1
|
Chen J, Tan J, Wang N, Li H, Cheng W, Li J, Wang B, Sedgwick AC, Chen Z, Chen G, Zhang P, Zheng W, Liu C, Chen J. Specific macrophage RhoA targeting CRISPR-Cas9 for mitigating osteoclastogenesis-induced joint damage in inflammatory arthritis. Cell Rep Med 2025; 6:102046. [PMID: 40239628 DOI: 10.1016/j.xcrm.2025.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/02/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Rheumatoid arthritis (RA) is the most prevalent inflammatory arthritis with unknown etiology, characterized by synovial inflammation and articular bone erosion. Studies have highlighted that inhibiting macrophage-induced osteoclastogenesis holds promise in mitigating bone destruction. However, specifically halting this pathological cascade remains a challenge for the management of RA. Here, initially, we identify that Ras homolog gene family member A (RhoA) is a pivotal target in inducing osteoclastogenesis of macrophages. Subsequently, we develop a strategy termed specific macrophages RhoA targeting (SMART), in which phosphatidylserine (PS)-enriched macrophage membranes are engineered to deliver macrophage-specific promoter-containing CRISPR-Cas9 plasmids (SMART-Cas9), enabling targeted editing of RhoA in RA joint macrophages. Multiscale imaging techniques confirm the highly specific targeted effect of SMART-Cas9 on the macrophages of inflamed joints. SMART-Cas9 successfully reduces osteoclastogenesis by macrophages, thus mitigating bone erosion by modulating cytoskeletal dynamics and immune balance in inflammatory arthritis, representing a therapeutic avenue for RA and other inflammatory bone diseases.
Collapse
Affiliation(s)
- Jianhai Chen
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China; Rehabilitation Department of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nannan Wang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Benguo Wang
- Rehabilitation Department of the Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Adam C Sedgwick
- Department of Chemistry, Kings College London, 7 Trinity Street, London SE1 1DB, UK
| | - Zhitong Chen
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China; Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guojun Chen
- Department of Biomedical Engineering, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3G 0B1, Canada
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China.
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China.
| |
Collapse
|
2
|
Li K, Wang J, Gao Y, Chen X, Peng R, Li L, Wang C, Li T, Zhang S, Yang G, Zhang J. Benzbromarone improves blood hypercoagulability after TBI by reducing phosphatidylserine externalization through inhibition of TMEM16F expression. Life Sci 2025; 366-367:123501. [PMID: 39983827 DOI: 10.1016/j.lfs.2025.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
AIMS Traumatic brain injury-induced coagulopathy (TBI-IC) frequently occurs after TBI, exacerbating the severity of TBI and affecting patient prognosis. Benzbromarone (BBR) is commonly used to treat hyperuricemia; however, its protective effects against TBI-IC remain unknown. Therefore, we explored whether BBR could improve TBI. MATERIALS AND METHODS C57BL/6 wild-type mice were subjected to fluid percussion injury to mimic TBI, and BBR was administered intraperitoneally 30 min after TBI. Magnetic resonance imaging (MRI) and Evans blue dye extravasation were used to assess the prognosis, tail bleeding time, ELISA, and coagulation tests assess coagulation function. We further explored the potential mechanism by which BBR alleviates hypercoagulation after TBI using flow cytometry. KEY FINDINGS The intraperitoneally injected BBR group showed improved survival and neurological severity scores compared to the TBI group. Subsequently, we found that hypercoagulability developed 3 h after TBI and that the administration of BBR improved this hypercoagulability. BBR also reduced the degree of platelet phosphatidylserine (PS) exposure after TBI, platelet activation, and Ca2+ overload, in addition to inhibition of scramblase activity in procoagulant platelets. SIGNIFICANCE Our findings indicate that BBR reduces PS externalization by inhibiting TMEM16F expression, thereby improving blood hypercoagulability after TBI.
Collapse
Affiliation(s)
- Kaiji Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinchao Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Xin Chen
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Cong Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China.
| | - Guili Yang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China.
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
3
|
Fu C, Jin X, Ji K, Lan K, Mao X, Huang Z, Chen J, Zhao F, Li P, Hu X, Sun L, Lu N, Zhong J, Chen Y, Wang L. Macrophage-targeted Mms6 mRNA-lipid nanoparticles promote locomotor functional recovery after traumatic spinal cord injury in mice. SCIENCE ADVANCES 2025; 11:eads2295. [PMID: 40138430 PMCID: PMC11939073 DOI: 10.1126/sciadv.ads2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Traumatic spinal cord injury (SCI) causes severe central nervous system damage. M2 macrophages within the lesion are crucial for SCI recovery. Our previous research revealed that M2 macrophages transfected with magnetotactic bacteria-derived Mms6 gene can resist ferroptosis and enhance SCI recovery. To address the limitations of M2 macrophage transplantation, we developed lipid nanoparticles (LNPs) encapsulating Mms6 mRNA targeting macrophages (Mms6 mRNA-PS/LNPs). The targeting efficiency and therapeutic effect of these LNPs in SCI mice were evaluated. Intravenous administration of Mms6 mRNA-PS/LNPs delivered more Mms6 mRNAs to lesion-site macrophages than those in the Mms6 mRNA-LNP group, which resulted in enhancing motor function recovery, reducing lesion area and scar formation, and promoting neuronal survival and nerve fiber repair. These effects were nullified when macrophages were depleted. These findings suggest that macrophage-targeted delivery of Mms6 mRNA is a promising therapeutic strategy for promoting spinal cord repair and motor function recovery in patients with traumatic SCI.
Collapse
Affiliation(s)
- Chunyan Fu
- Department of Orthopaedics of Sir Run Run Shaw Hospital and Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310016, PR China
| | - Xiaoqin Jin
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ke Lan
- Department of Medical Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhaobo Huang
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Jian Chen
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Fengdong Zhao
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Pengfei Li
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Xuefei Hu
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Liwen Sun
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Ning Lu
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yingying Chen
- Department of Obstetrics of the Second Affiliated Hospital and Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Linlin Wang
- Department of Orthopaedics of Sir Run Run Shaw Hospital and Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310016, PR China
- Tarim University School of Medicine, Alaer 843300, PR China
| |
Collapse
|
4
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of Caenorhabditis elegans. Genetics 2025; 229:iyae216. [PMID: 39722491 DOI: 10.1093/genetics/iyae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Membrane trafficking is a conserved process required for the import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach, we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine flippase that promotes the asymmetric distribution of phosphatidylserine on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a phosphatidylserine sensor, we found that TAT-1 was required for the normal localization of phosphatidylserine at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology domain-containing protein, EHD1. TAT-1, phosphatidylserine biosynthesis, and the phosphatidylserine-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of phosphatidylserine biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.
Collapse
Affiliation(s)
- Shae M Milne
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
5
|
Qiu D, Yan B, Xue H, Xu Z, Tan G, Liu Y. Perspectives of exosomal ncRNAs in the treatment of bone metabolic diseases: Focusing on osteoporosis, osteoarthritis, and rheumatoid arthritis. Exp Cell Res 2025; 446:114457. [PMID: 39986599 DOI: 10.1016/j.yexcr.2025.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Bone metabolic disorders, constituting a group of prevalent and grave conditions, currently have a scarcity of therapeutic alternatives. Over the recent past, exosomes have been at the forefront of research interest, owing to their nanoparticulate nature and potential for therapeutic intervention. ncRNAs are a class of heterogeneous transcripts that they lack protein-encoding capacity, yet they can modulate the expression of other genes through multiple mechanisms. Mounting evidence underscores the intricate role of exosomes as ncRNAs couriers implicated in the pathogenesis of bone metabolic disorders. In this review, we endeavor to elucidate recent insights into the roles of three ncRNAs - miRNAs, lncRNAs, and circRNAs - in bone metabolic ailments such as osteoporosis, osteoarthritis, and rheumatoid arthritis. Additionally, we examine the viability of exosomal ncRNAs as innovative, cell-free modalities in the diagnosis and therapeutic management of bone metabolic disorders. We aim to uncover the critical function of exosomal ncRNAs within the context of bone metabolic diseases.
Collapse
Affiliation(s)
- Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Binghan Yan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yajuan Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
| |
Collapse
|
6
|
Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T, Calianese DC, Patel B, de Dios KV, Poalasin V, De Lorenzo MS, Kotenko SV, Wu Y, Yang A, Choudhary A, Sriram G, Birge RB. Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer. Cell Commun Signal 2025; 23:131. [PMID: 40069722 PMCID: PMC11900106 DOI: 10.1186/s12964-025-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PS), is typically restricted to the inner leaflet of the plasma membrane under normal, healthy physiological conditions. PS is irreversibly externalized during apoptosis, where it serves as a signal for elimination by efferocytosis. PS is also reversibly and transiently externalized during cell activation such as platelet and immune cell activation. These events associated with physiological PS externalization are tightly controlled by the regulated activation of flippases and scramblases. Indeed, improper regulation of PS externalization results in thrombotic diseases such as Scott Syndrome, a defect in coagulation and thrombin production, and in the case of efferocytosis, can result in autoimmunity such as systemic lupus erythematosus (SLE) when PS-mediated apoptosis and efferocytosis fails. The physiological regulation of PS is also perturbed in cancer and during viral infection, whereby PS becomes persistently exposed on the surface of such stressed and diseased cells, which can lead to chronic thrombosis and chronic immune evasion. In this review, we summarize evidence for the dysregulation of PS with a main focus on cancer biology and the pathogenic mechanisms for immune evasion and signaling by PS, as well as the discussion of new therapeutic strategies aimed to target externalized PS. We posit that chronic PS externalization is a universal and agnostic marker for diseased tissues, and in cancer, likely reflects a cell intrinsic form of immune escape. The continued development of new therapeutic strategies for targeting PS also provides rationale for their co-utility as adjuvants and with immune checkpoint therapeutics.
Collapse
Affiliation(s)
- Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Bhumik Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Kenneth Vergel de Dios
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Victor Poalasin
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Yi Wu
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Aizen Yang
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Ganapathy Sriram
- Department Biological, Chemical and Environmental Sciences, Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Nie S, Yang B, Ma R, Zha L, Qin Y, Ou L, Chen X, Li L. Synthetic nanomaterials for spleen-specific mRNA delivery. Biomaterials 2025; 314:122859. [PMID: 39362024 DOI: 10.1016/j.biomaterials.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
In recent years, mRNA vaccine has achieved increasing interest owing to its high potency, safety, ease of production, and low-cost manufacturing. Currently approved mRNA vaccines are administered intramuscularly to transfect local antigen-presenting cells (APCs) to initiate low to moderate immune responses. Spleen, the largest secondary lymphoid organ in the body which contains a large number of APCs close to B and T lymphocytes, could be the ideal site for effective initiation of an enhanced immune response. Here, we provide an overview of the recent advances in the development of synthetic materials for spleen-specific mRNA delivery, and lipid nanoparticle-based approaches will be highlighted. We further discuss the main challenges for spleen-specific mRNA delivery to provide a reference for the development of next-generation synthetic nanomaterials with optimal properties.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Beiqi Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruiying Ma
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Ben WB, Pirjo AM. ATG8 in single membranes: Fresh players of endocytosis and acidic organelle quality control in cancer, neurodegeneration, and inflammation. Biochem Biophys Res Commun 2025; 749:151384. [PMID: 39864381 DOI: 10.1016/j.bbrc.2025.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Ubiquitin-like autophagy-related gene ATG8 proteins are typically associated with degradative quality control via canonical double-membrane macro-autophagosomes in the cell. ATG8 proteins have now stepped forward in non-canonical pathways in single membrane organelles. The growing interest in non-canonical ATG8 roles has been stimulated by recent links to human conditions, especially in the regulation of inflammation, neurodegeneration and cancers. Here, we summarize the evidence linking non-canonical ATG8s to human pathologies and the quality control of acidic V-ATPase-regulated organelles in the cell.
Collapse
Affiliation(s)
- Wang B Ben
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Apaja M Pirjo
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; College of Public Health and Medicine, Flinders University, Bedford Park, SA, 5042, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
9
|
Li S, Yuan H, Li L, Li Q, Lin P, Li K. Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants (Basel) 2025; 14:201. [PMID: 40002387 PMCID: PMC11851681 DOI: 10.3390/antiox14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is a common event involved in cancer pathophysiology, frequently accompanied by unique lipid metabolic reprogramming phenomena. Oxidative stress is caused mainly by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant system in cancer cells. Emerging evidence has reported that oxidative stress regulates the expression and activity of lipid metabolism-related enzymes, leading to the alteration of cellular lipid metabolism; this involves a significant increase in fatty acid synthesis and a shift in the way in which lipids are taken up and utilized. The dysregulation of lipid metabolism provides abundant intermediates to synthesize biological macromolecules for the rapid proliferation of cancer cells; moreover, it contributes to the maintenance of intracellular redox homeostasis by producing a variety of reducing agents. Moreover, lipid derivatives and metabolites play critical roles in signal transduction within cancer cells and in the tumor microenvironment that evades immune destruction and facilitates tumor invasion and metastasis. These findings suggest a close relationship between oxidative stress and lipid metabolism during the malignant progression of cancers. This review focuses on the crosstalk between the redox system and lipid metabolic reprogramming, which provides an in-depth insight into the modulation of ROS on lipid metabolic reprogramming in cancers and discusses potential strategies for targeting lipid metabolism for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| |
Collapse
|
10
|
Nobre I, Guerra IMS, Pinho M, Martins AD, Goracci L, Bonciarelli S, Melo T, Domingues P, Paiva A, Oliveira PF, Domingues MR. Unmasking the lipid landscape: carbamazepine induces alterations in Leydig cell lipidome. Mol Omics 2025. [PMID: 39903100 DOI: 10.1039/d4mo00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Leydig cells rely on lipids and fatty acids (FA) for essential functions like maintaining structural integrity, energy metabolism, and steroid hormone synthesis, including testosterone production. Carbamazepine (CBZ), a common anticonvulsant medication, can influence lipid metabolism and profiles, potentially impacting Leydig cell function and testosterone levels. Understanding this interplay is crucial to optimize treatment strategies for individuals requiring CBZ therapy while mitigating any adverse effects on male reproductive health. This study focuses on evaluating the effects of selected CBZ concentrations on the lipid homeostasis of BLTK-1 murine Leydig cells. By employing liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), we aimed to uncover the specific changes in lipid profiles induced by CBZ exposure (25 and 200 μM). FA analysis demonstrated a significant decrease in FA 22:6 n-3 with increasing CBZ concentration and an increase in the n-6/n-3 ratio. Furthermore, changes in the lipidome, particularly in lipid species belonging to phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), and sphingomyelin (SM) classes were observed. PE and PC lipid species were significantly elevated in Leydig cells exposed to 200 μM CBZ, whereas PG and SM species were downregulated. CBZ treatment significantly altered the Leydig cell phospholipidome, suggesting specific phospholipids such as PG 40:4, PG 34:1, PC O-32:1, PC 32:2, and PE P-38:6, which exhibited the lowest p-values, as potential biomarkers for clinical assessment of CBZ's impact on Leydig cells. These findings underscore the intricate relationship between CBZ exposure and alterations in lipid profiles, offering potential insights for monitoring and mitigating the drug's effects on male reproductive health.
Collapse
Affiliation(s)
- Inês Nobre
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Serviço Patologia Clínica, ULS Coimbra, 3004-561 Coimbra, Portugal
| | - Inês M S Guerra
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Tânia Melo
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-370 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, ESTESC - Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| | - Pedro F Oliveira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Perrone P, Notariale R, Lettieri G, Mele L, La Pietra V, Piscopo M, Manna C. Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity. Free Radic Biol Med 2025; 227:42-51. [PMID: 39613047 DOI: 10.1016/j.freeradbiomed.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its in vivo metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl2 induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl2 treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl2. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Rosaria Notariale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy.
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, NA, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
12
|
Gadiyar V, Davra V, Pulica R, Frederick T, Varsanyi C, Aquib A, Wang Z, Smirnov S, Bapat S, Calianese D, Choudhary A, Kotenko SV, Birge RB. Phosphatidylserine (PS)-targeting chimeric Interferon (IFN) fusion proteins for anti-tumor applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634764. [PMID: 39896467 PMCID: PMC11785247 DOI: 10.1101/2025.01.24.634764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In viable healthy cells, membrane phospholipids are asymmetrically distributed across the lipid bilayer, whereby the anionic phospholipid phosphatidylserine is virtually all distributed on the inner leaflet of the plasma membrane. During apoptosis, phospholipid asymmetry collapses and PS is externalized to the external leaflet where it serves as an "eat-me" signal for efferocytosis, the process whereby dying cells are engulfed and degraded by phagocytes. PS is also externalized on viable activated tumor endothelial cells, stromal cells and cancer cells in the tumor microenvironment reflecting a pathophysiological state of solid cancers that function to suppress host anti-tumor immunity. Several strategies have been envisioned to target dysregulated PS in the tumor microenvironment including PS binding proteins such as Annexin V and PS-targeting monoclonal antibodies (Bavituximab) with promising preclinical results. Here, in an attempt to enhance the efficacy of PS-targeting therapeutics, we have generated a series of recombinant chimeric fusion proteins that fuse type I and type III IFNs (IFN-β-IFN-λ) into a single polypeptide chain separated by a short linker. The IFN-β-IFN-λ fusion proteins retain functions of both type I and type III IFNs but show combined effects to improve biological function as well as enhance anti-tumor activities. To localize IFNs to sites of externalized PS, we next fused the IFN-β-IFN-λ chimeric protein to the PS-targeting gamma-carboxyglutamic acid-rich (Gla) domain of Growth Arrest Specific factor 6 (Gas-6), rendering these IFN biologics as PS targeting modalities. Gas6-IFN-β-IFN-λ proteins selectively bind PS as evident by solid-phase ELISA assays as well as bind PS-positive cells, including apoptotic cells and cells that express CDC50 subunit mutant of the ATP11C flippase. In vivo, Gas6-IFN-β-IFN-λ retain strong anti-tumor activities in a syngeneic model when expressed ectopically in a E0771 breast cancer model and B16-F10 melanoma models. Collectively, we report on the generation and utility of a series of novel in class IFN fusion proteins that target the immune stimulatory features of IFNs to the PS externalization in the tumor microenvironment.
Collapse
Affiliation(s)
- Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
- Present Address Xencor Biologics, 111 West Lemon Ave, Monrovia, CA
| | - Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Sergey Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Samhita Bapat
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| |
Collapse
|
13
|
Ferreira NN, Leite CM, Moreno N, Miranda RR, Pincela Lins PM, Rodero CF, de Oliveira Junior E, Lima EM, Reis RM, Zucolotto V. Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:484-499. [PMID: 39692595 PMCID: PMC11783514 DOI: 10.1021/acsami.4c16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies. Herein, we designed a biomimetic multifunctional nanostructure produced by polymeric poly(d,l-lactic-co-glycolic) acid (PLGA) core loaded with Temozolomide (TMZ) coated with cell membrane isolated from glioma cancer cells. The developed nanostructures (NP-MB) were fully characterized, and their biological performance was investigated extensively. The results indicate that NP-MB could control TMZ release and promote TMZ permeation in the ex vivo nasal porcine mucosa. The higher cytotoxicity of NP-MB in different glioma cell lines, particularly against U251 cells, reinforces their potential for homotypic targeting. The chicken chorioallantoic membrane assay revealed a tumor size reduction and antiangiogenic activity. In vivo biodistribution studies showed that NP-MB effectively reaches the brain following nasal administration. These findings suggest that NP-MB holds promise as a biomimetic nanoplatform for effective targeting and homotypic recognition in GBM therapy with high potential for clinical translation.
Collapse
Affiliation(s)
- Natália Noronha Ferreira
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Celisnolia Morais Leite
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Natália
Sanchez Moreno
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Renata Rank Miranda
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Paula Maria Pincela Lins
- Hasselt
University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Camila Fernanda Rodero
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Edilson de Oliveira Junior
- Laboratório
de Nanotecnologia Farmacêutica e Sistemas de Liberação
de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade
Federal de Goiás − UFG, 5a Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Eliana Martins Lima
- Laboratório
de Nanotecnologia Farmacêutica e Sistemas de Liberação
de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade
Federal de Goiás − UFG, 5a Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Rui M. Reis
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, Rua Antenor Duarte Villela, 1331, Barretos, SP 14784-400, Brazil
- Life and
Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Valtencir Zucolotto
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
14
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
15
|
Liu C, Zhong Q, Kang K, Ma R, Song C. Asymmetrical calcium ions induced stress and remodeling in lipid bilayer membranes. Phys Chem Chem Phys 2025; 27:740-753. [PMID: 39607744 DOI: 10.1039/d4cp01715c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ca2+ ions play crucial roles in regulating many chemical and biological processes, but their impact on lipid bilayer membranes remains elusive, especially when the impacts on the two leaflets are asymmetrical. Using a recently developed multisite Ca2+ model, we performed molecular dynamics simulations to study the impact of Ca2+ on the properties of membranes composed of POPC and POPS and observed that both the structure and fluidity of the membranes were significantly affected. In particular, we examined the influence of asymmetrically distributed Ca2+ on asymmetric lipid bilayers and found that imbalanced stress in the two leaflets was generated, with the negatively charged leaflet on the Ca2+-rich side becoming more condensed, which in turn induced membrane curvature that bent the membrane away from the Ca2+-rich side. We employed continuum mechanics to study the large-scale deformations of a spherical vesicle and found that the vesicle can go through vesiculation to form a multi-spherical shape in which a number of spheres are connected with infinitesimal necks, depending on the specific Ca2+ distributions. These results provide new insights into the underlying mechanisms of many biological phenomena involving Ca2+-membrane interactions and may lead to new methods for manipulating the membrane curvature of vesicles in chemical, biological, and nanosystems.
Collapse
Affiliation(s)
- Chang Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Zhong
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Kai Kang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rui Ma
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Chen Song
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Li J, Ma W, Tang Z, Li Y, Zheng R, Xie Y, Li G. Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review). Mol Med Rep 2025; 31:16. [PMID: 39513609 PMCID: PMC11551695 DOI: 10.3892/mmr.2024.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by hypoxemia and respiratory distress. It is associated with high morbidity and mortality. Due to the complex pathogenesis of ALI, the clinical management of patients with ALI/ARDS is challenging, resulting in numerous post‑treatment sequelae and compromising the quality of life of patients. Macrophages, as a class of innate immune cells, play an important role in ALI/ARDS. In recent years, the functions and phenotypes of macrophages have been better understood due to the development of flow cytometry, immunofluorescence, single‑cell sequencing and spatial genomics. However, no macrophage‑targeted drugs for the treatment of ALI/ARDS currently exist in clinical practice. Natural products are important for drug development, and it has been shown that numerous natural compounds from herbal medicine can alleviate ALI/ARDS caused by various factors by modulating macrophage abnormalities. In the present review, the natural products from herbal medicine that can modulate macrophage abnormalities in ALI/ARDS to treat ALI/ARDS are introduced, and their mechanisms of action, discovered in the previous five years (2019‑2024), are presented. This will provide novel ideas and directions for further research, to develop new drugs for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jincun Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenyu Ma
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuhuan Xie
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Romanauska A, Stankunas E, Schuldiner M, Köhler A. Seipin governs phosphatidic acid homeostasis at the inner nuclear membrane. Nat Commun 2024; 15:10486. [PMID: 39622802 PMCID: PMC11612446 DOI: 10.1038/s41467-024-54811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
The nuclear envelope is a specialized subdomain of the endoplasmic reticulum and comprises the inner and outer nuclear membranes. Despite the crucial role of the inner nuclear membrane in genome regulation, its lipid metabolism remains poorly understood. Phosphatidic acid (PA) is essential for membrane growth as well as lipid storage. Using a genome-wide lipid biosensor screen in S. cerevisiae, we identify regulators of inner nuclear membrane PA homeostasis, including yeast Seipin, a known mediator of nuclear lipid droplet biogenesis. Here, we show that Seipin preserves nuclear envelope integrity by preventing its deformation and ectopic membrane formation. Mutations of specific regions of Seipin, some linked to human lipodystrophy, disrupt PA distribution at the inner nuclear membrane and nuclear lipid droplet formation. Investigating the Seipin co-factor Ldb16 reveals that a triacylglycerol binding site is crucial for lipid droplet formation, whereas PA regulation can be functionally separated. Our study highlights the potential of lipid biosensor screens for examining inner nuclear membrane lipid metabolism.
Collapse
Affiliation(s)
- Anete Romanauska
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
- University of Vienna, Dr.-Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Edvinas Stankunas
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
- Medical University of Vienna, Dr.-Bohr-Gasse 9/3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alwin Köhler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
- University of Vienna, Dr.-Bohr-Gasse 9/3, 1030, Vienna, Austria.
- Medical University of Vienna, Dr.-Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
18
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2341-2359. [PMID: 39215908 PMCID: PMC11585516 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
19
|
Bannon MS, Ellena JF, Gourishankar AS, Marsh SR, Trevisan-Silva D, Sherman NE, Jourdan LJ, Gourdie RG, Letteri RA. Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024; 9:1215-1227. [PMID: 39281343 PMCID: PMC11395315 DOI: 10.1039/d4me00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Peptides are naturally potent and selective therapeutics with massive potential; however, low cell membrane permeability limits their clinical implementation, particularly for hydrophilic, anionic peptides with intracellular targets. To overcome this limitation, esterification of anionic carboxylic acids on therapeutic peptides can simultaneously increase hydrophobicity and net charge to facilitate cell internalization, whereafter installed esters can be cleaved hydrolytically to restore activity. To date, however, most esterified therapeutics contain either a single esterification site or multiple esters randomly incorporated on multiple sites. This investigation provides molecular engineering insight into how the number and position of esters installed onto the therapeutic peptide α carboxyl terminus 11 (αCT11, RPRPDDLEI) with 4 esterification sites affect hydrophobicity and the hydrolysis process that reverts the peptide to its original form. After installing methyl esters onto αCT11 using Fischer esterification, we isolated 5 distinct products and used 2D nuclear magnetic resonance spectroscopy, reverse-phase high performance liquid chromatography, and mass spectrometry to determine which residues were esterified in each and the resulting increase in hydrophobicity. We found esterifying the C-terminal isoleucine to impart the largest increase in hydrophobicity. Monitoring ester hydrolysis showed the C-terminal isoleucine ester to be the most hydrolytically stable, followed by the glutamic acid, whereas esters on aspartic acids hydrolyze rapidly. LC-MS revealed the formation of transient intramolecular aspartimides prior to hydrolysis to carboxylic acids. In vitro proof-of-concept experiments showed esterifying αCT11 to increase cell migration into a scratch, highlighting the potential of multi-site esterification as a tunable, reversible strategy to enable the delivery of therapeutic peptides.
Collapse
Affiliation(s)
- Mark S Bannon
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Jeffrey F Ellena
- Biomolecular Magnetic Resonance Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Aditi S Gourishankar
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Spencer R Marsh
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Dilza Trevisan-Silva
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - L Jane Jourdan
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Robert G Gourdie
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| |
Collapse
|
20
|
Tao J, Shen X, Qian H, Ding Q, Wang L. TIM proteins and microRNAs: distinct impact and promising interactions on transplantation immunity. Front Immunol 2024; 15:1500228. [PMID: 39650660 PMCID: PMC11621082 DOI: 10.3389/fimmu.2024.1500228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Achieving sustained activity and tolerance in of allogeneic grafts after post-transplantation remains a substantial challenge. The response of the immune system to "non-self" MHC-antigenic peptides initiates a crucial phase, wherein blocking positive co-stimulatory signals becomes imperative to ensure graft survival and tolerance. MicroRNAs (miRNAs) inhibit mRNA translation or promote mRNA degradation by complementary binding of mRNA seed sequences, which ultimately affects protein synthesis. These miRNAs exhibit substantial promise as diagnostic, prognostic, and therapeutic candidates for within the realm of solid organ transplantations. Current research has highlighted three members of the T cell immunoglobulin and mucin domain (TIM) family as a novel therapeutic avenue in transplantation medicine and alloimmunization. The interplay between miRNAs and TIM proteins has been extensively explored in viral infections, inflammatory responses, and post-transplantation ischemia-reperfusion injuries. This review aims to elucidate the distinct roles of miRNAs and TIM in transplantation immunity and delineate their interdependent relationships in terms of targeted regulation. Specifically, this investigation sought seeks to uncover the potential of miRNA interaction with TIM, aiming to induce immune tolerance and bolster allograft survival after transplantation. This innovative strategy holds substantial promise in for the future of transplantation science and practice.
Collapse
Affiliation(s)
- Jialing Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiaoxuan Shen
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| |
Collapse
|
21
|
Gadiyar V, Calianese DC, Pulica R, Varsanyi C, Wang Z, Aquib A, Choudhary A, Birge RB. Expression, purification and characterization of phosphatidylserine-targeting antibodies for biochemical and therapeutic applications. Methods Cell Biol 2024; 191:15-40. [PMID: 39824554 DOI: 10.1016/bs.mcb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The externalization of Phosphatidylserine (PS) from the inner surface of the plasma membrane to the outer surface of the plasma membrane is an emblematic event during apoptosis and serves as a potent "eat-me" signal for the efferocytosis of apoptotic cells. Although less well understood, PS is also externalized on live cells in the tumor microenvironment and on live virus-infected cells whereby it serves as an immune modulatory signal that drives tolerance and immune escape. Given the importance of PS in cancer immunology and immune escape, PS-targeting monoclonal antibodies have been characterized with promising immunotherapeutic potential. Here, we describe the cloning and characterization of a series of PS targeting antibodies and their potential use and utility in immuno-oncology.
Collapse
Affiliation(s)
- Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States; Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Alok Choudhary
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States; Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
22
|
Jain M, Matysiak S. Dual Role of Anionic Lipids in Amyloid Aggregation. J Phys Chem B 2024; 128:10831-10840. [PMID: 39450869 DOI: 10.1021/acs.jpcb.4c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's, affect millions worldwide and share a common feature: the aggregation of intrinsically disordered proteins into toxic oligomers that interact with cell membranes. In Alzheimer's disease (AD), amyloid-beta (Aβ) peptides accumulate and bind to plasma membranes, potentially disrupting cellular function. The complex interplay between amyloidogenic peptides and lipid membranes, particularly the role of anionic lipids, is crucial in disease pathogenesis but challenging to characterize experimentally. The literature presents conflicting results on the influence of anionic lipids on peptide aggregation kinetics, highlighting a knowledge gap. To address this, we used coarse-grained molecular dynamics (CG-MD) simulations to study interactions between a model amyloidogenic peptide, amyloid-β's K16LVFFAE22 fragment (Aβ16-22), and mixed lipid bilayers. We used phosphatidylserine (PS) and phosphatidylcholine (PC) as representative anionic and zwitterionic lipids, respectively, examining the mixed bilayer compositions of 0% PS-100% PC, 10% PS-90% PC, and 30% PS-70% PC. Our simulations revealed that membranes enriched in anionic lipids enhance peptide adsorption and interaction kinetics. The aggregation dynamics was modulated by two competing factors: increased local peptide concentration near negatively charged membranes, which promoted aggregation, and peptide-lipid interactions, which slowed it down. Higher percentages of anionic lipids led to smaller and more ordered aggregates and enhanced lipid demixing, leading to the formation of PS clusters. These findings contribute to understanding membrane-mediated peptide aggregation in neurodegenerative disorders, potentially guiding new therapeutic strategies targeting the early stages of protein aggregation in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Meenal Jain
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
23
|
Goshtasbi H, Awale S, Amini-Fazl MS, Fathi M, Movafeghi A, Barar J, Omidi Y. Chitosan-graft-poly(lactide) nanocarriers: An efficient antioxidant delivery system for combating oxidative stress. Int J Biol Macromol 2024; 279:135280. [PMID: 39349320 DOI: 10.1016/j.ijbiomac.2024.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 10/02/2024]
Abstract
Oxidative stress is a key factor in various diseases, and thus exogenous antioxidants offer effective therapeutic potential. While astaxanthin (ATX) is a potent natural antioxidant, its poor water solubility, bioavailability, and stability hinder its application. This study aimed to develop an amphiphilic chitosan-graft-poly(lactide) (CS-g-PLA) copolymer utilizing a new strategy by ring-opening polymerization of D, l-lactide via organosoluble CS/sodium dodecyl sulfate complex. Subsequently, CS-g-PLA micelles were prepared for efficient encapsulation and delivery of ATX. CS-g-PLA copolymers were characterized by FT-IR and 1H NMR. Transmission electron microscopy and dynamic light scattering revealed micellar morphology and size distribution. The antioxidant activity of CS-g-PLA/ATX was assessed using the DPPH assay, demonstrating significant improvement compared to free ATX. Furthermore, the cytotoxicity of micellar ATX was evaluated on H2O2-treated bone marrow mesenchymal stem cells (BMSCs) using MTT assay. Annexin V staining and mitochondrial membrane potential (∆Ψm) analysis revealed reduced apoptosis and enhanced protection by ATX-loaded micelles compared to free ATX. These findings suggest CS-g-PLA micelles as promising nanocarriers for ATX delivery, putatively enhancing its antioxidant potential and protecting stem cells in oxidative stress environments. This approach could hold significant implications for stem cell therapy in diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
24
|
Zhao H, Li Z, Liu D, Zhang J, You Z, Shao Y, Li H, Yang J, Liu X, Wang M, Wu C, Chen J, Wang J, Kong G, Zhao L. PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles. J Extracell Vesicles 2024; 13:e70012. [PMID: 39508411 PMCID: PMC11541859 DOI: 10.1002/jev2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.
Collapse
Affiliation(s)
| | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
- The Center for Heart DevelopmentKey Lab of MOE for Development Biology and Protein ChemistryCollege of Life SciencesHunan Normal UniversityChangshaHunanChina
| | - Da Liu
- Echo Biotech Co., LtdBeijingChina
| | | | | | - Yuzhang Shao
- Department of PathologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | | | - Jun Yang
- Echo Biotech Co., LtdBeijingChina
| | | | | | | | | | | | | | | |
Collapse
|
25
|
de Souza Cardoso R, Ono A. The Effects of Viral Structural Proteins on Acidic Phospholipids in Host Membranes. Viruses 2024; 16:1714. [PMID: 39599829 PMCID: PMC11599007 DOI: 10.3390/v16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Enveloped viruses rely on host membranes for trafficking and assembly. A substantial body of literature published over the years supports the involvement of cellular membrane lipids in the enveloped virus assembly processes. In particular, the knowledge regarding the relationship between viral structural proteins and acidic phospholipids has been steadily increasing in recent years. In this review, we will briefly review the cellular functions of plasma membrane-associated acidic phospholipids and the mechanisms that regulate their local distribution within this membrane. We will then explore the interplay between viruses and the plasma membrane acidic phospholipids in the context of the assembly process for two enveloped viruses, the influenza A virus (IAV) and the human immunodeficiency virus type 1 (HIV-1). Among the proteins encoded by these viruses, three viral structural proteins, IAV hemagglutinin (HA), IAV matrix protein-1 (M1), and HIV-1 Gag protein, are known to interact with acidic phospholipids, phosphatidylserine and/or phosphatidylinositol (4,5)-bisphosphate. These interactions regulate the localization of the viral proteins to and/or within the plasma membrane and likely facilitate the clustering of the proteins. On the other hand, these viral proteins, via their ability to multimerize, can also alter the distribution of the lipids and may induce acidic-lipid-enriched membrane domains. We will discuss the potential significance of these interactions in the virus assembly process and the property of the progeny virions. Finally, we will outline key outstanding questions that need to be answered for a better understanding of the relationships between enveloped virus assembly and acidic phospholipids.
Collapse
Affiliation(s)
| | - Akira Ono
- Department of Microbiology and Immunology, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
26
|
Chen J, Wang Z, Liu S, Zhao R, Chen Q, Li X, Zhang S, Wang J. Lymphocyte-Derived Engineered Apoptotic Bodies with Inflammation Regulation and Cartilage Affinity for Osteoarthritis Therapy. ACS NANO 2024; 18:30084-30098. [PMID: 39403980 DOI: 10.1021/acsnano.4c11622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Apoptotic bodies as plentiful extracellular vesicles generated from apoptotic cells play a central role in signal transduction and homeostasis regulation and simultaneously switch death to regeneration to a certain extent. Herein, we designed engineered apoptotic bodies derived from T cells to have the capacity of inflammation regulation and cartilage affinity. The engineered apoptotic bodies as a natural anti-inflammation factor were encapsulated into lubricating hydrogel microspheres to achieve an injectable microsphere complex for the treatment of osteoarthritis (OA). In the above therapeutic system, the engineered apoptotic bodies acted as a biochemical cue to regulate the inflammatory microenvironment and promote chondrocyte cartilage homeostasis, whereas the lubricating hydrogel microspheres served as a biophysical stimulation to effectively reduce the friction of the cartilage surface, restore the cartilage stress, and control the slow delivery of the encapsulated engineered apoptotic bodies by friction degradation. Consequently, the current work creates an injectable and multifunctional therapeutic microsphere to advance cartilage remodeling and OA therapy.
Collapse
Affiliation(s)
- Jia Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiyue Zhao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Chen
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Guo J, He J, Xu S, Chen X, Zhu Z, Ji X, Wu D. Phosphatidylserine: A Novel Target for Ischemic Stroke Treatment. Biomolecules 2024; 14:1293. [PMID: 39456225 PMCID: PMC11506168 DOI: 10.3390/biom14101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past 40 years, research has heavily emphasized stroke treatments that directly target ischemic cascades after stroke onset. Much attention has focused on studying neuroprotective drugs targeting one aspect of the ischemic cascade. However, the single-target therapeutic approach resulted in minimal clinical benefit and poor outcomes in patients. Considering the ischemic cascade is a multifaceted and complex pathophysiological process with many interrelated pathways, the spotlight is now shifting towards the development of neuroprotective drugs that affect multiple aspects of the ischemic cascade. Phosphatidylserine (PS), known as the "eat-me" signal, is a promising candidate. PS is involved in many pathophysiological changes in the central nervous system after stroke onset, including apoptosis, inflammation, coagulation, and neuronal regeneration. Moreover, PS might also exert various roles in different phases after stroke onset. In this review, we describe the synthesis, regulation, and function of PS under physiological conditions. Furthermore, we also summarize the different roles of PS after stroke onset. More importantly, we also discuss several treatment strategies that target PS. We aim to advocate a novel stroke care strategy by targeting PS through a translational perspective.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China;
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Zhanwei Zhu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China;
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
28
|
Long T, Li D, Vale G, Jiang Y, Schmiege P, Yang ZJ, McDonald JG, Li X. Molecular insights into human phosphatidylserine synthase 1 reveal its inhibition promotes LDL uptake. Cell 2024; 187:5665-5678.e18. [PMID: 39208797 PMCID: PMC11455612 DOI: 10.1016/j.cell.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In mammalian cells, two phosphatidylserine (PS) synthases drive PS synthesis. Gain-of-function mutations in the Ptdss1 gene lead to heightened PS production, causing Lenz-Majewski syndrome (LMS). Recently, pharmacological inhibition of PSS1 has been shown to suppress tumorigenesis. Here, we report the cryo-EM structures of wild-type human PSS1 (PSS1WT), the LMS-causing Pro269Ser mutant (PSS1P269S), and PSS1WT in complex with its inhibitor DS55980254. PSS1 contains 10 transmembrane helices (TMs), with TMs 4-8 forming a catalytic core in the luminal leaflet. These structures revealed a working mechanism of PSS1 akin to the postulated mechanisms of the membrane-bound O-acyltransferase family. Additionally, we showed that both PS and DS55980254 can allosterically inhibit PSS1 and that inhibition by DS55980254 activates the SREBP pathways, thus enhancing the expression of LDL receptors and increasing cellular LDL uptake. This work uncovers a mechanism of mammalian PS synthesis and suggests that selective PSS1 inhibitors have the potential to lower blood cholesterol levels.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongyu Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yaoyukun Jiang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhongyue J Yang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
30
|
Li C, Wang J, Wu H, Zang L, Qiu W, Wei W, Wang T, Wang C. Baicalein induces apoptosis by targeting ribosomes in Candida auris. Arch Microbiol 2024; 206:404. [PMID: 39283329 DOI: 10.1007/s00203-024-04136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
The emergence of the "super fungus" Candida auris poses a significant threat to human health, given its multidrug resistance and high mortality rates. Therefore, developing a new antifungal strategy is necessary. Our previous research showed that Baicalein (BE), a key bioactive compound from the dried root of the perennial herb Scutellaria baicalensis Georgi, has strong fungistatic properties against C. auris. Nevertheless, the antifungal activity of BE against C. auris and its mechanism of action requires further investigation. In this study, we explored how BE affects this fungus using various techniques, including scanning electron microscopy (SEM), Annexin V-FITC apoptosis detection, CaspACE FITC-VAD-FMK In Situ Marker, reactive oxygen species (ROS) assay, singlet oxygen sensor green (SOSG) fluorescent probe, enhanced mitochondrial membrane potential (MMP) assay with JC-1, DAPI staining, TUNEL assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Our findings revealed that BE induced several apoptotic features, including phosphatidylserine (PS) externalization, metacaspase activation, nuclear condensation and DNA fragmentation. BE also increased intracellular ROS levels and altered mitochondrial functions. Additionally, transcriptomic analysis and RT-qPCR validation indicated that BE may induce apoptosis in C. auris by affecting ribosome-related pathways, suggesting that ribosomes could be new targets for antifungal agents, in addition to cell walls, membranes, and DNA. This study emphasizes the antifungal activity and mechanism of BE against C. auris, offering a promising treatment strategy for C. auris infection.
Collapse
Affiliation(s)
- Can Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Wang
- Anhui Provincial Institutes for Food and Drug Control, Hefei, China
| | - Hui Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Long Zang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Qiu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenfan Wei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, (College of Life Science), Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
31
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613099. [PMID: 39314363 PMCID: PMC11419146 DOI: 10.1101/2024.09.15.613099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Membrane trafficking is a conserved process required for the movement and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. We used a genetic approach to identify reduction-of-function mutations in tat-1 that suppress nekl -associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS to the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with this, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did the inhibition of PS biosynthesis. Using the auxin-inducible degron system, we found that depletion of NEKL-2 or NEKL-3 led to defects in RME-1 localization and that a reduction in TAT-1 function partially restored RME-1 localization in NEKL-3-depleted cells. ARTICLE SUMMARY Endocytosis is an essential process required for the movement of proteins and lipids within cells. NEKL-2 and NEKL-3, two evolutionarily conserved proteins in the nematode Caenorhabditis elegans , are important regulators of endocytosis. In the current study, the authors describe a new functional link between the NEKLs and several proteins with known roles in endocytosis including TAT-1, a conserved enzyme that moves lipids between the bilayers of cellular membranes. As previous work implicated NEKLs in developmental defects and cancer, the present study can provide new insights into how the misregulation of endocytosis affects human health and disease.
Collapse
|
32
|
Xu K, Huang Q, Lyu Y, Wang S, Lu Y, Qian G. Phosphatidylserine improves aging sepsis survival, modulates gut microbiome, and prevents sepsis-associated encephalopathy. Biomed Pharmacother 2024; 178:117200. [PMID: 39053420 DOI: 10.1016/j.biopha.2024.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Aged adults are prone to both short- and long-term complications following sepsis due to ineffective therapy. Phosphatidylserine (PS) is a membrane nutrient supplement known to enhance cognition and brain function, but its potential effects in treating sepsis are not well-documented. Our study aimed to explore the potential of PS in improving outcomes in sepsis and sepsis-associated encephalopathy (SAE). Middle-aged mice were administered PS for two months following induction of sepsis by lipopolysaccharides. The results indicated a significant increase in the survival rate of mice treated with PS after sepsis. Surviving mice underwent open field and shuttle box tests 45 days post-sepsis, revealing potential alleviation of neurobehavioral impairments due to PS pretreatment. Analysis at 60 days post-sepsis euthanasia showed reduced cleaved-caspase 3 in neurons and glial cell markers in the PS-treated group compared to the untreated sepsis group. Furthermore, PS administration effectively reduced proinflammatory cytokine gene expression in the hippocampus of mice with SAE, potentially inhibiting the TBK1/NLRP3/ASC signaling pathway. In the gut, PS pretreatment modulated β-diversity while maintaining jejunal morphology and colon ZO-1 expression, without significantly affecting α-diversity indices. Our findings suggest that PS administration improves survival rates, modulates the gut microbiome, preserves gut integrity, and ameliorates brain pathology in survived mice after sepsis. Importantly, these findings have significant implications for sepsis treatment and cognitive function preservation in aging individuals, providing new insights and sparking further interest and investigation into the potential of PS in sepsis treatment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ying Lyu
- Department of Traditional Chinese Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyan Wang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Gang Qian
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200050, China.
| |
Collapse
|
33
|
Phinney NZ, Huang X, Toombs JE, Brekken RA. Development of betabodies: The next generation of phosphatidylserine targeting agents. J Biol Chem 2024; 300:107681. [PMID: 39159812 PMCID: PMC11416255 DOI: 10.1016/j.jbc.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Externalized phosphatidylserine (PS) is a phospholipid and a selective marker of the tumor microenvironment (TME). It is exposed on the outer leaflet of the plasma membrane of tumor-associated endothelial cells, apoptotic tumor cells, and some viable tumor cells, where it functions in part to suppress immune responses by binding to PS receptors expressed on tumor-infiltrating myeloid cells. PS has been targeted with antibodies, such as bavituximab, that bind the phospholipid via a cofactor, β2-glycoprotein 1 (β2GP1); these antibodies showed excellent specificity for tumor vasculature and induce an immune stimulatory environment. We have advanced this concept by developing the next generation of PS targeting agent, a fusion protein (betabody) constructed by linking PS-binding domain V of β2GP1 to the Fc of an IgG2a. Betabodies bind to externalized PS with high affinity (∼1 nM), without the requirement of a co-factor and localize robustly to the TME. We demonstrate that betabodies are a direct PS-targeting agent that has the potential to be used as anti-tumor therapy, drug delivery vehicles, and tools for imaging the TME.
Collapse
Affiliation(s)
- Natalie Z Phinney
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xianming Huang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason E Toombs
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rolf A Brekken
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
34
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
35
|
Reyes Ballista JM, Hoover AJ, Noble JT, Acciani MD, Miazgowicz KL, Harrison SA, Tabscott GAL, Duncan A, Barnes DN, Jimenez AR, Brindley MA. Chikungunya virus release is reduced by TIM-1 receptors through binding of envelope phosphatidylserine. J Virol 2024; 98:e0077524. [PMID: 39007616 PMCID: PMC11334481 DOI: 10.1128/jvi.00775-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM-1 has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production. IMPORTANCE Chikungunya virus (CHIKV) is an enveloped alphavirus transmitted by the bites of infectious mosquitoes. Infection with CHIKV results in the development of fever, joint pain, and arthralgia that can become chronic and last for months after infection. Prevention of this disease is still highly focused on vector control strategies. In December 2023, a new live attenuated vaccine against CHIKV was approved by the FDA. We aimed to study the cellular factors involved in CHIKV release, to better understand CHIKV's ability to efficiently infect and spread among a wide variety of cell lines. We found that TIM-1 receptors can significantly abrogate CHIKV's ability to efficiently exit infected cells. This information can be beneficial for maximizing viral particle production in laboratory settings and during vaccine manufacturing.
Collapse
Affiliation(s)
- Judith M. Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ashley J. Hoover
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Joseph T. Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sarah A. Harrison
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Grace Andrea L. Tabscott
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Avery Duncan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Don N. Barnes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
36
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Toth DD, Souder CL, Patuel S, English CD, Konig I, Ivantsova E, Malphurs W, Watkins J, Anne Costa K, Bowden JA, Zubcevic J, Martyniuk CJ. Angiotensin II Alters Mitochondrial Membrane Potential and Lipid Metabolism in Rat Colonic Epithelial Cells. Biomolecules 2024; 14:974. [PMID: 39199363 PMCID: PMC11353208 DOI: 10.3390/biom14080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
An over-active renin-angiotensin system (RAS) is characterized by elevated angiotensin II (Ang II). While Ang II can promote metabolic and mitochondrial dysfunction in tissues, little is known about its role in the gastrointestinal system (GI). Here, we treated rat primary colonic epithelial cells with Ang II (1-5000 nM) to better define their role in the GI. We hypothesized that Ang II would negatively affect mitochondrial bioenergetics as these organelles express Ang II receptors. Ang II increased cellular ATP production but reduced the mitochondrial membrane potential (MMP) of colonocytes. However, cells maintained mitochondrial oxidative phosphorylation and glycolysis with treatment, reflecting metabolic compensation with impaired MMP. To determine whether lipid dysregulation was evident, untargeted lipidomics were conducted. A total of 1949 lipids were detected in colonocytes spanning 55 distinct (sub)classes. Ang II (1 nM) altered the abundance of some sphingosines [So(d16:1)], ceramides [Cer-AP(t18:0/24:0)], and phosphatidylcholines [OxPC(16:0_20:5(2O)], while 100 nM Ang II altered some triglycerides and phosphatidylserines [PS(19:0_22:1). Ang II did not alter the relative expression of several enzymes in lipid metabolism; however, the expression of pyruvate dehydrogenase kinase 2 (PDK2) was increased, and PDK2 can be protective against dyslipidemia. This study is the first to investigate the role of Ang II in colonic epithelial cell metabolism.
Collapse
Affiliation(s)
- Darby D. Toth
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Christopher L. Souder
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Sarah Patuel
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Cole D. English
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Isaac Konig
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras 37200-000, MG, Brazil
| | - Emma Ivantsova
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Wendi Malphurs
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Jacqueline Watkins
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Kaylie Anne Costa
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - John A. Bowden
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH 43614, USA;
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
38
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Eberle SA, Gustavsson M. Bilayer lipids modulate ligand binding to atypical chemokine receptor 3. Structure 2024; 32:1174-1183.e5. [PMID: 38776922 DOI: 10.1016/j.str.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.
Collapse
Affiliation(s)
- Stefanie Alexandra Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
40
|
Gowda D, Masum MA, B Gowda SG, Shekhar C, Rubel MZU, Kira S, Ichii O, Kon Y, Chiba H, Hui SP. Lipidomic study of kidney in a mouse model with urine flow obstruction. Sci Rep 2024; 14:18042. [PMID: 39098953 PMCID: PMC11298537 DOI: 10.1038/s41598-024-68270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Obstructed urine flow is known to cause structural and functional kidney damage leading to renal fibrosis. However, limited information is available on the change in kidney lipids during urinary tract obstruction. In this study, we investigated the change in lipidome in a mouse model with unilateral ureteral obstruction (UUO). The establishment of the UUO model was confirmed by histopathological examination using transmission electron microscopy. Untargeted liquid chromatography/mass spectrometry was carried out over a time course of 4 and 7 days. Compared to the sham control, the UUO kidney at 7 days showed dilatation of the renal tubule with loss of brush borders and thickening of the capillary endothelium. In the kidney lipidomes obtained from the UUO 7 days group compared to the control, a significant decrease of ceramide, sphingomyelin, phosphatidylcholine, lysophospholipids, and phosphatidylethanolamine was observed, whereas cholesteryl esters, free fatty acids, phosphatidylglycerol, and cardiolipins were significantly increased. The present study revealed the disturbed lipid metabolism in the UUO model, which may provide a clue to potential lipid pathways and therapeutic targets for the early stage of renal fibrosis.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Md Abdul Masum
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-0809, Japan
| | - Chandra Shekhar
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
- Departments of Physiology, Medicine, Molecular Biology Immunology and Biochemistry, and Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Md Zahir Uddin Rubel
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Shunnosuke Kira
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, 060-0809, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
41
|
Niu Y, Pemberton JG, Kim YJ, Balla T. Phosphatidylserine enrichment in the nuclear membrane regulates key enzymes of phosphatidylcholine synthesis. EMBO J 2024; 43:3414-3449. [PMID: 38918635 PMCID: PMC11329639 DOI: 10.1038/s44318-024-00151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Phosphatidylserine (PS) is an important anionic phospholipid that is synthesized within the endoplasmic reticulum (ER). While PS shows the highest enrichment and serves important functional roles in the plasma membrane (PM) but its role in the nucleus is poorly explored. Using three orthogonal approaches, we found that PS is also uniquely enriched in the inner nuclear membrane (INM) and the nuclear reticulum (NR). Nuclear PS is critical for supporting the translocation of CCTα and Lipin1α, two key enzymes important for phosphatidylcholine (PC) biosynthesis, from the nuclear matrix to the INM and NR in response to oleic acid treatment. We identified the PS-interacting regions within the M-domain of CCTα and M-Lip domain of Lipin1α, and show that lipid droplet formation is altered by manipulations of nuclear PS availability. Our studies reveal an unrecognized regulatory role of nuclear PS levels in the regulation of key PC synthesizing enzymes within the nucleus.
Collapse
Affiliation(s)
- Yang Niu
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Pontejo SM, Martinez S, Zhao A, Barnes K, de Anda J, Alimohamadi H, Lee EY, Dishman AF, Volkman BF, Wong GC, Garboczi DN, Ballesteros A, Murphy PM. Chemokines Kill Bacteria by Binding Anionic Phospholipids without Triggering Antimicrobial Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604863. [PMID: 39091850 PMCID: PMC11291121 DOI: 10.1101/2024.07.25.604863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids kill Escherichia coli and Staphylococcus aureus and that they exert rapid bacteriostatic and bactericidal effects against E. coli with a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics, E. coli failed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophia Martinez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zhao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Barnes
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Haleh Alimohamadi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Ernest Y. Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gerard C.L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - David N. Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela Ballesteros
- Section of Sensory Physiology and Biophysics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Frostegård A, Haegerstrand A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5-A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals (Basel) 2024; 17:979. [PMID: 39204083 PMCID: PMC11357257 DOI: 10.3390/ph17080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Despite progress in the management of patients with retinal vascular and degenerative diseases, there is still an unmet clinical need for safe and effective therapeutic options with novel mechanisms of action. Recent mechanistic insights into the pathogenesis of retinal diseases with a prominent vascular component, such as retinal vein occlusion (RVO), diabetic retinopathy (DR) and wet age-related macular degeneration (AMD), may open up new treatment paradigms that reach beyond the inhibition of vascular endothelial growth factor (VEGF). Phosphatidylserine (PS) is a novel lipid target that is linked to the pathophysiology of several human diseases, including retinal diseases. PS acts upstream of VEGF and complement signaling pathways. Annexin A5 is a protein that targets PS and inhibits PS signaling. This review explores the current understanding of the potential roles of PS as a target and Annexin A5 as a therapeutic. The clinical development status of Annexin A5 as a therapeutic and the potential utility of PS-Annexin A5 as a theranostic pairing in retinal vascular conditions in particular is described.
Collapse
Affiliation(s)
- Anna Frostegård
- Annexin Pharmaceuticals AB, Kammakargatan 48, S-111 60 Stockholm, Sweden
- Unit of Immunology and Chronic Disease, IMM, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
44
|
Yamada K, St Croix C, Stolz DB, Tyurina YY, Tyurin VA, Bradley LR, Kapralov AA, Deng Y, Zhou X, Wei Q, Liao B, Fukuda N, Sullivan M, Trudeau J, Ray A, Kagan VE, Zhao J, Wenzel SE. Compartmentalized mitochondrial ferroptosis converges with optineurin-mediated mitophagy to impact airway epithelial cell phenotypes and asthma outcomes. Nat Commun 2024; 15:5818. [PMID: 38987265 PMCID: PMC11237105 DOI: 10.1038/s41467-024-50222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Laura R Bradley
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanhan Deng
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qi Wei
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bo Liao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Otolaryngology-Head & Neck Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nobuhiko Fukuda
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mara Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Trudeau
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anuradha Ray
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jinming Zhao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
45
|
Kim S, Heo H, Kwon SH, Park JH, Lee G, Jeon SH. Loss of function of phosphatidylserine synthase causes muscle atrophy in Drosophila. Dev Biol 2024; 511:1-11. [PMID: 38548146 DOI: 10.1016/j.ydbio.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Maintenance of appropriate muscle mass is crucial for physical activity and metabolism. Aging and various pathological conditions can cause sarcopenia, a condition characterized by muscle mass decline. Although sarcopenia has been actively studied, the mechanisms underlying muscle atrophy are not well understood. Thus, we aimed to investigate the role of Phosphatidylserine synthase (Pss) in muscle development and homeostasis in Drosophila. The results showed that muscle-specific Pss knockdown decreased exercise capacity and produced sarcopenic phenotypes. In addition, it increased the apoptosis rate because of the elevated reactive oxygen species production resulting from mitochondrial dysfunction. Moreover, the autophagy rate increased due to increased FoxO activity caused by reduced Akt activity. Collectively, these findings demonstrate that enhanced apoptosis and autophagy rates resulting from muscle-specific Pss knockdown jointly contribute to sarcopenia development, highlighting the key role of the PSS pathway in muscle health.
Collapse
Affiliation(s)
- Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Heo
- Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, 02841, Republic of Korea
| | - Jae H Park
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville TN, 37996, USA
| | - Gyunghee Lee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville TN, 37996, USA
| | - Sang-Hak Jeon
- Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
46
|
Zhong Z, Hu Z, Zhou W, Qin X, Tan S. The bone marrow lipidomics of mice reveal sex-related differences. Biomed Chromatogr 2024; 38:e5875. [PMID: 38643980 DOI: 10.1002/bmc.5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024]
Abstract
Osteoporosis is a common skeletal disorder characterized by an imbalance between bone resorption and formation, exhibiting a higher prevalence in women compared with men. While previous studies have primarily focused on genomics and genetics in osteoporosis susceptibility, there is a lack of systematic exploration of sex-specific differences in lipid levels in mouse bone marrow. Multiple reaction monitoring-based liquid chromatography-trandem mass spectrometry (LC-MS/MS) was used to quantify lipidomic profiles in bone marrow samples from three female mice and three male mice. The LC-MS/MS technique based on the multiple reaction monitoring method identified and quantified 184 lipids from 15 lipid classes. The contents of most lipids in the bone marrow cells of female mice were higher than those in male mice, including four polyunsaturated fatty acids, three phospholipids and four sphingolipids. Among all the lipid molecules, lactosylceramide (d18:0/16:0) showed the highest fold change in female mice, while its precursor lipid, glucosylceramide, was the most up-regulated in male mice. This study, focusing on bone marrow lipidomics, elucidates significant sexual dimorphism in lipid levels within bone marrow cells. It provides novel evidence supporting the higher prevalence of osteoporosis in women and enhances our understanding of the connection between sex-specific lipid levels and the risk of osteoporosis.
Collapse
Affiliation(s)
- Ziqing Zhong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaolin Tan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
47
|
Zhang D, Liang G, Gui L, Zheng W, Zeng Y, Liu Y, Li X, Yang Y, Fan R, Lu Y, Hu X, Guan J, Li T, Yang H, Cheng J, Gong M. Nanometabolomics Elucidated Biological Prospective of Mo 4/3B 2-x Nanosheets: Toward Metabolic Reprogramming of Amino Acid Metabolism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30622-30635. [PMID: 38857197 DOI: 10.1021/acsami.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Mo4/3B2-x nanosheets are newly developed, and 2D transition metal borides (MBene) were reported in 2021, but there is no report on their further applications and modification; hence, this article sheds light on the significance of potential biological prospects for future biomedical applications. Therefore, elucidation of the biocompatibility, biotoxicology, and bioactivity of Mo4/3B2-x nanosheets has been an urgent need to be fulfilled. Nanometabolomics (also referred as nanomaterials-based metabolomics) was first proposed and utilized in our previous work, which specialized in interpreting nanomaterials-induced metabolic reprogramming through aqueous metabolomics and lipidomics approach. Hence, nanometabolomics could be considered as a novel concept combining nanoscience and metabolomics to provide bioinformation on nanomaterials' biomedical applications. In this work, the safe range of concentration (<50 mg/L) with good biosafety toward human umbilical vein endothelial cells (HUVECs) was discovered. The low concentration (5 mg/L) and high concentration (50 mg/L) of Mo4/3B2-x nanosheets were utilized for the in vitro Mo4/3B2-x-cell interaction. Nanometabolomics has elucidated the biological prospective of Mo4/3B2-x nanosheets via monitoring its biocompatibility and metabolic shift of HUVECs. The results revealed that 50 mg/L Mo4/3B2-x nanosheets could lead to a stronger alteration of amino acid metabolism with disturbance of the corresponding amino acid-related pathways (including amino acid metabolism, amino acid degradation, fatty acid biosynthesis, and lipid biosynthesis and metabolism). These interesting results were closely involved with the oxidative stress and production of excess ROS. This work could be regarded as a pathbreaking study on Mo4/3B2-x nanosheets at a biological level, which also designates their further biochemical, medical, and industrial application and development based on nanometabolomics bioinformation.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luolan Gui
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zeng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yumeng Liu
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR; Chengdu Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR; Chengdu Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Xinyi Hu
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Yu G, Ding J, Yang N, Ge L, Chen N, Zhang X, Wang Q, Liu X, Zhang X, Jiang X, Geng Y, Zhang C, Pan J, Wang X, Gao W, Li Z, Zhang H, Ni W, Xiao J, Zhou K, Yang L. Evaluating the pro-survival potential of apoptotic bodies derived from 2D- and 3D- cultured adipose stem cells in ischaemic flaps. J Nanobiotechnology 2024; 22:333. [PMID: 38877492 PMCID: PMC11177420 DOI: 10.1186/s12951-024-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024] Open
Abstract
In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.
Collapse
Affiliation(s)
- Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuzi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuchen Wang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuanlong Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiaoqiong Jiang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenxi Zhang
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jiadong Pan
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
49
|
Kunzelmann K, Ousingsawat J, Schreiber R. VSI: The anoctamins: Structure and function: "Intracellular" anoctamins. Cell Calcium 2024; 120:102888. [PMID: 38657371 DOI: 10.1016/j.ceca.2024.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca2+-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca2+ signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| |
Collapse
|
50
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|