1
|
Yue N, Hu P, Tian C, Kong C, Zhao H, Zhang Y, Yao J, Wei Y, Li D, Wang L. Dissecting Innate and Adaptive Immunity in Inflammatory Bowel Disease: Immune Compartmentalization, Microbiota Crosstalk, and Emerging Therapies. J Inflamm Res 2024; 17:9987-10014. [PMID: 39634289 PMCID: PMC11615095 DOI: 10.2147/jir.s492079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
The intestinal immune system is the largest immune organ in the human body. Excessive immune response to intestinal cavity induced by harmful stimuli including pathogens, foreign substances and food antigens is an important cause of inflammatory diseases such as celiac disease and inflammatory bowel disease (IBD). Although great progress has been made in the treatment of IBD by some immune-related biotherapeutic products, yet a considerable proportion of IBD patients remain unresponsive or immune tolerant to immunotherapeutic strategy. Therefore, it is necessary to further understand the mechanism of immune cell populations involved in enteritis, including dendritic cells, macrophages and natural lymphocytes, in the steady-state immune tolerance of IBD, in order to find effective IBD therapy. In this review, we discussed the important role of innate and adaptive immunity in the development of IBD. And the relationship between intestinal immune system disorders and microflora crosstalk were also presented. We also focus on the new findings in the field of T cell immunity, which might identify novel cytokines, chemokines or anti-cytokine antibodies as new approaches for the treatment of IBD.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Peng Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Chen Kong
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Hailan Zhao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuqi Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Guo YE, Lv J, Shu P, Li X, Li Y, Guo J, Chen G, Li Y, Lu B, Zhang W, Liu Y. Drug screening identifies pyrrolidinedithiocarbamate ammonium ameliorating DSS-induced mouse ulcerative colitis via suppressing Th17 differentiation. Cell Immunol 2024; 405-406:104887. [PMID: 39503083 DOI: 10.1016/j.cellimm.2024.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 12/02/2024]
Abstract
T helper 17 (Th17) cells play crucial roles in various autoimmune diseases, including ulcerative colitis (UC), which is characterized by widespread inflammation in the mucosa of the colon and rectum. To identify small-molecule compounds capable of inhibiting CD4+ T cell differentiation into Th17 cells, we established a screening system. Through drug screening, we found that pyrrolidinedithiocarbamate ammonium (PDTC) effectively inhibits Th17 differentiation. In a dextran sulfate sodium (DSS)-induced UC mouse model, administration of PDTC significantly ameliorated colitis. PDTC treatment decreased the production of proinflammatory mediators and inhibited the proportion of Th17 cells in colitis-afflicted mice by suppressing NF-κB activation. These findings showed that PDTC can alleviate colitis by inhibiting NF-κB activation. The therapeutic effects of PDTC observed in a mouse model of UC provided a rationale for its application in clinical settings.
Collapse
Affiliation(s)
- Yu-E Guo
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lv
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ping Shu
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junhong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofang Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Lu
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yin Liu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Döring Y, van der Vorst EPC, Weber C. Targeting immune cell recruitment in atherosclerosis. Nat Rev Cardiol 2024; 21:824-840. [PMID: 38664575 DOI: 10.1038/s41569-024-01023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 10/17/2024]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany.
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
4
|
Liu T, He Y, Liao Y. Gypenosides alleviates HaCaT keratinocyte hyperproliferation and ameliorates imiquimod-induced psoriasis in mice. Allergol Immunopathol (Madr) 2024; 52:22-32. [PMID: 39515792 DOI: 10.15586/aei.v52i6.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Psoriasis is an autoimmune skin condition characterized by hyperproliferation of keratinocytes and chronic immune responses. Gypenosides (Gyp) exhibits anti-proliferative and anti-inflammatory effects on different diseases. However, its functioning and mechanism of Gyp on psoriasis remains unknown. OBJECTIVE To explore the effect and mechanism of Gyp on psoriasis. MATERIAL AND METHODS The impact and mechanism of Gyp on psoriasis in vitro and in vivo were probed through cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, reverse transcription quantitative polymerase chain reaction, hematoxylin and eosin staining, enzyme-linked immunosorbent serologic assay, immunofluorescence, and Western Blotting assays. RESULTS Gyp inhibited cell proliferation and the release of inflammatory cytokinesin interleukin (IL-22)-induced spontaneously transformed human aneuploid immortal keratinocyte cell line (HaCaT). In addition, Gyp demonstrated enhancement in erythema and scaling as well as reductions in the thickness of epidermal layers, release of inflammatory factors, and Ki-67 (a nuclear protein) level in imiquimod (IMQ)-induced mice. Mechanistically, Gyp upregulated nuclear factor erythroid 2-related factor 2 (Nrf-2) expression and diminished the level of p-p65/p65 and p-STAT3/STAT3 in skin tissues from IMQ-induced mice and IL-22-induced HaCaT cells, which were reversed with the application of ML385, an inhibitor of Nrf2. In addition, the administration of ML385 reversed decrease in cell viability and reduced the expressions of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in IL-22-induced HaCaT cells caused by Gyp. CONCLUSION In summary, Gyp reduced excessive cell growth and inflammation in psoriasis by suppressing nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) through activation of Nrf2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China;
| | - Yuanmin He
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongmei Liao
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Shehata AM, Seddek NH, Khamis T, Elnesr SS, Nouri HR, Albasri HM, Paswan VK. In-ovo injection of Bacillus subtilis, raffinose, and their combinations enhances hatchability, gut health, nutrient transport- and intestinal function-related genes, and early development of broiler chicks. Poult Sci 2024; 103:104134. [PMID: 39154607 PMCID: PMC11471093 DOI: 10.1016/j.psj.2024.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
An experiment was conducted to assess the response of chicks to in-ovo injection of Bacillus subtilis (probiotic), raffinose (prebiotic), and their combinations. The study used 1,500 embryonated eggs allotted to 10 groups/ 6 replicates (150 eggs/group). The experimental treatments were: 1) un-injected control (NC); 2) sham (sterile distilled water) (PC); 3) probiotic 4 × 105CFU/egg (LBS); 4) probiotic 4 × 106CFU/egg (HBS); 5) prebiotic 2 mg/egg (LR); (6 prebiotic 3 mg/egg (HR); 7) probiotic 4 × 105CFU + prebiotic 2 mg/egg (LBS+LR); 8) probiotic 4 × 105CFU + prebiotic 3 mg/egg (LBS+HR); 9) probiotic 4 × 106CFU + prebiotic 2 mg/egg (HBS+LR); and 10) probiotic 4 × 106CFU + prebiotic 3 mg/egg (HBS+HR). Results showed that in-ovo inclusion of Bacillus subtilis, prebiotic, and their combinations improved hatchability, yolk-free chick weight, and chick weight compared to the control group. Moreover, the in-ovo treatment reduced residual yolk weight on the day of hatch compared to the control group. Different levels of in-ovo B. subtilis alone or combined with raffinose significantly (P ≤ 0.001) reduced total bacterial count and total yeast and mold count compared to the negative control group. Total coliform and E. coli decreased significantly (P ≤ 0.001) in groups treated with probiotics, prebiotics, and synbiotics with different doses during incubation compared to those in the control. Clostridium spp. was not detected in the groups injected with B. subtilis alone or combined with raffinose. In-ovo probiotics and synbiotics (LBS+LR & LBS+HR) significantly (P ≤ 0.001) increased ileal villus length compared to other groups. In-ovo treatment increased mRNA expression of JAM-2 compared to the control group. The fold change significantly increased in group LBS+HR for genes MUC-2, OCLN, VEGF, SGLT-1, and EAAT-3 compared to the negative control. In conclusion, in-ovo injection of a low dose of B. subtilis plus a high or low dose of raffinose can positively affect hatching traits, cecal microbial populations, intestinal histomorphometry, nutrient transport- and intestinal function-related genes, and chick quality of newly hatched broiler chicks.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
| | - Nermien Helmy Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hela Rached Nouri
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Heidari M, Maleki Vareki S, Yaghobi R, Karimi MH. Microbiota activation and regulation of adaptive immunity. Front Immunol 2024; 15:1429436. [PMID: 39445008 PMCID: PMC11496076 DOI: 10.3389/fimmu.2024.1429436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
In the mucosa, T cells and B cells of the immune system are essential for maintaining immune homeostasis by suppressing reactions to harmless antigens and upholding the integrity of intestinal mucosal barrier functions. Host immunity and homeostasis are regulated by metabolites produced by the gut microbiota, which has developed through the long-term coevolution of the host and the gut biome. This is achieved by the immunological system's tolerance for symbiote microbiota, and its ability to generate a proinflammatory response against invasive organisms. The imbalance of the intestinal immune system with commensal organisms is causing a disturbance in the homeostasis of the gut microbiome. The lack of balance results in microbiota dysbiosis, the weakened integrity of the gut barrier, and the development of inflammatory immune reactions toward symbiotic organisms. Researchers may uncover potential therapeutic targets for preventing or regulating inflammatory diseases by understanding the interactions between adaptive immunity and the microbiota. This discussion will explore the connection between adaptive immunity and microbiota.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
7
|
Ashique S, Mishra N, Garg A, Kumar N, Khan Z, Mohanto S, Chellappan DK, Farid A, Taghizadeh-Hesary F. A Critical Review on the Role of Probiotics in Lung Cancer Biology and Prognosis. Arch Bronconeumol 2024; 60 Suppl 2:S46-S58. [PMID: 38755052 DOI: 10.1016/j.arbres.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, MP 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Erek M, Matur E. Effects of different housing systems on the oxidative defence system, heterophil functions, cellular immune response and cytokines in laying hens. Br Poult Sci 2024:1-9. [PMID: 39230878 DOI: 10.1080/00071668.2024.2395500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
1. This study investigated the effects of different housing systems on oxidative defence mechanisms, heterophil functions, cellular immune response and cytokine production in laying hens. One hundred and twenty laying hens were allocated into one of four groups: conventional cages, furnished cages, deep litter, and free range.2. Housing system did not affect malondialdehyde concentrations and enzymatic antioxidant status. Ascorbic acid values were higher in deep-litter hens than in those in conventional cages and free range.3. Phagocytic and chemotactic activities tended to rise in the deep-litter system, and oxidative burst was higher than in furnished cages. Cytotoxic T cells were decreased in furnished cages, both cytotoxic and helper T cells decreased in deep litter compared to free range.4. The IL-2 and IL-13 expression was higher in deep litter than in conventional cages, and IL-6 expression was higher in furnished cages than in free range.5. Housing system had no significant effects on the oxidative defence system; however, they affected heterophil functions, cellular defence mechanisms and cytokine production. The results suggested that breeders need to consider the housing system's potential effects on immune defence responses while applying a breeding strategy appropriate for animal welfare and consumer demand.
Collapse
Affiliation(s)
- M Erek
- Department of Physiology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - E Matur
- Department of Physiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
9
|
Hong SM, Moon W. [Old and New Biologics and Small Molecules in Inflammatory Bowel Disease: Anti-interleukins]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:65-81. [PMID: 39176462 DOI: 10.4166/kjg.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gastrointestinal tract. The introduction of biologics, particularly anti-interleukin (IL) agents, has revolutionized IBD treatment. This review summarizes the role of ILs in IBD pathophysiology and describes the efficacy and positioning of anti-IL therapies. We discuss the functions of key ILs in IBD and their potential as therapeutic targets. The review then discusses anti-IL therapies, focusing primarily on ustekinumab (anti-IL-12/23), risankizumab (anti-IL-23), and mirikizumab (anti-IL-23). Clinical trial data demonstrate their efficacy in inducing and maintaining remission in Crohn's disease and ulcerative colitis. The safety profiles of these agents are generally favorable. However, long-term safety data for newer agents are still limited. The review also briefly discusses emerging therapies such as guselkumab and brazikumab. Network meta-analyses suggest that anti-IL therapies perform well compared to other biological agents. These agents may be considered first- or second-line therapies for many patients, especially those with comorbidities or safety concerns. Anti-IL therapies represent a significant advancement in IBD treatment, offering effective and relatively safe options for patients with moderate to severe disease.
Collapse
Affiliation(s)
- Seung Min Hong
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
10
|
Kądziela M, Kutwin M, Karp P, Woźniacka A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J Clin Med 2024; 13:4919. [PMID: 39201060 PMCID: PMC11355229 DOI: 10.3390/jcm13164919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Vitiligo is a persistent autoimmune disease characterized by progressive depigmentation of the skin caused by the selective destruction of melanocytes. Although its etiopathogenesis remains unclear, multiple factors are involved in the development of this disease, from genetic and metabolic factors to cellular oxidative stress, melanocyte adhesion defects, and innate and adaptive immunity. This review presents a comprehensive summary of the existing knowledge on the role of different cellular mechanisms, including cytokines and chemokines interactions, in the pathogenesis of vitiligo. Although there is no definitive cure for vitiligo, notable progress has been made, and several treatments have shown favorable results. A thorough understanding of the basis of the disease uncovers promising drug targets for future research, providing clinical researchers with valuable insights for developing improved treatment options.
Collapse
Affiliation(s)
| | | | | | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland; (M.K.); (M.K.); (P.K.)
| |
Collapse
|
11
|
Keever-Keigher MR, Harvey L, Williams V, Vyhlidal CA, Ahmed AA, Johnston JJ, Louiselle DA, Grundberg E, Pastinen T, Friesen CA, Chevalier R, Smail C, Shakhnovich V. Genomic insights into pediatric intestinal inflammatory and eosinophilic disorders using single-cell RNA-sequencing. Front Immunol 2024; 15:1420208. [PMID: 39192974 PMCID: PMC11347318 DOI: 10.3389/fimmu.2024.1420208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Chronic inflammation of the gastrointestinal tissues underlies gastrointestinal inflammatory disorders, leading to tissue damage and a constellation of painful and debilitating symptoms. These disorders include inflammatory bowel diseases (Crohn's disease and ulcerative colitis), and eosinophilic disorders (eosinophilic esophagitis and eosinophilic duodenitis). Gastrointestinal inflammatory disorders can often present with overlapping symptoms necessitating the use of invasive procedures to give an accurate diagnosis. Methods This study used peripheral blood mononuclear cells from individuals with Crohn's disease, ulcerative colitis, eosinophilic esophagitis, and eosinophilic duodenitis to better understand the alterations to the transcriptome of individuals with these diseases and identify potential markers of active inflammation within the peripheral blood of patients that may be useful in diagnosis. Single-cell RNA-sequencing was performed on peripheral blood mononuclear cells isolated from the blood samples of pediatric patients diagnosed with gastrointestinal disorders, including Crohn's disease, ulcerative colitis, eosinophilic esophagitis, eosinophilic duodenitis, and controls with histologically healthy gastrointestinal tracts. Results We identified 730 (FDR < 0.05) differentially expressed genes between individuals with gastrointestinal disorders and controls across eight immune cell types. Discussion There were common patterns among GI disorders, such as the widespread upregulation of MTRNR2L8 across cell types, and many differentially expressed genes showed distinct patterns of dysregulation among the different gastrointestinal diseases compared to controls, including upregulation of XIST across cell types among individuals with ulcerative colitis and upregulation of Th2-associated genes in eosinophilic disorders. These findings indicate both overlapping and distinct alterations to the transcriptome of individuals with gastrointestinal disorders compared to controls, which provide insight as to which genes may be useful as markers for disease in the peripheral blood of patients.
Collapse
Affiliation(s)
| | - Lisa Harvey
- Children’s Mercy Kansas City, Kansas, MO, United States
| | | | | | - Atif A. Ahmed
- Seattle Children’s Hospitals, University of Washington, Seattle, WA, United States
| | | | | | - Elin Grundberg
- Children’s Mercy Kansas City, Kansas, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Tomi Pastinen
- Children’s Mercy Kansas City, Kansas, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Craig A. Friesen
- Children’s Mercy Kansas City, Kansas, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Rachel Chevalier
- Children’s Mercy Kansas City, Kansas, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Craig Smail
- Children’s Mercy Kansas City, Kansas, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Valentina Shakhnovich
- Children’s Mercy Kansas City, Kansas, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
- Ironwood Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
12
|
Malacco NL, Michi AN, Siciliani E, Madrigal AG, Sternlieb T, Fontes G, King IL, Cestari I, Jardim A, Stevenson MM, Lopes F. Helminth-derived metabolites induce tolerogenic functional, metabolic, and transcriptional signatures in dendritic cells that attenuate experimental colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525718. [PMID: 39211070 PMCID: PMC11360915 DOI: 10.1101/2023.01.26.525718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases in which abdominal pain, bloody diarrhea, weight loss, and fatigue collectively result in diminished quality of patient life. The disappearance of intestinal helminth infections in Western societies is associated with an increased prevalence of IBD and other immune-mediated inflammatory diseases. Evidence indicates that helminths induce tolerogenic dendritic cells (tolDCs), which promote intestinal tolerance and attenuate intestinal inflammation characteristic of IBD, but the exact mechanism is unclear. Helminth-derived excretory-secretory (HES) products including macromolecules, proteins, and polysaccharides have been shown to modulate the antigen presenting function of DCs with down-stream effects on effector CD4 + T cells. Previous studies indicate that DCs in helminth-infected animals induce tolerance to unrelated antigens and DCs exposed to HES display phenotypic and functional features of tolDCs. Here, we identify that nonpolar metabolites (HnpM) produced by a helminth, the murine gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb), induce tolDCs as evidenced by decreased LPS-induced TNF and increased IL-10 secretion and reduced expression of MHC-II, CD86, and CD40. Furthermore, these DCs inhibited OVA-specific CD4 + T cell proliferation and induced CD4 + Foxp3 + regulatory T cells. Adoptive transfer of HnpM-induced tolDCs attenuated DSS-induced intestinal inflammation characteristic of IBD. Mechanistically, HnpM induced metabolic and transcriptional signatures in BMDCs consistent with tolDCs. Collectively, our findings provide groundwork for further investigation into novel mechanisms regulating DC tolerance and the role of helminth secreted metabolites in attenuating intestinal inflammation associated with IBD. Summary Sentence: Metabolites produced by Heligmosomoides polygyrus induce metabolic and transcriptional changes in DCs consistent with tolDCs, and adoptive transfer of these DCs attenuated DSS-induced intestinal inflammation.
Collapse
|
13
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Song H, Zhang F, Bai X, Liang H, Niu J, Miao Y. Comprehensive analysis of disulfidptosis-related genes reveals the effect of disulfidptosis in ulcerative colitis. Sci Rep 2024; 14:15705. [PMID: 38977802 PMCID: PMC11231342 DOI: 10.1038/s41598-024-66533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract. Various programmed cell death pathways in the intestinal mucosa are crucial to the pathogenesis of UC. Disulfidptosis, a recently identified form of programmed cell death, has not been extensively reported in the context of UC. This study evaluated the expression of disulfidptosis-related genes (DRGs) in UC through public databases and assessed disulfide accumulation in the intestinal mucosal tissues of UC patients and dextran sulfate sodium (DSS)-induced colitis mice via targeted metabolomics. We utilized various bioinformatics techniques to identify UC-specific disulfidptosis signature genes, analyze their potential functions, and investigate their association with immune cell infiltration in UC. The mRNA and protein expression levels of these signature genes were confirmed in the intestinal mucosa of DSS-induced colitis mice and UC patients. A total of 24 DRGs showed differential expression in UC. Our findings underscore the role of disulfide stress in UC. Four UC-related disulfidptosis signature genes-SLC7A11, LRPPRC, NDUFS1, and CD2AP-were identified. Their relationships with immune infiltration in UC were analyzed using CIBERSORT, and their expression levels were validated by quantitative real-time PCR and western blotting. This study provides further insights into their potential functions and explores their links to immune infiltration in UC. In summary, disulfidptosis, as a type of programmed cell death, may significantly influence the pathogenesis of UC by modulating the homeostasis of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Huixian Song
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Xinyu Bai
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China.
| |
Collapse
|
15
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
16
|
Kwon YH, Blass BE, Wang H, Grondin JA, Banskota S, Korzekwa K, Ye M, Gordon JC, Colussi D, Blattner KM, Canney DJ, Khan WI. Novel 5-HT 7 receptor antagonists modulate intestinal immune responses and reduce severity of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G57-G69. [PMID: 38713616 PMCID: PMC11550998 DOI: 10.1152/ajpgi.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses several debilitating chronic gastrointestinal (GI) inflammatory disorders, including Crohn's disease and ulcerative colitis. In both conditions, mucosal inflammation is a key clinical presentation associated with altered serotonin (5-hydroxytryptamine or 5-HT) signaling. This altered 5-HT signaling is also found across various animal models of colitis. Of the 14 known receptor subtypes, 5-HT receptor type 7 (5-HT7) is one of the most recently discovered. We previously reported that blocking 5-HT signaling with either a selective 5-HT7 receptor antagonist (SB-269970) or genetic ablation alleviated intestinal inflammation in murine experimental models of colitis. Here, we developed novel antagonists, namely, MC-170073 and MC-230078, which target 5-HT7 receptors with high selectivity. We also investigated the in vivo efficacy of these antagonists in experimental colitis by using dextran sulfate sodium (DSS) and the transfer of CD4+CD45RBhigh T cells to induce intestinal inflammation. Inhibition of 5-HT7 receptor signaling with the antagonists, MC-170073 and MC-230078, ameliorated intestinal inflammation in both acute and chronic colitis models, which was accompanied by lower histopathological damage and diminished levels of proinflammatory cytokines compared with vehicle-treated controls. Together, the data reveal that the pharmacological inhibition of 5-HT7 receptors by these selective antagonists ameliorates the severity of colitis across various experimental models and may, in the future, serve as a potential treatment option for patients with IBD. In addition, these findings support that 5-HT7 is a viable therapeutic target for IBD.NEW & NOTEWORTHY This study demonstrates that the novel highly selective 5-HT7 receptor antagonists, MC-170073 and MC-230078, significantly alleviated the severity of colitis across models of experimental colitis. These findings suggest that inhibition of 5-HT7 receptor signaling by these new antagonists may serve as an alternative mode of treatment to diminish symptomology in those with inflammatory bowel disease.
Collapse
Affiliation(s)
- Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Benjamin E Blass
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Korzekwa
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Min Ye
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - John C Gordon
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Dennis Colussi
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Kevin M Blattner
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Daniel J Canney
- Department of Pharmaceuticals Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Xu Y, Zheng C, Jiang P, Ji S, Ullah S, Zhao Y, Su D, Xu G, Zhang M, Zou X. Fraxinellone alleviates colitis-related intestinal fibrosis by blocking the circuit between PD-1 + Th17 cells and fibroblasts. Int Immunopharmacol 2024; 135:112298. [PMID: 38776854 DOI: 10.1016/j.intimp.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Excessive activation of colonic fibroblasts and differentiation of T helper 17 (Th17) cells are the key steps for intestinal fibrogenesis in the process of inflammatory bowel disease (IBD). Although both transforming growth factor-beta (TGF-β)/Mothers Against Decapentaplegic Homolog (SMAD) 3-induced fibroblasts activation and interleukin (IL)-6/signal transducer and activator of transcription (STAT) 3-induced Th17 differentiation have been well studied, the crosstalk between fibroblasts and Th17 cells in the process of intestinal fibrogenesis needs to be unveiled. METHODS In this study, the activation of colonic fibroblasts was induced with dextran sulfate sodium salt (DSS) and TGF-β in vivo and in vitro respectively. P-SMAD3 and its downstream targets were quantified using RT-PCR, western blot and immunofluorescence. The differentiation of programmed death 1 (PD-1) + Th17 and activation of fibroblasts were quantified by FACS. PD-1+ Th17 cells and fibroblasts were co-cultured and cytokines in the supernatant were tested by ELISA. The anti-fibrosis effects of different chemical compounds were validated in vitro and further confirmed in vivo. RESULTS The colonic fibroblasts were successfully activated by DSS and TGF-β in vivo and in vitro respectively, as activation markers of fibroblasts (p-SMAD3 and its downstream targets such as Acta2, Col1a1 and Ctgf) were significantly increased. The activated fibroblasts produced more IL-6 compared with their inactivated counterparts in vivo and in vitro. The proinflammatory cytokine IL-6 induced PD-1+ Th17 differentiation and TGF-β that in return promoted the activation of colonic fibroblasts. Fraxinellone inhibited TGF-β+ PD-1+ Th17 cells via deactivating STAT3. CONCLUSIONS The reciprocal stimulation constructed a circuit of PD-1+ Th17 cells and fibroblasts that accelerated the fibrosis process. Fraxinellone was selected as the potential inhibitor of the circuit of PD-1+ Th17 cells and fibroblasts in vivo and in vitro. Inhibiting the circuit of PD-1+ Th17 cells and fibroblasts could be a promising strategy to alleviate intestinal fibrosis.
Collapse
Affiliation(s)
- Yuejie Xu
- Department of Traditional Chinese and Western Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Siqi Ji
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Shafi Ullah
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637, United States
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown 02472, MA, United States
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China.
| | - Mingming Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Xiaoping Zou
- Department of Traditional Chinese and Western Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
18
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
19
|
Valdés-Fuentes M, Rodríguez-Martínez E, Rivas-Arancibia S. Accumulation of Alpha-Synuclein and Increase in the Inflammatory Response in the substantia nigra, Jejunum, and Colon in a Model of O 3 Pollution in Rats. Int J Mol Sci 2024; 25:5526. [PMID: 38791561 PMCID: PMC11122268 DOI: 10.3390/ijms25105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This work aimed to study the effect of repeated exposure to low doses of ozone on alpha-synuclein and the inflammatory response in the substantia nigra, jejunum, and colon. Seventy-two male Wistar rats were divided into six groups. Each group received one of the following treatments: The control group was exposed to air. The ozone groups were exposed for 7, 15, 30, 60, and 90 days for 0.25 ppm for four hours daily. Afterward, they were anesthetized, and their tissues were extracted and processed using Western blotting, immunohistochemistry, and qPCR. The results indicated a significant increase in alpha-synuclein in the substantia nigra and jejunum from 7 to 60 days of exposure and an increase in NFκB from 7 to 90 days in the substantia nigra, while in the jejunum, a significant increase was observed at 7 and 15 days and a decrease at 60 and 90 days for the colon. Interleukin IL-17 showed an increase at 90 days in the substantia nigra in the jejunum and increases at 30 days and in the colon at 15 and 90 days. Exposure to ozone increases the presence of alpha-synuclein and induces the loss of regulation of the inflammatory response, which contributes significantly to degenerative processes.
Collapse
Affiliation(s)
| | | | - Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.V.-F.); (E.R.-M.)
| |
Collapse
|
20
|
Wilks LR, Joshi G, Rychener N, Gill HS. Generation of Broad Protection against Influenza with Di-Tyrosine-Cross-Linked M2e Nanoclusters. ACS Infect Dis 2024; 10:1552-1560. [PMID: 38623820 DOI: 10.1021/acsinfecdis.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.
Collapse
Affiliation(s)
- Logan R Wilks
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Gaurav Joshi
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Natalie Rychener
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
21
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Magalhães MI, Azevedo MJ, Castro F, Oliveira MJ, Costa ÂM, Sampaio Maia B. The link between obesity and the gut microbiota and immune system in early-life. Crit Rev Microbiol 2024:1-21. [PMID: 38651972 DOI: 10.1080/1040841x.2024.2342427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
In early-life, the gut microbiota is highly modifiable, being modulated by external factors such as maternal microbiota, mode of delivery, and feeding strategies. The composition of the child's gut microbiota will deeply impact the development and maturation of its immune system, with consequences for future health. As one of the main sources of microorganisms to the child, the mother represents a crucial factor in the establishment of early-life microbiota, impacting the infant's wellbeing. Recent studies have proposed that dysbiotic maternal gut microbiota could be transmitted to the offspring, influencing the development of its immunity, and leading to the development of diseases such as obesity. This paper aims to review recent findings in gut microbiota and immune system interaction in early-life, highlighting the benefits of a balanced gut microbiota in the regulation of the immune system.
Collapse
Affiliation(s)
- Maria Inês Magalhães
- Doctoral Program in Biomedical Sciences, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
| | - Maria João Azevedo
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
- Academic Center for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Flávia Castro
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ângela M Costa
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Benedita Sampaio Maia
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Karout I, Salhab Z, Sherri N, Bitar ER, Borghol AH, Sabra H, Kassem A, Osman O, Alam C, Znait S, Assaf R, Fadlallah S, Jurjus A, Hashash JG, Rahal EA. The Effects of Endosomal Toll-like Receptor Inhibitors in an EBV DNA-Exacerbated Inflammatory Bowel Disease Mouse Model. Viruses 2024; 16:624. [PMID: 38675965 PMCID: PMC11054613 DOI: 10.3390/v16040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.
Collapse
Affiliation(s)
- Iman Karout
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Zahraa Salhab
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Nour Sherri
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Elio R. Bitar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Hady Sabra
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Aya Kassem
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Omar Osman
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Charbel Alam
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Sabah Znait
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Rayan Assaf
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Sukayna Fadlallah
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Jana G. Hashash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107-2020, Lebanon; (I.K.); (Z.S.); (N.S.); (E.R.B.); (A.H.B.); (H.S.); (A.K.); (O.O.); (C.A.); (S.Z.); (R.A.); (S.F.)
| |
Collapse
|
24
|
Wang J, Gao Y, Yuan Y, Wang H, Wang Z, Zhang X. Th17 Cells and IL-17A in Ischemic Stroke. Mol Neurobiol 2024; 61:2411-2429. [PMID: 37884768 DOI: 10.1007/s12035-023-03723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The neurological injury and repair mechanisms after ischemic stroke are complex. The inflammatory response is present throughout stroke onset and functional recovery, in which CD4 + T helper(Th) cells play a non-negligible role. Th17 cells, differentiated from CD4 + Th cells, are regulated by various extracellular signals, transcription factors, RNA, and post-translational modifications. Th17 cells specifically produce interleukin-17A(IL-17A), which has been reported to have pro-inflammatory effects in many studies. Recently, experimental researches showed that Th17 cells and IL-17A play an important role in promoting stroke pathogenesis (atherosclerosis), inducing secondary damage after stroke, and regulating post-stroke repair. This makes Th17 and IL-17A a possible target for the treatment of stroke. In this paper, we review the mechanism of action of Th17 cells and IL-17A in ischemic stroke and the progress of research on targeted therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
25
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
26
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|
27
|
Gao Y, Kennelly JP, Xiao X, Whang E, Ferrari A, Bedard AH, Mack JJ, Nguyen AH, Weston T, Uchiyama LF, Lee MS, Young SG, Bensinger SJ, Tontonoz P. T cell cholesterol transport is a metabolic checkpoint that links intestinal immune responses to dietary lipid absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584164. [PMID: 38559079 PMCID: PMC10979874 DOI: 10.1101/2024.03.08.584164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intrinsic pathways that control membrane organization in immune cells and the impact of such pathways on cellular function are not well defined. Here we report that the non-vesicular cholesterol transporter Aster-A links plasma membrane (PM) cholesterol availability in T cells to immune signaling and systemic metabolism. Aster-A is recruited to the PM during T-cell receptor (TCR) activation, where it facilitates the removal of newly generated "accessible" membrane cholesterol. Loss of Aster-A leads to excess PM cholesterol accumulation, resulting in enhanced TCR nano-clustering and signaling, and Th17 cytokine production. Finally, we show that the mucosal Th17 response is restrained by PM cholesterol remodeling. Ablation of Aster-A in T cells leads to enhanced IL-22 production, reduced intestinal fatty acid absorption, and resistance to diet-induced obesity. These findings delineate a multi-tiered regulatory scheme linking immune cell lipid flux to nutrient absorption and systemic physiology.
Collapse
|
28
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Rivera JC, Opazo MC, Hernández-Armengol R, Álvarez O, Mendoza-León MJ, Caamaño E, Gatica S, Bohmwald K, Bueno SM, González PA, Neunlist M, Boudin H, Kalergis AM, Riedel CA. Transient gestational hypothyroxinemia accelerates and enhances ulcerative colitis-like disorder in the male offspring. Front Endocrinol (Lausanne) 2024; 14:1269121. [PMID: 38239991 PMCID: PMC10794346 DOI: 10.3389/fendo.2023.1269121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Gestational hypothyroxinemia (HTX) is a condition that occurs frequently at the beginning of pregnancy, and it correlates with cognitive impairment, autism, and attentional deficit in the offspring. Evidence in animal models suggests that gestational HTX can increase the susceptibility of the offspring to develop strong inflammation in immune-mediated inflammatory diseases. Ulcerative colitis (UC) is a frequent inflammatory bowel disease with unknown causes. Therefore, the intensity of ulcerative colitis-like disorder (UCLD) and the cellular and molecular factors involved in proinflammatory or anti-inflammatory responses were analyzed in the offspring gestated in HTX (HTX-offspring) and compared with the offspring gestated in euthyroidism (Control-offspring). Methods Gestational HTX was induced by the administration of 2-mercapto-1-methylimidazole in drinking water to pregnant mice during E10-E14. The HTX-offspring were induced with UCLD by the acute administration of dextran sodium sulfate (DSS). The score of UCLD symptomatology was registered every day, and colon histopathology, immune cells, and molecular factors involved in the inflammatory or anti-inflammatory response were analyzed on day 6 of DSS treatment. Results The HTX-offspring displayed earlier UCLD pathological symptoms compared with the Control-offspring. After 6 days of DSS treatment, the HTX-offspring almost doubled the score of the Control-offspring. The histopathological analyses of the colon samples showed signs of inflammation at the distal and medial colon for both the HTX-offspring and Control-offspring. However, significantly more inflammatory features were detected in the proximal colon of the HTX-offspring induced with UCLD compared with the Control-offspring induced with UCLD. Significantly reduced mRNA contents encoding for protective molecules like glutamate-cysteine ligase catalytic subunit (GCLC) and mucin-2 (MUC-2) were found in the colon of the HTX-offspring as compared with the Control-offspring. Higher percentages of Th17 lymphocytes were detected in the colon tissues of the HTX-offspring induced or not with UCLD as compared with the Control-offspring. Discussion Gestational HTX accelerates the onset and increases the intensity of UCLD in the offspring. The low expression of MUC-2 and GCLC together with high levels of Th17 Lymphocytes in the colon tissue suggests that the HTX-offspring has molecular and cellular features that favor inflammation and tissue damage. These results are important evidence to be aware of the impact of gestational HTX as a risk factor for UCLD development in offspring.
Collapse
Affiliation(s)
- Juan Carlos Rivera
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Rosario Hernández-Armengol
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Álvarez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Mendoza-León
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Caamaño
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Gatica
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Helene Boudin
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Gonzalez-Ferrer S, Peñaloza HF, van der Geest R, Xiong Z, Gheware A, Tabary M, Kochin M, Dalton K, Zou H, Lou D, Lockwood K, Zhang Y, Bain WG, Mallampalli RK, Ray A, Ray P, Van Tyne D, Chen K, Lee JS. STAT1 Employs Myeloid Cell-Extrinsic Mechanisms to Regulate the Neutrophil Response and Provide Protection against Invasive Klebsiella pneumoniae Lung Infection. Immunohorizons 2024; 8:122-135. [PMID: 38289252 PMCID: PMC10832384 DOI: 10.4049/immunohorizons.2300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.
Collapse
Affiliation(s)
- Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hernán F. Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Zeyu Xiong
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Atish Gheware
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Megan Kochin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn Dalton
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Henry Zou
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Dequan Lou
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Karina Lockwood
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - Rama K. Mallampalli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ohio State University, Columbus, OH
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Janet S. Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
31
|
Krzysztofik M, Brzewski P, Cuber P, Kacprzyk A, Kulbat A, Richter K, Wojewoda T, Wysocki WM. Risk of Melanoma and Non-Melanoma Skin Cancer in Patients with Psoriasis and Psoriatic Arthritis Treated with Targeted Therapies: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2023; 17:14. [PMID: 38276003 PMCID: PMC10820691 DOI: 10.3390/ph17010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Targeted therapies represent major advancements in the treatment of chronic skin conditions such as psoriasis. While previous studies have shown an increased risk of melanoma and non-melanoma skin cancer (NMSC) in patients receiving TNF-α inhibitors, the risks associated with newer biologics (IL-12/23 inhibitors, IL-23 inhibitors, IL-17 inhibitors) and Janus kinase (JAK) inhibitors remain less known. Using a systematic and meta-analytical approach, we aimed to summarize the currently available literature concerning skin cancer risk in patients treated with targeted therapies. The MEDLINE/PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched to find studies reporting the incidence rates (IR) of melanoma and NMSC in patients with psoriasis and psoriatic arthritis treated with biologics or JAK inhibitors. Nineteen studies were included in the analysis with a total of 13,739 patients. The overall IR of melanoma was 0.08 (95% CI, 0.05-0.15) events per 100 PYs and the overall IR of NMSC was 0.45 (95% CI, 0.33-0.61) events per 100 PYs. The IRs of melanoma were comparable across patients treated with IL-17 inhibitors, IL-23 inhibitors, and JAK inhibitors, while the IRs of NMSC were higher in patients treated with JAK inhibitors than in those treated with biologics. Prospective, long-term cohort studies are required to reliably assess the risks associated with novel targeted therapies.
Collapse
Affiliation(s)
- Marta Krzysztofik
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, 31-913 Krakow, Poland
| | - Paweł Brzewski
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, 31-913 Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland (W.M.W.)
| | - Przemysław Cuber
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland (W.M.W.)
- Department of Oncological Surgery, 5th Military Clinical Hospital in Kraków, 30-901 Krakow, Poland
| | - Artur Kacprzyk
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Krakow, Poland
| | - Aleksandra Kulbat
- Department of Oncological Surgery, 5th Military Clinical Hospital in Kraków, 30-901 Krakow, Poland
| | - Karolina Richter
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland (W.M.W.)
| | - Tomasz Wojewoda
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland (W.M.W.)
- Department of Oncological Surgery, 5th Military Clinical Hospital in Kraków, 30-901 Krakow, Poland
| | - Wojciech M. Wysocki
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland (W.M.W.)
- Department of Oncological Surgery, 5th Military Clinical Hospital in Kraków, 30-901 Krakow, Poland
- National Institute of Oncology, Maria Skłodowska-Curie Memorial, 02-781 Warsaw, Poland
| |
Collapse
|
32
|
Loh L, Orlicky D, Spengler A, Levens C, Celli S, Domenico J, Klarquist J, Onyiah J, Matsuda J, Kuhn K, Gapin L. MAIT cells drive chronic inflammation in a genetically diverse murine model of spontaneous colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569225. [PMID: 38076996 PMCID: PMC10705467 DOI: 10.1101/2023.11.29.569225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Background & aims Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.
Collapse
|
33
|
Wang Q, Jia D, He J, Sun Y, Qian Y, Ge Q, Qi Y, Wang Q, Hu Y, Wang L, Fang Y, He H, Luo M, Feng L, Si J, Song Z, Wang L, Chen S. Lactobacillus Intestinalis Primes Epithelial Cells to Suppress Colitis-Related Th17 Response by Host-Microbe Retinoic Acid Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303457. [PMID: 37983567 PMCID: PMC10754072 DOI: 10.1002/advs.202303457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Gut microbiome is integral to the pathogenesis of ulcerative colitis. A novel probiotic Lactobacillus intestinalis (L. intestinalis) exerts a protective effect against dextran sodium sulfate-induced colitis in mice. Based on flow cytometry, colitis-associated Th17 cells are the target of L. intestinalis, which is supported by the lack of protective effects of L. intestinalis in T cell-null Rag1-/- mice or upon anti-IL-17-A antibody-treated mice. Although L. intestinalis exerts no direct effect on T cell differentiation, it decreases C/EBPA-driven gut epithelial SAA1 and SAA2 production, which in turn impairs Th17 cell differentiation. Cometabolism of L. intestinalis ALDH and host ALDH1A2 contributed to elevated biosynthesis of retinoic acid (RA), which accounts for the anti-colitis effect in RAR-α -mediated way. In a cohort of ulcerative colitis patients, it is observed that fecal abundance of L. intestinalis is negatively associated with the C/EBPA-SAA1/2-Th17 axis. Finally, L. intestinalis has a synergistic effect with mesalazine in alleviating murine colitis. In conclusion, L. intestinalis and associated metabolites, RA, have potential therapeutic effects for suppressing colonic inflammation by modulating the crosstalk between intestinal epithelia and immunity.
Collapse
Affiliation(s)
- Qi‐Wen Wang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Ding‐Jia‐Cheng Jia
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Jia‐Min He
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Yong Sun
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Yun Qian
- Department of Gastroenterology and HepatologyShenzhen University General HospitalShenzhenGuangdong518055China
| | - Qi‐Wei Ge
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Ya‐Dong Qi
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Qing‐Yi Wang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Ying‐Ying Hu
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Yan‐Fei Fang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Hui‐Qin He
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Man Luo
- Department of NutritionSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Li‐Jun Feng
- Department of NutritionSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Jian‐Min Si
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
- Institution of GastroenterologyZhejiang UniversityHangzhouZhejiang310058China
- Prevention and Treatment Research Center of Senescent DiseaseZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zhang‐Fa Song
- Department of Colorectal SurgerySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Liang‐Jing Wang
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
- Institution of GastroenterologyZhejiang UniversityHangzhouZhejiang310058China
- Prevention and Treatment Research Center of Senescent DiseaseZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Shu‐Jie Chen
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
- Institution of GastroenterologyZhejiang UniversityHangzhouZhejiang310058China
- Prevention and Treatment Research Center of Senescent DiseaseZhejiang University School of MedicineHangzhouZhejiang310058China
| |
Collapse
|
34
|
Saha K, Subramenium Ganapathy A, Wang A, Arumugam P, Michael Morris N, Harris L, Yochum G, Koltun W, Perdew GH, Nighot M, Ma T, Nighot P. Alpha-tocopherylquinone-mediated activation of the Aryl Hydrocarbon Receptor regulates the production of inflammation-inducing cytokines and ameliorates intestinal inflammation. Mucosal Immunol 2023; 16:826-842. [PMID: 37716509 PMCID: PMC10809159 DOI: 10.1016/j.mucimm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
This study investigated the role of Alpha-tocopherylquinone (TQ) in regulating the intestinal immune system and the underlying mechanisms. In the experimental dextran sodium sulfate and T cell-mediated colitis models, TQ significantly reduced the mRNA levels of interleukin (IL)-6, IL-1β, IL-17A, IL-23, and tumor necrosis factor (TNF)-α and the abundance of proinflammatory macrophages, T helper (Th)17 cells, and ILC3s in the colons of wild-type mice. TQ also prevented lipopolysaccharide (LPS)-induced activation of NFκB and signal transducer and activator of transcription (Stat)-3 pathways in the human macrophage U937 cells. Pharmacological inhibition or CRISPR-Cas-9-mediated knockout of Aryl hydrocarbon Receptor (AhR) prevented the anti-inflammatory effects of TQ in the LPS-treated U937 cells. Furthermore, TQ reduced the mRNA levels of the LPS-induced pro-inflammatory cytokines in the WT but not Ahr-/- mice splenocytes. TQ also reduced IL-6R protein levels and IL-6-induced Stat-3 activation in Jurkat cells and in vitro differentiation of Th17 cells from wild-type but not Ahr-/- mice naive T cells. Additionally, TQ prevented the pro-inflammatory effects of LPS on macrophages and stimulation of T cells in human PBMCs and significantly reduced the abundance of tumor necrosis factor-α, IL-1β, and IL-6hi inflammatory macrophages and Th17 cells in surgically resected Crohn's disease (CD) tissue. Our study shows that TQ is a naturally occurring, non-toxic, and effective immune modulator that activates AhR and suppresses the Stat-3-NFκB signaling.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonard Harris
- Division of Colon and Rectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
35
|
Yin Y, Ouyang S, Li Q, Du Y, Xiong S, Zhang M, Wang W, Zhang T, Liu C, Gao Y. Salivary interleukin-17A and interferon-γ levels are elevated in children with food allergies in China. Front Immunol 2023; 14:1232187. [PMID: 38090557 PMCID: PMC10715589 DOI: 10.3389/fimmu.2023.1232187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Food allergies have a substantial impact on patient health, but their mechanisms are poorly understood, and strategies for diagnosing, preventing, and treating food allergies are not optimal. This study explored the levels of and relationship between IL-17A and IFN-γ in the saliva of children with food allergies, which will form the basis for further mechanistic discoveries as well as prevention and treatment measures for food allergies. Methods A case-control study with 1:1 matching was designed. Based on the inclusion criteria, 20 case-control pairs were selected from patients at the Skin and Allergy Clinic and children of employees. IL-17A and IFN-γ levels in saliva were measured with a Luminex 200 instrument. A general linear model was used to analyze whether the salivary IL-17A and IFN-γ levels in the food allergy group differed from those in the control group. Results The general linear model showed a significant main effect of group (allergy vs. healthy) on the levels of IL-17A and IFN-γ. The mean IL-17A level (0.97 ± 0.09 pg/ml) in the food allergy group was higher than that in the healthy group (0.69 ± 0.09 pg/ml). The mean IFN-γ level (3.0 ± 0.43 pg/ml) in the food allergy group was significantly higher than that in the healthy group (1.38 ± 0.43 pg/ml). IL-17A levels were significantly positively related to IFN-γ levels in children with food allergies (r=0.79) and in healthy children (r=0.98). Discussion The salivary IL-17A and IFN-γ levels in children with food allergies were higher than those in healthy children. This finding provides a basis for research on new methods of diagnosing food allergies and measuring the effectiveness of treatment.
Collapse
Affiliation(s)
- Yan Yin
- Department of Integrated Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Qin Li
- Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuyang Du
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shiqiu Xiong
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Min Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Gao
- Department of Dermatology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
36
|
Yin R, Wang T, Dai H, Han J, Sun J, Liu N, Dong W, Zhong J, Liu H. Immunogenic molecules associated with gut bacterial cell walls: chemical structures, immune-modulating functions, and mechanisms. Protein Cell 2023; 14:776-785. [PMID: 37013853 PMCID: PMC10599643 DOI: 10.1093/procel/pwad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Interactions between gut microbiome and host immune system are fundamental to maintaining the intestinal mucosal barrier and homeostasis. At the host-gut microbiome interface, cell wall-derived molecules from gut commensal bacteria have been reported to play a pivotal role in training and remodeling host immune responses. In this article, we review gut bacterial cell wall-derived molecules with characterized chemical structures, including peptidoglycan and lipid-related molecules that impact host health and disease processes via regulating innate and adaptive immunity. Also, we aim to discuss the structures, immune responses, and underlying mechanisms of these immunogenic molecules. Based on current advances, we propose cell wall-derived components as important sources of medicinal agents for the treatment of infection and immune diseases.
Collapse
Affiliation(s)
- Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Glaubitz J, Asgarbeik S, Lange R, Mazloum H, Elsheikh H, Weiss FU, Sendler M. Immune response mechanisms in acute and chronic pancreatitis: strategies for therapeutic intervention. Front Immunol 2023; 14:1279539. [PMID: 37881430 PMCID: PMC10595029 DOI: 10.3389/fimmu.2023.1279539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Attaianese F, Guiducci S, Trapani S, Barbati F, Lodi L, Indolfi G, Azzari C, Ricci S. Reshaping Our Knowledge: Advancements in Understanding the Immune Response to Human Respiratory Syncytial Virus. Pathogens 2023; 12:1118. [PMID: 37764926 PMCID: PMC10536346 DOI: 10.3390/pathogens12091118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a significant cause of respiratory tract infections, particularly in young children and older adults. In this review, we aimed to comprehensively summarize what is known about the immune response to hRSV infection. We described the innate and adaptive immune components involved, including the recognition of RSV, the inflammatory response, the role of natural killer (NK) cells, antigen presentation, T cell response, and antibody production. Understanding the complex immune response to hRSV infection is crucial for developing effective interventions against this significant respiratory pathogen. Further investigations into the immune memory generated by hRSV infection and the development of strategies to enhance immune responses may hold promise for the prevention and management of hRSV-associated diseases.
Collapse
Affiliation(s)
- Federica Attaianese
- Postgraduate School of Pediatrics, University of Florence, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Sara Guiducci
- Postgraduate School of Immunology, University of Florence, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Sandra Trapani
- Pediatric Unit, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy; (S.T.); (G.I.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
| | - Federica Barbati
- Postgraduate School of Pediatrics, University of Florence, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
- Division of Immunology, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy
| | - Giuseppe Indolfi
- Pediatric Unit, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy; (S.T.); (G.I.)
- NEUROFARBA Department, University of Florence, 50139 Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
- Division of Immunology, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
- Division of Immunology, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy
| |
Collapse
|
39
|
Dai Q, Zhang G, Wang Y, Ye L, Shi R, Peng L, Guo S, He J, Yang H, Zhang Y, Jiang Y. Cytokine network imbalance in children with B-cell acute lymphoblastic leukemia at diagnosis. Cytokine 2023; 169:156267. [PMID: 37320964 DOI: 10.1016/j.cyto.2023.156267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Immune imbalance has been proved to be involved in the pathogenesis of hematologic neoplasm. However, little research has been reported altered cytokine network in childhood B-cell acute lymphoblastic leukemia (B-ALL) at diagnosis. Our study aimed to evaluate the cytokine network in peripheral blood of newly diagnosed pediatric patients with B-ALL. Serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), interferon (IFN)-γ, and IL-17A in 45 children with B-ALL and 37 healthy control children were measured by cytometric bead array, while the level of transforming growth factor-β1 (TGF-β1) in the serum was measured by enzyme-linked immunosorbent assay. Patients showed a significant increase in IL-6 (p < 0.001), IL-10 (p < 0.001), IFN-γ (p = 0.023) and a significant reduction in TGF-β1 (p = 0.001). The levels of IL-2, IL-4, TNF and IL-17A were similar in the two groups. Higher concentrations of pro-inflammatory cytokines were associated with febrile in patients without apparent infection by using unsupervised machine learning algorithms. In conclusion, our results indicated a critical role for aberrant cytokine expression profiles in the progression of childhood B-ALL. Distinct cytokine subgroups with different clinical features and immune response have been identified in patients with B-ALL at the time of diagnosis.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yingjun Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China.
| |
Collapse
|
40
|
Endo Y, Kanno T, Nakajima T, Ikeda K, Taketomi Y, Yokoyama S, Sasamoto S, Asou HK, Miyako K, Hasegawa Y, Kawashima Y, Ohara O, Murakami M, Nakayama T. 1-Oleoyl-lysophosphatidylethanolamine stimulates RORγt activity in T H17 cells. Sci Immunol 2023; 8:eadd4346. [PMID: 37540735 DOI: 10.1126/sciimmunol.add4346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Metabolic fluxes involving fatty acid biosynthesis play essential roles in controlling the differentiation of T helper 17 (TH17) cells. However, the exact enzymes and lipid metabolites involved, as well as their link to promoting the core gene transcriptional signature required for the differentiation of TH17 cells, remain largely unknown. From a pooled CRISPR-based screen and unbiased lipidomics analyses, we identified that 1-oleoyl-lysophosphatidylethanolamine could act as a lipid modulator of retinoid-related orphan receptor gamma t (RORγt) activity in TH17 cells. In addition, we specified five enzymes, including Gpam, Gpat3, Lplat1, Pla2g12a, and Scd2, suggestive of the requirement of glycerophospholipids with monounsaturated fatty acids being required for the transcription of Il17a. 1-Oleoyl-lysophosphatidylethanolamine was reduced in Pla2g12a-deficient TH17 cells, leading to the abolition of interleukin-17 (IL-17) production and disruption to the core transcriptional program required for the differentiation of TH17 cells. Furthermore, mice with T cell-specific deficiency of Pla2g12a failed to develop disease in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Thus, our data indicate that 1-oleoyl-lysophosphatidylethanolamine is a lipid metabolite that promotes RORγt-induced TH17 cell differentiation and the pathogenicity of TH17 cells.
Collapse
Affiliation(s)
- Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
- Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana. Chuo-ku, Chiba 260-8670 Japan
- AMED-CREST, AMED, Tokyo, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Satoru Yokoyama
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigemi Sasamoto
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hikari K Asou
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Makoto Murakami
- AMED-CREST, AMED, Tokyo, Japan
- Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Toshinori Nakayama
- AMED-CREST, AMED, Tokyo, Japan
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana. Chuo-ku, Chiba 260-8670 Japan
| |
Collapse
|
41
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
42
|
d'Alessandro M, Bergantini L, Gangi S, Conticini E, Cavallaro D, Cameli P, Mezzasalma F, Cantarini L, Frediani B, Bargagli E. Immunological Pathways in Sarcoidosis and Autoimmune Rheumatic Disorders-Similarities and Differences in an Italian Prospective Real-Life Preliminary Study. Biomedicines 2023; 11:1532. [PMID: 37371628 DOI: 10.3390/biomedicines11061532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The pathogenesis of sarcoidosis involves T cells and B lymphocytes that produce autoantibodies. We compared the expression of different T and B cell subsets in sarcoidosis and three B-mediated rheumatic diseases that can affect the lungs in an attempt to identify similarities and differences that distinguish these diseases. METHODS The study included patients referred to Siena University Hospital's respiratory disease and rheumatology units. Patients were enrolled prospectively and consecutively. Healthy volunteers were also included. Multicolor flow cytometry was performed on phenotype T and B cell subsets. Multivariate analysis was carried out to reduce the dimensionality of the data. RESULTS Fifteen patients had a diagnosis of sarcoidosis, fourteen idiopathic inflammatory myopathies (IIM), five granulomatosis with polyangiitis (GPA), ten microscopic polyangiitis (MPA), and seven were controls. Thirty-five T and B cell subsets were phenotyped, 15 of which were significantly different in sarcoidosis, B-mediated rheumatic disorders, and controls. Principal components analysis distinguished the four groups of patients with a total explained variance of 54.7%. A decision tree was constructed to determine which clustering variables would be most useful for distinguishing sarcoidosis, IIM, MPA, and GPA. The model showed regulatory T helper cells (Th-reg) > 5.70% in 91% of sarcoidosis patients as well as Th-reg ≤ 5.70 and Th17 > 43.27 in 100% of MPA. It also showed Th-reg ≤ 5.70, Th17 ≤ 43.27 and Tfh-reg ≥ 7.81 in 100% of GPA patients, and Th-reg ≤ 5.70, Th17 ≤ 43.27 and Tfh-reg ≤ 7.81 in 100% of IIM patients. CONCLUSION The immune cell profile sheds light on similarities and differences between sarcoidosis and B-mediated rheumatic diseases. Sarcoidosis and autoimmune diseases show similar patterns of cellular immune dysregulation, suggesting a common pathogenic pathway that may provide an opportunity for further understanding autoimmunity and exploring biological therapies to treat sarcoidosis.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Sara Gangi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Dalila Cavallaro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Fabrizio Mezzasalma
- Diagnostic and Interventional Bronchoscopy Unit, Cardio-Thoracic and Vascular Department, Azienda Ospedaliera Universitaria Senese (AOUS), University Hospital of Siena, 53100 Siena, Italy
| | - Luca Cantarini
- Rheumatology Unit, Department of Medicine, Surgery & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Bruno Frediani
- Rheumatology Unit, Department of Medicine, Surgery & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
43
|
Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An overview of host-derived molecules that interact with gut microbiota. IMETA 2023; 2:e88. [PMID: 38868433 PMCID: PMC10989792 DOI: 10.1002/imt2.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
The gut microbiota comprises bacteria, archaea, fungi, protists, and viruses that live together and interact with each other and with host cells. A stable gut microbiota is vital for regulating host metabolism and maintaining body health, while a disturbed microbiota may induce different kinds of disease. In addition, diet is also considered to be the main factor that influences the gut microbiota. The host could shape the gut microbiota through other factors. Here, we reviewed the mechanisms that mediate host regulation on gut microbiota, involved in gut-derived molecules, including gut-derived immune system molecules (secretory immunoglobulin A, antimicrobial peptides, cytokines, cluster of differentiation 4+ effector T cell, and innate lymphoid cells), sources related to gut-derived mucosal molecules (carbon sources, nitrogen sources, oxygen sources, and electron respiratory acceptors), gut-derived exosomal noncoding RNA (ncRNAs) (microRNAs, circular RNA, and long ncRNA), and molecules derived from organs other than the gut (estrogen, androgen, neurohormones, bile acid, and lactic acid). This study provides a systemic overview for understanding the interplay between gut microbiota and host, a comprehensive source for potential ways to manipulate gut microbiota, and a solid foundation for future personalized treatment that utilizes gut microbiota.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huifeng Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Lei Sun
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Yue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaodong Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junhu Yao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
44
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
45
|
Jokinen EM, Niemeläinen M, Kurkinen ST, Lehtonen JV, Lätti S, Postila PA, Pentikäinen OT, Niinivehmas SP. Virtual Screening Strategy to Identify Retinoic Acid-Related Orphan Receptor γt Modulators. Molecules 2023; 28:molecules28083420. [PMID: 37110655 PMCID: PMC10145393 DOI: 10.3390/molecules28083420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Molecular docking is a key method used in virtual screening (VS) campaigns to identify small-molecule ligands for drug discovery targets. While docking provides a tangible way to understand and predict the protein-ligand complex formation, the docking algorithms are often unable to separate active ligands from inactive molecules in practical VS usage. Here, a novel docking and shape-focused pharmacophore VS protocol is demonstrated for facilitating effective hit discovery using retinoic acid receptor-related orphan receptor gamma t (RORγt) as a case study. RORγt is a prospective target for treating inflammatory diseases such as psoriasis and multiple sclerosis. First, a commercial molecular database was flexibly docked. Second, the alternative docking poses were rescored against the shape/electrostatic potential of negative image-based (NIB) models that mirror the target's binding cavity. The compositions of the NIB models were optimized via iterative trimming and benchmarking using a greedy search-driven algorithm or brute force NIB optimization. Third, a pharmacophore point-based filtering was performed to focus the hit identification on the known RORγt activity hotspots. Fourth, free energy binding affinity evaluation was performed on the remaining molecules. Finally, twenty-eight compounds were selected for in vitro testing and eight compounds were determined to be low μM range RORγt inhibitors, thereby showing that the introduced VS protocol generated an effective hit rate of ~29%.
Collapse
Affiliation(s)
- Elmeri M Jokinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Miika Niemeläinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
| | - Sami T Kurkinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Jukka V Lehtonen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, FI-20500 Turku, Finland
| | - Sakari Lätti
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Pekka A Postila
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Olli T Pentikäinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Sanna P Niinivehmas
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
46
|
Wang LY, Yang XY, Wu YP, Fan YC. IL-22-producing CD3 + CD8- T cells increase in immune clearance stage of chronic HBV infection and correlate with the response of Peg-interferon treatment. Clin Immunol 2023; 250:109320. [PMID: 37019423 DOI: 10.1016/j.clim.2023.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-22 regulates host defense. This study investigated the predominant IL-22-producing cell subsets under HBV associated immune stages. We found circulating IL-22-producing CD3 + CD8- T cells were significantly increased in immune active (IA) stage than those in immunotolerant stage, inactive carrier and healthy controls (HCs). The plasma IL-22 level was higher in IA and HBeAg-negative CHB compared to HCs. Importantly, CD3 + CD8- T cells were identified as the predominant source of plasma IL-22 production. Up-regulated IL-22-producing CD3 + CD8- T cells obviously correlated with the grade of intrahepatic inflammation. The proportions of IL-22-producing CD3 + CD8- T cells were significantly down-regulated after 48 weeks of Peg-interferon treatment, and the differences were of great significance in patients with normalize ALT levels at 48 weeks, rather than those with elevated ALT levels. In conclusion, IL-22 might play a proinflammatory function in. chronic HBV infected patients with active inflammation and Peg-interferon treatment could attenuate the degree of liver inflammation through down-regulating IL-22-producing CD3 + CD8- T cells.
Collapse
|
47
|
Apolit C, Campos N, Vautrin A, Begon-Pescia C, Lapasset L, Scherrer D, Gineste P, Ehrlich H, Garcel A, Santo J, Tazi J. ABX464 (Obefazimod) Upregulates miR-124 to Reduce Proinflammatory Markers in Inflammatory Bowel Diseases. Clin Transl Gastroenterol 2023; 14:e00560. [PMID: 36573890 PMCID: PMC10132720 DOI: 10.14309/ctg.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Advanced therapies have transformed the treatment of inflammatory bowel disease; however, many patients fail to respond, highlighting the need for therapies tailored to the underlying cell and molecular disease drivers. The first-in-class oral molecule ABX464 (obefazimod), which selectively upregulates miR-124, has demonstrated its ability to be a well-tolerated treatment with rapid and sustained efficacy in patients with ulcerative colitis (UC). Here, we provide evidence that ABX464 affects the immune system in vitro , in the murine model of inflammatory bowel disease, and in patients with UC. In vitro , ABX464 treatment upregulated miR-124 and led to decreases in proinflammatory cytokines including interleukin (IL) 17 and IL6, and in the chemokine CCL2. Consistently, miR-124 expression was upregulated in the rectal biopsies and blood samples of patients with UC, and a parallel reduction in Th17 cells and IL17a levels was observed in serum samples. In a mouse model of induced intestinal inflammation with dextran sulfate sodium, ABX464 reversed the increases in multiple proinflammatory cytokines in the colon and the upregulation of IL17a secretion in the mesenteric lymph nodes. By upregulating miR-124, ABX464 acts as "a physiological brake" of inflammation, which may explain the efficacy of ABX464 with a favorable tolerability and safety profile in patients with UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jamal Tazi
- Abivax, Montpellier, France
- Abivax, Paris, France
| |
Collapse
|
48
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:nu15061496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
49
|
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S, Liu H. Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 2023; 159:114273. [PMID: 36696801 DOI: 10.1016/j.biopha.2023.114273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.
Collapse
Affiliation(s)
- Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ning Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
50
|
Lee H, Cowan TL, Daniel BS, Murrell DF. A review of JAK and IL-23 inhibitors to treat vitiligo. Australas J Dermatol 2023; 64:204-212. [PMID: 36810815 DOI: 10.1111/ajd.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023]
Abstract
Vitiligo is an autoimmune skin disorder resulting in the depigmentation of skin characterised by patches of varying sizes and shapes. A common disorder of pigmentation that affects 0.5%-2% of the global population. Despite its well-understood autoimmune pathogenesis, the targets for effective cytokine intervention remain unclear. Current first-line treatments include oral or topical corticosteroids, calcineurin inhibitors and phototherapy. These treatments are limited, have varying efficacies, and are associated with significant adverse events or can be time-consuming. Therefore, biologics should be explored as a potential treatment for vitiligo. There are currently limited data for the use of JAK and IL-23 inhibitors for vitiligo. A total of 25 studies were identified in the review. There is promising evidence regarding the use of JAK and IL-23 inhibitors for the treatment of vitiligo.
Collapse
Affiliation(s)
- Henry Lee
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy L Cowan
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia
| | - Benjamin S Daniel
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia
| | - Dédée F Murrell
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|