1
|
McLellan JL, Morales-Hernandez B, Saeger S, Hanson KK. A high content imaging assay for identification of specific inhibitors of native Plasmodium liver stage protein synthesis. Antimicrob Agents Chemother 2024; 68:e0079324. [PMID: 39254294 PMCID: PMC11459927 DOI: 10.1128/aac.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be capable of killing parasites in their liver and blood stage forms, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis, as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits; both of which are parasite-specific quinoline-4-carboxamides, and analogs of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for the specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing the identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sarah Saeger
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Varela ELP, Gomes ARQ, Santos ASBD, Cruz JNDA, Carvalho EPDE, Prazeres BAPD, Dolabela MF, Percario S. Lycopene supplementation promoted increased survival and decreased parasitemia in mice with severe malaria: comparison with N-acetylcysteine. AN ACAD BRAS CIENC 2024; 96:e20230347. [PMID: 39046019 DOI: 10.1590/0001-3765202420230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/29/2023] [Indexed: 07/25/2024] Open
Abstract
Oxidative stress is involved in the pathogenesis of malaria, causing anemia, respiratory complications, and cerebral malaria. To mitigate oxidative stress, we investigated the effect of nutritional supplementation whit lycopene (LYC) on the evolution of parasitemia and survival rate in mice infected with Plasmodium berghei ANKA (Pb), comparing to the effects promoted by N-acetylcysteine (NAC). Therefore, 175 mice were randomly distributed into 4 groups; Sham: untreated and uninfected animals; Pb: animals infected with Pb; LYC+Pb: animals treated with LYC and infected with Pb; NAC+Pb: animals treated with NAC and infected with Pb. The animals were followed for 12 days after infection, and survival and parasitemia rates were evaluated. There was a 40.1% increase in parasitemia in the animals of the Pb group on the 12th day, and a survival rate of 45%. LYC supplementation slowed the development of parasitemia to 19% and promoted a significative increase in the survival rate of 80% on the 12th day after infection, compared to the Pb group, effects superior to those promoted by NAC, providing strong evidence of the beneficial effect of LYC on in vivo malaria and stressing the importance of antioxidant supplementation in the treatment of this disease.
Collapse
Affiliation(s)
- Everton Luiz P Varela
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Antônio Rafael Q Gomes
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Aline S B Dos Santos
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Jorddy N DA Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Eliete P DE Carvalho
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Benedito Antônio P Dos Prazeres
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Maria Fani Dolabela
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Sandro Percario
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
3
|
Dias BKM, Mohanty A, Garcia CRS. Melatonin as a Circadian Marker for Plasmodium Rhythms. Int J Mol Sci 2024; 25:7815. [PMID: 39063057 PMCID: PMC11277106 DOI: 10.3390/ijms25147815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite's asexual cycle. Studies indicate a species-specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Célia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (B.K.M.D.); (A.M.)
| |
Collapse
|
4
|
Williams CG, Moreira ML, Asatsuma T, Lee HJ, Li S, Barrera I, Murray E, Soon MSF, Engel JA, Khoury DS, Le S, Wanrooy BJ, Schienstock D, Alexandre YO, Skinner OP, Joseph R, Beattie L, Mueller SN, Chen F, Haque A. Plasmodium infection induces phenotypic, clonal, and spatial diversity among differentiating CD4 + T cells. Cell Rep 2024; 43:114317. [PMID: 38848213 DOI: 10.1016/j.celrep.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.
Collapse
Affiliation(s)
- Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Marcela L Moreira
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Shirley Le
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Brooke J Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dominick Schienstock
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Oliver P Skinner
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Rainon Joseph
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia.
| |
Collapse
|
5
|
Pêgo AC, Lima IS, Martins AC, Sá-Pereira I, Martins G, Gozzelino R. Infection vs. Reinfection: The Immunomodulation of Erythropoiesis. Int J Mol Sci 2024; 25:6153. [PMID: 38892340 PMCID: PMC11172545 DOI: 10.3390/ijms25116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Gozzelino
- NOVA Medical School Research, NOVA University of Lisbon, 1150-082 Lisbon, Portugal
| |
Collapse
|
6
|
McLellan JL, Morales-Hernandez B, Saeger S, Hanson KK. A high content imaging assay for identification of specific inhibitors of native Plasmodium liver stage protein synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596519. [PMID: 38854116 PMCID: PMC11160711 DOI: 10.1101/2024.05.29.596519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be multistage actives, capable of killing parasites in the liver and blood, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits, both of which are parasite-specific quinoline-4-carboxamides, and analogues of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Sarah Saeger
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat Commun 2024; 15:2396. [PMID: 38493187 PMCID: PMC10944460 DOI: 10.1038/s41467-024-46617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Sequestration of infected red blood cells (iRBCs) in the microcirculation is a hallmark of cerebral malaria (CM) in post-mortem human brains. It remains controversial how this might be linked to the different disease manifestations, in particular brain swelling leading to brain herniation and death. The main hypotheses focus on iRBC-triggered inflammation and mechanical obstruction of blood flow. Here, we test these hypotheses using murine models of experimental CM (ECM), SPECT-imaging of radiolabeled iRBCs and cerebral perfusion, MR-angiography, q-PCR, and immunohistochemistry. We show that iRBC accumulation and reduced flow precede inflammation. Unexpectedly, we find that iRBCs accumulate not only in the microcirculation but also in large draining veins and sinuses, particularly at the rostral confluence. We identify two parallel venous streams from the superior sagittal sinus that open into the rostral rhinal veins and are partially connected to infected skull bone marrow. The flow in these vessels is reduced early, and the spatial patterns of pathology correspond to venous drainage territories. Our data suggest that venous efflux reductions downstream of the microcirculation are causally linked to ECM pathology, and that the different spatiotemporal patterns of edema development in mice and humans could be related to anatomical differences in venous anatomy.
Collapse
Affiliation(s)
- A M Oelschlegel
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Research group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - R Bhattacharjee
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - P Wenk
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - K Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - S P Koch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - P Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - K Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - E Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - D Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - J Goldschmidt
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - G Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Kumar A, Singh PP, Tyagi S, Hari Kishan Raju K, Sahu SS, Rahi M. Vivax malaria: a possible stumbling block for malaria elimination in India. Front Public Health 2024; 11:1228217. [PMID: 38259757 PMCID: PMC10801037 DOI: 10.3389/fpubh.2023.1228217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium vivax is geographically the most widely dispersed human malaria parasite species. It has shown resilience and a great deal of adaptability. Genomic studies suggest that P. vivax originated from Asia or Africa and moved to the rest of the world. Although P. vivax is evolutionarily an older species than Plasmodium falciparum, its biology, transmission, pathology, and control still require better elucidation. P. vivax poses problems for malaria elimination because of the ability of a single primary infection to produce multiple relapses over months and years. P. vivax malaria elimination program needs early diagnosis, and prompt and complete radical treatment, which is challenging, to simultaneously exterminate the circulating parasites and dormant hypnozoites lodged in the hepatocytes of the host liver. As prompt surveillance and effective treatments are rolled out, preventing primaquine toxicity in the patients having glucose-6-phosphate dehydrogenase (G6PD) deficiency should be a priority for the vivax elimination program. This review sheds light on the burden of P. vivax, changing epidemiological patterns, the hurdles in elimination efforts, and the essential tools needed not just in India but globally. These tools encompass innovative treatments for eliminating dormant parasites, coping with evolving drug resistance, and the development of potential vaccines against the parasite.
Collapse
Affiliation(s)
- Ashwani Kumar
- ICMR - Vector Control Research Centre, Puducherry, India
| | | | - Suchi Tyagi
- ICMR - Vector Control Research Centre, Puducherry, India
| | | | | | - Manju Rahi
- ICMR - Vector Control Research Centre, Puducherry, India
- Indian Council of Medical Research, Hqrs New Delhi, India
| |
Collapse
|
9
|
Sekar P, Rajagopalan S, Shabani E, Kanjee U, Schureck MA, Arora G, Peterson ME, Traore B, Crompton PD, Duraisingh MT, Desai SA, Long EO. NK cell-induced damage to P.falciparum-infected erythrocytes requires ligand-specific recognition and releases parasitophorous vacuoles that are phagocytosed by monocytes in the presence of immune IgG. PLoS Pathog 2023; 19:e1011585. [PMID: 37939134 PMCID: PMC10659167 DOI: 10.1371/journal.ppat.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMβ2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.
Collapse
Affiliation(s)
- Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sumati Rajagopalan
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marc A. Schureck
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gunjan Arora
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mary E. Peterson
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Boubacar Traore
- Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sanjay A. Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
10
|
Beltagi AE, Elsotouhy A, Al-warqi A, Aker L, Ahmed M. Imaging features of fulminant cerebral malaria: A case report. Radiol Case Rep 2023; 18:3642-3647. [PMID: 37593329 PMCID: PMC10432143 DOI: 10.1016/j.radcr.2023.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Cerebral malaria is associated with high mortality and morbidity in patients infected with Plasmodium Falciparum. The mechanisms of cerebral malaria include sequestration of parasitized red blood cells in brain capillaries, production of cytokines, immune cell/platelet accumulation, and release of microparticles, resulting in disruption of the blood-brain barrier, which caused brain injuries. The severity of this reflects on neurological findings ranging from simple delirium to profound coma. We herein present unique magnetic resonance imaging findings of a case of fulminant cerebral malaria as computed tomography studies usually underestimate the extent of cerebral involvement in malaria.
Collapse
Affiliation(s)
- Ahmed El Beltagi
- Neuroscience Institute, Department of Neuroradiology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine (WCM), Clinical Imaging, Doha, Qatar
| | - Ahmed Elsotouhy
- Neuroscience Institute, Department of Neuroradiology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine (WCM), Clinical Imaging, Doha, Qatar
| | - Akram Al-warqi
- Department of Radiology, Hamad General Hospital, Doha, Qatar
| | - Loai Aker
- Department of Radiology, Hamad General Hospital, Doha, Qatar
| | - Mayada Ahmed
- Weill Cornell Medicine (WCM), Clinical Imaging, Doha, Qatar
| |
Collapse
|
11
|
Clark DJ, Bond C, Andrews A, Muller DJ, Sarkisian A, Opoka RO, Idro R, Bangirana P, Witten A, Sausen NJ, Birbeck GL, John CC, Postels DG. Admission Clinical and EEG Features Associated With Mortality and Long-term Neurologic and Cognitive Outcomes in Pediatric Cerebral Malaria. Neurology 2023; 101:e1307-e1318. [PMID: 37541845 PMCID: PMC10558167 DOI: 10.1212/wnl.0000000000207657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/02/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES For children with cerebral malaria, mortality is high, and in survivors, long-term neurologic and cognitive dysfunctions are common. While specific clinical factors are associated with death or long-term neurocognitive morbidity in cerebral malaria, the association of EEG features with these outcomes, particularly neurocognitive outcomes, is less well characterized. METHODS In this prospective cohort study of 149 children age 6 months to 12 years who survived cerebral malaria in Kampala, Uganda, we evaluated whether depth of coma, number of clinical seizures, or EEG features during hospitalization were associated with mortality during hospitalization, short-term and long-term neurologic deficits, or long-term cognitive outcomes (overall cognition, attention, memory) over the 2-year follow-up. RESULTS Higher Blantyre or Glasgow Coma Scores (BCS and GCS, respectively), higher background voltage, and presence of normal reactivity on EEG were each associated with lower mortality. Among clinical and EEG features, the presence of >4 seizures on admission had the best combination of negative and positive predictive values for neurologic deficits in follow-up. In multivariable modeling of cognitive outcomes, the number of seizures and specific EEG features showed independent association with better outcomes. In children younger than 5 years throughout the study, seizure number and presence of vertex sharp waves were independently associated with better posthospitalization cognitive performance, faster dominant frequency with better attention, and higher average background voltage and faster dominant background frequency with better associative memory. In children younger than 5 years at CM episode but 5 years or older at cognitive testing, seizure number, background dominant frequency, and the presence of vertex sharp waves were each associated with changes in cognition, seizure number and variability with attention, and seizure number with working memory. DISCUSSION In children with cerebral malaria, seizure number is strongly associated with the risk of long-term neurologic deficits, while seizure number and specific EEG features (average background voltage, dominant rhythm frequency, presence of vertex sharp waves, presence of variability) are independently associated with cognitive outcomes. Future studies should evaluate the predictive value of these findings.
Collapse
Affiliation(s)
- Daniel J Clark
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi.
| | - Caitlin Bond
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Alexander Andrews
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Daniel J Muller
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Angela Sarkisian
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Robert O Opoka
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Richard Idro
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Paul Bangirana
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andy Witten
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas J Sausen
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Gretchen L Birbeck
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chandy C John
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Douglas G Postels
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
12
|
Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis. Immunity 2023; 56:592-605.e8. [PMID: 36804959 DOI: 10.1016/j.immuni.2023.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.
Collapse
|
13
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
14
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Santos FA, Cruz GS, Vieira FA, Queiroz BR, Freitas CD, Mesquita FP, Souza PF. Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta Trop 2022; 236:106675. [DOI: 10.1016/j.actatropica.2022.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/01/2022]
|
16
|
Lu J, Chu R, Yin Y, Yu H, Xu Q, Yang B, Sun Y, Song J, Wang Q, Xu J, Lu F, Cheng Y. Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) interacts with the band 3 receptor to promote erythrocyte invasion by malaria parasites. J Biol Chem 2022; 298:101765. [PMID: 35202655 PMCID: PMC8931436 DOI: 10.1016/j.jbc.2022.101765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.
Collapse
Affiliation(s)
- Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruilin Chu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yi Yin
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huijie Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qinwen Xu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, China
| | - Jiahui Xu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
17
|
Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trends Parasitol 2022; 38:450-461. [DOI: 10.1016/j.pt.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
18
|
Molecular mechanisms of hematological and biochemical alterations in malaria: A review. Mol Biochem Parasitol 2021; 247:111446. [PMID: 34953384 DOI: 10.1016/j.molbiopara.2021.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Malaria is a dangerous disease that contributes to millions of hospital visits and hundreds of thousands of deaths, especially in children residing in sub-Saharan Africa. Although several interventions such as vector control, case detection, and treatment are already in place, there is no substantive reduction in the disease burden. Several studies in the past have reported the emergence of resistant strains of malaria parasites (MPs) and mosquitoes, and poor adherence and inaccessibility to effective antimalarial drugs as the major factors for this persistent menace of malaria infections. Moreover, victory against MP infections for many years has been hampered by an incomplete understanding of the complex nature of malaria pathogenesis. Very recent studies have identified different complex interactions and hematological alterations induced by malaria parasites. However, no studies have hybridized these alterations for a better understanding of Malaria pathogenesis. Hence, this review thoroughly discusses the molecular mechanisms of all reported hematological and biochemical alterations induced by MPs infections. Specifically, the mechanisms in which MP-infection induces anemia, thrombocytopenia, leukopenia, dyslipidemia, hypoglycemia, oxidative stress, and liver and kidney malfunctions were presented. The study also discussed how MPs evade the host's immune response and suggested strategies to limit evasion of the host's immune response to combat malaria and its complications.
Collapse
|
19
|
Olivera GC, Ross EC, Peuckert C, Barragan A. Blood-brain barrier-restricted translocation of Toxoplasma gondii from cortical capillaries. eLife 2021; 10:e69182. [PMID: 34877929 PMCID: PMC8700292 DOI: 10.7554/elife.69182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.
Collapse
Affiliation(s)
- Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Emily C Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Christiane Peuckert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| |
Collapse
|
20
|
The returned traveler with neurologic manifestations: could my patient have a parasite? Curr Opin Infect Dis 2021; 34:245-254. [PMID: 33769967 DOI: 10.1097/qco.0000000000000732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The present review focuses on parasitic infections of the central nervous system (CNS) that can affect the international traveler. RECENT FINDINGS The epidemiology of imported parasitic infections is changing and clinicians are treating increasing numbers of returned travelers with parasitic infections in the CNS with which they are not familiar. SUMMARY The epidemiology, life cycle, clinical manifestations, diagnosis, and treatment of parasites that affect the CNS will be discussed.
Collapse
|
21
|
Parasite histones are toxic to brain endothelium and link blood barrier breakdown and thrombosis in cerebral malaria. Blood Adv 2021; 4:2851-2864. [PMID: 32579667 DOI: 10.1182/bloodadvances.2019001258] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Microvascular thrombosis and blood-brain barrier (BBB) breakdown are key components of cerebral malaria (CM) pathogenesis in African children and are implicated in fatal brain swelling. How Plasmodium falciparum infection causes this endothelial disruption and why this occurs, particularly in the brain, is not fully understood. In this study, we have demonstrated that circulating extracellular histones, equally of host and parasite origin, are significantly elevated in CM patients. Higher histone levels are associated with brain swelling on magnetic resonance imaging. On postmortem brain sections of CM patients, we found that histones are colocalized with P falciparum-infected erythrocytes sequestered inside small blood vessels, suggesting that histones might be expelled locally during parasite schizont rupture. Histone staining on the luminal vascular surface colocalized with thrombosis and leakage, indicating a possible link between endothelial surface accumulation of histones and coagulation activation and BBB breakdown. Supporting this, patient sera or purified P falciparum histones caused disruption of barrier function and were toxic to cultured human brain endothelial cells, which were abrogated with antihistone antibody and nonanticoagulant heparin. Overall, our data support a role for histones of parasite and host origin in thrombosis, BBB breakdown, and brain swelling in CM, processes implicated in the causal pathway to death. Neutralizing histones with agents such as nonanticoagulant heparin warrant exploration to prevent brain swelling in the development or progression of CM and thereby to improve outcomes.
Collapse
|
22
|
Jian JY, Inoue SI, Bayarsaikhan G, Miyakoda M, Kimura D, Kimura K, Nozaki E, Sakurai T, Fernandez-Ruiz D, Heath WR, Yui K. CD49d marks Th1 and Tfh-like antigen-specific CD4+ T cells during Plasmodium chabaudi infection. Int Immunol 2021; 33:409-422. [PMID: 33914894 DOI: 10.1093/intimm/dxab020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upon activation, specific CD4+ T cells up-regulate the expression of CD11a and CD49d, surrogate markers of pathogen-specific CD4+ T cells. However, using T-cell receptor transgenic mice specific for a Plasmodium antigen, termed PbT-II, we found that activated CD4+ T cells develop not only to CD11ahiCD49dhi cells, but also to CD11ahiCD49dlo cells during acute Plasmodium infection. CD49dhi PbT-II cells, localized in the red pulp of spleens, expressed transcription factor T-bet and produced IFN-γ, indicating that they were type 1 helper T (Th1)-type cells. In contrast, CD49dlo PbT-II cells resided in the white pulp/marginal zones and were a heterogeneous population, with approximately half of them expressing CXCR5 and a third expressing Bcl-6, a master regulator of follicular helper T (Tfh) cells. In adoptive transfer experiments, both CD49dhi and CD49dlo PbT-II cells differentiated into CD49dhi Th1-type cells after stimulation with antigen-pulsed dendritic cells, while CD49dhi and CD49dlo phenotypes were generally maintained in mice infected with Plasmodium chabaudi. These results suggest that CD49d is expressed on Th1-type Plasmodium-specific CD4+ T cells, which are localized in the red pulp of the spleen, and can be used as a marker of antigen-specific Th1 CD4+ T cells, rather than that of all pathogen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Jiun-Yu Jian
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Eriko Nozaki
- Core Laboratory for Proteomics and Genomics, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| |
Collapse
|
23
|
Ngo-Thanh H, Thuy TD, Suzue K, Kamitani W, Yokoo H, Isoda K, Shimokawa C, Hisaeda H, Imai T. Long-term acrylamide exposure exacerbates brain and lung pathology in a mouse malaria model. Food Chem Toxicol 2021; 151:112132. [PMID: 33737113 DOI: 10.1016/j.fct.2021.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
The consumption of dietary acrylamide (ACR), a carcinogen, results in the dysfunction of various organs and the immune system. However, the impact of ACR exposure on the progression of infectious diseases is unknown. This study investigated the effect of ACR on the progression of malaria infection using a mouse model of malaria. C57BL/6 mice were continuously treated with ACR at a dose of 20 mg/kg bodyweight/day for six weeks (long-term exposure) or phosphate-buffered saline (PBS). Next, the mice were infected with the rodent malaria parasite, Plasmodium berghei NK65 (PbNK). Parasitemia and survival rate were analyzed in the different treatment groups. Magnetic resonance imaging (MRI) and histopathological analyses were performed to evaluate the effect of ACR exposure on the morphology of various organs. Long-term ACR exposure exacerbated PbNK-induced multiorgan dysfunction. MRI and histopathological analysis revealed signs of encephalomeningitis and acute respiratory distress syndrome in the PbNK-infected long-term ACR exposure mice, which decreased the survival rate of mice, but not in the PbNK-infected long-term PBS exposure group. These findings enhance our understanding of the impact of ACR on the progression of infectious diseases, such as malaria.
Collapse
Affiliation(s)
- Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; National Hospital for Tropical Diseases, Hanoi, Viet Nam
| | - Trang Dam Thuy
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Koji Isoda
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
24
|
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines 2021; 20:113-125. [PMID: 33554669 DOI: 10.1080/14760584.2021.1874924] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A safe and effective vaccine will likely be necessary for the control or eradication of malaria which kills 400,000 annually. Our most advanced vaccine candidate to date is RTS,S which is based on the Plasmodium falciparum circumsporozoite protein (PfCSP) of the malaria parasite. However, protection by RTS,S is incomplete and short-lived. AREAS COVERED Here we summarize results from recent clinical trials of RTS,S and critically evaluate recent studies that aim to understand the correlates of protective immunity and why vaccine-induced protection is short-lived. In particular, recent systems serology studies have highlighted a key role for the necessity of inducing functional antibodies. In-depth analyses of immune responses to CSP in both mouse models and vaccinated humans have also highlighted difficulties in generating the maintaining high-quality antibody responses. Finally, in recent years biophysical and structural studies of antibody binding to PfCSP have led to a better understanding of how highly potent antibodies can block infection, which can inform vaccine design. EXPERT OPINION We highlight how both structure-guided vaccine design and a better understanding of the immune response to PfCSP can inform a second generation of PfCSP-based vaccines stimulating a broader range of protective targets within PfCSP.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Ian Andrew Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
25
|
Lima MN, Freitas RJRX, Passos BABR, Darze AMG, Castro-Faria-Neto HC, Maron-Gutierrez T. Neurovascular Interactions in Malaria. Neuroimmunomodulation 2021; 28:108-117. [PMID: 33951667 DOI: 10.1159/000515557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by Plasmodium infection and remains a serious public health problem worldwide, despite control efforts. Malaria can progress to severe forms, affecting multiple organs, including the brain causing cerebral malaria (CM). CM is the most severe neurological complication of malaria, and cognitive and behavior deficits are commonly reported in surviving patients. The number of deaths from malaria has been reducing in recent years, and as a consequence, neurological sequelae have been more evident. Neurological damage in malaria might be related to the neuroinflammation, characterized by glia cell activation, neuronal apoptosis and changes in the blood-brain barrier (BBB) integrity. The neurovascular unit (NVU) is responsible for maintaining the homeostasis of the BBB. Endothelial and pericytes cells in the cerebral microvasculature and neural cells, as astrocytes, neurons, and microglia, compose the NVU. The NVU can be disturbed by parasite metabolic products, such as heme and hemozoin, or cytokines that can promote activation of endothelial and glial cells and lead to increased BBB permeability and subsequently neurodegeneration. In this review, we will approach the main changes that happen in the cells of the NVU due to neuroinflammation caused by malaria infection, and elucidate how the systemic pathophysiology is involved in the onset and progression of CM.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Maria G Darze
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Clark RL. Teratogen update: Malaria in pregnancy and the use of antimalarial drugs in the first trimester. Birth Defects Res 2020; 112:1403-1449. [PMID: 33079495 DOI: 10.1002/bdr2.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Malaria is a particular problem in pregnancy because of enhanced sensitivity, the possibility of placental malaria, and adverse effects on pregnancy outcome. Artemisinin-containing combination therapies (ACTs) are the most effective antimalarials known. WHO recommends 7-day quinine therapy for uncomplicated Plasmodium falciparum malaria in the first trimester despite the superior tolerability and efficacy of 3-day ACT regimens because artemisinins caused embryolethality and/or cardiovascular malformations at relatively low doses in rats, rabbits, and monkeys. The developmental toxicity of artesunate, artemether, and DHA were similar in rats but artesunate was embryotoxic at lower doses in rabbits (5 mg/kg/day) than artemether (no effect level = 25 mg/kg/day). In clinical studies in Africa, treatment with artemether-lumefantrine in the first trimester was observed to be highly efficacious and the miscarriage rate (≤3.1%) was similar to no antimalarial treatment (2.6%). When data from the first-trimester use of largely artesunate-based therapies in Thailand were pooled together, there was no difference in miscarriage rate compared to quinine. However, individually, artesunate-mefloquine was associated with a higher miscarriage rate (15/71 = 21%) compared to other artemisinin-based therapies including 7-day artesunate + clindamycin (2/50 = 4%) and quinine (92/842 = 11%). Thus, appropriate statistical comparisons of individual ACT groups are needed prior to assuming that they all have the same risk for developmental toxicity. Current limitations in the assessment of the safety of ACTs in the first trimester are a lack of exposures early in gestation (gestational weeks 6-7), limited postnatal evaluation for cardiovascular malformations, and the pooling of all ACTs for the assessment of risk.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Saint Augustine, Florida, USA
| |
Collapse
|
27
|
Early Perturbations in Glucose Utilization in Malaria-Infected Murine Erythrocytes, Liver and Brain Observed by Metabolomics. Metabolites 2020; 10:metabo10070277. [PMID: 32645891 PMCID: PMC7407383 DOI: 10.3390/metabo10070277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Investigation of glucose utilization during an infection is central to the study of energy metabolism. The heavy utilization of glucose by the malaria parasite, and the consequences of this process, have been investigated extensively. However, host glucose utilization during early infection has not been explored to date. In a first attempt, this article investigates the changes in the host glucose utilization in Balb/c mice infected with Plasmodium berghei ANKA using 13C-labeled glucose infusion followed by NMR spectroscopy. The results suggested significant alterations of liver, brain and red blood cell (RBC) glucose utilization during early infection when the parasitemia was <1%. At the pathway level, we observed a decrease in the shunt metabolite 2,3-bisphosphoglycerate in the RBCs. Glycolysis and pathways associated with it, along with fatty acid unsaturation, were altered in the liver. Significant changes were observed in the central carbon metabolic pathways in the brain. These results have implications in understanding the host physiology during early infection and pave the way for detailed flux analysis of the proposed perturbed pathways.
Collapse
|
28
|
Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. ScientificWorldJournal 2020. [DOI: 10.1155/2020/1295381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malaria, caused by apicomplexan parasite, is an old disease and continues to be a major public health threat in many countries. This article aims to present different aspects of malaria including causes, pathogenesis, prevention, and treatment in an articulate and comprehensive manner. Six Plasmodium species are recognized as the etiology of human malaria, of which Plasmodium falciparum is popular in East and Southern Africa. Malaria is transmitted mainly through Anopheles gambiae and Anopheles funestus, the two most effective malaria vectors in the world. Half of the world’s population is at risk for malaria infection. Globally, the morbidity and mortality rates of malaria have become decreased even though few reports in Ethiopia showed high prevalence of malaria. The malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium has created a challenge in an effort to develop new drugs, vaccines, and preventive methods against malaria. However, three types of vaccines and a lot of novel compounds are under perclinical and clinical studies that are triggered by the occurrence of resistance among commonly used drugs and insecticides. Antiadhesion adjunctive therapies are also under investigation in the laboratory. In addition to previously known targets for diagnostic tool, vaccine and drug discovery scientists from all corner of the world are in search of new targets and chemical entities.
Collapse
|
29
|
Fayyazi N, Esmaeili S, Taheri S, Ribeiro FF, Scotti MT, Scotti L, Ghasemi JB, Saghaei L, Fassihi A. Pharmacophore Modeling, Synthesis, Scaffold Hopping and Biological β- Hematin Inhibition Interaction Studies for Anti-malaria Compounds. Curr Top Med Chem 2020; 19:2743-2765. [DOI: 10.2174/1568026619666191116160326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023]
Abstract
Backgound:Exploring potent compounds is critical to generating multi-target drug discovery. Hematin crystallization is an important mechanism of malaria.Methods:A series of chloroquine analogues were designed using a repositioning approach to develop new anticancer compounds. Protein-ligand interaction fingerprints and ADMET descriptors were used to assess docking performance in virtual screenings to design chloroquine hybrid β-hematin inhibitors. A PLS algorithm was applied to correlate the molecular descriptors to IC50 values. The modeling presented excellent predictive power with correlation coefficients for calibration and cross-validation of r2 = 0.93 and q2 = 0.72. Using the model, a series of 4-aminoquinlin hybrids were synthesized and evaluated for their biological activity as an external test series. These compounds were evaluated for cytotoxic cell lines and β-hematin inhibition.Results:The target compounds exhibited high β-hematin inhibition activity and were 3-9 times more active than the positive control. Furthermore, all the compounds exhibited moderate to high cytotoxic activity. The most potent compound in the dataset was docked with hemoglobin and its pharmacophore features were generated. These features were used as input to the Pharmit server for screening of six databases.Conclusion:The compound with the best score from ChEMBL was 2016904, previously reported as a VEGFR-2 inhibitor. The 11 compounds selected presented the best Gold scores with drug-like properties and can be used for drug development.
Collapse
Affiliation(s)
- Neda Fayyazi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| | - Somayeh Esmaeili
- Traditional Medicine and Medical Material Research Center (TMRC), Shahid beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Taheri
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Frederico F. Ribeiro
- Synthesis and Drug Delivery Laboratory, Biological Sciences Department, Paraíba State University, João Pessoa, Brazil
| | | | | | - Jahan B. Ghasemi
- College of Sciences, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Bello RO, Abdullah MA, Abd Majid R, Chin VK, Abd Rachman Isnadi MF, Ibraheem ZO, Hussain MK, Magaji MG, Basir R. IL35 modulation altered survival, cytokine environment and histopathological consequences during malaria infection in mice. Malar J 2019; 18:434. [PMID: 31856836 PMCID: PMC6923855 DOI: 10.1186/s12936-019-3070-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice. METHODS Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated. RESULTS Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice. CONCLUSION These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.
Collapse
Affiliation(s)
- Ramatu Omenesa Bello
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Kaduna, 810107, Nigeria
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslaini Abd Majid
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Malaysia
| | | | - Zaid Osama Ibraheem
- Department of Pharmacology, Faculty of Pharmacy, Al Rafidain University, Al Mustansyria, Baghdad, Iraq
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohammed Garba Magaji
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Kaduna, 810107, Nigeria
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
31
|
Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M. New Insights into Malaria Pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:315-343. [PMID: 31648610 DOI: 10.1146/annurev-pathmechdis-012419-032640] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria remains a major public health threat in tropical and subtropical regions across the world. Even though less than 1% of malaria infections are fatal, this leads to about 430,000 deaths per year, predominantly in young children in sub-Saharan Africa. Therefore, it is imperative to understand why a subset of infected individuals develop severe syndromes and some of them die and what differentiates these cases from the majority that recovers. Here, we discuss progress made during the past decade in our understanding of malaria pathogenesis, focusing on the major human parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; , .,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Detection of malaria with light microscopy and Nested polymerase chain reaction (Nested PCR) methods in peripheral blood expansions and investigation of the genetic diversity of Plasmodium species by 18S rRNA gene in Southeast of Iran. Microb Pathog 2019; 137:103782. [PMID: 31600540 DOI: 10.1016/j.micpath.2019.103782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/07/2019] [Accepted: 10/05/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Malaria is a public health concern that leads to about a million deaths worldwide every year. Malaria is caused by the genus Plasmodium, which includes P. falciparum, P. vivax, P. malariae, and P. ovale. Molecular phylogeny is essential to better recognition the evolution of the genus Plasmodium genus and detection of the relative degree of Plasmodium species in humans. The aim of this study was to detect malaria with Light Microscopy (LM) and Nested polymerase chain reaction (Nested PCR) methods in peripheral blood expansions and to investigate the genetic diversity of Plasmodium species by 18S rRNA gene in the southeast of Iran. METHODS A total of 97 blood smears were collected from patients suspected to malaria in a 6-year period in the southeast of Iran including Hormozgan, Kerman, and Sistan and Baluchestan provinces. Diagnosis of Plasmodium species on blood smears was performed using LM and Nested PCR methods. In addition, 16 Plasmodium-positive samples were chosen for the determination of genetic diversity. RESULTS Overall, 97 of 97 (100%) studied cases were positive by LM while 94 of 97 (96.8%) of them were detected as malaria by Nested PCR. Except for seven cases, Nested PCR confirmed the LM results. These samples involved two P. vivax and five P. falciparum in the LM method. Meanwhile, the Nested PCR was detected in all of the cases as a mixed infection with P. vivax and P. falciparum. The results of the phylogenetic analysis revealed two main clades and five different subclades. About 87.5% of the isolates were located in clade I and contained P. vivax. In addition, 12.5% of the studied isolates involved P. falciparum that was in clade II. CONCLUSION According to our results, Nested PCR method had higher sensitivity than LM and is suggested as a good approach for malaria detection. Consideration the wide diversity of tested isolates and the importance of vaccine development, which is affected by this diversity, further studies are needed in this regard.
Collapse
|
33
|
Kluck GEG, Wendt CHC, Imperio GED, Araujo MFC, Atella TC, da Rocha I, Miranda KR, Atella GC. Plasmodium Infection Induces Dyslipidemia and a Hepatic Lipogenic State in the Host through the Inhibition of the AMPK-ACC Pathway. Sci Rep 2019; 9:14695. [PMID: 31604978 PMCID: PMC6789167 DOI: 10.1038/s41598-019-51193-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Malaria is a major parasitic disease of humans and is a health public problem that affects more than 100 countries. In 2017, it caused nearly half a million deaths out of 219 million infections. Malaria is caused by the protozoan parasites of the genus Plasmodium and is transmitted by female mosquitoes of the genus Anopheles. Once in the bloodstream, Plasmodium merozoites invade erythrocytes and proliferate until the cells lyses and release new parasites that invade other erythrocytes. Remarkably, they can manipulate the vertebrate host's lipid metabolism pathways, since they cannot synthesize lipid classes that are essential for their development and replication. In this study, we show that mice infected with Plasmodium chabaudi present a completely different plasma profile from control mice, with marked hyperproteinemia, hypertriglyceridemia, hypoglycemia, and hypocholesterolemia. In addition, white adipose and hepatic tissue and analyses from infected animals revealed the accumulation of triacylglycerol in both tissues and free fatty acids and free cholesterol in the liver. Hepatic mRNA and protein expression of key enzymes and transcription factors involved in lipid metabolism were also altered by P. chabaudi infection, leading to a lipogenic state. The enzyme 5' AMP-activated protein kinase (AMPK), a master regulator of cell energetic metabolism, was also modulated by the parasite, which reduced AMPK phosphorylation levels upon infection. Pretreatment with metformin for 21 days followed by infection with P. chabaudi was effective in preventing infection of mice and also lowered the hepatic accumulation of lipids while activating AMPK. Together, these results provide new and important information on the specific molecular mechanisms induced by the malaria parasite to regulate hepatic lipid metabolism in order to facilitate its development, proliferation, and lifespan in its vertebrate host.
Collapse
Affiliation(s)
- George Eduardo Gabriel Kluck
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Hübner Costabile Wendt
- Laboratory of Cellular Ultrastructure Hertha Meyer, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever Eustaquio do Imperio
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Fernanda Carvalho Araujo
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá Correa Atella
- Laboratory of Comparative Neurobiology and Development, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella da Rocha
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Rocha Miranda
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Ventura PDS, Carvalho CPF, Barros NMT, Martins-Silva L, Dantas EO, Martinez C, Melo PMS, Pesquero JB, Carmona AK, Nagaoka MR, Gazarini ML. Malaria infection promotes a selective expression of kinin receptors in murine liver. Malar J 2019; 18:213. [PMID: 31234939 PMCID: PMC6591901 DOI: 10.1186/s12936-019-2846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.
Collapse
Affiliation(s)
- Priscilla D S Ventura
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Nilana M T Barros
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Edilson O Dantas
- Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Martinez
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Pollyana M S Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcia R Nagaoka
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil.
| |
Collapse
|
35
|
Maier AG, Matuschewski K, Zhang M, Rug M. Plasmodium falciparum. Trends Parasitol 2019; 35:481-482. [DOI: 10.1016/j.pt.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
36
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
37
|
MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proc Natl Acad Sci U S A 2018; 115:E12024-E12033. [PMID: 30514812 DOI: 10.1073/pnas.1812909115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.
Collapse
|
38
|
Kume A, Kasai S, Furuya H, Suzuki H. α-Tocopheryl succinate-suppressed development of cerebral malaria in mice. Parasitol Res 2018; 117:3177-3182. [PMID: 30030625 DOI: 10.1007/s00436-018-6016-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
α-Tocopheryl succinate (α-TOS), a derivative of vitamin E, is synthesized by esterification of α-tocopherol. It has been reported that α-TOS inhibits the mitochondrial complex II resulting in generation of reactive oxygen species, which triggers selective apoptosis in a large number of cancer cells, while it appears largely non-toxic towards normal cells. Plasmodium parasites are well known to have high sensitivity to oxidative stress. Thus, α-TOS is suspected to impact Plasmodium parasites by oxidative stress. In this study, to ascertain whether α-TOS is an appropriate candidate for an anti-malarial drug, C57BL/6J mice were infected with P. yoelii 17XL and P. berghei ANKA, a lethal strain of rodent malaria and experimental cerebral malaria (ECM), and treated with several concentrations of α-TOS by intraperitoneal administration on 1, 3, 5, and 7 days post infection (dpi). In addition, the permeability of the blood brain barrier (BBB) was examined by Evans blue staining in ECM on 7 dpi. As a result of α-TOS treatment, parasitemia was decreased and survival rate was significantly increased in mice infected with both parasites. Furthermore, the intensity of Evans blue staining on brains taken from α-TOS-treated mice was weaker than that of untreated mice. This means that α-TOS might inhibit the breakdown of BBB and progress of cerebral malaria. These findings indicate that vitamin E derivatives like α-TOS might be a potential candidate for treatment drugs against malaria.
Collapse
Affiliation(s)
- Aiko Kume
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shunji Kasai
- Eisai Co., Ltd., 13-1 Nishigoken-cho, Shinjuku-ku, Tokyo, 162-0812, Japan
| | - Hana Furuya
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroshi Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
39
|
Lee HJ, Georgiadou A, Walther M, Nwakanma D, Stewart LB, Levin M, Otto TD, Conway DJ, Coin LJ, Cunnington AJ. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci Transl Med 2018; 10:eaar3619. [PMID: 29950443 PMCID: PMC6326353 DOI: 10.1126/scitranslmed.aar3619] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA sequencing of blood from infected patients. We performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes, which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Coexpression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ-related genes, together with inadequate suppression of type 1 interferon signaling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying new treatments.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael Walther
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Lindsay B Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael Levin
- Section of Paediatrics, Imperial College, London W2 1PG, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
40
|
Abstract
A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum, in particular, artemisinin-based combination therapies (ACTs). Increasingly, ACTs are also used to treat Plasmodium vivax, the second major human malaria parasite. However, resistance to frontline artemisinins and partner drugs is now causing the failure of P. falciparum ACTs in southeast Asia. In this Review, we discuss our current knowledge of markers and mechanisms of resistance to artemisinins and ACTs. In particular, we describe the identification of mutations in the propeller domains of Kelch 13 as the primary marker for artemisinin resistance in P. falciparum and explore two major mechanisms of resistance that have been independently proposed: the activation of the unfolded protein response and proteostatic dysregulation of parasite phosphatidylinositol 3- kinase. We emphasize the continuing challenges and the imminent need to understand mechanisms of resistance to improve parasite detection strategies, develop new combinations to eliminate resistant parasites and prevent their global spread.
Collapse
|
41
|
Oliveira KRHM, Kauffmann N, Leão LKR, Passos ACF, Rocha FAF, Herculano AM, do Nascimento JLM. Cerebral malaria induces electrophysiological and neurochemical impairment in mice retinal tissue: possible effect on glutathione and glutamatergic system. Malar J 2017; 16:440. [PMID: 29096633 PMCID: PMC5668953 DOI: 10.1186/s12936-017-2083-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
Background Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has usually been associated with cognitive, behavioural and motor dysfunctions, being the retinopathy the most serious consequence resulting from the disease. The pathophysiological mechanisms underlying this complication remain incompletely understood. Several experimental models of CM have already been developed in order to clarify those mechanisms related to this syndrome. In this context, the present work has been performed to investigate which possible electrophysiological and neurochemistry alterations could be involved in the CM pathology. Methods Experimental CM was induced in Plasmodium berghei-infected male and female C57Bl/6 mice. The survival and neurological symptoms of CM were registered. Brains and retina were assayed for TNF levels and NOS2 expression. Electroretinography measurements were recorded to assessed a- and b-wave amplitudes and neurochemicals changes were evaluated by determination of glutamate and glutathione levels by HPLC. Results Susceptible C57Bl/6 mice infected with ≈ 106 parasitized red blood cells (P. berghei ANKA strain), showed a low parasitaemia, with evident clinical signs as: respiratory failure, ataxia, hemiplegia, and coma followed by animal death. In parallel to the clinical characterization of CM, the retinal electrophysiological analysis showed an intense decrease of a- and-b-wave amplitude associated to cone photoreceptor response only at the 7 days post-infection. Neurochemical results demonstrated that the disease led to a decrease in the glutathione levels with 2 days post inoculation. It was also demonstrated that the increase in the glutathione levels during the infection was followed by the increase in the 3H-glutamate uptake rate (4 and 7 days post-infection), suggesting that CM condition causes an up-regulation of the transporters systems. Furthermore, these findings also highlighted that the electrophysiological and neurochemical alterations occurs in a manner independent on the establishment of an inflammatory response, once tumour necrosis factor levels and inducible nitric oxide synthase expression were altered only in the cerebral tissue but not in the retina. Conclusions In summary, these findings indicate for the first time that CM induces neurochemical and electrophysiological impairment in the mice retinal tissue, in a TNF-independent manner.
Collapse
Affiliation(s)
- Karen R H M Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil.
| | - Nayara Kauffmann
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Luana K R Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Adelaide C F Passos
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Fernando A F Rocha
- Laboratório de Neurofisiologia Eduardo Oswaldo Cruz, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Anderson M Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - José L M do Nascimento
- Laboratório de Neuroquímica Molecular e Celular Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
42
|
Bule MH, Ahmed I, Maqbool F, Zia MA. Quinazolinone Derivatives as a Potential Class of Compounds in Malaria Drug Discovery. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.818.831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Park GS, Opoka RO, Shabani E, Wypyszynski A, Hanisch B, John CC. Plasmodium falciparum Histidine-Rich Protein-2 Plasma Concentrations Are Higher in Retinopathy-Negative Cerebral Malaria Than in Severe Malarial Anemia. Open Forum Infect Dis 2017; 4:ofx151. [PMID: 28948179 PMCID: PMC5597884 DOI: 10.1093/ofid/ofx151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/14/2017] [Indexed: 11/14/2022] Open
Abstract
Background Malaria retinopathy has been proposed as marker of “true” cerebral malaria (CM), ie, coma due to Plasmodium falciparum vs coma due to other causes, with incidental P falciparum parasitemia. Plasma P falciparum histidine-rich protein-2 (PfHRP2) concentrations distinguish retinopathy-positive (RP) from retinopathy-negative (RN) CM but have not been compared between RN CM and other forms of severe malaria or asymptomatic parasitemia (AP). Methods We compared plasma PfHRP2 concentrations in 260 children with CM (247 examined for retinopathy), 228 children with severe malarial anemia (SMA), and 30 community children with AP. Results Plasmodium falciparum HRP2 concentrations were higher in children with RP CM than RN CM (P = .006), with an area under the receiver operating characteristic curve of 0.61 (95% confidence interval, 0.53–0.68). Plasmodium falciparum HRP2 concentrations and sequestered parasite biomass were higher in RN CM than SMA (both P < .03) or AP (both P < .001). Conclusions Plasmodium falciparum HRP2 concentrations are higher in children with RN CM than in children with SMA or AP, suggesting that P falciparum is involved in disease pathogenesis in children with CM. Plasmodium falciparum HRP2 concentrations may provide a more feasible and consistent assessment of the contribution of P falciparum to severe disease than malaria retinopathy.
Collapse
Affiliation(s)
- Gregory S Park
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Robert O Opoka
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Estela Shabani
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis
| | - Alexis Wypyszynski
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Benjamin Hanisch
- Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, District of Columbia
| | - Chandy C John
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
44
|
Dunst J, Kamena F, Matuschewski K. Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Front Cell Infect Microbiol 2017; 7:324. [PMID: 28775960 PMCID: PMC5517394 DOI: 10.3389/fcimb.2017.00324] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria is among the major causes of malaria-associated mortality and effective adjunctive therapeutic strategies are currently lacking. Central pathophysiological processes involved in the development of cerebral malaria include an imbalance of pro- and anti-inflammatory responses to Plasmodium infection, endothelial cell activation, and loss of blood-brain barrier integrity. However, the sequence of events, which initiates these pathophysiological processes as well as the contribution of their complex interplay to the development of cerebral malaria remain incompletely understood. Several cytokines and chemokines have repeatedly been associated with cerebral malaria severity. Increased levels of these inflammatory mediators could account for the sequestration of leukocytes in the cerebral microvasculature present during cerebral malaria, thereby contributing to an amplification of local inflammation and promoting cerebral malaria pathogenesis. Herein, we highlight the current knowledge on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria with particular emphasis on their roles in endothelial activation and leukocyte recruitment, as well as their implication in the progression to blood-brain barrier permeability and neuroinflammation, in both human cerebral malaria and in the murine experimental cerebral malaria model. A better molecular understanding of these processes could provide the basis for evidence-based development of adjunct therapies and the definition of diagnostic markers of disease progression.
Collapse
Affiliation(s)
- Josefine Dunst
- Parasitology Unit, Max Planck Institute for Infection BiologyBerlin, Germany.,Institute of Chemistry and Biochemistry, Free UniversityBerlin, Germany.,Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Faustin Kamena
- Parasitology Unit, Max Planck Institute for Infection BiologyBerlin, Germany.,Institute of Chemistry and Biochemistry, Free UniversityBerlin, Germany.,Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection BiologyBerlin, Germany.,Institute of Chemistry and Biochemistry, Free UniversityBerlin, Germany
| |
Collapse
|
45
|
Kim C, Hoffmann G, Searson PC. Integrated Magnetic Bead-Quantum Dot Immunoassay for Malaria Detection. ACS Sens 2017; 2:766-772. [PMID: 28723116 DOI: 10.1021/acssensors.7b00119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria persists as a disease of high morbidity and mortality due to improper diagnosis, overuse of drugs, rapidly evolving drug resistant parasites, and poor disease monitoring. The two common tests used in developing countries, microscopic examination of Glemsa slides and rapid diagnostic tests (RDTs), have limitations associated with variability in specificity and sensitivity, and qualitative outcome. Here we report on an immunoassay using magnetic beads for capture and quantum dots for detection of histidine-rich protein 2 (HRP2). Conventional immunoassays, such as ELISA, and molecular analysis tools, such as PCR, are difficult to implement in low resource settings. Therefore, to provide a proof-of-principle of translation of this assay to low resource settings, we demonstrate HRP2 detection in an automated droplet-based microfluidic device. Droplet-based platforms have the potential to allow translation of molecular detection assays to point-of-care use in low resource settings.
Collapse
Affiliation(s)
- Chloe Kim
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| | - Gwendolyn Hoffmann
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter C. Searson
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
46
|
Matuschewski K. Vaccines against malaria-still a long way to go. FEBS J 2017; 284:2560-2568. [DOI: 10.1111/febs.14107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/09/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Matuschewski
- Department of Molecular Parasitology; Institute of Biology; Humboldt University Berlin; Germany
| |
Collapse
|
47
|
Host Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling. Infect Immun 2017; 85:IAI.00941-16. [PMID: 28396319 PMCID: PMC5442633 DOI: 10.1128/iai.00941-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/28/2017] [Indexed: 11/20/2022] Open
Abstract
The resolution of malaria infection is dependent on a balance between proinflammatory and regulatory immune responses. While early effector T cell responses are required for limiting parasitemia, these responses need to be switched off by regulatory mechanisms in a timely manner to avoid immune-mediated tissue damage. Interleukin-10 receptor (IL-10R) signaling is considered to be a vital component of regulatory responses, although its role in host resistance to severe immune pathology during acute malaria infections is not fully understood. In this study, we have determined the contribution of IL-10R signaling to the regulation of immune responses during Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM). We show that antibody-mediated blockade of the IL-10R during P. berghei ANKA infection in ECM-resistant BALB/c mice leads to amplified T cell activation, higher serum gamma interferon (IFN-γ) concentrations, enhanced intravascular accumulation of both parasitized red blood cells and CD8+ T cells to the brain, and an increased incidence of ECM. Importantly, the pathogenic effects of IL-10R blockade during P. berghei ANKA infection were reversible by depletion of T cells and neutralization of IFN-γ. Our findings underscore the importance of IL-10R signaling in preventing T-cell- and cytokine-mediated pathology during potentially lethal malaria infections.
Collapse
|
48
|
Abstract
Interest in cell-derived extracellular vesicles and their physiological and pathological implications is constantly growing. Microvesicles, also known as microparticles, are small extracellular vesicles released by cells in response to activation or apoptosis. Among the different microvesicles present in the blood of healthy individuals, platelet-derived microvesicles (PMVs) are the most abundant. Their characterization has revealed a heterogeneous cargo that includes a set of adhesion molecules. Similarly to platelets, PMVs are also involved in thrombosis through support of the coagulation cascade. The levels of circulatory PMVs are altered during several disease manifestations such as coagulation disorders, rheumatoid arthritis, systemic lupus erythematosus, cancers, cardiovascular diseases, and infections, pointing to their potential contribution to disease and their development as a biomarker. This review highlights recent findings in the field of PMV research and addresses their contribution to both healthy and diseased states.
Collapse
Affiliation(s)
- Imene Melki
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| | - Nicolas Tessandier
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| | - Anne Zufferey
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| | - Eric Boilard
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| |
Collapse
|
49
|
Nutmakul T, Pattanapanyasat K, Soonthornchareonnon N, Shiomi K, Mori M, Prathanturarug S. Antiplasmodial activities of a Thai traditional antipyretic formulation, Bencha-Loga-Wichian: A comparative study between the roots and their substitutes, the stems. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:125-132. [PMID: 27396349 DOI: 10.1016/j.jep.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bencha-Loga-Wichian (BLW) is a polyherbal antipyretic formulation that is comprised of Capparis micracantha, Clerodendrum indicum, Ficus racemosa, Harrisonia perforata, and Tiliacora triandra. A traditional medical textbook has documented the use of this formulation for the treatment of many types of fever, including malaria-like fever. Traditionally, BLW is composed of the root parts of those plants. However, in current practice, the stem parts are frequently substituted. Thus, this study aimed to evaluate the antiplasmodial activities of BLW and compare the efficacy between the stem and root parts. MATERIALS AND METHODS BLW formulations produced from either the stem or root parts of the various constituent plants as well as the stems or roots of the individual plants were separately extracted and tested against the chloroquine-sensitive (Pf3D7) and -resistant (PfW2) strains Plasmodium falciparum using flow cytometry. The cytotoxicity against peripheral blood mononuclear cells was evaluated using the WST-8 assay to determine the selectivity index (SI). The active compounds of BLW were isolated using antiplasmodial-guided isolation and quantified using Ultra-Performance Liquid Chromatography (UPLC). RESULTS The stem and root parts of BLW and the individual plants exhibited antiplasmodial activities at the same levels with good SI values in the range of 3.55-19.74. The extracts of BLW exhibited promising antiplasmodial activity against both Pf3D7 (IC50<5µg/mL) and PfW2 (IC50=6-10µg/mL). Among the five component plants, T. triandra was the most active and exhibited an IC50<5µg/mL against both strains of parasites with SI values >10. We isolated tiliacorinine and yanangcorinine as the major active compounds (IC50<2µg/mL). However, these two compounds demonstrated cytotoxic effects (SI<1). The UPLC analysis identified these compounds in both the stem and root parts of BLW in the range of 0.57-7.66%, which correlated with the antiplasmodial activity. The concentrations of these compounds in BLW, at comparable efficacy, were much less than those at the IC50s for the single compounds alone. It suggested that synergistic interactions increased the antiplasmodial effects as well as alleviated the toxicity of the active compounds in BLW. CONCLUSION This study described a promising antiplasmodial activity of BLW that had good selectivity and a toxicity-alleviating effect. The results provided scientific support for the use of this formulation for the treatment of malaria. In addition, the stem and root parts of the plants in BLW exhibited equivalent activities, which indicates the potential for the substitution of the stem parts in the formulation. Thus, we recommend additional study of the stem parts of these plants for further development on the basis of the availability and sustainability.
Collapse
Affiliation(s)
- Thanutchaporn Nutmakul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Bangkok 10400, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Noppamas Soonthornchareonnon
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Bangkok 10400, Thailand
| | - Kazuro Shiomi
- Laboratory of Biological Functions, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mihoko Mori
- Laboratory of Biological Functions, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Sompop Prathanturarug
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Bangkok 10400, Thailand.
| |
Collapse
|
50
|
Swanson PA, Hart GT, Russo MV, Nayak D, Yazew T, Peña M, Khan SM, Janse CJ, Pierce SK, McGavern DB. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog 2016; 12:e1006022. [PMID: 27907215 PMCID: PMC5131904 DOI: 10.1371/journal.ppat.1006022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. Cerebral malaria (CM) is a severe and potentially fatal complication of malaria in humans that results in swelling and bleeding within the brain. The mechanisms that cause this fatal disease in humans are not completely understood. We studied an animal model known as experimental cerebral malaria to learn more about the factors that drive this disease process. Using a technique referred to as intravital microscopy, we captured movies of immune cells operating in the living brain as the disease developed. At the peak of disease, we observed evidence of immune cells interacting with and aggregating along blood vessels throughout the brain. These interactions were directly associated vascular leakage. This caused the brain to swell, which gave rise to an unsustainable pressure that ultimately killed neurons responsible for heart and lung function. The fatal swelling was induced by immune cells (referred to as T cells) interacting with bits of parasite presented by blood vessels in the brain. Removal of this parasite presentation protected the mice from fatal disease. We also evaluated a straightforward therapy that involved intravenous administration of antibodies that interfered with T cell sticking to blood vessels. Our movies revealed that this therapeutic approach rapidly displaced T cells from the blood vessels in the brain and prevented fatal disease.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffrey T. Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew V. Russo
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Debasis Nayak
- Center for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Takele Yazew
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mirna Peña
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dorian B. McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|