1
|
Zhang Y, Dai L, Zhang P, de Leeuw G, Li Z, Fan C. Exploring the use of ground-based remote sensing to identify new particle formation events: A case study in the Beijing area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176693. [PMID: 39366562 DOI: 10.1016/j.scitotenv.2024.176693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
New Particle Formation (NPF) is an important process of secondary aerosol production in the atmosphere, which has significant impacts on the Earth's radiation balance, air quality, and climate change. In this study, we develop a method to identify NPF events based on ground-based remote sensing. We propose a proxy to characterize NPF events utilizing ground-based remote sensing of gaseous precursors and aerosol optical depth (AOD). This proxy is applied to identify the NPF events in Beijing in the winter of 2022 and tested by comparison with in-situ observations of aerosol particle number size distributions (PNSD) from SMPS. The comparison shows that the NPF events for regional nucleation can be identified effectively when the threshold for sulfur dioxide and organic gases (i.e. formaldehyde) are determined as 0.44 × 10-4 and 1.07 × 10-4. Based on these thresholds, the NPF events can be identified at a high percentage (84 %) compared with in-situ observations. The relationship between identification of NPF events and meteorological conditions shows that NPF events in Beijing winter occurred more frequently under weather conditions with north-west wind direction, high wind speed and low relative humidity.
Collapse
Affiliation(s)
- Ying Zhang
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liuxin Dai
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gerrit de Leeuw
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), 3730AE De Bilt, the Netherlands
| | - Zhengqiang Li
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng Fan
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Xenofontos C, Kohl M, Ruhl S, Almeida J, Beckmann HM, Caudillo-Plath L, Ehrhart S, Höhler K, Kaniyodical Sebastian M, Kong W, Kunkler F, Onnela A, Rato P, Russell DM, Simon M, Stark L, Umo NS, Unfer GR, Yang B, Yu W, Zauner-Wieczorek M, Zgheib I, Zheng Z, Curtius J, Donahue NM, El Haddad I, Flagan RC, Gordon H, Harder H, He XC, Kirkby J, Kulmala M, Möhler O, Pöhlker ML, Schobesberger S, Volkamer R, Wang M, Borrmann S, Pozzer A, Lelieveld J, Christoudias T. The impact of ammonia on particle formation in the Asian Tropopause Aerosol Layer. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2024; 7:215. [PMID: 39281887 PMCID: PMC11392815 DOI: 10.1038/s41612-024-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations.
Collapse
Affiliation(s)
- Christos Xenofontos
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Matthias Kohl
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Samuel Ruhl
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - João Almeida
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
- Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Hannah M Beckmann
- Department of Environmental Physics, University of Tartu, Tartu, Estonia
| | - Lucía Caudillo-Plath
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Ehrhart
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Kristina Höhler
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Milin Kaniyodical Sebastian
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Weimeng Kong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Felix Kunkler
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Antti Onnela
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Pedro Rato
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Douglas M Russell
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Leander Stark
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Nsikanabasi Silas Umo
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gabriela R Unfer
- Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Boxing Yang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Wenjuan Yu
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Zhensen Zheng
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- IONICON Analytik GmbH, Innsbruck, Austria
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Neil M Donahue
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA USA
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA USA
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Hamish Gordon
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA USA
| | - Hartwig Harder
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jasper Kirkby
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Science, Nanjing University, Nanjing, China
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mira L Pöhlker
- Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
- Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
| | | | - Rainer Volkamer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO USA
| | - Mingyi Wang
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL USA
| | - Stephan Borrmann
- Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
- Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Andrea Pozzer
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Jos Lelieveld
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | | |
Collapse
|
3
|
France-Lanord A, Menon S, Lam J. Harvesting nucleating structures in nanoparticle crystallization: The example of gold, silver, and iron. J Chem Phys 2024; 161:044108. [PMID: 39046348 DOI: 10.1063/5.0200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The thermodynamics and kinetics of nanoparticle crystallization, as opposed to bulk phases, may be influenced by surface and size effects. We investigate the importance of such factors in the crystallization process of gold, silver, and iron nanodroplets using numerical simulations in the form of molecular dynamics combined with path sampling. This modeling strategy is targeted at obtaining representative ensembles of structures located at the transition state of the crystallization process. A structural analysis of the transition state ensembles reveals that both the average size and location of the critical nucleation cluster are influenced by surface and nanoscale size effects. Furthermore, we also show that transition state structures in smaller nanodroplets exhibit a more ordered liquid phase, and differentiating between a well-ordered critical cluster and its surrounding disordered liquid phase becomes less evident. All in all, these findings demonstrate that crystallization mechanisms in nanoparticles go beyond the assumptions of classical nucleation theory.
Collapse
Affiliation(s)
- Arthur France-Lanord
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| | - Sarath Menon
- Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany
| | - Julien Lam
- Univ. Lille, CNRS, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F 59000 Lille, France
- Centre d'élaboration des Matériaux et d'Etudes Structurales, CNRS (UPR 8011), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France
| |
Collapse
|
4
|
Frederiks NC, Johnson CJ. Photochemical Mechanisms in Atmospherically Relevant Iodine Oxide Clusters. J Phys Chem Lett 2024; 15:6306-6314. [PMID: 38856106 DOI: 10.1021/acs.jpclett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atmospheric new particle formation events can be driven by iodine oxides or oxoacids via both neutral and ionic mechanisms. Photolysis of new particles likely plays a significant role in their growth mechanisms, but their spectra and photolysis mechanisms remain difficult to characterize. We recorded ultraviolet (UV) photodissociation spectra of (I2O5)0-3(IO3-) clusters, observing loss of an O atom, I2O4, and (I2O5)1,2 in the atmospherically relevant range of 300-340 nm. With increasing cluster size, the intensity of absorption red shifts and generally increases, suggesting particles photolyze more frequently as they grow. Estimates of the rates indicate that even relatively small clusters are likely to undergo photolysis under high-UV conditions. Vibrational spectra identify the covalent moiety I3O8- as the likely chromophore, not IO3-. The I2O5 loss pathway competes with particle growth, while the slower O loss pathway likely produces 3O + 3(cluster) products that could drive subsequent intraparticle chemistry, particularly with co-adsorbed organic or amine species.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Kumar A, Iyer S, Barua S, Brean J, Besic E, Seal P, Dall’Osto M, Beddows DCS, Sarnela N, Jokinen T, Sipilä M, Harrison RM, Rissanen M. Direct Measurements of Covalently Bonded Sulfuric Anhydrides from Gas-Phase Reactions of SO 3 with Acids under Ambient Conditions. J Am Chem Soc 2024; 146:15562-15575. [PMID: 38771742 PMCID: PMC11157540 DOI: 10.1021/jacs.4c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.
Collapse
Affiliation(s)
- Avinash Kumar
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Shawon Barua
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - James Brean
- School
of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Emin Besic
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Prasenjit Seal
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Manuel Dall’Osto
- Institute
of Marine Science, Consejo Superior de Investigaciones Científicas
(CSIC), Barcelona 08003, Spain
| | - David C. S. Beddows
- National
Centre for Atmospheric Science, School of Geography, Earth and Environmental
Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Nina Sarnela
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Tuija Jokinen
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
- Climate &
Atmosphere Research Centre (CARE-C), The
Cyprus Institute, P.O. Box 27456, Nicosia 1645, Cyprus
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Roy M. Harrison
- School
of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Matti Rissanen
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
6
|
Hageman G, van Broekhuizen P, Nihom J. The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003-2023. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:423-438. [PMID: 38593380 DOI: 10.1080/15459624.2024.2327348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Aerotoxic Syndrome may develop as a result of chronic, low-level exposure to organophosphates (OPs) and volatile organic compounds in the airplane cabin air, caused by engine oil leaking past wet seals. Additionally, acute high-level exposures, so-called "fume events," may occur. However, air quality monitoring studies concluded that levels of inhaled chemicals might be too low to cause adverse effects. The presence of aerosols of nanoparticles (NPs) in bleed air has often been described. The specific hypothesis is a relation between NPs acting as a vector for toxic compounds in the etiology of the Aerotoxic Syndrome. These NPs function as carriers for toxic engine oil compounds leaking into the cabin air. Inhaled by aircrew NPs carrying soluble and insoluble components deposit in the alveolar region, where they are absorbed into the bloodstream. Subsequently, they may cross the blood-brain barrier and release their toxic compounds in the central nervous system. Olfactory absorption is another route for NPs with access to the brain. To study the hypothesis, all published in-flight measurement studies (2003-2023) of airborne volatile (and low-volatile) organic pollutants in cabin air were reviewed, including NPs (10-100 nm). Twelve studies providing data for a total of 387 flights in 16 different large-passenger jet aircraft types were selected. Maximum particle number concentrations (PNC) varied from 104 to 2.8 × 106 #/cm3 and maximum mass concentrations from 9 to 29 μg/m3. NP-peaks occurred after full-power take-off, in tailwind condition, after auxiliary power unit (APU) bleed air introduction, and after air conditioning pack failure. Chemical characterization of the NPs showed aliphatic hydrocarbons, black carbon, and metallic core particles. An aerosol mass-spectrometry pattern was consistent with aircraft engine oil. It is concluded that chronic exposure of aircrew to NP-aerosols, carrying oil derivatives, maybe a significant feature in the etiology of Aerotoxic Syndrome. Mobile NP measuring equipment should be made available in the cockpit for long-term monitoring of bleed air. Consequently, risk assessment of bleed air should include monitoring and analysis of NPs, studied in a prospective cohort design.
Collapse
Affiliation(s)
- G Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| | - P van Broekhuizen
- Department of Environmental Studies (IVAM), University of Amsterdam, Amsterdam, The Netherlands
| | - J Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| |
Collapse
|
7
|
Zhang G, Liu M, Han Y, Wang Z, Liu W, Zhang Y, Xu J. The role of aldehydes on sulfur based-new particle formation: a theoretical study. RSC Adv 2024; 14:13321-13335. [PMID: 38694968 PMCID: PMC11061877 DOI: 10.1039/d4ra00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
Aldehydes play a crucial role in the formation of atmospheric particles, attracting significant attention due to their environmental impact. However, the microscopic mechanisms underlying the formation of aldehyde-involved particles remain uncertain. In this study, through quantum chemical calculations and molecular dynamics (MD) simulations, we investigate the microscopic formation mechanisms of binary and ternary systems composed of three representative aldehydes, two sulfur-based acids, water, and two bases. Our research findings reveal that the most stable structures of acid-aldehyde clusters involve the connection of acids and aldehyde compounds through hydrogen bonds without involving proton transfer reactions, indicating relatively poor cluster stability. However, with the introduction of a third component, the stability of 18 clusters significantly increase. Among these, in ten systems, acids act as catalysts, facilitating reactions between aldehyde compounds and water or alkaline substances to generate glycols and amino alcohols. However, according to MD simulations conducted at 300 K, these acids readily dissociate from the resulting products. In the remaining eight systems, the most stable structural feature involves ion pairs formed by proton transfer reactions between acids and aldehyde compounds. These clusters exhibit remarkable thermodynamic stability. Furthermore, the acidity of the acid, the nature of nucleophilic agents, and the type of aldehyde all play significant roles in cluster stability and reactivity, and they have synergistic effects on the nucleation process. This study offers microscopic insights into the processes of new particle formation involving aldehydes, contributing to a deeper understanding of atmospheric chemistry at the molecular level.
Collapse
Affiliation(s)
- Guohua Zhang
- Jinhua Advanced Research Institute Jinhua Zhejiang 321013 P. R. China
| | - Min Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Yaning Han
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Zhongteng Wang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Ying Zhang
- Jinhua Advanced Research Institute Jinhua Zhejiang 321013 P. R. China
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| |
Collapse
|
8
|
Christiansen MB, Stanier CO, Hughes DD, Stone EA, Pierce RB, Oleson JJ, Elzey S. Size-resolved aerosol at a Coastal Great Lakes Site: Impacts of new particle formation and lake spray. PLoS One 2024; 19:e0300050. [PMID: 38574045 PMCID: PMC10994298 DOI: 10.1371/journal.pone.0300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The quantification of aerosol size distributions is crucial for understanding the climate and health impacts of aerosols, validating models, and identifying aerosol sources. This work provides one of the first continuous measurements of aerosol size distribution from 1.02 to 8671 nm near the shore of Lake Michigan. The data were collected during the Lake Michigan Ozone Study (LMOS 2017), a comprehensive air quality measurement campaign in May and June 2017. The time-resolved (2-min) size distribution are reported herein alongside meteorology, remotely sensed data, gravimetric filters, and gas-phase variables. Mean concentrations of key aerosol parameters include PM2.5 (6.4 μg m-3), number from 1 to 3 nm (1.80x104 cm-3) and number greater than 3 nm (8x103 cm-3). During the field campaign, approximately half of days showed daytime ultrafine burst events, characterized by particle growth from sub 10 nm to 25-100 nm. A specific investigation of ultrafine lake spray aerosol was conducted due to enhanced ultrafine particles in onshore flows coupled with sustained wave breaking conditions during the campaign. Upon closer examination, the relationships between the size distribution, wind direction, wind speed, and wave height did not qualitatively support ultrafine particle production from lake spray aerosol; statistical analysis of particle number and wind speed also failed to show a relationship. The alternative hypothesis of enhanced ultrafine particles in onshore flow originating mainly from new particle formation activity is supported by multiple lines of evidence.
Collapse
Affiliation(s)
- Megan B. Christiansen
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles O. Stanier
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dagen D. Hughes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth A. Stone
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, United States of America
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - R. Bradley Pierce
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jacob J. Oleson
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States of America
| | - Sherrie Elzey
- TSI Incorporated, Shoreview, Minnesota, United States of America
| |
Collapse
|
9
|
Wu Z, Wang H, Yin Y, Shen L, Chen K, Chen J, Zhen Z, Cui Y, Ke Y, Liu S, Zhao T, Lin W. Impacts of the aerosol mixing state and new particle formation on CCN in summer at the summit of Mount Tai (1534m) in Central East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170622. [PMID: 38325490 DOI: 10.1016/j.scitotenv.2024.170622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.
Collapse
Affiliation(s)
- Zihao Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Honglei Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, China.
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lijuan Shen
- School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
| | - Kui Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jinghua Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhongxiu Zhen
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yi Cui
- Weather Modification Center of Hebei Province, Shijiazhuang 050022, China
| | - Yue Ke
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Sihan Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianliang Zhao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wen Lin
- Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, China
| |
Collapse
|
10
|
Li Y, Lakey PSJ, Ezell MJ, Johnson KN, Shiraiwa M, Finlayson-Pitts BJ. Distinct Temperature Trends in the Uptake of Gaseous n-Butylamine on Two Solid Diacids. ACS ES&T AIR 2024; 1:52-61. [PMID: 39166528 PMCID: PMC10798143 DOI: 10.1021/acsestair.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 08/23/2024]
Abstract
Uptake coefficients of n-butylamine (BA) on solid succinic (SA) and glutaric acids (GA) from 298 to 177 K were measured using a newly combined Knudsen cell temperature-programmed desorption apparatus. The uptake coefficients on SA increase monotonically from (1.9 ± 0.5) × 10-4 at 298 K to 0.14 ± 0.05 at 177 K (errors represent 2σ statistical errors, overall errors are estimated to be ±60%). This is consistent with a surface reaction mechanism to form solid aminium carboxylate. In contrast, the uptake coefficients on GA increase from 0.11 ± 0.04 at 298 K to 0.25 ± 0.04 at 248 K but then decrease to 0.030 ± 0.010 at 177 K. This unusual trend in temperature dependence of the uptake coefficient is due to formation of an ionic liquid (IL) layer upon the surface reaction of BA with GA, leading to a competition between the rate of desorption of BA and the rates of diffusion and reaction within the IL. Overall, the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) satisfactorily reproduces these unique trends. This work provides mechanistic insight and predictive capability for the temperature-dependence of reactive uptake processes involving multiple phase changes upon surface reaction.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Michael J. Ezell
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Kristen N. Johnson
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | | |
Collapse
|
11
|
Cheng Y, Ding C, Wang H, Zhang T, Wang R, Muthiah B, Xu H, Zhang Q, Jiang M. Significant influence of water molecules on the SO 3 + HCl reaction in the gas phase and at the air-water interface. Phys Chem Chem Phys 2023; 25:28885-28894. [PMID: 37853821 DOI: 10.1039/d3cp03172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The products resulting from the reactions between atmospheric acids and SO3 have a catalytic effect on the formation of new particles in aerosols. However, the SO3 + HCl reaction in the gas-phase and at the air-water interface has not been considered. Herein, this reaction was explored exhaustively by using high-level quantum chemical calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. The quantum calculations show that the gas-phase reaction of SO3 + HCl is highly unlikely to occur under atmospheric conditions with a high energy barrier of 22.6 kcal mol-1. H2O and (H2O)2 play obvious catalytic roles in reducing the energy barrier of the SO3 + HCl reaction by over 18.2 kcal mol-1. The atmospheric lifetimes of SO3 show that the (H2O)2-assisted reaction dominates over the H2O-assisted reaction within the altitude range of 0-5 km, whereas the H2O-assisted reaction is more favorable within an altitude range of 10-50 km. BOMD simulations show that H2O-induced formation of the ClSO3-⋯H3O+ ion pair and HCl-assisted formation of the HSO4-⋯H3O+ ion pair were identified at the air-water interface. These routes followed a stepwise reaction mechanism and proceeded at a picosecond time scale. Interestingly, the formed ClSO3H in the gas phase has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters within 40 ns simulation time, while the interfacial ClSO3- and H3O+ can attract H2SO4, NH3, and HNO3 for particle formation from the gas phase to the water surface. Thus, this work will not only help in understanding the SO3 + HCl reaction driven by water molecules in the gas-phase and at the air-water interface, but it will also provide some potential routes of aerosol formation from the reaction between SO3 and inorganic acids.
Collapse
Affiliation(s)
- Yang Cheng
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Chao Ding
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Hui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | | | - Haitong Xu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Qiang Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Min Jiang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| |
Collapse
|
12
|
Li X, Bourg IC. Phase State, Surface Tension, Water Activity, and Accommodation Coefficient of Water-Organic Clusters Near the Critical Size for Atmospheric New Particle Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13092-13103. [PMID: 37607019 PMCID: PMC10483925 DOI: 10.1021/acs.est.2c09627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Interactions between water and organic molecules in sub-4 nm clusters play a significant role in the formation and growth of secondary organic aerosol (SOA) particles. However, a complete understanding of the relevant water microphysics has not yet been achieved due to challenges in the experimental characterization of soft nuclei. Here, we use molecular dynamics simulations to study the phase-mixing states, surface tension, water activity, and water accommodation coefficient of organic-water clusters representative of freshly nucleated SOA particles. Our results reveal large deviations from the behavior expected based on continuum theories. In particular, the phase-mixing state has a strong dependence on cluster size; surface tension displays a minimum at a specific organic-water mass ratio (morg/mw ∼ 4.5 in this study) corresponding to a minimum inhibition of droplet nucleation associated with the Kelvin effect; and the water accommodation coefficient increases by a factor of 2 with nanocluster hygroscopic growth, in agreement with recent experimental studies. Overall, our results yield parametric relations for water microphysical properties in sub-4 nm clusters and provide insight into the role of water in the initial stages of SOA nucleation and growth.
Collapse
Affiliation(s)
- Xiaohan Li
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High
Meadows Environmental Institute, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
14
|
Trechera P, Garcia-Marlès M, Liu X, Reche C, Pérez N, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Casans A, Casquero-Vera JA, Hueglin C, Marchand N, Chazeau B, Gille G, Kalkavouras P, Mihalopoulos N, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Gerwig H, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Petit JE, Favez O, Crumeyrolle S, Ferlay N, Martins Dos Santos S, Putaud JP, Timonen H, Lampilahti J, Asbach C, Wolf C, Kaminski H, Altug H, Hoffmann B, Rich DQ, Pandolfi M, Harrison RM, Hopke PK, Petäjä T, Alastuey A, Querol X. Phenomenology of ultrafine particle concentrations and size distribution across urban Europe. ENVIRONMENT INTERNATIONAL 2023; 172:107744. [PMID: 36696793 DOI: 10.1016/j.envint.2023.107744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.
Collapse
Affiliation(s)
- Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, Spain.
| | - Xiansheng Liu
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Natural Resources & Environment, Industrial & TIC Engineering (EMIT-UPC), Manresa, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland
| | | | - Benjamin Chazeau
- Aix Marseille Univ., CNRS, LCE, Marseille, France; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Grégory Gille
- AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Côte-d'Azur, Marseille, France
| | - Panayiotis Kalkavouras
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Jakub Ondracek
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Nadia Zikova
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 1Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 1Athens, Greece
| | | | | | - Holger Gerwig
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Nicolas Ferlay
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | | | | | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Christof Asbach
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Carmen Wolf
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Heinz Kaminski
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
15
|
Kammer J, Simon L, Ciuraru R, Petit JE, Lafouge F, Buysse P, Bsaibes S, Henderson B, Cristescu SM, Durand B, Fanucci O, Truong F, Gros V, Loubet B. New particle formation at a peri-urban agricultural site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159370. [PMID: 36244494 DOI: 10.1016/j.scitotenv.2022.159370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
New Particle Formation (NPF) is a major source of ultrafine particles that affect both air quality and climate. Despite emissions from agricultural activities having a strong potential to lead to NPF, little is known about NPF within agricultural environments. The aim of the present study was to investigate the occurrence of NPF events at an agricultural site, and any potential relationship between agricultural emissions and NPF events. A field campaign was conducted for 3 months at the FR-Gri-ICOS site (France), at an experimental farm 25 km west of Paris city centre. 16 NPF events have been identified from the analysis of particle number size distributions; 8 during the daytime, and 8 during the night-time. High solar radiation and ozone mixing ratios were observed during the days NPF occurred, suggesting photochemistry plays a key role in daytime NPF. These events were also associated with higher levels of VOCs such as isoprene, methanol, or toluene compared to non-event days. However, ammonia levels were lower during daytime NPF events, contributing to the hypothesis that daytime NPF events were not related to agricultural activities. On the other hand, temperature and ozone were lower during the nights when NPF events were observed, whereas relative humidity was higher. During these nights, higher concentrations of NO2 and ammonia were observed. As a result, agricultural activities, in particular the spreading of fertiliser on surrounding crops, are suspected to contribute to night-time NPF events. Finally, all the identified NPF events were also observed at SIRTA monitoring station 20 km from the FR-Gri ICOS site, showing that both night-time and daytime NPF events were regional processes. We hypothesise that night-time NPF may be related to fertiliser spreading over a regional scale, as opposed to the local activities at the farm. To our knowledge, this is the first time night-time NPF has been observed in the agricultural context.
Collapse
Affiliation(s)
- Julien Kammer
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France; Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | - Leila Simon
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pauline Buysse
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Sandy Bsaibes
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Ben Henderson
- Department of Analytical Chemistry and Chemometrics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Simona M Cristescu
- Department of Analytical Chemistry and Chemometrics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Brigitte Durand
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Oliver Fanucci
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Francois Truong
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Valerie Gros
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
16
|
Frederiks NC, Heaney DD, Kreinbihl JJ, Johnson CJ. The Competition between Hydrogen, Halogen, and Covalent Bonding in Atmospherically Relevant Ammonium Iodate Clusters. J Am Chem Soc 2023; 145:1165-1175. [PMID: 36595580 DOI: 10.1021/jacs.2c10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Iodine-containing clusters are expected to be central to new particle formation (NPF) events in polar and midlatitude coastal regions. Iodine oxoacids and iodine oxides are observed in newly formed clusters, and in more polluted midlatitude settings, theoretical studies suggest ammonia may increase growth rates. Structural information was obtained via infrared (IR) spectroscopy and quantum chemical calculations for a series of clusters containing ammonia, iodic acid, and iodine pentoxide. Structures for five of the smallest cationic clusters present in the mass spectrum were identified, and four of the structures were found to preferentially form halogen and/or covalent bonds over hydrogen bonds. Ammonia is important in proton transfer from iodic acid components and also provides a scaffold to template the formation of a halogen and covalent bonded backbone. The calculations executed for the two largest clusters studied suggested the formation of a covalent I3O8- anion within the clusters.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Danika D Heaney
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - John J Kreinbihl
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| |
Collapse
|
17
|
Zhang H, Chu B, Liu J, Liu Y, Chen T, Cao Q, Wang Y, Zhang P, Ma Q, Wang Q, He H. Titanium Dioxide Promotes New Particle Formation: A Smog Chamber Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:920-928. [PMID: 36592345 DOI: 10.1021/acs.est.2c06946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TiO2 is a widely used material in building coatings. Many studies have revealed that TiO2 promotes the heterogeneous oxidation of SO2 and the subsequent sulfate formation. However, whether and how much TiO2 contributes to the gaseous H2SO4 and subsequent new particle formation (NPF) still remains unclear. Herein, we used a 1 m3 quartz smog chamber to investigate NPF in the presence of TiO2. The experimental results indicated that TiO2 could greatly promote NPF. The increases in particle formation rate (J) and growth rate due to the presence of TiO2 were quantified, and the promotion effect was attributed to the production of gaseous H2SO4. The promotion effect of TiO2 on SO2 oxidation and subsequent NPF decreased gradually due to the formation of surface sulfate but did not disappear completely, instead partly recovering after washing with water. Moreover, the promotion effect of TiO2 on NPF was observed regardless of differences in RH, and the most significant promotion effect of TiO2 associated with the strongest NPF occurred at an RH of 20%. Based on the experimental evidence, the environmental impact of TiO2 on gaseous H2SO4 and particle pollution in urban areas was estimated.
Collapse
Affiliation(s)
- Hong Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing100083, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Qing Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing100083, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
18
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
19
|
Syamlal SK, Sarath Kumar CB, Reji RP, Roshal PS, Sivalingam Y, Surya VJ. Hydration effect of selected atmospheric gases with finite water clusters: A quantum chemical investigation towards atmospheric implications. CHEMOSPHERE 2022; 307:135947. [PMID: 35948098 DOI: 10.1016/j.chemosphere.2022.135947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Water vapor in atmosphere is ubiquitous, and it varies according to geographical locations. Various toxic and non-toxic gases co-exist with water vapor/moisture in the atmosphere. This computational study addresses the fact that how those gases interact with water vapor. We have done quantum chemical density functional theory calculations to probe the interaction of certain gases with a finite number of water molecules in gas phase with various functionals/basis sets. An ensemble of 14 gas molecules comprising various diatomic, triatomic, and polyatomic gases have been chosen for the investigations. The intermolecular interactions are understood from the interaction energy, electrostatic potential, frontier molecular orbitals, energy gap, and natural bond orbital analyses. Furthermore, quantum molecular descriptors such as electronegativity, chemical potential, chemical hardness and electrophilicity index are calculated to have deep insight on chemical nature of the gas molecules. Additionally, we have done implicit solvent modelling using PCM, and the corresponding solvation energies have been calculated. Interestingly, all the calculations and analyses have projected the similar results that Cl2, SO2, and NH3 have very high interaction with the water clusters. To mimic various altitudes (0 km, 5 km and 10 km) in the atmosphere, thermochemistry calculations have been carried out at different temperature and pressure values. The Gibbs free energies of formation suggest that the hydration of Cl2 is higher followed by O2, SO2 and NH3 at all altitudes. Remarkably, it is found that the formation of hydrated clusters of Cl2 and O2 with 4H2O are thermodynamically favourable. On the other hand, SO2 and NH3 requires 5H2O and 3H2O to form thermodynamically favourable clusters. In summary, it is anticipated that this kind of extensive computational studies facilitate to understand the structural, electronic, chemical and thermochemical properties of hydrated atmospheric gases that leads to the formation of prenucleation clusters followed by atmospheric aerosols.
Collapse
Affiliation(s)
- S K Syamlal
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - C B Sarath Kumar
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rence P Reji
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - P S Roshal
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy, and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Velappa Jayaraman Surya
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; New Industry Creation Hatchery Center, Tohoku University, Aoba-ku, Miyagi, Sendai, 980-8579, Japan.
| |
Collapse
|
20
|
Liu J, Ni S, Pan X. Interaction of Glutamic Acid/Protonated Glutamic Acid with Amide and Water Molecules: A Theoretical Study. J Phys Chem A 2022; 126:7750-7762. [PMID: 36253764 DOI: 10.1021/acs.jpca.2c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amino acids are important nitrogen-containing compounds and organic carbon components that exist widely in the atmosphere. The formation of atmospheric aerosols is affected by their interactions with amides. The dimers formed by glutamic acid (Glu) or protonated glutamic acid (Glu+) with three kinds of amide molecules (formamide FA, acetamide AA, urea U) and the hydrated clusters formed by Glu or Glu+, U molecules along with one to six water molecules were systematically studied at the M06-2X/6-311++G(3df,3pd) level. U is predicted to form a more stable structure with Glu/Glu+ than FA and AA by thermodynamics. If the concentration ratio of FA to U is less than 104, U will play a critical role in NPF. The degree of hydration in Glu+-mU-nW is higher than that of Glu-mU-nW (m = 0, 1; n = 0-6) clusters. Notably, Glu contributes more to the Rayleigh scattering properties than glutaric acid and sulfuric acid, and thus may lead to the destruction of atmospheric visibility. This study is helpful to better understand the properties of organic aerosols containing amino acids or amides.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun130024, People's Republic of China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun130024, People's Republic of China
| |
Collapse
|
21
|
Yu S, Jia L, Xu Y, Pan Y. Formation of extremely low-volatility organic compounds from styrene ozonolysis: Implication for nucleation. CHEMOSPHERE 2022; 305:135459. [PMID: 35753415 DOI: 10.1016/j.chemosphere.2022.135459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Styrene is a highly reactive compound with the dual nature of aromatics and olefins. This work presents evidence for formation of extremely low-volatility organic compounds (ELVOCs) from styrene ozonolysis. The molecules of ELVOCs were analyzed using a high-resolution orbitrap mass spectrometer. The results show that ELVOCs were oligomers characterized by stabilized Criegee radicals (SCIs) as chain units. The addition of C6H5CHOO (SCI1) or CH2OO (SCI2) can dramatically decrease the oligomers' volatility. At low relative humidity (RH), ELVOCs are mainly formed from the reaction of RO2 radical, C6H5OO·, with SCI1 and SCI2; however, ELVOCs are primarily produced by the reaction between benzoic acid and SCI1 at high RH. Ambient particles were also collected to propose the probable oligomers from styrene-SCI. Our results suggest that styrene-SCI derived ELVOCs may act as nucleating agents, potentially providing an experimental basis for nucleation events that frequently occur in urban areas.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Jia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongfu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Zhang Y, Li D, Ma Y, Dubois C, Wang X, Perrier S, Chen H, Wang H, Jing S, Lu Y, Lou S, Yan C, Nie W, Chen J, Huang C, George C, Riva M. Field Detection of Highly Oxygenated Organic Molecules in Shanghai by Chemical Ionization-Orbitrap. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7608-7617. [PMID: 35594417 DOI: 10.1021/acs.est.1c08346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary organic aerosol, formed through atmospheric oxidation processes, plays an important role in affecting climate and human health. In this study, we conducted a comprehensive campaign in the megacity of Shanghai during the 2019 International Import Expo (EXPO), with the first deployment of a chemical ionization─Orbitrap mass spectrometer for ambient measurements. With the ultrahigh mass resolving power of the Orbitrap mass analyzer (up to 140,000 Th/Th) and capability in dealing with massive spectral data sets by positive matrix factorization, we were able to identify the major gas-phase oxidation processes leading to the formation of oxygenated organic molecules (OOM) in Shanghai. Nine main factors from three independent sub-range analysis were identified. More than 90% of OOM are of anthropogenic origin and >60% are nitrogen-containing molecules, mainly dominated by the RO2 + NO and/or NO3 chemistry. The emission control during the EXPO showed that even though the restriction was effectual in significantly lowering the primary pollutants (20-70% decrease), the secondary oxidation products responded less effectively (14% decrease), or even increased (50 to >200%) due to the enhancement of ozone and the lowered condensation sink, indicating the importance of a stricter multi-pollutant coordinated strategy in primary and secondary pollution mitigation.
Collapse
Affiliation(s)
- Yanjun Zhang
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Dandan Li
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Clement Dubois
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Xinke Wang
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Sebastien Perrier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yiqun Lu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province 210093, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Christian George
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Matthieu Riva
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| |
Collapse
|
23
|
Kontkanen J, Stolzenburg D, Olenius T, Yan C, Dada L, Ahonen L, Simon M, Lehtipalo K, Riipinen I. What controls the observed size-dependency of the growth rates of sub-10 nm atmospheric particles? ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:449-468. [PMID: 35694135 PMCID: PMC9119032 DOI: 10.1039/d1ea00103e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/12/2022] [Indexed: 11/21/2022]
Abstract
The formation and growth of atmospheric particles involving sulfuric acid and organic vapors is estimated to have significant climate effects. To accurately represent this process in large-scale models, the correct interpretation of the observations on particle growth, especially below 10 nm, is essential. Here, we disentangle the factors governing the growth of sub-10 nm particles in the presence of sulfuric acid and organic vapors, using molecular-resolution cluster population simulations and chamber experiments. We find that observed particle growth rates are determined by the combined effects of (1) the concentrations and evaporation rates of the condensing vapors, (2) particle population dynamics, and (3) stochastic fluctuations, characteristic to initial nucleation. This leads to a different size-dependency of growth rate in the presence of sulfuric acid and/or organic vapors at different concentrations. Specifically, the activation type behavior, resulting in growth rate increasing with the particle size, is observed only at certain vapor concentrations. In our model simulations, cluster-cluster collisions enhance growth rate at high vapor concentrations and their importance is dictated by the cluster evaporation rates, which demonstrates the need for accurate evaporation rate data. Finally, we show that at sizes below ∼2.5-3.5 nm, stochastic effects can importantly contribute to particle population growth. Overall, our results suggest that interpreting particle growth observations with approaches neglecting population dynamics and stochastics, such as with single particle growth models, can lead to the wrong conclusions on the properties of condensing vapors and particle growth mechanisms.
Collapse
Affiliation(s)
- Jenni Kontkanen
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki Finland
| | - Dominik Stolzenburg
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki Finland
| | - Tinja Olenius
- Swedish Meteorological and Hydrological Institute Norrköping Sweden
| | - Chao Yan
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki Finland
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki Finland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Lauri Ahonen
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki Finland
| | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt Frankfurt am Main Germany
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki Finland
- Finnish Meteorological Institute Helsinki Finland
| | - Ilona Riipinen
- Department of Environmental Science (ACES), Bolin Centre for Climate Research, Stockholm University Stockholm Sweden
| |
Collapse
|
24
|
Young LH, Lai CW, Lu JH, Yang HH, Wang LC, Chen YH. Elevated emissions of volatile and nonvolatile nanoparticles from heavy-duty diesel engine running on diesel-gas co-fuels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153459. [PMID: 35093351 DOI: 10.1016/j.scitotenv.2022.153459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
This study experimentally examines the effects of four diesel-gas co-fuels, two engine loads and an aftertreatment on regulated and unregulated emissions from a 6-cylinder natural-aspirated direct-injection heavy-duty diesel engine (HDDE) with an engine dynamometer. Fuel energy of ultra-low-sulfur diesel was substituted with 10% and 20% of gas fuels, including pure H2, CH4, and two CH4-CO2 blends. The particle number size distributions of volatile and nonvolatile nanoparticles were measured under ambient temperature and after 300 °C heating, respectively. The results show that the gas fuels caused increases of hydrocarbon emission, slight changes of NOx emission, and decreases of opacity. All four gas fuels resulted in elevated emissions of both volatile and nonvolatile nanoparticles at 25% and 75% load, in the range of 29% to 390%. The increased emissions of volatile nanoparticles were variable and without obvious trends. Special attentions should be given to the addition of H2 under high load, during which significant increases of volatile nanoparticles could be formed not only post-combustion (up to 1376%), but also post-diesel oxidation catalyst plus diesel particulate filter (DOC + DPF). The nonvolatile nanoparticles, on the other hand, could be effectively removed by the retrofitted DOC + DPF, with efficiency >98.2%. A noteworthy fraction of solid particles of sizes <23 nm were found in the exhaust, not being accounted for by current regulatory emission standard.
Collapse
Affiliation(s)
- Li-Hao Young
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan.
| | - Chau-Wei Lai
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Jau-Huai Lu
- Department of Mechanical Engineering, National Chung Hsing University, 145, Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Hsi-Hsien Yang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Taichung 413310, Taiwan
| | - Lin-Chi Wang
- Department of Environmental Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan
| | - Yu-Han Chen
- Department of Occupational Safety and Health, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan
| |
Collapse
|
25
|
Liu L, Guo S, Zhao Z, Li H. Free Energy Prediction of Ion-Induced Nucleation of Aqueous Aerosols. J Phys Chem A 2022; 126:2407-2416. [PMID: 35333053 DOI: 10.1021/acs.jpca.1c09787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion-induced nucleation (IIN) is thought to be an important nucleation pathway of atmospheric aerosols. We present a combined polarizable molecular dynamics (MD) simulation and the classic ion-induced nucleation theory (IINT) approach to predict the free energy profiles of the ion-induced nucleation of aqueous aerosols in a qualitative or semiquantitative way. The dependence of both cluster structure and thermodynamic properties on cluster sizes and ion species is also systemically studied. It is confirmed the ions can significantly enhance the cluster stability, and thereby increase the nucleation rate. The ability of the common atmospheric ions to enhance the nucleation rate follows the order SO42- > H3O+ > NH4+ > NO3-, coinciding with the order of their solvation free energies. Therefore, the solvation energy can be employed as a rough index for evaluating the INN ability. Overall, the consistency between the present predictions and previous experimental and theoretical observations demonstrates the combination of MD simulation and the IINT appears to be a promising approach for exploring the IIN process and understanding the microscopic mechanism of atmospheric-related ions.
Collapse
Affiliation(s)
- Liyuan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shaoxun Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zheng Zhao
- National Engineering Research Center for Rare Earth, GRINM Group Corporation Limited, Beijing 100088, P. R. China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
26
|
Liu M, Myllys N, Han Y, Wang Z, Chen L, Liu W, Xu J. Microscopic Insights Into the Formation of Methanesulfonic Acid–Methylamine–Ammonia Particles Under Acid-Rich Conditions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.875585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the microscopic mechanisms of new particle formation under acid-rich conditions is of significance in atmospheric science. Using quantum chemistry calculations, we investigated the microscopic formation mechanism of methanesulfonic acid (MSA)–methylamine (MA)–ammonia (NH3) clusters. We focused on the binary (MSA)2n-(MA)n and ternary (MSA)3n-(MA)n-(NH3)n, (n = 1–4) systems which contain more acid than base molecules. We found that the lowest-energy isomers in each system possess considerable thermodynamic and dynamic stabilities. In studied cluster structures, all bases are protonated, and they form stable ion pairs with MSA, which contribute to the charge transfer and the stability of clusters. MA and NH3 have a synergistic effect on NPF under acid-rich conditions, and the role of NH3 becomes more remarkable as cluster size increases. The excess of MSA molecules does not only enhance the stability of clusters, but provides potential sites for further growth.
Collapse
|
27
|
Bessagnet B, Allemand N, Putaud JP, Couvidat F, André JM, Simpson D, Pisoni E, Murphy BN, Thunis P. Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles—A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. APPLIED SCIENCES-BASEL 2022; 12:1-52. [PMID: 35529678 PMCID: PMC9067409 DOI: 10.3390/app12073623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airborne particulate matter (PM) is a pollutant of concern not only because of its adverse effects on human health but also on visibility and the radiative budget of the atmosphere. PM can be considered as a sum of solid/liquid species covering a wide range of particle sizes with diverse chemical composition. Organic aerosols may be emitted (primary organic aerosols, POA), or formed in the atmosphere following reaction of volatile organic compounds (secondary organic aerosols, SOA), but some of these compounds may partition between the gas and aerosol phases depending upon ambient conditions. This review focuses on carbonaceous PM and gaseous precursors emitted by road traffic, including ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) that are clearly linked to the evolution and formation of carbonaceous species. Clearly, the solid fraction of PM has been reduced during the last two decades, with the implementation of after-treatment systems abating approximately 99% of primary solid particle mass concentrations. However, the role of brown carbon and its radiative effect on climate and the generation of ultrafine particles by nucleation of organic vapour during the dilution of the exhaust remain unclear phenomena and will need further investigation. The increasing role of gasoline vehicles on carbonaceous particle emissions and formation is also highlighted, particularly through the chemical and thermodynamic evolution of organic gases and their propensity to produce particles. The remaining carbon-containing particles from brakes, tyres and road wear will still be a problem even in a future of full electrification of the vehicle fleet. Some key conclusions and recommendations are also proposed to support the decision makers in view of the next regulations on vehicle emissions worldwide.
Collapse
Affiliation(s)
- Bertrand Bessagnet
- Joint Research Centre, European Commission, 21027 Ispra, Italy
- Correspondence: or
| | | | | | - Florian Couvidat
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, 0313 Oslo, Norway
- Department Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Enrico Pisoni
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Philippe Thunis
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| |
Collapse
|
28
|
Radola B, Picaud S, Ortega IK. DFT Study of the Formation of Atmospheric Aerosol Precursors from the Interaction between Sulfuric Acid and Benzenedicarboxylic Acid Molecules. J Phys Chem A 2022; 126:1211-1220. [PMID: 35147031 DOI: 10.1021/acs.jpca.1c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dicarboxylic acids are ubiquitous products of the photooxidation of volatile organic compounds which are believed to play a significant role in the formation of secondary organic aerosols in the atmosphere. In this paper, we report high-level quantum investigations of the clustering properties of sulfuric acid and benzenedicarboxylic acid molecules. Up to four molecules have been considered in the calculations, and the behavior of the three isomers of the organic diacid species have been compared. The most stable geometries have been characterized together with the corresponding thermodynamic data. From an atmospheric point of view, the results of the DFT calculations show that the organic diacid molecules may significantly enhance the nucleation of small atmospheric clusters, at least from an energetic point of view. In this respect, the phthalic acid isomer seems more efficient than the two other isomers of the benzenedicarboxylic acid, in particular because the internal distance between the two carboxyl groups in the organic diacids appears to play an important role in the stabilization of the H-bond network inside the corresponding heterocluster formed with sulfuric acid molecules.
Collapse
Affiliation(s)
- Bastien Radola
- Institut UTINAM─UMR 6213, CNRS/Université de Bourgogne Franche-Comté, F-25030 Besançon Cedex, France
| | - Sylvain Picaud
- Institut UTINAM─UMR 6213, CNRS/Université de Bourgogne Franche-Comté, F-25030 Besançon Cedex, France
| | - Ismael Kenneth Ortega
- Multi-Physics for Energetics Department, ONERA/Université Paris Saclay, F-91123 Palaiseau, France
| |
Collapse
|
29
|
Pusfitasari ED, Ruiz-Jimenez J, Heiskanen I, Jussila M, Hartonen K, Riekkola ML. Aerial drone furnished with miniaturized versatile air sampling systems for selective collection of nitrogen containing compounds in boreal forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152011. [PMID: 34861308 DOI: 10.1016/j.scitotenv.2021.152011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A wide variety of nitrogen-containing compounds are present in the environment, which contributes to air pollution and new particle formation, for example. These eventually affect human health and the climate. With all this consideration, there is a growing interest in the development of efficient and reliable methods to determine these compounds in the atmosphere. In this study, titanium hydrogen phosphate-modified Mobil Composition of Matter No. 41 was used as sorbent material for in-tube extraction (ITEX) sampling system, to selectively collect nitrogen-containing compounds from natural air samples. The effect of sampling accessories, based on adsorbent coatings (with Tenax-GR as an adsorbent material) and polytetrafluoroethylene filters, was studied to improve the selectivity of the sampling system and to remove particles. Aerial drone with miniaturized air sampling system was employed for the reliable collection of nitrogen-containing compounds in both gas phase and aerosol particles. A total of 170 air samples were collected in July 2020 at the SMEAR II station, Finland to evaluate nitrogen-containing compounds diurnal patterns and vertical profiles (0.25, 5, 50, and 150 m). More than twenty nitrogen-containing compounds, such as aliphatic amines, imines, imidazoles, and pyridines, were identified, quantified or semi-quantified. The average concentrations of detected aliphatic amines at the altitude of 50 m were up to 40.4 ng m-3 (dimethylamine) in gas phase and 128 ng m-3 (ethylamine) in aerosol particles. Among nitrogen-containing compounds detected, pyridine gave the highest average concentration of 746 ng m-3 in gas phase and 644 ng m-3 in particle phase.
Collapse
Affiliation(s)
- Eka Dian Pusfitasari
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Jose Ruiz-Jimenez
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Ilmari Heiskanen
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Matti Jussila
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Kari Hartonen
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Marja-Liisa Riekkola
- Department of Chemistry and Institute for Atmospheric and Earth System Research, P.O. Box 55, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
30
|
Morawska L, Zhu T, Liu N, Amouei Torkmahalleh M, de Fatima Andrade M, Barratt B, Broomandi P, Buonanno G, Carlos Belalcazar Ceron L, Chen J, Cheng Y, Evans G, Gavidia M, Guo H, Hanigan I, Hu M, Jeong CH, Kelly F, Gallardo L, Kumar P, Lyu X, Mullins BJ, Nordstrøm C, Pereira G, Querol X, Yezid Rojas Roa N, Russell A, Thompson H, Wang H, Wang L, Wang T, Wierzbicka A, Xue T, Ye C. The state of science on severe air pollution episodes: Quantitative and qualitative analysis. ENVIRONMENT INTERNATIONAL 2021; 156:106732. [PMID: 34197974 DOI: 10.1016/j.envint.2021.106732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 05/16/2023]
Abstract
Severe episodic air pollution blankets entire cities and regions and have a profound impact on humans and their activities. We compiled daily fine particle (PM2.5) data from 100 cities in five continents, investigated the trends of number, frequency, and duration of pollution episodes, and compared these with the baseline trend in air pollution. We showed that the factors contributing to these events are complex; however, long-term measures to abate emissions from all anthropogenic sources at all times is also the most efficient way to reduce the occurrence of severe air pollution events. In the short term, accurate forecasting systems of such events based on the meteorological conditions favouring their occurrence, together with effective emergency mitigation of anthropogenic sources, may lessen their magnitude and/or duration. However, there is no clear way of preventing events caused by natural sources affected by climate change, such as wildfires and desert dust outbreaks.
Collapse
Affiliation(s)
- Lidia Morawska
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University Technology, 2 George Street, Brisbane, Queensland 4001, Australia; Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Nairui Liu
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University Technology, 2 George Street, Brisbane, Queensland 4001, Australia
| | - Mehdi Amouei Torkmahalleh
- Chemical and Aerosol Research Team, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; The Environment and Resource Efficiency Cluster, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Maria de Fatima Andrade
- Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of Sao Paulo (USP), Brazil
| | - Benjamin Barratt
- Department of Environmental Health, King's College London, United Kingdom
| | - Parya Broomandi
- Chemical and Aerosol Research Team, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; School of Engineering, Islamic Azad University, Masjed Soleiman Branch, Iran
| | - Giorgio Buonanno
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University Technology, 2 George Street, Brisbane, Queensland 4001, Australia; University of Cassino and Southern Lazio, Cassino, Italy
| | | | - Jianmin Chen
- Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Yan Cheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, China
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Mario Gavidia
- Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of Sao Paulo (USP), Brazil
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Ivan Hanigan
- The University of Sydney, University Centre for Rural Health, School of Public Health, New South Wales, Australia
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
| | - Cheol H Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Frank Kelly
- Department of Environmental Health, King's College London, United Kingdom
| | - Laura Gallardo
- Center for Climate and Resilience Research (CR2) and Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Prashant Kumar
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Xiaopu Lyu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin J Mullins
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Claus Nordstrøm
- Department of Environmental Science, Aarhus University, Denmark
| | - Gavin Pereira
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Nestor Yezid Rojas Roa
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Colombia
| | - Armistead Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Helen Thompson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Lina Wang
- Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Aneta Wierzbicka
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Tao Xue
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Celine Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
| |
Collapse
|
31
|
Zilli Vieira CL, Koutrakis P. The impact of solar activity on ambient ultrafine particle concentrations: An analysis based on 19-year measurements in Boston, USA. ENVIRONMENTAL RESEARCH 2021; 201:111532. [PMID: 34166658 DOI: 10.1016/j.envres.2021.111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Solar radiation plays a major role in atmospheric photochemistry, contributing to the formation and growth of ultrafine particles (PN). PN affect global Earth's radiation balance, climate system, and human health. However, the impact of solar activity on ambient PN remains unclear. In this study, we investigated the associations between daily ambient PN concentrations [particle number (PN)/cm3] and solar radio flux [solar activity index (F10.7 in sfu)] as a solar activity parameter, shortwave solar radiation (SWR), daylight time (DL), cosmic ray-induced ionization (CRII), and air pollution [PM2.5, black carbon (BC) and SO2] over a 19-year period in Boston, MA. We used generalized additive models adjusted for local environmental conditions. We found that F10.7 was the strongest predictor for daily PN concentrations over all time lags (0-28 days of lags) and seasons. The effects were higher in winter and fall. In winter, an interquartile (IQR) of 60 sfu F10.7 corresponded to an increase of 5770 PN/cm3 in the day of PN collection. In fall, an IQR of 75.5 sfu F10.7 was associated with an increase of 5429 PN/cm3. The effects of F10.7 on PN concentrations were slightly greater when the models were adjusted for air pollution. In summer, ambient PN concentrations were statistically significantly associated with F10.7, SWR, and BC, with the strongest association found for PN and BC in the day of PN collection. Unlike the effects of F10.7, SWR and local pollutants on PN concentrations, DL and CRII were negatively associated with ambient PN in the analyses. These findings suggest that solar activity may have a significant impact on daily ambient PN concentrations that affect the Earth's climate system and human health.
Collapse
Affiliation(s)
- Carolina L Zilli Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Department of Environmental Health, 401 Park Drive, Landmark Center 4 West (HSPH), Boston, MA, 02215, USA.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Department of Environmental Health, 401 Park Drive, Landmark Center 4 West (HSPH), Boston, MA, 02215, USA
| |
Collapse
|
32
|
Ni S, Bai F, Pan X. Synergistic effect of glutaric acid and ammonia/amine/amide on their hydrates in the clustering: A theoretical study. CHEMOSPHERE 2021; 275:130063. [PMID: 33984898 DOI: 10.1016/j.chemosphere.2021.130063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The formation of molecular clusters makes influence on the atmosphere. The clusters of glutaric acid (GA) and common ammonia (A), amine (methylamine MA, dimethylamine DMA) and representative amide (urea U) along with water molecule were systematically studied theoretically. GA-A-nW (n = 1, 2), GA-MA-nW (n = 1, 2), GA-DMA-1W and GA-U-nW (n = 1-6) are predicted to be feasible thermodynamically with the hydrogen bonds as interaction force. GA and urea promote the clustering synergistically, and ammonia, methylamine, dimethylamine promote the clustering of small GA hydrates (n = 1-2), while inhibit that of large GA hydrates (n = 3-6). The results of humidity show that un-hydrate or mono-hydrate is the main form of GA-mbase-nW (m = 0, 1; n = 1-6) under relative humidity of 20%, 50% and 80%. The global minima remain dominant over the temperature range of 220-320 K. GA contributes more to the Rayleigh scattering properties than sulfuric acid. More importantly, the local minima can undergo isomerization to form the global minima crossing a free energy barrier ranging from 6.66 to 11.78 kcal mol-1. This study indicates that GA and base molecules play a synergistic role to promote the formation of clusters. We hope it can provide more insights on interesting clustering in theory.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fengyang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
33
|
Liu J, Liu L, Rong H, Zhang X. The potential mechanism of atmospheric new particle formation involving amino acids with multiple functional groups. Phys Chem Chem Phys 2021; 23:10184-10195. [PMID: 33751015 DOI: 10.1039/d0cp06472f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino acids are recognized as significant components of atmospheric aerosols. However, their potential role in atmospheric new particle formation (NPF) is poorly understood, especially aspartic acid (ASP), one of the most abundant amino acids in the atmosphere. It has not only two advantageous carboxylic acid groups but also one amino group, both of which are both effective groups enhancing NPF. Herein, the participation mechanism of ASP in the formation of new particle involving sulfuric acid (SA)-ammonia (A)-based system has been studied using the Density Functional Theory (DFT) combined with the Atmospheric Clusters Dynamic Code (ACDC). The results show that the addition of ASP molecules in the SA-A-based clusters provides a promotion on the interaction between SA and A molecules. Moreover, ACDC simulations indicate that ASP could present an obvious enhancement effect on SA-A-based cluster formation rates. Meanwhile, the enhancement strength R presents a positive dependence on [ASP] and a negative dependence on [SA] and [A]. Besides, the enhancement effect of ASP is compared with that of malonic acid (MOA) with two carboxylic acid groups (Chemosphere, 2018, 203, 26-33), and ASP presents a more obvious enhancement effect than MOA. The mechanism of NPF indicates that ASP could contribute to cluster formation as a "participator" which is different from the "catalytic" role of MOA at 238 K. These new insights are helpful to understand the mechanism of NPF involving organic compounds with multiple functional groups, especially the abundant amino acids, such as the ASP, in the urban/suburban areas with intensive human activities and industrial productions and therefore the abundant sources of amino acids. Furthermore, the NPF of the SA-A-based system involving amino acid should be considered when assessing the environmental risk of amino acid.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Rong
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
34
|
Toropainen A, Kangasluoma J, Kurtén T, Vehkamäki H, Keshavarz F, Kubečka J. Heterogeneous Nucleation of Butanol on NaCl: A Computational Study of Temperature, Humidity, Seed Charge, and Seed Size Effects. J Phys Chem A 2021; 125:3025-3036. [PMID: 33788572 PMCID: PMC8054243 DOI: 10.1021/acs.jpca.0c10972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Using a combination
of quantum chemistry and cluster size distribution
dynamics, we study the heterogeneous nucleation of n-butanol and water onto sodium chloride (NaCl)10 seeds
at different butanol saturation ratios and relative humidities. We
also investigate how the heterogeneous nucleation of butanol is affected
by the seed size through comparing (NaCl)5, (NaCl)10, and (NaCl)25 seeds and by seed electrical charge
through comparing (Na10Cl9)+, (NaCl)10, and (Na9Cl10)− seeds.
Butanol is a common working fluid for condensation particle counters
used in atmospheric aerosol studies, and NaCl seeds are frequently
used for calibration purposes and as model systems, for example, sea
spray aerosol. In general, our simulations reproduce the experimentally
observed trends for the NaCl–BuOH–H2O system,
such as the increase of nucleation rate with relative humidity and
with temperature (at constant supersaturation of butanol). Our results
also provide molecular-level insights into the vapor–seed interactions
driving the first steps of the heterogeneous nucleation process. The
main purpose of this work is to show that theoretical studies can
provide molecular understanding of initial steps of heterogeneous
nucleation and that it is possible to find cost-effective yet accurate-enough
combinations of methods for configurational sampling and energy evaluation
to successfully model heterogeneous nucleation of multicomponent systems.
In the future, we anticipate that such simulations can also be extended
to chemically more complex seeds.
Collapse
Affiliation(s)
- Antti Toropainen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Theo Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Fatemeh Keshavarz
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland.,Department of Physics, School of Engineering Science, LUT University, Lappeenranta 53851, Finland
| | - Jakub Kubečka
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| |
Collapse
|
35
|
Wang G, Ma S, Niu X, Chen X, Liu F, Li X, Li L, Shi G, Wu Z. Barrierless HONO and HOS(O)2-NO 2 Formation via NH 3-Promoted Oxidation of SO 2 by NO 2. J Phys Chem A 2021; 125:2666-2672. [PMID: 33754720 DOI: 10.1021/acs.jpca.1c00539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the troposphere, the knowledge about nitrous acid (HONO) sources is incomplete. The missing source of sulfate and fine particles cannot be explained during haze events. Air quality models cannot predict high levels of secondary fine-particle pollution. Despite extensive studies, one challenging issue in atmospheric chemistry is identifying the source of HONO. Here, we present direct ab initio molecular dynamics simulation evidence and typical air pollution events of the formation of gaseous HONO, nitrogen dioxide/hydrogen sulfite (HOS(O)2-NO2 or NO2-HSO3) from nitrogen dioxide (NO2), sulfur dioxide (SO2), water (H2O), and ammonia (NH3) molecules in a proportion of 2:1:3:3. The reactions show a new mechanism for the formation of HONO and NO2-HSO3 in the troposphere, especially when the concentration of NO2, SO2, H2O, and NH3 is high (e.g., 2:1:3:3 or higher) in the air. Contrary to the proportion NO2, SO2, H2O, and NH3 equaling to 1:1:3:1 and 1:1:3:2, the proportion (2:1:3:3) enables barrierless reactions and weak interactions between molecules via the formation of HONO, NO2-HSO3, and NH3/H2O. In addition, field observations are carried out, and the measured data are summarized. Correlation analysis supported the conversion of NO2 to HONO during observational studies. The weak interactions promote proton transfer, resulting in the generation of HONO, NO2-HSO3, and NH3/H2O pairs.
Collapse
Affiliation(s)
- Guoying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shangrong Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiuli Niu
- Gansu Food Inspection and Research Institute, Lanzhou 730050, China
| | - Xuefu Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Fengshuo Liu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Lan Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Gaofeng Shi
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Oliveira MLS, Neckel A, Silva LFO, Dotto GL, Maculan LS. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias - Colombia. CHEMOSPHERE 2021; 265:129119. [PMID: 33280849 DOI: 10.1016/j.chemosphere.2020.129119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Among the diverse archeological relics of the past, the Cartagena de Indias Wall is one of the greatest representations of European cultural architecture in South America. To assess the implication of contamination on the depreciation of the culturally significant Wall of Cartagena de Indias - Colombia, a detailed, multi-analytical approach was conducted on components of the wall. Accumulated ultra-fine particles (UFPs) and superficial nano-particles (NPs) containing hazardous elements (HEs) on the wall were identified in an attempt to understand whether atmospheric pollution is hastening the depreciation of the structure itself. Mortar which at one point held the stones together is now weak and has fallen away in places. Irreparable damage is being done by salt spray, acid rain and the site's tropical humid climate. Several HEs and organic compounds found within the local environment are also contributing to the gradual deterioration of the construction. In this study, advanced microscopy analyses have been applied to understand the properties of UFPs and NPs deposited onto the wall's weathered external walls through exposure to atmospheric pollution. Several materials identified by X-Ray Diffraction (XRD) can be detected using high-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscope (FE-SEM). The presence of anglesite, gypsum, hematite containing HEs, and several organic compounds modified due to moisture and contamination was found. Black crusts located on the structure could potentially serve as a source of HEs pollution and a probable hazard to not only to the ecosystem but also to human health.
Collapse
Affiliation(s)
- Marcos L S Oliveira
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia; Faculdade Meridional, IMED, 304, Passo Fundo, RS, 99070-220, Brazil; Universidad de Lima, Departamento de Ingeniería civil y Arquitectura, Avenida Javier Prado Este 4600, Santiago de Surco, 1503, Peru
| | - Alcindo Neckel
- Faculdade Meridional, IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Universidade Federal de Santa Maria, Chemistry Department, Avenida Roraima 1000, Santa Maria, RS, Brazil
| | | |
Collapse
|
37
|
Chu B, Dada L, Liu Y, Yao L, Wang Y, Du W, Cai J, Dällenbach KR, Chen X, Simonen P, Zhou Y, Deng C, Fu Y, Yin R, Li H, He XC, Feng Z, Yan C, Kangasluoma J, Bianchi F, Jiang J, Kujansuu J, Kerminen VM, Petäjä T, He H, Kulmala M. Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142207. [PMID: 33207435 DOI: 10.1016/j.scitotenv.2020.142207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/19/2023]
Abstract
Secondary aerosol formation in the aging process of primary emission is the main reason for haze pollution in eastern China. Pollution evolution with photochemical age was studied for the first time at a comprehensive field observation station during winter in Beijing. The photochemical age was used as an estimate of the timescale attributed to the aging process and was estimated from the ratio of toluene to benzene in this study. A low photochemical age indicates a fresh emission. The photochemical age of air masses during new particle formation (NPF) days was lower than that on haze days. In general, the strongest NPF events, along with a peak of the formation rate of 1.5 nm (J1.5) and 3 nm particles (J3), were observed when the photochemical age was between 12 and 24 h while rarely took place with photochemical ages less than 12 h. When photochemical age was larger than 48 h, haze occurred and NPF was suppressed. The sources and sinks of nanoparticles had distinct relation with the photochemical age. Our results show that the condensation sink (CS) showed a valley with photochemical ages ranging from 12 to 24 h, while H2SO4 concentration showed no obvious trend with the photochemical age. The high concentrations of precursor vapours within an air mass lead to persistent nucleation with photochemical age ranging from 12 to 48 h in winter. Coincidently, the fast increase of PM2.5 mass was also observed during this range of photochemical age. Noteworthy, CS increased with the photochemical age on NPF days only, which is the likely reason for the observation that the PM2.5 mass increased faster with photochemical age on NPF days compared with other days. The evolution of particles with the photochemical age provides new insights into understanding how particles originating from NPF transform to haze pollution.
Collapse
Affiliation(s)
- Biwu Chu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Lei Yao
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Wei Du
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Jing Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - K R Dällenbach
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Xuemeng Chen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Pauli Simonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Ying Zhou
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yueyun Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rujing Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haiyan Li
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Zeming Feng
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Juha Kangasluoma
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Joni Kujansuu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland; Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland; Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Fdez-Arroyabe P, Kourtidis K, Haldoupis C, Savoska S, Matthews J, Mir LM, Kassomenos P, Cifra M, Barbosa S, Chen X, Dragovic S, Consoulas C, Hunting ER, Robert D, van der Velde OA, Apollonio F, Odzimek A, Chilingarian A, Royé D, Mkrtchyan H, Price C, Bór J, Oikonomou C, Birsan MV, Crespo-Facorro B, Djordjevic M, Salcines C, López-Jiménez A, Donner RV, Vana M, Pedersen JOP, Vorenhout M, Rycroft M. Glossary on atmospheric electricity and its effects on biology. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:5-29. [PMID: 33025117 DOI: 10.1007/s00484-020-02013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research.
Collapse
Affiliation(s)
- Pablo Fdez-Arroyabe
- Geography and Planning Department, Universidad de Cantabria, 39005, Santander, Spain.
| | - Konstantinos Kourtidis
- Dept. of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Christos Haldoupis
- Department of Physics, University of Crete, 71003 Heraklion, Crete, Greece
| | - Snezana Savoska
- Faculty of Information and Communication Technologies, University "St. Kliment Ohridski", Bitola, North Macedonia
| | - James Matthews
- School of Chemistry, Cantocks Close University of Bristol, Bristol, BS8 1TS, UK
| | - Lluis M Mir
- Université Paris-Saclay, CNRS Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805, Villejuif, France
| | - Pavlos Kassomenos
- Department of Physics, Lab. of Meteorology, University Campus, University of Ioannina, 45100, Ioannina, Greece
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014, /57 182 51, Prague, Czechia
| | - Susana Barbosa
- INESC Technology and Science - INESC TEC, Porto, Portugal
| | - Xuemeng Chen
- Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411, Tartu, Estonia
| | - Snezana Dragovic
- University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade, Serbia
| | - Christos Consoulas
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Oscar A van der Velde
- Lightning Research Group, Electrical Engineering Department, Polytechnic University of Catalonia - BarcelonaTech, Colon 1, 08222, Terrassa, Spain
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Anna Odzimek
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Dominic Royé
- Department of Geography, University of Santiago de Compostela, Santiago, Spain
| | | | - Colin Price
- Department of Geophysics, Porter School of the Environment and Earth Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - József Bór
- Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Sopron, Hungary
| | - Christina Oikonomou
- Frederick University 7, Y. Frederickou Str. Pallouriotisa, 1036, Nicosia, Cyprus
| | - Marius-Victor Birsan
- Department of Research and Meteo Infrastructure Projects, Meteo Romania (National Meteorological Administration), Bucharest, Romania
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University of Sevilla, HU Virgen del Rocio IBIS, CIBERSAM, Seville, Spain
| | - Milan Djordjevic
- Department of Geography, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Ciro Salcines
- Health and Safety Unit, Infrastructure Service, University of Cantabria, Avd. de los Castros, 54 39005, Santander, Cantabria, Spain
| | - Amparo López-Jiménez
- Hydraulic and Environmental Engineering Department, Universitat Politécnica de Valencia, Camino de Vera s/n 46022, Valencia, Spain
| | - Reik V Donner
- Department of Water, Environment, Construction and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114, Magdeburg, Germany
- Potsdam Institute for Climate Impact Research (PIK) - Member of the Leibniz Association, Telegrafenberg A31, 14773, Potsdam, Germany
| | - Marko Vana
- Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411, Tartu, Estonia
| | - Jens Olaf Pepke Pedersen
- National Space Institute, DTU Space, Technical University of Denmark, Centrifugevej 356, DK-2800, Kgs. Lyngby, Denmark
| | | | - Michael Rycroft
- CAESAR Consultancy, 35 Millington Road, Cambridge, CB3 9HW, UK
| |
Collapse
|
39
|
de Souza Gonçalves D, Chaudhuri P. Atmospherically Relevant Hydrogen-Bonded Interactions between Methanesulfonic Acid and H 2SO 4 Clusters: A Computational Study. J Phys Chem A 2020; 124:11072-11085. [PMID: 33337158 DOI: 10.1021/acs.jpca.0c09087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A detailed and systematic quantum-chemical calculation has been performed with high-level density functional theory (DFT) to analyze the electrostatic interaction of methanesulfonic acid (CH3SO3H), also known as MSA, with pre-formed clusters of sulfuric acid (H2SO4) molecules in ambient conditions. Both MSA and H2SO4 are considered as atmospheric molecules that might play active roles in aerosol formation. The interactions between MSA and H2SO4 clusters lead to the formation of MSA···(H2SO4)n (n = 2, 3) complexes stabilized by the formation of different types of intermolecular hydrogen bond networks. Analyses of cluster binding energies and free energy changes associated with their formation indicate that MSA could bring additional stability into the atmospheric molecular clusters responsible for aerosol formation. Variations of Gibbs free energy with temperature and pressure have been analyzed. The lower temperatures and pressures at the higher altitudes of the troposphere are found to play in favor of higher stability of the MSA···(H2SO4)n clusters. Effects of hydrogen bond formation on dipole moment, mean polarizability, and anisotropy of polarizability of the clusters have been analyzed. Rayleigh scattering intensities are found to increase many-fold when light interacts with the MSA···(H2SO4)n clusters.
Collapse
|
40
|
Rainwater Chemistry Reveals Air Pollution in a Karst Forest: Temporal Variations, Source Apportionment, and Implications for the Forest. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Temporal rainwater chemistry was used to reveal air pollution in the Maolan National Karst Forest Park (MNKFP), which is representative of the typical karst forest region of southwest China (SW China). The rainwater ions’ sources, variations, trends, and potential environmental effects were investigated from 2007 to 2010 and from 2013 to 2014. Based on the analysis of the temporal ionic concentrations of rainwater in the MNKFP, significant variations of ions were observed, including in NH4+ (9.7~266.6 μeq L−1) and SO42− (14.5~1396.4 μeq L−1), which were mainly controlled by variations in the source and rainfall amount; a decreased trend of rainwater pH was also observed. Accordingly, NH4+, Ca2+, SO42−, and Cl− were regarded as the most dominant ions. Typical ionic ratios and positive matrix factorization (PMF) model-based source apportionment suggested that anthropogenic inputs (coal combustion, industrial, traffic, and agricultural emissions) contributed 51% of F−, 93% of NO3−, 62% of SO42−, and 87% of NH4+, while the natural sources (crustal dust and sea salt) were the main sources of Cl− (74%), Na+ (82%), K+ (79%), Mg2+ (94%), and Ca2+ (93%). In combination with the reducing neutralization trend of temporal rainwater observed in the MNKFP and the potential effect of rainwater ion deposition on karst forests, more detailed monitoring of the rainfall-related deposition process is required for a better understanding of its potential environmental effects on the Earth’s surface.
Collapse
|
41
|
Thornton JA, Mohr C, Schobesberger S, D’Ambro EL, Lee BH, Lopez-Hilfiker FD. Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols (FIGAERO). Acc Chem Res 2020; 53:1415-1426. [PMID: 32648739 DOI: 10.1021/acs.accounts.0c00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusThe complex array of sources and transformations of organic carbonaceous material that comprises an important fraction of atmospheric fine particle mass, known as organic aerosol, has presented a long running challenge for accurate predictions of its abundance, distribution, and sensitivity to anthropogenic activities. Uncertainties about changes in atmospheric aerosol particle sources and abundance over time translate to uncertainties in their impact on Earth's climate and their response to changes in air quality policy. One limitation in our understanding of organic aerosol has been a lack of comprehensive measurements of its molecular composition and volatility, which can elucidate sources and processes affecting its abundance. Herein we describe advances in the development and application of the Filter Inlet for Gases and Aerosols (FIGAERO) coupled to field-deployable High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS). The FIGAERO HRToFCIMS combination broadly probes gas and particulate OA molecular composition by using programmed thermal desorption of particles collected on a Teflon filter with subsequent detection and speciation of desorbed vapors using inherently quantitative selected-ion chemical ionization. The thermal desorption provides a means to obtain quantitative insights into the volatility of particle components and thus the physicochemical nature of the organic material that will govern its evolution in the atmosphere.In this Account, we discuss the design and operation of the FIGAERO, when coupled to the HRToF-CIMS, for quantitative characterization of the molecular-level composition and effective volatility of organic aerosol in the laboratory and field. We provide example insights gleaned from its deployment, which improve our understanding of organic aerosol sources and evolution. Specifically, we connect thermal desorption profiles to the effective equilibrium saturation vapor concentration and enthalpy of vaporization of detected components. We also show how application of the FIGAERO HRToF-CIMS to environmental simulation chamber experiments and the field provide new insights and constraints on the chemical mechanisms governing secondary organic aerosol formation and dynamic evolution. We discuss the associated challenges of thermal decomposition during desorption and calibration of both the volatility axis and signal. We also illustrate how the FIGAERO HRToF-CIMS can provide additional insights into organic aerosol through isothermal evaporation experiments as well as for detection of ultrafine particulate composition. We conclude with a description of future opportunities and needs for its ability to further organic aerosol science.
Collapse
Affiliation(s)
- Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, 408 ATG Building, 3920 Okanogan Lane NE, Seattle, Washington 98195, United States
| | - Claudia Mohr
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, Stockholm 10691, Sweden
| | - Siegfried Schobesberger
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1 F, Kuopio 70210, Finland
| | - Emma L. D’Ambro
- Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, Tennessee 37831-0117, United States
| | - Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, 408 ATG Building, 3920 Okanogan Lane NE, Seattle, Washington 98195, United States
| | | |
Collapse
|
42
|
Hopkins FE, Suntharalingam P, Gehlen M, Andrews O, Archer SD, Bopp L, Buitenhuis E, Dadou I, Duce R, Goris N, Jickells T, Johnson M, Keng F, Law CS, Lee K, Liss PS, Lizotte M, Malin G, Murrell JC, Naik H, Rees AP, Schwinger J, Williamson P. The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate. Proc Math Phys Eng Sci 2020; 476:20190769. [PMID: 32518503 PMCID: PMC7277135 DOI: 10.1098/rspa.2019.0769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/03/2020] [Indexed: 11/12/2022] Open
Abstract
Surface ocean biogeochemistry and photochemistry regulate ocean-atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.
Collapse
Affiliation(s)
| | - Parvadha Suntharalingam
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marion Gehlen
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Orme des Merisiers, Gif-sur-Yvette cedex, France
| | - Oliver Andrews
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | | | - Laurent Bopp
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Département de Géosciences, Ecole Normale Supérieure, France
- Université Ecole Polytechnique, Sorbonne Université, Paris, France
| | - Erik Buitenhuis
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Isabelle Dadou
- Laboratoire d'Etudes en Géophysique et Oceanographie Spatiales, University of Toulouse, Toulouse, France
| | - Robert Duce
- Department of Oceanography, Texas A&M University, College Station, TX, USA
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
| | - Nadine Goris
- NORCE Climate, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Tim Jickells
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martin Johnson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Fiona Keng
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur, Malaysia
- Institute of Graduate Studies (IGS), University of Malaya, Kuala Lumpur, Malaysia
| | - Cliff S. Law
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Peter S. Liss
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martine Lizotte
- Department of Biology, Université Laval, Quebec City, Canada
| | - Gillian Malin
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Hema Naik
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
| | - Andrew P. Rees
- Plymouth Marine Laboratory, Prospect Place, Plymouth, UK
| | - Jörg Schwinger
- NORCE Climate, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Philip Williamson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
43
|
Li H, Ning A, Zhong J, Zhang H, Liu L, Zhang Y, Zhang X, Zeng XC, He H. Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. CHEMOSPHERE 2020; 245:125554. [PMID: 31874321 DOI: 10.1016/j.chemosphere.2019.125554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
A recent quantitative measurement of rates of new particle formation (NPF) in urban Shanghai showed that the high rates of NPF can be largely attributed to the sulfuric acid (SA)-dimethylamine (DMA) nucleation due to relatively high DMA concentration in urban atmosphere (Yao et al., Science. 2018, 361, 278). In certain atmospheric conditions, the release of DMA is accompanied with the emission of high concentration of ammonia. As a result, the ammonia (A) may participate in SA-DMA-based NPF. However, the main sources of DMA and A can be different, thereby leading to different mechanism for the SA-DMA-A-based nucleation under different atmospheric conditions. Near industrial sources with relatively high DMA concentration of 108 molecules cm-3, the contribution of binary SA-DMA nucleation to cluster formation is 61% at 278 K, representing a dominant pathway for NPF. However, in the region not too close to major source of DMA emission, e.g., near agriculture farmland, the routes involving ternary SA-DMA-A nucleation make a 64% contribution at 278 K with DMA concentration of 107 molecules cm-3, showing that A has marked impact on the cluster formation. Under such a condition, we predict that coexisting DMA and A could be detected in the process of NPF. Moreover, at winter temperatures or at higher altitudes, our calculations suggest that the clustering of initial clusters likely involve ternary SA-DMA-A clusters rather than binary SA-DMA clusters. These new insights may be helpful to analyze and predict atmospheric-condition-dependent NFP in either urban or rural regions and/or in different season of the year.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jie Zhong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania Philadelphia, PA, 19104-6316, USA
| | - Haijie Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yunling Zhang
- Beiyuan Campus, Beijing Vocational College of Agriculture, Beijing, 100012, PR China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
44
|
Rong H, Liu L, Liu J, Zhang X. Glyoxylic Sulfuric Anhydride from the Gas-Phase Reaction between Glyoxylic Acid and SO3: A Potential Nucleation Precursor. J Phys Chem A 2020; 124:3261-3268. [DOI: 10.1021/acs.jpca.0c01558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Rong
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
45
|
Fdez-Arroyabe P, Salcines Suárez CL, Nita IA, Kassomenos P, Petrou E, Santurtún A. Electrical characterization of circulation weather types in Northern Spain based on atmospheric nanoparticles measurements: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135320. [PMID: 31836218 DOI: 10.1016/j.scitotenv.2019.135320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 05/21/2023]
Abstract
The electrical component of the atmosphere is a key element to understand bio-effects of atmospheric processes. In this paper an attempt was made to find possible interactions between air masses arriving in Santander, Northern Spain, and electrical properties of nanoparticles measured in this zone. A methodological approach is proposed to characterize electrically the predominant weather types in the study area. An electrical low pressure impactor device (ELPI®+) was used to measure atmospheric particles net charge and particle net charge distribution in real time in July 2018, among other parameters. Data from two specific channels [0.054-0.071 μm] and [2.5-3.0 μm] has been initially used. Atmospheric circulation was defined attending to two, subjective and objective, weather type classifications. Back trajectories of nanoparticles were also computed by the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Results confirm that atmospheric nanoparticles charge varies according to their size. The highest mean absolute charge is associated with local circulation in Santander for both channels. The studied nanoparticles show a quicker reaction to weather conditions than microparticles. They also have a significant correlation with meteorological variables for 18 synoptic groups found, but humidity. Microparticles [2.5-3.0 μm] are negatively related with air humidity, mainly with S-SE circulation pattern.
Collapse
Affiliation(s)
- Pablo Fdez-Arroyabe
- University of Cantabria, Department of Geography and Planning, Geobiomet Research Group, Santander, Spain.
| | | | - Ion-Andrei Nita
- National Meteorological Administration, Alexandru Ioan Cuza University, Doctoral School of Geosciences, Iasi, Romania
| | - Pavlos Kassomenos
- University of Ioannina, Department of Physics, Laboratory of Meteorology, GR-45110 Ioannina, Greece.
| | - Elias Petrou
- University of Ioannina, Department of Physics, Laboratory of Meteorology, GR-45110 Ioannina, Greece
| | - Ana Santurtún
- University of Cantabria, Department of Physiology and Pharmacology, Geobiomet Research Group, Santander, Spain.
| |
Collapse
|
46
|
Corsini E, Marinovich M, Vecchi R. Ultrafine Particles from Residential Biomass Combustion: A Review on Experimental Data and Toxicological Response. Int J Mol Sci 2019; 20:E4992. [PMID: 31601002 PMCID: PMC6834185 DOI: 10.3390/ijms20204992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022] Open
Abstract
Biomass burning is considered an important source of indoor and outdoor air pollutants worldwide. Due to competitive costs and climate change sustainability compared to fossil fuels, biomass combustion for residential heating is increasing and expected to become the major source of primary particulate matter emission over the next 5-15 years. The understanding of health effects and measures necessary to reduce biomass emissions of harmful compounds is mandatory to protect public health. The intent of this review is to report available data on ultrafine particles (UFPs, i.e., particles with diameter smaller than 100 nm) emitted by residential biomass combustion and their effects on human health (in vitro and in vivo studies). Indeed, as far as we know, papers focusing specifically on UFPs originating from residential biomass combustion and their impact on human health are still lacking.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, ESP, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Marinovich
- Laboratory of Toxicology, DISFEB, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano, and INFN-Milan, Milan 20133, Italy.
| |
Collapse
|
47
|
Zhao F, Feng YJ, Liu YR, Jiang S, Huang T, Wang ZH, Xu CX, Huang W. Enhancement of Atmospheric Nucleation by Highly Oxygenated Organic Molecules: A Density Functional Theory Study. J Phys Chem A 2019; 123:5367-5377. [PMID: 31199633 DOI: 10.1021/acs.jpca.9b03142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New particle formation (NPF) by gas-particle conversion is the main source of atmospheric aerosols. Highly oxygenated organic molecules (HOMs) and sulfuric acid (SA) are important NPF participants. 2-Methylglyceric acid (MGA), a kind of HOMs, is a tracer of isoprene-derived secondary organic aerosols. The nucleation mechanisms of MGA with SA were studied using density functional theory and atmospheric cluster dynamics simulation in this study, along with that of MGA with methanesulfonic acid (MSA) as a comparison. Our theoretical works indicate that the (MGA)(SA) and (MGA)(MSA) clusters are the most stable ones in the (MGA) i(SA) j ( i = 1-2, j = 1-2) and (MGA) i(MSA) j ( i = 1-2, j = 1-2) clusters, respectively. Both the formation rates of (MGA)(SA) and (MGA)(MSA) clusters are quite large and could have significant contributions to NPF. The results imply that the homomolecular nucleation of MGA is unlikely to occur in the atmosphere, and MGA and SA can effectively contribute to heteromolecular nucleation mainly in the form of heterodimers. MSA exhibits properties similar to SA in its ability to form clusters with MGA but is slightly weaker than SA.
Collapse
Affiliation(s)
- Feng Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China.,School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ya-Juan Feng
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yi-Rong Liu
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shuai Jiang
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Zi-Hang Wang
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Cai-Xin Xu
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China.,School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China.,Center for Excellent in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| |
Collapse
|
48
|
Ahonen L, Li C, Kubečka J, Iyer S, Vehkamäki H, Petäjä T, Kulmala M, Hogan CJ. Ion Mobility-Mass Spectrometry of Iodine Pentoxide-Iodic Acid Hybrid Cluster Anions in Dry and Humidified Atmospheres. J Phys Chem Lett 2019; 10:1935-1941. [PMID: 30939018 DOI: 10.1021/acs.jpclett.9b00453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanometer-scale clusters form from vapor-phase precursors and can subsequently grow into nanoparticles during atmospheric nucleation events. A particularly interesting set of clusters relevant to nucleation is hybrid iodine pentoxide-iodic acid clusters of the form (I2O5) x(HIO3) y as these clusters have been observed in coastal region nucleation events in anomalously high concentrations. To better understand their properties, we utilized ion mobility-mass spectrometry to probe the structures of cluster anions of the form (I2O5) x(HIO3) y(IOα)- ( x = 0-7, y = 0-1, α = 1-3), similar to those observed in coastal nucleation events. We show that (I2O5) x(HIO3) y(IOα)- clusters are relatively stable against dissociation during mass spectrometric measurement, as compared to other clusters observed in nucleation events over continental sites, and that at atmospherically relevant relative humidity levels (65% and less) clusters can become sufficiently hydrated to facilitate complete conversion of iodine pentoxide to iodic acid but that water sorption beyond this level is limited, indicating that the clusters do not persist as nanometer-scale droplets in the ambient.
Collapse
Affiliation(s)
- Lauri Ahonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Chenxi Li
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Laboratory for Physical Chemistry , ETH Zürich , 8093 Zürich , Switzerland
| | - Jakub Kubečka
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Siddharth Iyer
- Institute for Atmospheric and Earth System Research/Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Christopher J Hogan
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
49
|
Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM, Sahai N, Schroeder PA, Vikesland P, Westerhoff P, Yang Y. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019; 363:363/6434/eaau8299. [DOI: 10.1126/science.aau8299] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanomaterials are critical components in the Earth system’s past, present, and future characteristics and behavior. They have been present since Earth’s origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.
Collapse
Affiliation(s)
- Michael F. Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
- Subsurface Science and Technology Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David W. Mogk
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717-3480, USA
| | - James Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - George W. Luther
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - B. Peter McGrail
- Applied Functional Materials Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mitsu Murayama
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Reactor Materials and Mechanical Design Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Nikolla P. Qafoku
- Subsurface Science and Technology Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kevin M. Rosso
- Geochemistry Group, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Nita Sahai
- Department of Polymer Science, University of Akron, Akron, OH 44325-3909, USA
| | | | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
50
|
Saha PK, Zimmerman N, Malings C, Hauryliuk A, Li Z, Snell L, Subramanian R, Lipsky E, Apte JS, Robinson AL, Presto AA. Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:473-481. [PMID: 30476828 DOI: 10.1016/j.scitotenv.2018.11.197] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
To quantify the fine-scale spatial variations and local source impacts of urban ultrafine particle (UFP) concentrations, we conducted 3-6 weeks of continuous measurements of particle number (a proxy for UFP) and other air pollutant (CO, NO2, and PM2.5) concentrations at 32 sites in Pittsburgh, Pennsylvania during the winters of 2017 and 2018. Sites were selected to span a range of urban land use attributes, including urban background, near local and arterial roads, traffic intersections, urban street canyon, near-highway, near large industrial source, and restaurant density. The spatial variations in urban particle number concentrations varied by about a factor of three. Particle number concentrations are 2-3 times more spatially heterogeneous than PM2.5 mass. The observed order of spatial heterogeneity is UFP > NO2 > CO > PM2.5. On average, particle number concentrations near local roads with a cluster of restaurants and near arterial roads are roughly two times higher than the urban background. Particle number concentrations in the urban street canyon, downwind of a major highway, and near large industrial sources are 2-4 times higher than background concentrations. While traffic is known as an important contributor to particle number concentrations, restaurants and industrial emissions also contribute significantly to spatial variations in Pittsburgh. Particle size distribution measurements using a mobile laboratory show that the local spatial variations in particle number concentrations are dictated by concentrations of particles smaller than 50 nm. A large fraction of urban residents (e.g., ~50%) in Pittsburgh live near local sources and are therefore exposed to 50%-300% higher particle number concentrations than urban background location. These locally emitted particles may have greater health effects than background particles.
Collapse
Affiliation(s)
- Provat K Saha
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Naomi Zimmerman
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Carl Malings
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Aliaksei Hauryliuk
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Zhongju Li
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Luke Snell
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - R Subramanian
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Eric Lipsky
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States; Department of Mechanical Engineering, Penn State Greater Allegheny, McKeesport, PA 15132, United States
| | - Joshua S Apte
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Allen L Robinson
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Albert A Presto
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|