang
- Department of Agronomy, and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Xianchong Li
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Junmei Hu
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Lichuan Fan
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Jacob B Landis
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Steven B Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Jeffrey J Doyle
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xian Sheng Zhang
- College of Life Sciences, and State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Dajian Zhang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China.
| | - Jianxin Ma
- Department of Agronomy, and Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
44
|
Lu M, Fradera-Soler M, Forest F, Barraclough TG, Grace OM. Evidence linking life-form to a major shift in diversification rate in Crassula. AMERICAN JOURNAL OF BOTANY 2022; 109:272-290. [PMID: 34730230 DOI: 10.1002/ajb2.1797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Plants have evolved different ecological strategies in response to environmental challenges, and a higher lability of such strategies is more common in plant groups that adapt to various niches. Crassula (Crassulaceae), occurring in varied mesic to xeric habitats, exhibits a remarkable diversity of life-forms. However, whether any particular life-form trait has shaped species diversification in Crassula has remained unexplored. This study aims to investigate diversification patterns within Crassula and identify potential links to its life-form evolution. METHODS A phylogenetic tree of 140 Crassula taxa was reconstructed using plastid and nuclear loci and dated based on the nuclear DNA information only. We reconstructed ancestral life-form characters to estimate the evolutionary trends of ecophysiological change, and subsequently estimated net diversification rates. Multiple diversification models were applied to examine the association between certain life-forms and net diversification rates. RESULTS Our findings confirm a radiation within Crassula in the last 10 million years. A configuration of net diversification rate shifts was detected, which coincides with the emergence of a speciose lineage during the late Miocene. The results of ancestral state reconstruction demonstrate a high lability of life-forms in Crassula, and the trait-dependent diversification analyses revealed that the increased diversification is strongly associated with a compact growth form. CONCLUSIONS Transitions between life-forms in Crassula seem to have driven adaptation and shaped diversification of this genus across various habitats. The diversification patterns we inferred are similar to those observed in other major succulent lineages, with the most-speciose clades originating in the late Miocene.
Collapse
Affiliation(s)
- Meng Lu
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - Marc Fradera-Soler
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
45
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
46
|
Monroe JG, Cai H, Des Marais DL. Diversity in nonlinear responses to soil moisture shapes evolutionary constraints in Brachypodium. G3 (BETHESDA, MD.) 2021; 11:jkab334. [PMID: 34570202 PMCID: PMC8664479 DOI: 10.1093/g3journal/jkab334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022]
Abstract
Water availability is perhaps the greatest environmental determinant of plant yield and fitness. However, our understanding of plant-water relations is limited because-like many studies of organism-environment interaction-it is primarily informed by experiments considering performance at two discrete levels-wet and dry-rather than as a continuously varying environmental gradient. Here, we used experimental and statistical methods based on function-valued traits to explore genetic variation in responses to a continuous soil moisture gradient in physiological and morphological traits among 10 genotypes across two species of the model grass genus Brachypodium. We find that most traits exhibit significant genetic variation and nonlinear responses to soil moisture variability. We also observe differences in the shape of these nonlinear responses between traits and genotypes. Emergent phenomena arise from this variation including changes in trait correlations and evolutionary constraints as a function of soil moisture. Our results point to the importance of considering diversity in nonlinear organism-environment relationships to understand plastic and evolutionary responses to changing climates.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Haoran Cai
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Arnold Arboretum of Harvard University, Boston, MA 02130, USA
| |
Collapse
|
47
|
Herron SA, Rubin MJ, Albrecht MA, Long QG, Sandoval MC, Miller AJ. The role of genus and life span in predicting seed and vegetative trait variation and correlation in Lathyrus, Phaseolus, and Vicia. AMERICAN JOURNAL OF BOTANY 2021; 108:2388-2404. [PMID: 34634144 PMCID: PMC9306869 DOI: 10.1002/ajb2.1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Annual and perennial life history transitions are abundant among angiosperms, and understanding the phenotypic variation underlying life span shifts is a key endeavor of plant evolutionary biology. Comparative analyses of trait variation and correlation networks among annual and perennial plants is increasingly important as new herbaceous perennial crops are being developed for edible seed. However, it remains unclear how seed to vegetative growth trait relationships correlate with life span. METHODS To assess the relative roles of genus and life span in predicting phenotypic variation and trait correlations, we measured seed size and shape, germination proportion, and early-life-stage plant height and leaf growth over 3 mo in 29 annual and perennial, herbaceous congeneric species from three legume genera (Lathyrus, Phaseolus, and Vicia). RESULTS Genus was the strongest predictor of seed size and shape variation, and life span consistently predicted plant height and leaf number at single time points. Correlation networks revealed that annual species had significant associations between seed traits and vegetative traits, whereas perennials had no significant seed-vegetative associations. Each genus also differed in the extent of integration between seed and vegetative traits, as well as within-vegetative-trait correlation patterns. CONCLUSIONS Genus and life span were important for predicting aspects of early-life-stage phenotypic variation and trait relationships. Differences in phenotypic correlation may indicate that selection on seed size traits will impact vegetative growth differently depending on life span, which has important implications for nascent perennial breeding programs.
Collapse
Affiliation(s)
- Sterling A. Herron
- Saint Louis University, Department of Biology3507 Laclede AvenueSt. LouisMissouri63103USA
| | - Matthew J. Rubin
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Matthew A. Albrecht
- Missouri Botanical Garden, Center for Conservation and Sustainable Development4344 Shaw BoulevardSt. LouisMissouri63110USA
| | - Quinn G. Long
- Shaw Nature Reserve307 Pinetum Loop RoadGray SummitMissouri63039USA
| | - Marissa C. Sandoval
- University of California, Berkeley, Rausser College of Natural Resources319 Wellman Hall, BerkeleyCalifornia94704USA
| | - Allison J. Miller
- Saint Louis University, Department of Biology3507 Laclede AvenueSt. LouisMissouri63103USA
| |
Collapse
|
48
|
Delgado-Dávila R, Martén-Rodríguez S. A test of the reproductive assurance hypothesis in Ipomoea hederacea: does inbreeding depression counteract the benefits of self-pollination? AMERICAN JOURNAL OF BOTANY 2021; 108:2162-2173. [PMID: 34786691 DOI: 10.1002/ajb2.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Darwin proposed that self-pollination in allegedly outcrossing species might act as a reproductive assurance mechanism when pollinators or mates are scarce; however, in natural populations, the benefits of selfing may be opposed by seed discounting and inbreeding depression. While empirical studies show variation among species and populations in the magnitude of reproductive assurance, little is known about the counterbalancing effects of inbreeding depression. METHODS By comparing the female reproductive success of emasculated and open-pollinated flowers, we assessed the reproductive assurance hypothesis in two Mexican populations of Ipomoea hederacea. In one population, we assessed temporal variation in reproductive assurance for three years. We evaluated inbreeding depression on seed production, seedling germination, and dry plant mass by contrasting self- and cross-hand pollination treatments in one population for two years. RESULT The contribution of self-pollination to female reproductive success was high and consistent between populations, but there was variation in reproductive assurance across years. Inbreeding depression was absent in the early stages of progeny development, but there was a small negative effect of inbreeding in the probability of germination and the mass of adult progeny. CONCLUSIONS Self-pollination provided significant reproductive assurance in I. hederacea but this contribution was variable across time. The contribution of reproductive assurance is probably reduced by inbreeding depression in later stages of progeny development, but this counter effect was small in the study populations. This study supports the hypothesis that reproductive assurance with limited inbreeding depression is likely an important selective force in the evolution of self-pollination in the genus Ipomoea.
Collapse
Affiliation(s)
- Ruth Delgado-Dávila
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores, unidad Morelia, Universidad Nacional Autónoma de México, 58089, Morelia, Michoacán, México
| | - Silvana Martén-Rodríguez
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores, unidad Morelia, Universidad Nacional Autónoma de México, 58089, Morelia, Michoacán, México
| |
Collapse
|
49
|
Vest K, Sobel JM. Variation in seasonal timing traits and life history along a latitudinal transect in Mimulus ringens. J Evol Biol 2021; 34:1803-1816. [PMID: 34582606 DOI: 10.1111/jeb.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Seasonal timing traits are commonly under recurrent, spatially variable selection, and are therefore predicted to exhibit clinal variation. Temperate perennial plants often require vernalization to prompt growth and reproduction; however, little is known about whether vernalization requirements change across the range of a broadly distributed species. We performed a critical vernalization duration study in Mimulus ringens, coupled with population genomic analysis. Plants from eight populations spanning the latitudinal range were exposed to varying durations of 4°C vernalization between 0 and 56 days, and flowering response was assessed. RADSeq was also performed to generate 1179 polymorphic SNPs, which were used to examine population structure. We found unexpected life history variation, with some populations lacking vernalization requirement. Population genomic analyses show that these life history variants are highly divergent from perennials, potentially revealing a cryptic species. For perennial populations, minimum vernalization time was surprisingly consistent. However, once vernalized, northern populations flowered almost 3 weeks faster than southern. Furthermore, southern populations exhibited sensitivity to vernalization times beyond flowering competency, suggesting an ability to respond adaptively to different lengths of winter. Mimulus ringens, therefore, reveals evidence of clinal variation, and provides opportunities for future studies addressing mechanistic and ecological hypotheses both within and between incipient species.
Collapse
Affiliation(s)
- Kelly Vest
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | - James M Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| |
Collapse
|
50
|
Transposition and duplication of MADS-domain transcription factor genes in annual and perennial Arabis species modulates flowering. Proc Natl Acad Sci U S A 2021; 118:2109204118. [PMID: 34548402 PMCID: PMC8488671 DOI: 10.1073/pnas.2109204118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Annual and perennial species differ in their timing and intensity of flowering, but the underlying mechanisms are poorly understood. We hybridized closely related annual and perennial plants and used genetics, transgenesis, and genomics to characterize differences in the activity and function of their flowering-time genes. We identify a gene encoding a transcription factor that moved between chromosomes and is retained in the annual but absent from the perennial. This gene strongly delays flowering, and we propose that it has been retained in the annual to compensate for reduced activity of closely related genes. This study highlights the value of using direct hybridization between closely related plant species to characterize functional differences in fast-evolving reproductive traits. The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina. These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.
Collapse
|