1
|
Barrett NJ, Harper EM, Peck LS. Evaluating the acclimation capacity of two keystone Antarctic echinoderms to coastal freshening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178895. [PMID: 39978064 DOI: 10.1016/j.scitotenv.2025.178895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Coastal freshening in the Southern Ocean is expected to increase under projected climate scenarios. As a major environmental stressor, prolonged reduced salinity could pose a significant challenge to Antarctica's endemic echinoderms. Acclimatising to low salinity may be crucial for their continued survival as climate change accelerates, yet little is currently known about their capacity to do so. The sea star Odontaster validus and sea urchin Sterechinus neumayeri, two of the most ecologically important and abundant echinoderms of the shallow Antarctic seas, were exposed to reduced salinities (29 ‰ and 24 ‰) for at least 71 days after a stepwise dilution from 34.5 ‰. Feeding, faecal production (S. neumayeri only) and activity coefficient were significantly impacted at 24 ‰ and did not recover to control levels in either species. Oxygen consumption remained similar to control levels (34.5 ‰) across both treatments and species until day 85, when a significant increase was observed in S. neumayeri at 24 ‰. Coelomic fluid osmolality was near isosmotic with external salinities in both species, while coelomocyte composition and concentration were unaffected by reduced salinities (S. neumayeri only). Both species demonstrated the capacity to tolerate lower salinities that may be expected with climate change, with successful acclimation demonstrated at 29 ‰. Although survival rates were high at 24 ‰, significant reductions in mass and the failure of metrics to return to control levels suggest that long-term survival at 24 ‰ is unlikely, potentially impacting Antarctic food-web dynamics and ecological interactions.
Collapse
Affiliation(s)
- Nicholas J Barrett
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.
| | - Elizabeth M Harper
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| |
Collapse
|
2
|
Swank AR, Tracy CB, Mendonça MT, Bernal MA. Molecular plasticity to ocean warming and habitat loss in a coral reef fish. J Hered 2025; 116:126-138. [PMID: 38651326 DOI: 10.1093/jhered/esae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024] Open
Abstract
Sea surface temperatures are rising at unprecedented rates, leading to a progressive degradation of complex habitats formed by coral reefs. In parallel, acute thermal stress can lead to physiological challenges for ectotherms that inhabit coral reefs, including fishes. Warming and habitat simplification could push marine fishes beyond their physiological limits in the near future. Specifically, questions remain on how warming and habitat structure influence the brains of marine fishes. Here we evaluated how thermal stress and habitat loss are acting independently and synergistically as stressors in a damselfish of the Western Atlantic, Abudefduf saxatilis. For this experiment, 40 individuals were exposed to different combinations of temperature (27 °C or 31 °C) and habitat complexity (complex vs. simple) for 10 days, and changes in brain gene expression and oxidative stress of liver and muscle were evaluated. The results indicate that warming resulted in increased oxidative damage in the liver (P = 0.007) and changes in gene expression of the brain including genes associated with neurotransmission, immune function, and tissue repair. Individuals from simplified habitats showed higher numbers of differentially expressed genes and changes for genes associated with synaptic plasticity and spatial memory. In addition, a reference transcriptome of A. saxatilis is presented here for the first time, serving as a resource for future molecular studies. This project enhances our understanding of how fishes are responding to the combination of coral reef degradation and thermal stress while elucidating the plastic mechanisms that will enable generalists to persist in a changing world.
Collapse
Affiliation(s)
- Ally R Swank
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Claire B Tracy
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Moisés A Bernal
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Smithsonian Tropical Research Institute, Balboa, Panama, Republic of Panama
| |
Collapse
|
3
|
Shi Z, Shi Y, Zhao M, Wang K, Ma S, Han Q. Thalassia hemprichii may benefit from ocean acidification and slightly increased salinity in the future. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107000. [PMID: 39938317 DOI: 10.1016/j.marenvres.2025.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Since the industrial revolution, the direct impacts of elevated CO2 concentrations, such as ocean acidification, and indirect impacts, such as extreme drought events, have synergistically influenced coastal ecosystems, including seagrass meadow. Consequently, investigating the individual and combined effects of ocean acidification and extreme drought-induced increased salinity on seagrasses is crucial for enhancing the management and monitoring of these ecosystems. This study used a two-factor crossover indoor simulation experiment to thoroughly examine the effects of seawater acidification at pH 7.7 and elevated salinity levels at 43‰ and 51‰ on the physiological responses and growth status of the dominant tropical seagrass species Thalassia hemprichii. The results indicated that seawater acidification at pH 7.7 significantly enhanced the growth rate and photosynthetic activity of T. hemprichii across all salinity levels. A salinity of 43‰ activated certain antioxidant enzymes without inducing severe osmotic stress in T. hemprichii and positively influenced leaf photosynthetic activity, with a 15.6% increase in growth rate compared to the CK group. The extreme salinity of 51‰ imposed osmotic stress, leading to increase in reactive oxygen species and decreased photosynthetic activity and a 52% decrease in growth rate compared to seagrasses in the CK group. Under future scenarios of ocean acidification and frequent extreme droughts, T. hemprichii inhabiting enclosed marine environments may exhibit greater adaptability and secure an ecologically competitive edge. Our findings underscore the importance of conserving declining meadows, forecasting the ecological trajectory of these ecosystems, and managing salinity in lagoons for the well-being of seagrass ecosystems.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yunfeng Shi
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China; Modern Marine Ranching Engineering Research Center of Hainan, Sanya, 572022, China
| | - Muqiu Zhao
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China; Modern Marine Ranching Engineering Research Center of Hainan, Sanya, 572022, China; Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Sanya, 572022, China.
| | - Kang Wang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Siyang Ma
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Qiuying Han
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China; Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Sanya, 572022, China
| |
Collapse
|
4
|
Esquivel-Román A, Baena-Díaz F, Bustos-Segura C, De Gasperin O, González-Tokman D. Synergistic effects of elevated temperature with pesticides on reproduction, development and survival of dung beetles. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:207-218. [PMID: 39521745 DOI: 10.1007/s10646-024-02825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
In times of global change, high temperatures can increase the negative effects of pesticides and other stressors. The goal of this study was to evaluate, under controlled laboratory conditions, the effect of a moderate increase in temperature in combination with ivermectin (an antiparasitic medication used in cattle that is excreted in dung), an herbicide, and parasitic pressure, on the reproductive success, development time and adult survival of dung beetles Euoniticellus intermedius. Whereas high temperature increased the number and proportion of emerged offspring, it had synergistic negative effects in combination with the ivermectin, herbicide and parasite treatments. Moreover, high temperature in combination with ivermectin and with parasitism caused a synergistic increase of adult offspring mortality and, in combination with the herbicide, it synergistically accelerated development. These results indicate that high temperatures can enhance the negative effects of other stressors and act synergistically with them, harming dung beetles, a group with high ecological and economic value in natural and productive ecosystems. Although adult sex ratio was not affected by experimental treatments, contrasting responses were found between males and females, supporting the idea that both sexes use different physiological mechanisms to cope with the same environmental challenges. The effects that combined stressors have on insects deepen our understanding of why we are losing beneficial species and their functions in times of drastic environmental changes.
Collapse
Affiliation(s)
| | - Fernanda Baena-Díaz
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico
| | - Carlos Bustos-Segura
- University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology Department, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Ornela De Gasperin
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático (LNCBioCC), Benito Juárez, México
| | | |
Collapse
|
5
|
Esquivel-Román A, Baena-Díaz F, Bustos-Segura C, De Gasperin O, González-Tokman D. Thermal physiology of dung beetles exposed to ivermectin, a veterinary drug. J Therm Biol 2025; 128:104080. [PMID: 39978143 DOI: 10.1016/j.jtherbio.2025.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Global changes, including increasing temperatures and pesticide contamination threaten insect survival and reproduction by altering metabolism and stress responses. Of particular importance are insects that provide ecosystem services and are threatened by multiple stressors, such as dung beetles, which bury dung in forests and cattle pastures. This study investigated how elevated temperature and ivermectin, a common antiparasitic medication used in cattle that is excreted in dung, affect the thermal physiology of Euoniticellus intermedius dung beetles under controlled laboratory conditions. Our study evaluated, under laboratory conditions, the effect of the combination of high temperature and ivermectin, on heat tolerance, metabolic rate, and survival of female dung beetles E. intermedius. We found that ivermectin reduced survival at 29 °C but not at 33 °C, potentially due to heat-induced hormetic effects, which activate defense systems, protecting organisms from the effects of a second stressor, in this case, ivermectin. Ivermectin and high temperature increased metabolic rate, which could have potential negative effects on oxidative stress and longevity. Finally, critical thermal maximum was not affected by ivermectin or temperature. By impacting physiological traits and individual survival, high temperatures and pesticides may disrupt population dynamics and ecosystem services provided by dung beetles.
Collapse
Affiliation(s)
| | - Fernanda Baena-Díaz
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico.
| | - Carlos Bustos-Segura
- University of Neuchâtel, Neuchâtel, Switzerland; Sensory Ecology Department, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France.
| | - Ornela De Gasperin
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico; Laboratorio Nacional CONAHCyT de Biología del Cambio Climático (LNCBioCC), Mexico.
| | | |
Collapse
|
6
|
Qu Y, Zhang T, Wang X, Liu Y, Zhao J. Synergistic effects of ocean acidification and sulfamethoxazole on immune function, energy allocation, and oxidative stress in Trochus niloticus. ENVIRONMENTAL RESEARCH 2025; 266:120533. [PMID: 39638028 DOI: 10.1016/j.envres.2024.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Ocean acidification, a major consequence of climate change, poses significant threats to marine organisms, particularly when combined with other environmental stressors such as chemical pollution. This study investigated the physiological responses of Trochus niloticus to a 28-day exposure of ocean acidification and/or sulfamethoxazole, a commonly detected antibiotic in the South China Sea. Exposure to either acidification or sulfamethoxazole individually triggered adaptive responses through immune activation, antioxidant reactions, and metabolic adjustments. However, concurrent exposure resulted in significant adverse effects, including compromised immunity, oxidative damage, and disrupted energy budget. These findings provide new insights into how ocean acidification interacts with antibiotic pollution to synergistically impact marine gastropods, suggesting that multiple stressors may pose greater threats to T. niloticus populations than single stressors alone.
Collapse
Affiliation(s)
- Yi Qu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China
| | - Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China
| | - Yongliang Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China.
| |
Collapse
|
7
|
Ostrowski A, Connolly RM, Rasmussen JA, Buelow CA, Sievers M. Stressor fluctuations alter mechanisms underpinning seagrass responses to multiple stressors. MARINE POLLUTION BULLETIN 2025; 211:117444. [PMID: 39700707 DOI: 10.1016/j.marpolbul.2024.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Multiple anthropogenic stressors degrade ecosystems globally. A key knowledge gap in multiple stressor research is how variability in stressor intensity (i.e., fluctuations) and synchronicity (i.e., timing of fluctuations) affect biological responses, and the mechanisms underpinning responses. We evaluated the mechanistic effects of reduced light and herbicide contamination on seagrass, and determined how variations in stressor intensity and synchronicity influence the underlying mechanisms of responses. We used structural causal modelling and structural equation modelling to elucidate direct and mediating effects. Out-of-phase introduction (i.e., asynchronous fluctuations) altered the mechanistic pathways of how stressors affect seagrass relative to static stressors, and resulted in the greatest biomass loss (under the most intense stressor combination, ∼50 % reduction). Therefore, previous experiments that predominantly test only static stressor intensities might underestimate detrimental impacts in nature. Future experiments should explore mechanistic effects across realistic stressor intensities and synchronicities to improve our understanding and management of multiple stressors.
Collapse
Affiliation(s)
- Andria Ostrowski
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia; Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, QLD 4680, Australia.
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jasmine A Rasmussen
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christina A Buelow
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
8
|
Stillman JH, Amri AB, Holdreith JM, Hooper A, Leon RV, Pruett LR, Bukaty BM. Ecophysiological responses to heat waves in the marine intertidal zone. J Exp Biol 2025; 228:JEB246503. [PMID: 39817480 PMCID: PMC11832128 DOI: 10.1242/jeb.246503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs. In this Review, we outline the range of responses that intertidal zone organisms exhibit in response to heat waves. We begin by examining the drivers of thermal maxima in intertidal zone ecosystems. We develop a simple model of intertidal zone daily maximum temperatures based on publicly available tide and solar radiation models, and compare it with logged, under-rock temperature data at an intertidal site. We then summarize experimental and ecological studies of how intertidal zone ecosystems and organisms respond to heat waves across dimensions of biotic response. Additional attention is paid to the impacts of extreme heat on cellular physiology, including oxidative stress responses to thermally induced mitochondrial overdrive and dysfunction. We examine the energetic consequences of these mechanisms and how they shift organismal traits, including growth, reproduction and immune function. We conclude by considering important future directions for improving studies of the impacts of heat waves on intertidal zone organisms.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94709, USA
| | - Adrienne B. Amri
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Joe M. Holdreith
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Alexis Hooper
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Rafael V. Leon
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Liliana R. Pruett
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Buck M. Bukaty
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
9
|
Simons VE, Targett TE, Gaffney PM, Coyne KJ. Bacteria-Produced Algicide for Field Control of Toxic Dinoflagellates Does Not Cause a Cortisol Stress Response in Two Estuarine Fish Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:29. [PMID: 39808322 PMCID: PMC11732778 DOI: 10.1007/s10126-024-10383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
Application of algicides produced by naturally occurring bacteria is considered an environmentally friendly approach to control harmful algal blooms. However, few studies assess the effects of bacterial algicides on non-target species, either independently or with other stressors. Here, we measured sub-lethal effects of dinoflagellate-specific algicide IRI-160AA on the estuarine fish Fundulus heteroclitus and Menidia menidia in laboratory experiments. Plasma cortisol levels were measured to test whether a neuroendocrine stress response was induced in these fish following exposure to the algicide alone, and in combination with diel-cycling hypoxia and/or pH, at 25 and 30 °C. Results show that exposure to IRI-160AA does not significantly affect cortisol levels in either species, at either temperature tested, whether exposure occurs independently or with co-occurring hypoxia and/or pH cycles as potential multiple stressors. These results support the application of IRI-160AA as an environmentally friendly approach to control harmful algal blooms in estuarine environments.
Collapse
Affiliation(s)
- Victoria E Simons
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA
| | - Timothy E Targett
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA.
| | - Patrick M Gaffney
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA
| | - Kathryn J Coyne
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA
| |
Collapse
|
10
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
11
|
Giraldo‐Ospina A, Bell T, Carr MH, Caselle JE. Drivers of spatiotemporal variability in a marine foundation species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3092. [PMID: 39957275 PMCID: PMC11831097 DOI: 10.1002/eap.3092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 02/18/2025]
Abstract
Marine foundation species are critical for the structure and functioning of ecosystems and constitute the pillar of trophic chains while also providing a variety of ecosystem services. In recent decades, many foundation species have declined in abundance, sometimes threatening their current geographical distribution. Kelps (Laminariales) are the primary foundation species in temperate coastal systems worldwide. Kelp ecosystems are notoriously variable, challenging the identification of key factors controlling their dynamics. Identification of these drivers is key to predicting the fate of kelp ecosystems under climatic change and to informing management and conservation decisions such as restoration. Here, we used in situ data from long-term monitoring programs across 1350 km of coast spanning multiple biogeographic regions in the state of California (USA) to identify the major regional drivers of density of two dominant canopy-forming kelp species and to elucidate the spatial and temporal scales over which they operate. We used generalized additive mixed models to identify the key drivers of density of two dominant kelp species (Nereocystis luetkeana and Macrocystis pyrifera) across four ecological regions of the state of California (north, central, southwest, and southeast) and for the past two decades (2004-2021). The dominant drivers of kelp density varied among regions and species but always included some combination of nitrate availability, wave energy and exposure, density of purple sea urchins, and temperature as the most important predictors. These variables explained 63% of the variability of bull kelp in the northern and central regions, and 45% and 51.4% of the variability in giant kelp for the central/southwest and southeast regions, respectively. These large-scale analyses infer that a combination of lower nutrient availability, changes in wave energy and exposure, and increases in temperature and purple sea urchin counts have contributed to the decline of kelp observed in the last decade. Understanding the drivers of kelp dynamics can be used to identify regional patterns of historical stability and periods of significant change, ultimately informing resource management and conservation decisions such as site selection for kelp protection and restoration.
Collapse
Affiliation(s)
- Anita Giraldo‐Ospina
- Marine Science Institute, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
- School of Biological Sciences, University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Tom Bell
- Department of Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Mark H. Carr
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Jennifer E. Caselle
- Marine Science Institute, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
12
|
Giossi CE, Bitnel DB, Wünsch MA, Kroth PG, Lepetit B. Synergistic effects of temperature and light on photoprotection in the model diatom Phaeodactylum tricornutum. PHYSIOLOGIA PLANTARUM 2025; 177:e70039. [PMID: 39810597 PMCID: PMC11733657 DOI: 10.1111/ppl.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner. Yet, the combined effects of light and these other drivers on the photosynthetic and photoprotective capacity of diatoms are still poorly understood. In this work, we investigated the impact of short-term temperature and light stress on the model diatom Phaeodactylum tricornutum, combining NPQ induction-recovery assays or light curves with a broad gradient of superimposed temperature treatments (5 to 35°C). We employed mutant lines deficient in NPQ generation (vde KO) or recovery (zep3 KO) and wild type. We found that temperature and light have a synergistic effect: lower temperatures limited both the photosynthetic capacity and NPQ, while the general photophysiological performance was enhanced with warming, up to a heat-stress limit (above 30°C). We discuss the temperature effects on NPQ induction and recovery and propose that these are independent from the energy requirements of the cells and result from altered xanthophyll cycle dynamics. Namely, we found that de-epoxidation activity strongly increases with temperature, outweighing epoxidation and resulting in a positive increase of NPQ with temperature. Finally, we propose that in a short-term time frame, temperature and light have a synergistic and not antagonistic effect, with a positive relationship between increasing temperature and NPQ.
Collapse
Affiliation(s)
| | - Dila B. Bitnel
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Marie A. Wünsch
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Present address: Institute of Life Sciences, University of RostockRostockGermany
| | - Peter G. Kroth
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Bernard Lepetit
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Present address: Institute of Life Sciences, University of RostockRostockGermany
| |
Collapse
|
13
|
González-Espinosa PC, Jarvis L, Cannon S, Cisneros-Montemayor AM, Singh GG, Gupta R, Enders EC. Quantifying the Interactions and Cumulative Effects of Multiple Stressors on Salmonids. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02102-0. [PMID: 39729100 DOI: 10.1007/s00267-024-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
The cumulative effects of human activities and natural pressures pose significant threats to ecosystem functioning and global biodiversity. Assessing the cumulative impact of multiple stressors-whether acting simultaneously or sequentially and directly or indirectly-is challenging due to their complex interactions. Consequently, these interactions may be unintentionally overlooked or disregarded in management decisions. While existing reviews have focused on coastal and freshwater ecosystems, analyses specifically targeting salmonids as a focal group are lacking. This research presents the first quantitative and qualitative assessment of stressor interactions affecting salmonid biology and physiology. A focused literature search identified 118 experimental trials with multiple stressors on salmonids. From these, 46 cases were considered suitable for the quantitative analysis. We calculated Hedges' g effect sizes to classify the interactions between multiple stressors as additive, synergistic, or antagonistic. Our findings revealed that additive effects were found most frequently (50% of interactions), followed by synergistic (30.5%) and antagonistic (19.5%) interactions. Additionally, we performed a network analysis including cases focusing on the influences of multiple stressors interactions (n = 38). Our qualitative analysis identified temperature, metals, and pesticides as the most paired stressors across the three types of interactions. The findings of this research highlight the potential vulnerabilities of salmonids and their habitats by identifying key interactions between multiple stressors, and priorities for future research. Understanding these interactions and cumulative effects, particularly in the context of climate change, can inform targeted conservation and management strategies, contributing to the preservation of these important fish species and their ecosystems, which are vital to local human communities.
Collapse
Affiliation(s)
- Pedro C González-Espinosa
- Aquatic Applied Freshwater Ecology Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T1Z4, Canada.
- Nippon Foundation Ocean Nexus, School of Resource and Environmental Management (REM), Simon Fraser University (SFU) Technology and Science Complex 1, 643A Science Rd, Burnaby, BC, V5A1S6, Canada.
- Nippon Foundation Ocean Nexus, School of Resource and Environmental Management (REM), Simon Fraser University (SFU) Technology and Science Complex 1, 643A Science Rd, Burnaby, BC, V5A1S6, Canada.
| | - Lauren Jarvis
- Fisheries and Oceans Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd, Burlington, ON, L7S1A1, Canada
| | - Sara Cannon
- Centre for Indigenous Fisheries, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T1Z4, Canada
| | - Andrés M Cisneros-Montemayor
- Nippon Foundation Ocean Nexus, School of Resource and Environmental Management (REM), Simon Fraser University (SFU) Technology and Science Complex 1, 643A Science Rd, Burnaby, BC, V5A1S6, Canada
| | - Gerald G Singh
- Nippon Foundation Ocean Nexus, School of Environmental Studies, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P5C2, Canada
| | - Ridhee Gupta
- School of Environmental Studies, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P5C2, Canada
| | - Eva C Enders
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490 rue de la Couronne Street, Quebec City, QC, G1K9A9, Canada
| |
Collapse
|
14
|
Sinai N, Eterovick PC, Kruger N, Oetken B, Ruthsatz K. Living in a multi-stressor world: nitrate pollution and thermal stress interact to affect amphibian larvae. J Exp Biol 2024; 227:jeb247629. [PMID: 39422187 DOI: 10.1242/jeb.247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The interaction of widespread stressors such as nitrate pollution and increasing temperatures associated with climate change is likely to affect aquatic ectotherms such as amphibians. The metamorphic and physiological traits of amphibian larvae during the critical onset of metamorphosis are particularly susceptible to these stressors. We used a crossed experimental design subjecting Rana temporaria larvae to four constant rearing temperatures (18, 22, 26, 28°C) crossed with three environmentally relevant nitrate concentrations (0, 50, 100 mg l-1) to investigate the interactive and individual effects of these stressors on metamorphic (i.e. growth and development) and physiological traits (i.e. metabolism and heat tolerance) at the onset of metamorphosis. Larvae exposed to elevated nitrate concentrations and thermal stress displayed increased metabolic rates but decreased developmental rate, highlighting interactive effects of these stressors. However, nitrate pollution alone had no effect on either metamorphic or physiological traits, suggesting that detoxification processes were sufficient to maintain homeostasis but not in combination with increased rearing temperatures. Furthermore, larvae exposed to nitrate displayed diminished abilities to exhibit temperature-induced plasticity in metamorphosis timing and heat tolerance, as well as reduced acclimation capacity in heat tolerance and an increased thermal sensitivity of metabolic rate to higher temperatures. These results highlight the importance of considering the exposure to multiple stressors when investigating how natural populations respond to global change.
Collapse
Affiliation(s)
- Noa Sinai
- Institute of Cell and System Biology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Natasha Kruger
- Animal Behaviour and Wildlife Conservation Group, School of Life Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Ben Oetken
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| |
Collapse
|
15
|
Franke A, Bayer T, Clemmesen C, Wendt F, Lehmann A, Roth O, Schneider RF. Climate challenges for fish larvae: Interactive multi-stressor effects impair acclimation potential of Atlantic herring larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175659. [PMID: 39181268 DOI: 10.1016/j.scitotenv.2024.175659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Fish early life stages are particularly vulnerable and heavily affected by changing environmental factors. The interactive effects of multiple climate change-related stressors on fish larvae remain, however, largely underexplored. As rising temperatures can increase the abundance and virulence of bacteria, we investigated the combination of a spring heat wave and bacterial exposure on the development of Atlantic herring larvae (Clupea harengus). Eggs and larvae of Western Baltic Spring-spawners were reared at a normal and high temperature ramp and exposed to Vibrio alginolyticus and V. anguillarum, respectively. Subsequently, mRNA and miRNA transcriptomes, microbiota composition, growth and survival were assessed. Both high temperature and V. alginolyticus exposure induced a major downregulation of gene expression likely impeding larval cell proliferation. In contrast, interactive effects of elevated temperature and V. alginolyticus resulted in minimal gene expression changes, indicating an impaired plastic response, which may cause cellular damage reducing survival in later larval stages. The heat wave alone or in combination with V. alginolyticus induced a notable shift in miRNA expression leading to the down- but also upregulation of predicted target genes. Moreover, both increased temperature and the Vibrio exposures significantly altered the larval microbiota composition, with warming reducing microbial richness and diversity. The outcomes of this study highlight the high sensitivity of herring early life stages towards multiple climate change-related stressors. Our results indicate that interactive effects of rapidly changing environmental factors may exceed the larval stress threshold impairing essential acclimation responses, which may contribute to the ongoing recruitment decline of Western Baltic Spring-Spawning herring.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Im Technologiepark 5, 26129 Oldenburg, Germany; Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Till Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Catriona Clemmesen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Fabian Wendt
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Andreas Lehmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Am Botanischen Garten 1-9, Kiel University, 24118 Kiel, Germany.
| | - Ralf F Schneider
- Marine Evolutionary Biology, Zoological Institute, Am Botanischen Garten 1-9, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
16
|
Akbarzadeh A, Ming TJ, Schulze AD, Kaukinen KH, Li S, Günther OP, Houde ALS, Miller KM. Developing molecular classifiers to detect environmental stressors, smolt stages and morbidity in coho salmon, Oncorhynchus kisutch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175626. [PMID: 39168345 DOI: 10.1016/j.scitotenv.2024.175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC V6T 2G6, Canada
| | - Aimee Lee S Houde
- Environmental Dynamics Inc. (EDI), 208A - 2520 Bowen Road, Nanaimo, BC V9T 3L3, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
17
|
Earhart ML, Thapar M, Blanchard TS, Bugg WS, Schulte PM. Persistent interactive effects of developmental salinity and temperature in Atlantic killifish (Fundulus heteroclitus). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111732. [PMID: 39209059 DOI: 10.1016/j.cbpa.2024.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Climate change alters multiple abiotic environmental factors in aquatic environments but relatively little is known about their interacting impacts, particularly in developing organisms where these exposures have the potential to cause long-lasting effects. To explore these issues, we exposed developing killifish embryos (Fundulus heteroclitus) to 26 °C or 20 °C and 20 ppt or 3 ppt salinity in a fully-factorial design. After hatching, fish were transferred to common conditions of 20 °C and 20 ppt to assess the potential for persistent developmental plasticity. Warm temperature increased hatching success and decreased hatch time, whereas low salinity negatively affected hatching success, but this was only significant in fish developed at 20 °C. Temperature, salinity, or their interaction affected mRNA levels of genes typically associated with thermal and hypoxia tolerance (hif1a, hsp90b, hsp90a, hsc70, and hsp70.2) across multiple developmental timepoints. These differences were persistent into the juvenile stage, where the fish that developed at 26 °C had higher expression of hif1a, hsp90b, hsp90a, and hsp70.2 than fish developed at 20 °C, and this was particularly evident for the group developed at both high temperature and salinity. There were also long-lasting effects of developmental treatments on body size after four months of rearing under common conditions. Fish developed at low salinity or temperature were larger than fish developed at high temperature or salinity, but there was no interaction between the two factors. These data highlight the complex nature of the developmental effects of interacting stressors which has important implications for predicting the resilience of fishes in the context of climate change.
Collapse
Affiliation(s)
- Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Myra Thapar
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tessa S Blanchard
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William S Bugg
- Pacific Salmon Foundation, Vancouver, BC, Canada; Department of Forestry and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Meena A, De Nardo AN, Maggu K, Sbilordo SH, Roy J, Snook RR, Lüpold S. Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: patterns and processes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241082. [PMID: 39359471 PMCID: PMC11444773 DOI: 10.1098/rsos.241082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Frequent and extreme temperatures associated with climate change pose a major threat to biodiversity, particularly for organisms whose metabolism is strictly linked to ambient temperatures. Many studies have explored thermal effects on survival, but heat-induced fertility loss is emerging as a greater threat to population persistence. However, while evidence is accumulating that both juvenile and adult stages heat exposure can impair fertility in their own ways, much less is known about the immediate and longer-term fitness consequences of repeated heat stress across life stages. To address this knowledge gap, we used male Drosophila melanogaster to investigate (i) the cumulative fitness effects of repeated heat stress across life stages, (ii) the potential of recovery from these heat exposures, and (iii) the underlying mechanisms. We found individual and combined effects of chronic juvenile and acute adult heat stress on male fitness traits. These effects tended to exacerbate over several days after brief heat exposure, indicating a substantial fertility loss for these short-lived organisms. Our findings highlight the cumulative and persistent effects of heat stress on fitness. Such combined effects could accelerate population declines, particularly in more vulnerable species, emphasizing the importance of considering reproduction and its recovery for more accurate models of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N. De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rhonda R. Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Zuelow AN, Roberts KT, Burnaford JL, Burnett NP. Freezing and Mechanical Failure of a Habitat-Forming Kelp in the Rocky Intertidal Zone. Integr Comp Biol 2024; 64:222-233. [PMID: 38521985 DOI: 10.1093/icb/icae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024] Open
Abstract
Kelp and other habitat-forming seaweeds in the intertidal zone are exposed to a suite of environmental factors, including temperature and hydrodynamic forces, that can influence their growth, survival, and ecological function. Relatively little is known about the interactive effect of temperature and hydrodynamic forces on kelp, especially the effect of cold stress on biomechanical resistance to hydrodynamic forces. We used the intertidal kelp Egregia menziesii to investigate how freezing in air during a low tide changes the kelp's resistance to breaking from hydrodynamic forces. We conducted a laboratory experiment to test how short-term freezing, mimicking a brief low-tide freezing event, affected the kelp's mechanical properties. We also characterized daily minimum winter temperatures in an intertidal E. menziesii population on San Juan Island, WA, near the center of the species' geographic range. In the laboratory, acute freezing events decreased the strength and toughness of kelp tissue by 8-20% (change in medians). During low tides in the field, we documented sub-zero temperatures, snow, and low canopy cover (compared to summer surveys). These results suggest that freezing can contribute to frond breakage and decreased canopy cover in intertidal kelp. Further work is needed to understand whether freezing and the biomechanical performance in cold temperatures influence the fitness and ecological function of kelp and whether this will change as winter conditions, such as freezing events and storms, change in frequency and intensity.
Collapse
Affiliation(s)
- Angelina N Zuelow
- Department of Biological Science, CSU Fullerton, Fullerton, CA 92831, USA
| | - Kevin T Roberts
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
20
|
García-Astillero A, Polazzo F, Rico A. Combined effects of heat waves and pesticide pollution on zooplankton communities: Does the timing of stressor matter? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116751. [PMID: 39024950 DOI: 10.1016/j.ecoenv.2024.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Most studies assessing the combined effects of chemical and non-chemical stressors on aquatic ecosystems have been based on synchronous stressor applications. However, asynchronous exposure scenarios may be more common in nature, particularly for pulsed stressors such as heatwaves and pesticide concentration peaks. In this study, we investigated the single and combined effects of the insecticide chlorpyrifos (CPF) and a heatwave (HW) on a zooplankton community representative of a Mediterranean coastal wetland using synchronous (CPF+HW) and asynchronous (HW→CPF and CPF→HW) exposure scenarios. CPF was applied at a concentration of 0.8 µg/L (single pulse), and the HW was simulated by a temperature increase of 8°C above the control temperature (20°C) for 7 days in freshwater microcosms. The interaction between stressors in synchrony resulted in synergistic effects at the population level (Daphnia magna) and additive at the community level. The partial reduction of sensitive species resulted in an abundance increase of competing species that were more tolerant to the evaluated stressors (e.g. Moina sp.). The asynchronous exposure scenarios resulted in a similar abundance decline of sensitive populations as compared to the synchronous one; however, the timing of stressor resulted in different responses in the long term. In the HW→CPF treatment, the D. magna population recovered at least one month faster than in the CPF+HW treatment, probably due to survival selection and cross-tolerance mechanisms. In the CPF→HW treatment, the effects lasted longer than in the CPF+HW, and the population did not recover within the experimental period, most likely due to the energetic costs of detoxification and effects on internal damage recovery. The different timing and magnitude of indirect effects among the tested asynchronous scenarios resulted in more severe effects on the structure of the zooplankton community in the CPF→HW treatment. Our study highlights the relevance of considering the order of stressors to predict the long-term effects of chemicals and heatwaves both at the population and community levels.
Collapse
Affiliation(s)
- Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Biodiversity and Conservation Area, Department of Biology and Geology, Fisics and Inorganic Chemistry, University Rey Juan Carlos, Av. del Alcalde de Móstoles, Móstoles 28933, Madrid, Spain.
| | - Francesco Polazzo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
21
|
Eterovick PC, Schmidt R, Sabino-Pinto J, Yang C, Künzel S, Ruthsatz K. The microbiome at the interface between environmental stress and animal health: an example from the most threatened vertebrate group. Proc Biol Sci 2024; 291:20240917. [PMID: 39291456 PMCID: PMC11409201 DOI: 10.1098/rspb.2024.0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrate pollution and global warming are ubiquitous stressors likely to interact and affect the health and survival of wildlife, particularly aquatic ectotherms. Animal health is largely influenced by its microbiome (commensal/symbiotic microorganisms), which responds to such stressors. We used a crossed experimental design including three nitrate levels and five temperature regimes to investigate their interactive and individual effects on an aquatic ectotherm, the European common frog. We associated health biomarkers in larvae with changes in gut bacteria diversity and composition. Larvae experienced higher stress levels and lower body condition under high temperatures and nitrate exposure. Developmental rate increased with temperature but decreased with nitrate pollution. Alterations in bacteria composition but not diversity are likely to correlate with the observed outcomes in larvae health. Leucine degradation decreased at higher temperatures corroborating accelerated development, nitrate degradation increased with nitrate level corroborating reduced body condition and an increase in lysine biosynthesis may have helped larvae deal with the combined effects of both stressors. These results reinforce the importance of associating traditional health biomarkers with underlying microbiome changes. Therefore, we urge studies to investigate the effects of environmental stressors on microbiome composition and consequences for host health in a world threatened by biodiversity loss.
Collapse
Affiliation(s)
- Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Joana Sabino-Pinto
- GELIFES—Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Chen Yang
- Department of Biostatistics, Southern Medical University, 510515, Guangzhou, People’s Republic of China
| | - Sven Künzel
- Max-Planck-Institut für Evolutionsbiologie, 24306, Plön, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| |
Collapse
|
22
|
Barrett NJ, Harper EM, Peck LS. The impact of acute low salinity stress on Antarctic echinoderms. Proc Biol Sci 2024; 291:20241038. [PMID: 39288805 PMCID: PMC11407869 DOI: 10.1098/rspb.2024.1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Climate change is causing increased coastal freshening in Antarctica, leading to reduced salinity. For Antarctica's endemic echinoderms, adapted to the stable polar environment, the impact of rapid reductions in coastal salinity on physiology and behaviour is currently unknown. Six common Antarctic echinoderms (the sea urchin Sterechinus neumayeri; the sea star Odontaster validus; the brittle star Ophionotus victoriae; and three sea cucumbers Cucumaria georgiana, Echinopsolus charcoti and Heterocucumis steineni), were directly transferred from ambient salinity (34.5‰) to a range of salinity dilutions (29-9‰) for 24 h. All species showed reduced activity and the establishment of a temporary osmotic gradient between coelomic fluid and external seawater. Most species exhibited a depression in oxygen consumption across tolerated salinities; however, at very low salinities that later resulted in mortality, oxygen consumption increased to levels comparable to those at ambient. Low salinity tolerance varied substantially between species, with O. victoriae being the least tolerant (24 h LC50 (lethal for 50% of animals) = 19.9‰) while E. charcoti and C. georgiana demonstrated the greatest tolerance (24 h LC50 = 11.5‰). These findings demonstrate the species-specific response of Antarctica's endemic echinoderms to short-term hypoosmotic salinity events, providing valuable insight into this phylum's ability to respond to an underreported impact of climate change.
Collapse
Affiliation(s)
- Nicholas J. Barrett
- British Antarctic Survey, Natural Environment Research Council, CambridgeCB3 0ET, UK
- Department of Earth Sciences, University of Cambridge, CambridgeCB2 3EQ, UK
| | - Elizabeth M. Harper
- British Antarctic Survey, Natural Environment Research Council, CambridgeCB3 0ET, UK
- Department of Earth Sciences, University of Cambridge, CambridgeCB2 3EQ, UK
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, CambridgeCB3 0ET, UK
| |
Collapse
|
23
|
Masanja F, Luo X, Jiang X, Xu Y, Mkuye R, Liu Y, Zhao L. Elucidating responses of the intertidal clam Ruditapes philippinarum to compound extreme oceanic events. MARINE POLLUTION BULLETIN 2024; 204:116523. [PMID: 38815474 DOI: 10.1016/j.marpolbul.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.
Collapse
Affiliation(s)
| | - Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoyan Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Liu
- Pearl Oyster Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Science and Technology Innovation Center of Marine Invertebrates, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
24
|
Harrison SJ, Malkin SY, Joye SB. Dispersant addition, but not nutrients, stimulated blooms of multiple hydrocarbonoclastic genera in nutrient-replete coastal marine surface waters. MARINE POLLUTION BULLETIN 2024; 204:116490. [PMID: 38843703 DOI: 10.1016/j.marpolbul.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.
Collapse
Affiliation(s)
- Sarah J Harrison
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sairah Y Malkin
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
25
|
Conner LM, Goedert D, Fitzpatrick SW, Fearnley A, Gallagher EL, Peterman JD, Forgione ME, Kokosinska S, Hamilton M, Masala LA, Merola N, Rico H, Samma E, Brady SP. Population origin and heritable effects mediate road salt toxicity and thermal stress in an amphibian. CHEMOSPHERE 2024; 357:141978. [PMID: 38608774 DOI: 10.1016/j.chemosphere.2024.141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.
Collapse
Affiliation(s)
- Lauren M Conner
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Debora Goedert
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Amber Fearnley
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Emma L Gallagher
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Jessica D Peterman
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Mia E Forgione
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Sophia Kokosinska
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Malik Hamilton
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Lydia A Masala
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Neil Merola
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Hennesy Rico
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Eman Samma
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Steven P Brady
- Southern Connecticut State University, Biology Department, New Haven, CT, USA.
| |
Collapse
|
26
|
Carrillo P, González-Olalla JM, J Cabrerizo M, Villar-Argaiz M, Medina-Sánchez JM. Uneven response of phytoplankton-bacteria coupling under Saharan dust pulse and ultraviolet radiation in the south-western Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172220. [PMID: 38588733 DOI: 10.1016/j.scitotenv.2024.172220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The microbial carbon (C) flux in the ocean is a key functional process governed by the excretion of organic carbon by phytoplankton (EOC) and heterotrophic bacterial carbon demand (BCD). Ultraviolet radiation (UVR) levels in upper mixed layers and increasing atmospheric dust deposition from arid regions may alter the degree of coupling in the phytoplankton-bacteria relationship (measured as BCD:EOC ratio) with consequences for the C-flux through these compartments in marine oligotrophic ecosystem. Firstly, we performed a field study across the south-western (SW) Mediterranean Sea to assess the degree of coupling (BCD:EOC) and how it may be related to metabolic balance (total primary production: community respiration; PPT:CR). Secondly, we conducted a microcosm experiment in two contrasting areas (heterotrophic nearshore and autotrophic open sea) to test the impact of UVR and dust interaction on microbial C flux. In the field study, we found that BCD was not satisfied by EOC (i.e., BCD:EOC >1; uncoupled phytoplankton-bacteria relationship). BCD:EOC ratio was negatively related to PPT:CR ratio across the SW Mediterranean Sea. A spatial pattern emerged, i.e. in autotrophic open sea stations uncoupling was less severe (BCD:EOC ranged 1-2), whereas heterotrophic nearshore stations uncoupling was more severe (BCD:EOC > 2). In the experimental study, in the seawater both enriched with dust and under UVR, BCD:EOC ratio decreased by stimulating autotrophic processes (particulate primary production (PPP) and EOC) in the heterotrophic nearshore area, whereas BCD:EOC increased by stimulating heterotrophic processes [heterotrophic bacterial production (HBP), bacterial growth efficiency (BGE), bacterial respiration (BR)] in the autotrophic open sea. Our results show that this spatial pattern could be reversed under future UVR × Dust scenario. Overall, the impact of greater dust deposition and higher UVR levels will alter the phytoplankton-bacteria C-flux with consequences for the productivity of both communities, their standing stocks, and ultimately, the ecosystem's metabolic balance at the sea surface.
Collapse
Affiliation(s)
- Presentación Carrillo
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain.
| | - Juan Manuel González-Olalla
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain.
| | - Marco J Cabrerizo
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Manuel Villar-Argaiz
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Juan Manuel Medina-Sánchez
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
27
|
Bridge R, Truebano M, Collins M. Acclimation to warming but not hypoxia alters thermal tolerance and metabolic sensitivity in an estuarine crustacean. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106565. [PMID: 38815495 DOI: 10.1016/j.marenvres.2024.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Coastal species are challenged by multiple anthropogenic stressors. Plasticity may buffer the effects of environmental change, but investigation has largely been restricted to single-stressor performance. Multistressor studies have often been short-term and relatively less is known about the consequences of plasticity under one stressor for performance under another. Here, we aimed to test for the effects of thermal or hypoxic acclimation on thermal tolerance in the amphipod Gammarus chevreuxi. Animals were chronically exposed to raised temperature or hypoxia prior to determination of upper thermal limits and routine metabolic rate (RMR). Warm acclimation increased all metrics of thermal tolerance, but hypoxic acclimation had no effect. Different responses to the two stressors was also observed for the thermal sensitivity of RMR. Consequently, this species possesses the ability to increase thermal tolerance via plasticity in response to chronic warming but increasing duration of hypoxic episodes will not confer cross-tolerance to a warming environment.
Collapse
Affiliation(s)
- Rebecca Bridge
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, PL4 8AA, Plymouth, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, PL4 8AA, Plymouth, UK
| | - Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, PL4 8AA, Plymouth, UK.
| |
Collapse
|
28
|
Foulk A, Gouhier T, Choi F, Torossian JL, Matzelle A, Sittenfeld D, Helmuth B. Physiologically informed organismal climatologies reveal unexpected spatiotemporal trends in temperature. CONSERVATION PHYSIOLOGY 2024; 12:coae025. [PMID: 38779431 PMCID: PMC11109819 DOI: 10.1093/conphys/coae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or 'corrected' environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.
Collapse
Affiliation(s)
- Aubrey Foulk
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Tarik Gouhier
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Francis Choi
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Jessica L Torossian
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
- Volpe Center, U.S. Department of Transportation, Cambridge, MA 02142, USA
| | - Allison Matzelle
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - David Sittenfeld
- Center for the Environment, Museum of Science, Boston, MA 02114, USA
- School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| | - Brian Helmuth
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
- School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Séguigne M, Leroy C, Carrias JF, Corbara B, Lafont Rapnouil T, Céréghino R. Interactive effects of drought and deforestation on multitrophic communities and aquatic ecosystem functions in the Neotropics-a test using tank bromeliads. PeerJ 2024; 12:e17346. [PMID: 38737739 PMCID: PMC11088369 DOI: 10.7717/peerj.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Together with the intensification of dry seasons in Neotropical regions, increasing deforestation is expected to exacerbate species extinctions, something that could lead to dramatic shifts in multitrophic communities and ecosystem functions. Recent studies suggest that the effects of habitat loss are greater where precipitation has decreased. Yet, experimental studies of the pure and interactive effects of drought and deforestation at ecosystem level remain scarce. Methods Here, we used rainshelters and transplantation from rainforest to open areas of natural microcosms (the aquatic ecosystem and microbial-faunal food web found within the rainwater-filled leaves of tank bromeliads) to emulate drought and deforestation in a full factorial experimental design. We analysed the pure and interactive effects of our treatments on functional community structure (including microorganisms, detritivore and predatory invertebrates), and on leaf litter decomposition in tank bromeliad ecosystems. Results Drought or deforestation alone had a moderate impact on biomass at the various trophic level, but did not eliminate species. However, their interaction synergistically reduced the biomass of all invertebrate functional groups and bacteria. Predators were the most impacted trophic group as they were totally eliminated, while detritivore biomass was reduced by about 95%. Fungal biomass was either unaffected or boosted by our treatments. Decomposition was essentially driven by microbial activity, and did not change across treatments involving deforestation and/or drought. Conclusions Our results suggest that highly resistant microorganisms such as fungi (plus a few detritivores) maintain key ecosystem functions in the face of drought and habitat change. We conclude that habitat destruction compounds the problems of climate change, that the impacts of the two phenomena on food webs are mutually reinforcing, and that the stability of ecosystem functions depends on the resistance of a core group of organisms. Assuming that taking global action is more challenging than taking local-regional actions, policy-makers should be encouraged to implement environmental action plans that will halt habitat destruction, to dampen any detrimental interactive effect with the impacts of global climate change.
Collapse
Affiliation(s)
- Marie Séguigne
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
| | - Céline Leroy
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus agronomique, Kourou, France
| | - Jean-François Carrias
- Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, France
| | - Bruno Corbara
- Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, France
| | - Tristan Lafont Rapnouil
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus agronomique, Kourou, France
| | - Régis Céréghino
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
30
|
Alves NM, Rodriguez J, Di Mauro R, Rodríguez JS, Maldonado D, Braverman MS, Temperoni B, Diaz MV. Like noodles in a soup: Anthropogenic microfibers are being ingested by juvenile fish in nursery grounds of the Southwestern Atlantic Ocean. MARINE POLLUTION BULLETIN 2024; 202:116368. [PMID: 38678732 DOI: 10.1016/j.marpolbul.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
The balance between marine health and ecosystem sustainability confronts a pressing threat from anthropogenic pollution. Estuaries are particularly susceptible to contamination, notably by anthropogenic microfibers originated from daily human activities in land and in fishing practices. This study examines the impact of anthropogenic microfibers on the whitemouth croaker in an estuarine environment of the Southwestern Atlantic Ocean during cold and warm seasons. The presence of anthropogenic microfibers was revealed in 64 % of juvenile gastrointestinal tracts, and 94 % of water samples, and concentrations were influenced by factors such as temperature, bay zone, and fish body length. Blue and black anthropogenic microfibers, with a rather new physical aspect, were dominant. This study highlights the impact of microfibers in a heavily anthropized body of water, subject to federal and local regulations due to the presence of commercially significant fish species inhabiting this area.
Collapse
Affiliation(s)
- Nadia M Alves
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Julieta Rodriguez
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Rosana Di Mauro
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina.
| | - Julieta S Rodríguez
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - David Maldonado
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - Mara S Braverman
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina
| | - Brenda Temperoni
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| | - Marina V Diaz
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA - República Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC - CONICET), Juan B. Justo 2550, B7608FBY, Mar del Plata, Argentina
| |
Collapse
|
31
|
Hu N, Bourdeau PE, Hollander J. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Nat Commun 2024; 15:3400. [PMID: 38649374 PMCID: PMC11035698 DOI: 10.1038/s41467-024-47563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors associated with ocean acidification and ocean warming, with expected interactive effects. Species from different trophic levels with dissimilar characteristics and evolutionary histories are likely to respond differently. Here, we perform a meta-analysis of controlled experiments including both ocean acidification and ocean warming factors to investigate single and interactive effects of these stressors on marine species. Contrary to expectations, we find that synergistic interactions are less common (16%) than additive (40%) and antagonistic (44%) interactions overall and their proportion decreases with increasing trophic level. Predators are the most tolerant trophic level to both individual and combined effects. For interactive effects, calcifying and non-calcifying species show similar patterns. We also identify climate region-specific patterns, with interactive effects ranging from synergistic in temperate regions to compensatory in subtropical regions, to positive in tropical regions. Our findings improve understanding of how ocean warming, and acidification affect marine trophic levels and highlight the need for deeper consideration of multiple stressors in conservation efforts.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic Ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | - Johan Hollander
- World Maritime University, Ocean Sustainability, Governance & Management Unit, 211 18, Malmö, Sweden.
| |
Collapse
|
32
|
de Bruin T, De Laender F, Jadoul J, Schtickzelle N. Intraspecific demographic and trait responses to environmental change drivers are linked in two species of ciliate. BMC Ecol Evol 2024; 24:47. [PMID: 38632521 PMCID: PMC11022343 DOI: 10.1186/s12862-024-02241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Over the past decade, theory and observations have suggested intraspecific variation, trait-based differences within species, as a buffer against biodiversity loss from multiple environmental changes. This buffering effect can only occur when different populations of the same species respond differently to environmental change. More specifically, variation of demographic responses fosters buffering of demography, while variation of trait responses fosters buffering of functioning. Understanding how both responses are related is important for predicting biodiversity loss and its consequences. In this study, we aimed to empirically assess whether population-level trait responses to multiple environmental change drivers are related to the demographic response to these drivers. To this end, we measured demographic and trait responses in microcosm experiments with two species of ciliated protists. For three clonal strains of each species, we measured responses to two environmental change drivers (climate change and pollution) and their combination. We also examined if relationships between demographic and trait responses existed across treatments and strains. RESULTS We found different demographic responses across strains of the same species but hardly any interactive effects between the two environmental change drivers. Also, trait responses (summarized in a survival strategy index) varied among strains within a species, again with no driver interactions. Demographic and trait responses were related across all strains of both species tested in this study: Increasing intrinsic growth and self-limitation were associated with a shift in survival strategy from sit-and-wait towards flee. CONCLUSIONS Our results support the existence of a link between a population's demographic and trait responses to environmental change drivers in two species of ciliate. Future work could dive deeper into the specifics of phenotypical trait values, and changes therein, related to specific life strategies in different species of ciliate and other zooplankton grazers.
Collapse
Affiliation(s)
- Tessa de Bruin
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium.
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), Namur Institute for Complex Systems (NAXYS), Université de Namur, Namur, Belgium
| | - Julie Jadoul
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium
| |
Collapse
|
33
|
Kafula YA, Mataba GR, Mwaijengo GN, Moyo F, Munishi LK, Vanschoenwinkel B, Brendonck L, Thoré ESJ. Fish predation affects invertebrate community structure of tropical temporary ponds, with downstream effects on phytoplankton that are obscured by pesticide pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123592. [PMID: 38395132 DOI: 10.1016/j.envpol.2024.123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Aquatic biota of tropical temporary ponds typically experience a wide range of stressors that can drive the structure and dynamics of natural communities. Particularly in regions with intense agricultural activity, aquatic biota may not only experience predation pressure but also stress from pesticides that inadvertently enter the ponds. We increasingly understand how these different sources of stress affect classic model taxa under controlled laboratory conditions, but how predators and pesticides may jointly affect pond invertebrate communities is still unclear, particularly for tropical systems. Here, we conducted an outdoor mesocosm experiment to study how fish predation combined with exposure to an environmentally relevant concentration of the commonly used insecticide cypermethrin (0.8 ng/L) affects the structure of invertebrate communities, and its potential effects on leaf litter decomposition and invertebrate grazing efficiency as measures of ecosystem functioning. A total of seven invertebrate taxa were recorded in the mesocosm communities. Fish predation effectively lowered the number of invertebrate taxa, with fish mesocosms being dominated by high densities of rotifers, associated with lower phytoplankton levels, but only when communities were not simultaneously exposed to cypermethrin. In contrast, cypermethrin exposure did not affect invertebrate community structure, and neither fish predation nor cypermethrin exposure affected our measures of ecosystem functioning. These findings suggest that predation by killifish can strongly affect invertebrate community structure of tropical temporary ponds, and that downstream effects on phytoplankton biomass can be mediated by exposure to cypermethrin. More broadly, we contend that a deeper understanding of (tropical) temporary pond ecology is necessary to effectively manage these increasingly polluted systems.
Collapse
Affiliation(s)
- Yusuph A Kafula
- Department of Aquatic Sciences, College of Aquatic Sciences and Fisheries, Mwalimu Julius K. Nyerere University of Agriculture and Technology, P. O Box 976, Musoma, Tanzania.
| | - Gordian R Mataba
- Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania
| | - Grite N Mwaijengo
- Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania
| | - Francis Moyo
- Department of Water, Environmental Sciences and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P. O. Box 447, Arusha, Tanzania
| | - Linus K Munishi
- Department of Water, Environmental Sciences and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P. O. Box 447, Arusha, Tanzania
| | - Bram Vanschoenwinkel
- Community Ecology Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, Bloemfontein, 9300 South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; Water Research Group, Unit for Environmental Sciences, and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Eli S J Thoré
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; TRANSfarm - Science, Engineering, & Technology Group, KU Leuven, Lovenjoel, Belgium
| |
Collapse
|
34
|
Giacoletti A, Bosch-Belmar M, Mangano MC, Tantillo MF, Sarà G, Milisenda G. Predicting the effect of fouling organisms and climate change on integrated shellfish aquaculture. MARINE POLLUTION BULLETIN 2024; 201:116167. [PMID: 38394793 DOI: 10.1016/j.marpolbul.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Aquaculture industry represents a continuously growing sector playing a fundamental role in pursuing United Nation's goals. Increasing sea-surface temperatures, the growth of encrusting species and current cage cleaning practices proved to affect the productivity of commercial species. Here, through a Dynamic Energy Budget application under two different IPCC scenarios, we investigate the long-term effects of Pennaria disticha fragments' on Mytilus galloprovincialis' functional traits as a result of cage cleaning practices. While Climate-Change did not exert a marked effect on mussels' Life-History traits, the simulated effect of cage cleanings highlighted a positive effect on total weight, fecundity and time to commercial size. West-Mediterranean emerged as the most affected sector, with Malta, Montenegro, Morocco, Syria, Tunisia and Turkey between the top-affected countries. These outcomes confirm the reliability of a DEB-approach in projecting at different spatial and temporal scale eco-physiological results, avoiding the limitation of short-term studies and the difficulties of long-term ones.
Collapse
Affiliation(s)
- A Giacoletti
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento di Ecologia Marina Integrata (EMI), Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy.
| | - M Bosch-Belmar
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - M C Mangano
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento di Ecologia Marina Integrata (EMI), Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy
| | - M F Tantillo
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - G Sarà
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - G Milisenda
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento di Ecologia Marina Integrata (EMI), Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy
| |
Collapse
|
35
|
Rillig MC, Lehmann A, Orr JA, Rongstock R. Factors of global change affecting plants act at different levels of the ecological hierarchy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1781-1785. [PMID: 37873939 DOI: 10.1111/tpj.16509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Plants and ecosystems worldwide are exposed to a wide range of chemical, physical, and biological factors of global change, many of which act concurrently. As bringing order to the array of factors is required in order to generate an enhanced understanding of simultaneous impacts, classification schemes have been developed. One such classification scheme is dedicated to capturing the different targets of global change factors along the ecological hierarchy. We build on this pioneering work, and refine the conceptual framework in several ways, focusing on plants and terrestrial systems: (i) we more strictly define the target level of the hierarchy, such that every factor typically has just one target level, and not many; (ii) we include effects above the level of the community, that is, there are effects also at the ecosystem scale that cannot be reduced to any level below this; (iii) we introduce the level of the landscape to capture certain land use change effects while abandoning the level below the individual. We discuss how effects can propagate along the levels of the ecological hierarchy, upwards and downwards, presenting opportunities for explaining non-additivity of effects of multiple factors. We hope that this updated conceptual framework will help inform the next generation of plant-focused global change experiments, specifically aimed at non-additivity of effects at the confluence of many factors.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - James A Orr
- Department of Biology, University of Oxford, Oxford, UK
| | - Rebecca Rongstock
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| |
Collapse
|
36
|
Bell JJ, Micaroni V, Harris B, Strano F, Broadribb M, Rogers A. Global status, impacts, and management of rocky temperate mesophotic ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e13945. [PMID: 35587786 DOI: 10.1111/cobi.13945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The ecology and function of rocky temperate mesophotic ecosystems (TMEs) remain poorly understood globally despite their widespread distribution. They typically occur at 20-150 m (the limit of photosynthesis), and on rocky substratum they support rich benthic communities and mobile fauna. We determined the distribution of rocky TMEs, their conservation status, and their most characteristic biological groups. Rocky TMEs were dominated by algae, turf-invertebrate matrices (<50 m only), sponges, bryozoans, and cnidarians. The community composition of TMEs differed significantly from shallow (0-15 m) subtidal reefs. Data were geographically biased and variable, available only from the North and South Atlantic, Mediterranean, and Temperate Australasia. Degree of protection of rocky TMEs varied considerably across the world. The biggest threats to rocky TMEs were identified changes in temperature, sedimentation rates, nutrient concentrations, and certain fishing types. We propose a conservation framework to inform future rocky TME management and conservation, highlighting the need to recognize the importance of these biologically diverse and functionally important ecosystems.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Alice Rogers
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
37
|
Soltani S, Ghatrami ER, Nabavi SMB, Khorasani N, Naderi M. The correlation between echinoderms diversity and physicochemical parameters in marine pollution: A case study of the Persian Gulf coastline. MARINE POLLUTION BULLETIN 2024; 199:115989. [PMID: 38171165 DOI: 10.1016/j.marpolbul.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
This study was conducted with the aim of investigating the correlation between echinoderms diversity and physicochemical parameters in the Persian Gulf coastline in Bushehr province in 4 seasons from March to December 2017. The physicochemical parameters including water temperature, dissolved oxygen (DO), electrical conductivity (EC), salinity, pH and turbidity were measured at each sampling location. The results showed a significant correlation between echinoderms diversity and physicochemical parameters. The correlation coefficient of the Astropecten polyacanthus species with the parameters of temperature, DO, EC, salinity and turbidity was reported as -0.41, 0.64, -0.25, -0.44 and 0.60 respectively. This coefficient for the Ophiothrix fragilis species was reported as -0.68, 0.70, -0.21, -0.36 and -0.55 respectively. The results demonstrated that the most sensitive species were Astropecten polyacanthus and Ophiothrix fragilis respectively. The different species of echinoderms can be used as biological indicators of pollution in evaluating the physicochemical quality of marine environments.
Collapse
Affiliation(s)
- Shiva Soltani
- Department of Environmental Science and Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rajabzadeh Ghatrami
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramashahr, Iran.
| | - Seyed Mohammad Bagher Nabavi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nematollah Khorasani
- Department of Environmental Science and Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maziar Naderi
- Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Kraskura K, Anderson CE, Eliason EJ. Pairing lab and field studies to predict thermal performance of wild fish. J Therm Biol 2024; 119:103780. [PMID: 38302373 DOI: 10.1016/j.jtherbio.2023.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
In thermally variable ecosystems, temperatures can change extensively on hourly and seasonal timescales requiring ectotherms to possess a broad thermal tolerance (critical thermal minima [CTmin] and maxima [CTmax]). However, whether fish acclimate in the laboratory similarly as they acclimatize in the field under comparable thermal variation is unclear. We used temperature data from a tidal salt marsh to design 21-day lab-acclimation treatments (static: 12, 17, 22, 27 °C; daily variation with mean 22 °C: i) range 17-27 °C, ii) range 17-27 °C with irregular extremes within 12-32 °C). We compared thermal limits in lab-acclimated and field-acclimatized eurythermal arrow goby (Clevelandia ios). Variable temperature-acclimated and acclimatized fish had similar CTmin and CTmax. Notably, arrow gobies showed rapid plasticity in their absolute thermal tolerance within one tidal cycle. The daily mean and max temperatures experienced were positively related to CTmax and CTmin, respectively. This study demonstrates that ecologically informed lab acclimation treatments can yield tolerance results that are applicable to wild fish.
Collapse
Affiliation(s)
- Krista Kraskura
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Claire E Anderson
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
39
|
Hudson J, Egan S. Marine diseases and the Anthropocene: Understanding microbial pathogenesis in a rapidly changing world. Microb Biotechnol 2024; 17:e14397. [PMID: 38217393 PMCID: PMC10832532 DOI: 10.1111/1751-7915.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Healthy marine ecosystems are paramount for Earth's biodiversity and are key to sustaining the global economy and human health. The effects of anthropogenic activity represent a pervasive threat to the productivity of marine ecosystems, with intensifying environmental stressors such as climate change and pollution driving the occurrence and severity of microbial diseases that can devastate marine ecosystems and jeopardise food security. Despite the potentially catastrophic outcomes of marine diseases, our understanding of host-pathogen interactions remains an understudied aspect of both microbiology and environmental research, especially when compared to the depth of information available for human and agricultural systems. Here, we identify three avenues of research in which we can advance our understanding of marine disease in the context of global change, and make positive steps towards safeguarding marine communities for future generations.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
40
|
Sun X, Arnott SE, Little AG. Impacts of sequential salinity and heat stress are recovery time-specific in freshwater crustacean, Daphnia pulicaria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115899. [PMID: 38171229 DOI: 10.1016/j.ecoenv.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Stressors can interact to affect animal fitness, but we have limited knowledge about how temporal variation in stressors may impact their combined effect. This limits our ability to predict the outcomes of pollutants and future dynamic environmental changes. Elevated salinity in freshwater ecosystems has been observed worldwide. Meanwhile, heatwaves have become more frequent and intensified as an outcome of climate change. These two stressors can jointly affect organisms; however, their interaction has rarely been explored in the context of freshwater ecosystems. We conducted lab experiments using Daphnia pulicaria, a key species in lakes, to investigate how elevated salinity and heatwave conditions collectively affect freshwater organisms. We also monitored the impacts of various recovery times between the two stressors. Daphnia physiological conditions (metabolic rate, Na+-K+-ATPase (NKA) activity, and lipid peroxidation level) and life history traits (survival, fecundity, and growth) in response to salt stress as well as mortality in heat treatment were examined. We found that Daphnia responded to elevated salinity by upregulating NKA activity and increasing metabolic rate, causing a high lipid peroxidation level. Survival, fecundity, and growth were all negatively affected by this stressor. These impacts on physiological conditions and life history traits persisted for a few days after the end of the exposure. Heat treatments caused mortality in Daphnia, which increased with rising temperature. Results also showed that individuals that experienced salt exposure were more susceptible to subsequent heat stress, but this effect decreased with increasing recovery time between stressors. Findings from this work suggest that the legacy effects from a previous stressor can reduce individual resistance to a subsequent stressor, adding great difficulties to the prediction of outcomes of multiple stressors. Our work also demonstrates that cross-tolerance/susceptibility and the associated mechanisms remain unclear, necessitating further investigation.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Shelley E Arnott
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Alexander G Little
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 ON, Canada
| |
Collapse
|
41
|
Johnson CA, Ren R, Buckley LB. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change. Am Nat 2023; 202:753-766. [PMID: 38033177 DOI: 10.1086/726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.
Collapse
|
42
|
Ostrowski A, Connolly RM, Brown CJ, Sievers M. Stressor fluctuations alter mechanisms of seagrass community responses relative to static stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165865. [PMID: 37516181 DOI: 10.1016/j.scitotenv.2023.165865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Ecosystems are increasingly affected by multiple anthropogenic stressors that contribute to habitat degradation and loss. Natural ecosystems are highly dynamic, yet multiple stressor experiments often ignore variability in stressor intensity and do not consider how effects could be mediated across trophic levels, with implications for models that underpin stressor management. Here, we investigated the in situ effects of changes in stressor intensity (i.e., fluctuations) and synchronicity (i.e., timing of fluctuations) on a seagrass community, applying the stressors reduced light and physical disturbance to the sediment. We used structural equation models (SEMs) to identify causal effects of dynamic multiple stressors on seagrass shoot density and leaf surface area, and abundance of associated crustaceans. Responses depended on whether stressor intensities fluctuated or remained static. Relative to static stressor exposure at the end of the experiment, shoot density, leaf surface area, and crustacean abundance all declined under in-phase (synchronous; 17, 33, and 30 % less, respectively) and out-of-phase (asynchronous; 11, 28, and 39 % less, respectively) fluctuating treatments. Static treatment increased seagrass leaf surface area and crustacean abundance relative to the control group. We hypothesised that crustacean responses are mediated by changes in seagrass; however, causal analysis found only weak evidence for a mediation effect via leaf surface area. Changes in crustacean abundance, therefore, were primarily a direct response to stressors. Our results suggest that the mechanisms underpinning stress responses change when stressors fluctuate. For instance, increased leaf surface area under static stress could be caused by seagrass acclimating to low light, whereas no response under fluctuating stressors suggests an acclimation response was not triggered. The SEMs also revealed that community responses to the stressors can be independent of one another. Therefore, models based on static experiments may be representing ecological mechanisms not observed in natural ecosystems, and underestimating the impacts of stressors on ecosystems.
Collapse
Affiliation(s)
- Andria Ostrowski
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J Brown
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
43
|
Collins M, Clark MS, Truebano M. The environmental cellular stress response: the intertidal as a multistressor model. Cell Stress Chaperones 2023; 28:467-475. [PMID: 37129699 PMCID: PMC10469114 DOI: 10.1007/s12192-023-01348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The wild poses a multifaceted challenge to the maintenance of cellular function. Therefore, a multistressor approach is essential to predict the cellular mechanisms which promote homeostasis and underpin whole-organism tolerance. The intertidal zone is particularly dynamic, and thus, its inhabitants provide excellent models to assess mechanisms underpinning multistressor tolerance. Here, we critically review our current understanding of the regulation of the cellular stress response (CSR) under multiple abiotic stressors in intertidal organisms and consider to what extent a multistressor approach brings us closer to understanding responses in the wild. The function of the CSR has been well documented in laboratory and field exposures with a view to understanding single-stressor thermal effects. Multistressor studies still remain relatively limited in comparison but have applied three main approaches: (i) laboratory application of multiple stressors in isolation, (ii) multiple stressors applied in combination, and (iii) field-based correlation of multiple stressors against the CSR. The application of multiple stressors in isolation has allowed the identification of putative, shared stress pathways but overlooks non-additive stressor interactions on the CSR. Combined stressor studies are relatively limited in number but already highlight variable effects on the CSR dependent upon stressor type, timing, and magnitude. Field studies have allowed the identification of responsive components of the CSR to various stressors in situ but are correlative, not causative. A combined approach involving laboratory multistressor studies linking the CSR to whole-organism tolerance as well as field studies is required if we are to understand the role of the CSR in the natural environment.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
44
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Cedergreen N, Pedersen KE, Fredensborg BL. Quantifying synergistic interactions: a meta-analysis of joint effects of chemical and parasitic stressors. Sci Rep 2023; 13:13641. [PMID: 37608060 PMCID: PMC10444819 DOI: 10.1038/s41598-023-40847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
The global biodiversity crisis emphasizes our need to understand how different stressors (climatic, chemical, parasitic, etc.) interact and affect biological communities. We provide a comprehensive meta-analysis investigating joint effects of chemical and parasitic stressors for 1064 chemical-parasitic combinations using the Multiplicative model on mortality of arthropods. We tested both features of the experimental setup (control mortality, stressor effect level) and the chemical mode of action, host and parasite phylogeny, and parasite-host interaction traits as explanatory factors for deviations from the reference model. Synergistic interactions, defined as higher mortality than predicted, were significantly more frequent than no interactions or antagony. Experimental setup significantly affected the results, with studies reporting high (> 10%) control mortality or using low stressor effects (< 20%) being more synergistic. Chemical mode of action played a significant role for synergy, but there was no effects of host and parasite phylogeny, or parasite-host interaction traits. The finding that experimental design played a greater role in finding synergy than biological factors, emphasize the need to standardize the design of mixed stressor studies across scientific disciplines. In addition, combinations testing more biological traits e.g. avoidance, coping, and repair processes are needed to test biology-based hypotheses for synergistic interactions.
Collapse
Affiliation(s)
- Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kathrine Eggers Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Brian Lund Fredensborg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
46
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
47
|
Pulgar J, Manríquez PH, Widdicombe S, García-Huidobro R, Quijón PA, Carter M, Aldana M, Quintanilla-Ahumada D, Duarte C. Artificial Light at Night (ALAN) causes size-dependent effects on intertidal fish decision-making. MARINE POLLUTION BULLETIN 2023; 193:115190. [PMID: 37336043 DOI: 10.1016/j.marpolbul.2023.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Artificial Light at Night (ALAN) alters cycles of day and night, potentially modifying species' behavior. We assessed whether exposure to ALAN influences decision-making (directional swimming) in an intertidal rockfish (Girella laevisifrons) from the Southeastern Pacific. Using a Y-maze, we examined if exposure to ALAN or natural day/night conditions for one week affected the number of visits and time spent in three Y-maze compartments: dark and lit arms ("safe" and "risky" conditions, respectively) and a neutral "non-decision" area. The results showed that fish maintained in natural day/night conditions visited and spent more time in the dark arm, regardless of size. Instead, fish exposed to ALAN visited and spent more time in the non-decision area and their response was size-dependent. Hence, prior ALAN exposure seemed to disorient or reduce the ability of rock fish to choose dark conditions, deemed the safest for small fish facing predators or other potential threats.
Collapse
Affiliation(s)
- José Pulgar
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Mauricio Carter
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| |
Collapse
|
48
|
Verheyen J, Cuypers K, Stoks R. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121438. [PMID: 36963457 DOI: 10.1016/j.envpol.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Ecotoxicological studies considerably improved realism by assessing the toxicity of pollutants at different temperatures. Nevertheless, they may miss key interaction patterns between pollutants and temperature by typically considering only part of the natural thermal gradient experienced by species and ignoring daily temperature fluctuations (DTF). We therefore tested in a common garden laboratory experiment the effects of the pesticide chlorpyrifos across a range of mean temperatures and DTF on physiological traits (related to oxidative stress and bioenergetics) in low- and high-latitude populations of Ischnura elegans damselfly larvae. As expected, the impact of chlorpyrifos varied along the wide range of mean temperatures (12-34 °C). None of the physiological traits (except the superoxide anion levels) were affected by chlorpyrifos at the intermediate mean temperatures (20-24 °C). Instead, most of them were negatively affected by chlorpyrifos (reduced activity levels of the antioxidant defense enzymes superoxide dismutase [SOD], catalase [CAT] and peroxidase [PER], and a reduced energy budget) at the very high (≥28 °C) or extreme high temperatures (≥32 °C), and to lesser extent at the lower mean temperatures (≤16 °C). Notably, at the lower mean temperatures the negative impact of chlorpyrifos was often only present or stronger under DTF. Although the chlorpyrifos effects on the physiological traits greatly depended on the experimentally imposed thermal gradient, patterns were mainly consistent across the natural latitude-associated thermal gradient, indicating the generality of our results. The thermal patterns in chlorpyrifos-induced physiological responses contributed to the observed toxicity patterns in life history (reduced survival and growth at low and high mean temperatures). Taken together, our results underscore the importance of evaluating pesticide toxicity along a temperature gradient and of taking a mechanistic approach with a focus on physiology, to improve our understanding of the combined effects of pollutants and temperature in natural populations.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Kiani Cuypers
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
49
|
Cheng L, Bai Z, Wei H, Chen Y, Wang M. High and diurnally fluctuating carbon dioxide exposure produces lower mercury toxicity in a marine copepod. MARINE POLLUTION BULLETIN 2023; 192:115016. [PMID: 37182245 DOI: 10.1016/j.marpolbul.2023.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
Coastal waters have experienced fluctuations in partial pressure of carbon dioxide (pCO2) and mercury (Hg) pollution, yet little is known concerning how natural pCO2 fluctuations affect Hg biotoxicity. Here, a marine copepod Tigriopus japonicus was interactively exposed to different seawater pCO2 (ambient 400, steady elevated 1000, and fluctuating elevated 1000 ± 600 μatm) scenarios and Hg (control, 2 μg/L) treatments for 7 d. The results showed that elevated pCO2 decreased Hg bioaccumulation, and it was even more under fluctuating elevated pCO2 condition. We found energy depletion and oxidative stress under Hg-treated copepods, while combined exposure initiated compensatory response to alleviate Hg toxicity. Intriguingly, fluctuating acidification presented more immune defense related genes/processes in Hg-treated copepods when compared to steady acidification, probably linking with the greater decrease in Hg bioaccumulation. Collectively, understanding how fluctuating acidification interacts with Hg contaminant will become more crucial in predicting their risks to coastal biota and ecosystems.
Collapse
Affiliation(s)
- Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yao Chen
- Xiamen Marine Environmental Monitoring Central Station (SOA), Xiamen 361008, China.
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
50
|
Morais H, Arenas F, Cruzeiro C, Galante-Oliveira S, Cardoso PG. Combined effects of climate change and environmentally relevant mixtures of endocrine disrupting compounds on the fitness and gonads' maturation dynamics of Nucella lapillus (Gastropoda). MARINE POLLUTION BULLETIN 2023; 190:114841. [PMID: 36965267 DOI: 10.1016/j.marpolbul.2023.114841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Coastal areas are affected by multiple stressors like climate change and endocrine disruptors (EDCs). In the laboratory, we investigated the combined effects of increased temperature and EDCs (drospirenone and mercury) on the fitness and gonads' maturation dynamics of the marine gastropod Nucella lapillus for 21 days. Survival was negatively affected by all the stressors alone, while, in combination, a synergistic negative effect was observed. Both chemicals, as single factors, did not cause any effect on the maturation stage of ovaries and testis. However, in the presence of a higher temperature, it was clear a delay in the maturation stage of the ovaries, but not in the testis, suggesting a higher negative impact of the stressors in females than in males. In summary, drospirenone caused a low negative impact in aquatic species, like gastropods, but in combination with other EDCs and/or increased temperature can be a matter of concern.
Collapse
Affiliation(s)
- H Morais
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - F Arenas
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - C Cruzeiro
- Helmholtz Zentrum München, German Research Center for Environmental Health, Germany
| | - S Galante-Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - P G Cardoso
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|