1
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
2
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Tao Y, Lacko AG, Sabnis NA, Das‐Earl P, Ibrahim D, Crowe N, Zhou Z, Cunningham M, Castillo A, Ma R. Reconstituted HDL ameliorated renal injury of diabetic kidney disease in mice. Physiol Rep 2024; 12:e16179. [PMID: 39107084 PMCID: PMC11303015 DOI: 10.14814/phy2.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is a devastating kidney disease and lacks effective therapeutic interventions. The present study was aimed to determine whether reconstituted high-density lipoprotein (rHDL) ameliorated renal injury in eNOS-/- dbdb mice, a mouse model of DKD. Three groups of mice, wild type C57BLKS/J (non-diabetes), eNOS-/- dbdb (diabetes), and eNOS-/- dbdb treated with rHDL (diabetes+rHDL) with both males and females were used. The rHDL nanoparticles were administered to eNOS-/- dbdb mice at Week 16 at 5 μg/g body weight in ~100 μL of saline solution twice per week for 4 weeks via retroorbital injection. We found that rHDL treatment significantly blunted progression of albuminuria and GFR decline observed in DKD mice. Histological examinations showed that the rHDLs significantly alleviated glomerular injury and renal fibrosis, and inhibited podocyte loss. Western blots and immunohistochemical examinations showed that increased protein abundances of fibronectin and collagen IV in the renal cortex of eNOS-/- dbdb mice were significantly reduced by the rHDLs. Taken together, the present study suggests a renoprotective effect of rHDLs on DKD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andras G. Lacko
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nirupama A. Sabnis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Paromita Das‐Earl
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Deena Ibrahim
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nicole Crowe
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Zhengyang Zhou
- Department of Population and Community HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Mark Cunningham
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Angie Castillo
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
4
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
5
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
6
|
Dryer SE, Kim EY. The Effects of TRPC6 Knockout in Animal Models of Kidney Disease. Biomolecules 2022; 12:1710. [PMID: 36421724 PMCID: PMC9687984 DOI: 10.3390/biom12111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2023] Open
Abstract
Diseases that induce a loss of renal function affect a substantial portion of the world's population and can range from a slight decline in the glomerular filtration rate or microalbuminuria to complete kidney failure. Kidney disorders can be acute or chronic, but any significant reduction in renal function is associated with increased all-cause morbidity and mortality, especially when the conditions become chronic. There is an urgent need for new therapeutic approaches to slow or halt the progression of kidney disease. One potential target of considerable interest is the canonical transient receptor potential-6 (TRPC6) channel. TRCP6 is a cationic channel with a significant permeability to Ca2+. It is expressed in several tissues, including in multiple cell types of the kidney in glomeruli, microvasculature, and tubules. Here, we will describe TRPC6 channels and their roles in signal transduction, with an emphasis on renal cells, and the studies implicating TRPC6 channels in the progression of inherited and acquired kidney diseases. We then describe studies using TRPC6 knockout mice and rats subjected to treatments that model human diseases, including nephrotic syndromes, diabetic nephropathy, autoimmune glomerulonephritis, and acute kidney injuries induced by renal ischemia and by obstruction of the urinary tract. TRPC6 knockout has been shown to reduce glomerular manifestations of disease in several of these models and reduces renal fibrosis caused by urinary tract obstruction. TRPC6 knockout has proven to be less effective at reducing diabetic nephropathy in mouse and rat models. We also summarize the implications of these studies for drug development.
Collapse
Affiliation(s)
- Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204-5001, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
7
|
Zheng Z, Tsvetkov D, Bartolomaeus TUP, Erdogan C, Krügel U, Schleifenbaum J, Schaefer M, Nürnberg B, Chai X, Ludwig FA, N'diaye G, Köhler MB, Wu K, Gollasch M, Markó L. Role of TRPC6 in kidney damage after acute ischemic kidney injury. Sci Rep 2022; 12:3038. [PMID: 35194063 PMCID: PMC8864023 DOI: 10.1038/s41598-022-06703-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential channel subfamily C, member 6 (TRPC6), a non-selective cation channel that controls influx of Ca2+ and other monovalent cations into cells, is widely expressed in the kidney. TRPC6 gene variations have been linked to chronic kidney disease but its role in acute kidney injury (AKI) is unknown. Here we aimed to investigate the putative role of TRPC6 channels in AKI. We used Trpc6-/- mice and pharmacological blockade (SH045 and BI-749327), to evaluate short-term AKI outcomes. Here, we demonstrate that neither Trpc6 deficiency nor pharmacological inhibition of TRPC6 influences the short-term outcomes of AKI. Serum markers, renal expression of epithelial damage markers, tubular injury, and renal inflammatory response assessed by the histological analysis were similar in wild-type mice compared to Trpc6-/- mice as well as in vehicle-treated versus SH045- or BI-749327-treated mice. In addition, we also found no effect of TRPC6 modulation on renal arterial myogenic tone by using blockers to perfuse isolated kidneys. Therefore, we conclude that TRPC6 does not play a role in the acute phase of AKI. Our results may have clinical implications for safety and health of humans with TRPC6 gene variations, with respect to mutated TRPC6 channels in the response of the kidney to acute ischemic stimuli.
Collapse
Affiliation(s)
- Zhihuang Zheng
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dmitry Tsvetkov
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany.
| | - Theda Ulrike Patricia Bartolomaeus
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cem Erdogan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Xiaoning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Gabriele N'diaye
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - May-Britt Köhler
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kaiyin Wu
- Department of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maik Gollasch
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany.
| | - Lajos Markó
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Wang J, Hertz L, Ruppenthal S, El Nemer W, Connes P, Goede JS, Bogdanova A, Birnbaumer L, Kaestner L. Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells 2021; 10:456. [PMID: 33672679 PMCID: PMC7924404 DOI: 10.3390/cells10020456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| | - Sandra Ruppenthal
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
- Gynaecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille Université, EFS, CNRS, ADES, 13005 Marseille, France;
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
| | - Philippe Connes
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Teal, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jeroen S. Goede
- Division of Oncology and Hematology, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina;
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| |
Collapse
|
9
|
Thallas-Bonke V, Tan SM, Lindblom RS, Snelson M, Granata C, Jha JC, Sourris KC, Laskowski A, Watson A, Tauc M, Rubera I, Zheng G, Shah AM, Harris DCH, Elbatreek MH, Kantharidis P, Cooper ME, Jandeleit-Dahm K, Coughlan MT. Targeted deletion of nicotinamide adenine dinucleotide phosphate oxidase 4 from proximal tubules is dispensable for diabetic kidney disease development. Nephrol Dial Transplant 2020; 36:988-997. [PMID: 33367789 DOI: 10.1093/ndt/gfaa376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (Nox4) mediates reactive oxygen species (ROS) production and renal fibrosis in diabetic kidney disease (DKD) at the level of the podocyte. However, the mitochondrial localization of Nox4 and its role as a mitochondrial bioenergetic sensor has recently been reported. Whether Nox4 drives pathology in DKD within the proximal tubular compartment, which is densely packed with mitochondria, is not yet known. METHODS We generated a proximal tubular-specific Nox4 knockout mouse model by breeding Nox4flox/flox mice with mice expressing Cre recombinase under the control of the sodium-glucose cotransporter-2 promoter. Subsets of Nox4ptKO mice and their Nox4flox/flox littermates were injected with streptozotocin (STZ) to induce diabetes. Mice were followed for 20 weeks and renal injury was assessed. RESULTS Genetic ablation of proximal tubular Nox4 (Nox4ptKO) resulted in no change in renal function and histology. Nox4ptKO mice and Nox4flox/flox littermates injected with STZ exhibited the hallmarks of DKD, including hyperfiltration, albuminuria, renal fibrosis and glomerulosclerosis. Surprisingly, diabetes-induced renal injury was not improved in Nox4ptKO STZ mice compared with Nox4flox/flox STZ mice. Although diabetes conferred ROS overproduction and increased the mitochondrial oxygen consumption rate, proximal tubular deletion of Nox4 did not normalize oxidative stress or mitochondrial bioenergetics. CONCLUSIONS Taken together, these results demonstrate that genetic deletion of Nox4 from the proximal tubules does not influence DKD development, indicating that Nox4 localization within this highly energetic compartment is dispensable for chronic kidney disease pathogenesis in the setting of diabetes.
Collapse
Affiliation(s)
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Runa S Lindblom
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Cesare Granata
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jay Chandra Jha
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Adrienne Laskowski
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Michel Tauc
- Laboratoire de Physiomédecine Moléculaire, LP2M, UMR-CNRS 7370, Université Côte d'Azur, Nice, France
| | - Isabelle Rubera
- Laboratoire de Physiomédecine Moléculaire, LP2M, UMR-CNRS 7370, Université Côte d'Azur, Nice, France
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, UK
| | - David C H Harris
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,German Diabetes Centre, Leibniz Centre for Diabetes Research, Heinrich Heine University, Duesseldorf, Germany
| | - Melinda T Coughlan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Gupta P, Taiyab A, Hassan MI. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:47-85. [PMID: 33632470 DOI: 10.1016/bs.apcsb.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus has emerged as a severe burden on the medical health system across the globe. Presently, around 422 million people are suffering from diabetes which is speculated to be expanded to about 600 million by 2035. Patients with type 2 diabetes are at increased risk of developing detrimental metabolic and cardiovascular complications. The scientific understanding of this chronic disease and its underlying root cause is not yet fully unraveled. Protein kinases are well known to regulate almost every cellular process through phosphorylation of target protein in diverse signaling pathways. The important role of several protein kinases including AMP-activated protein kinase, IκB kinase and protein kinase C have been well demonstrated in various animal models. They modulate glucose tolerance, inflammation and insulin resistance in the cells via acting on diverse downstream targets and signaling pathways. Thus, modulating the activity of potential human kinases which are significantly involved in diabetes by targeting with small molecule inhibitors could be an attractive therapeutic strategy to tackle diabetes. In this chapter, we have discussed the potential role of protein kinases in glucose metabolism and insulin sensitivity, and in the pathogenesis of diabetes mellitus. Furthermore, the small molecules reported in the literature that can be potentially used for the treatment of diabetes have been discussed in detail.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
11
|
Chandrasekaran A, Lee MY, Zhang X, Hasan S, Desta H, Tenenbaum SA, Melendez JA. Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. Exp Biol Med (Maywood) 2020; 245:1560-1570. [PMID: 32686475 PMCID: PMC7787549 DOI: 10.1177/1535370220943122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Through its ability to evoke responses from cells in a paracrine fashion, the senescence-associated secretory phenotype (SASP) has been linked to numerous age-associated disease pathologies including tumor invasion, cardiovascular dysfunction, neuroinflammation, osteoarthritis, and renal disease. Strategies which limit the amplitude and duration of SASP serve to delay age-related degenerative decline. Here we demonstrate that the SASP regulation is linked to shifts in intracellular Ca2+ homeostasis and strategies which rescue redox-dependent calcium entry including enzymatic H2O2 scavenging, TRP modulation, or mTOR inhibition block SASP and TRPC6 gene expression. As Ca2+ is indispensable for secretion from both secretory and non-secretory cells, it is exciting to speculate that the expression of plasma lamellar TRP channels critical for the maintenance of intracellular Ca2+ homeostasis may be coordinately regulated with the SASP.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - May Y Lee
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Xuexin Zhang
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Shaheen Hasan
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Habben Desta
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| |
Collapse
|
12
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao L, Li S, Chen Y, Wu Y, Ling Z, Wang Y, Huang J, Li J. TRPC6-dependent Ca 2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis 2020; 11:170. [PMID: 32139669 PMCID: PMC7058000 DOI: 10.1038/s41419-020-2360-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Ozone (O3) plays an extremely important role in airway inflammation by generating reactive oxygen species (ROS) including hydrogen peroxide, then promoting redox actions and causing oxidative stress. Evidences indicate that TRPC6 (canonical transient receptor potential channel 6) is a redox-regulated Ca2+ permeable nonselective cation channel, but its role in the setting of oxidative stress-related airway inflammation remains unknown. Here, we found that both TRPC6-/- mice and mice pretreated with SAR7334, a potent TRPC6 inhibitor, were protected from O3-induced airway inflammatory responses. In vitro, both knockdown of TRPC6 expression with shRNA and TRPC6 blockage markedly attenuated the release of cytokines IL-6 and IL-8 induced by O3 or H2O2 in 16HBE cells (human bronchial epithelial cell line). Treatment with O3 or H2O2 enhanced TRPC6 protein expression in vivo and vitro. We also observed that TRPC6-dependent increase of intracellular Ca2+ concentration ([Ca2+]i) was triggered by H2O2, which consisted of the release from intracellular calcium store and the influx of extracellular Ca2+ and could be further strengthened by 6-h O3 exposure in both 16HBE cells and HBEpiCs (primary human bronchial epithelial cells). Moreover, we confirmed that the activation of MAPK signals (ERK1/2, p38, JNK) was required for the inflammatory response induced by O3 or H2O2 while only the phosphorylation of ERK pathway was diminished in the TRPC6-knockdown situation. These results demonstrate that oxidative stress regulates TRPC6-mediated Ca2+ cascade, which leads to the activation of ERK pathway and inflammation and could become a potential target to treat oxidative stress-associated airway inflammatory diseases.
Collapse
Affiliation(s)
- Qingzi Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lifen Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaodi Fu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuntao Yang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Zhao
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuni Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yousen Wu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Ling
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Wang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianrong Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jianhua Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Shotorbani PY, Chaudhari S, Tao Y, Tsiokas L, Ma R. Inhibitor of myogenic differentiation family isoform a, a new positive regulator of fibronectin production by glomerular mesangial cells. Am J Physiol Renal Physiol 2020; 318:F673-F682. [PMID: 31984795 PMCID: PMC7099507 DOI: 10.1152/ajprenal.00508.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Overproduction of extracellular matrix proteins, including fibronectin by mesangial cells (MCs), contributes to diabetic nephropathy. Inhibitor of myogenic differentiation family isoform a (I-mfa) is a multifunctional cytosolic protein functioning as a transcriptional modulator or plasma channel protein regulator. However, its renal effects are unknown. The present study was conducted to determine whether I-mfa regulated fibronectin production by glomerular MCs. In human MCs, overexpression of I-mfa significantly increased fibronectin abundance. Silencing I-mfa significantly reduced the level of fibronectin mRNA and blunted transforming growth factor-β1-stimulated production of fibronectin. We further found that high glucose increased I-mfa protein content in a time course (≥48 h) and concentration (≥25 mM)-dependent manner. Although high glucose exposure increased I-mfa at the protein level, it did not significantly alter transcripts of I-mfa in MCs. Furthermore, the abundance of I-mfa protein was significantly increased in the renal cortex of rats with diabetic nephropathy. The I-mfa protein level was also elevated in the glomerulus of mice with diabetic kidney disease. However, there was no significant difference in glomerular I-mfa mRNA levels between mice with and without diabetic nephropathy. Moreover, H2O2 significantly increased I-mfa protein abundance in a dose-dependent manner in cultured human MCs. The antioxidants polyethylene glycol-catalase, ammonium pyrrolidithiocarbamate, and N-acetylcysteine significantly blocked the high glucose-induced increase of I-mfa protein. Taken together, our results suggest that I-mfa, increased by high glucose/diabetes through the production of reactive oxygen species, stimulates fibronectin production by MCs.
Collapse
Affiliation(s)
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
15
|
Smani T, Gallardo-Castillo I, Ávila-Médina J, Jimenez-Navarro MF, Ordoñez A, Hmadcha A. Impact of Diabetes on Cardiac and Vascular Disease: Role of Calcium Signaling. Curr Med Chem 2019; 26:4166-4177. [DOI: 10.2174/0929867324666170523140925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/14/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
The pathophysiology linking diabetes and cardiovascular disease (CVD) is
complex and multifactorial. The specific type of cardiomyopathy associated with diabetes,
known as diabetic cardiomyopathy (DCM), is recognized as asymptomatic progression
of structural and functional remodeling in the heart of diabetic patients in the absence
of coronary atherosclerosis and hypertension. In other words, the presence of heart disease
specifically in diabetic patients is also known as diabetic heart disease. This article
reviews the impact of diabetes in heart and vascular beds focusing on molecular mechanisms
involving the oxidative stress, the inflammation, the endothelium dysfunction and
the alteration of the homeostasis of calcium, among others mechanisms. Understanding
these mechanisms will help identify and treat CVD in patients with diabetes, as well as to
plan efficient strategies to mitigate DCM impact in those patients.
Collapse
Affiliation(s)
- Tarik Smani
- Group of Cardiovascular Physiopathology, Institute of Biomedicine of Seville-IBiS, HUVR/University of Seville/CSIC, Seville, Spain
| | | | - Javier Ávila-Médina
- Group of Cardiovascular Physiopathology, Institute of Biomedicine of Seville-IBiS, HUVR/University of Seville/CSIC, Seville, Spain
| | - Manuel F. Jimenez-Navarro
- UGC del Corazon, Instituto de Biomedicina de Malaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - Antonio Ordoñez
- Group of Cardiovascular Physiopathology, Institute of Biomedicine of Seville-IBiS, HUVR/University of Seville/CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Unversity of Pablo de Olavide- University of Seville-CSIC, Seville, Spain
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The underlining goal of this review is to offer a concise, detailed look into current knowledge surrounding transient receptor potential canonical channel 6 (TRPC6) in the progression of diabetic kidney disease (DKD). RECENT FINDINGS Mutations and over-activation in TRPC6 channel activity lead to the development of glomeruli injury. Angiotensin II, reactive oxygen species, and other factors in the setting of DKD stimulate drastic increases in calcium influx through the TRPC6 channel, causing podocyte hypertrophy and foot process effacement. Loss of the podocytes further promote deterioration of the glomerular filtration barrier and play a major role in the development of both albuminuria and the renal injury in DKD. Recent genetic manipulation with TRPC6 channels in various rodent models provide additional knowledge about the role of TRPC6 in DKD and are reviewed here. The TRPC6 channel has a pronounced role in the progression of DKD, with deviations in activity yielding detrimental outcomes. The benefits of targeting TRPC6 or its upstream or downstream signaling pathways in DKD are prominent.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| | - Denisha Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
17
|
Elbatreek MH, Pachado MP, Cuadrado A, Jandeleit-Dahm K, Schmidt HHHW. Reactive Oxygen Comes of Age: Mechanism-Based Therapy of Diabetic End-Organ Damage. Trends Endocrinol Metab 2019; 30:312-327. [PMID: 30928357 DOI: 10.1016/j.tem.2019.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) have been mainly viewed as unwanted by-products of cellular metabolism, oxidative stress, a sign of a cellular redox imbalance, and potential disease mechanisms, such as in diabetes mellitus (DM). Antioxidant therapies, however, have failed to provide clinical benefit. This paradox can be explained by recent discoveries that ROS have mainly essential signaling and metabolic functions and evolutionally conserved physiological enzymatic sources. Disease can occur when ROS accumulate in nonphysiological concentrations, locations, or forms. By focusing on disease-relevant sources and targets of ROS, and leaving ROS physiology intact, precise therapeutic interventions are now possible and are entering clinical trials. Their outcomes are likely to profoundly change our concepts of ROS in DM and in medicine in general.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Mayra P Pachado
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Instituto de Investigaciones Biomédicas UAM-CSIC, Ciber sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1041-1066. [PMID: 30953689 DOI: 10.1016/j.bbadis.2019.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding canonical transient receptor potential-6 (TRPC6) channels result in severe nephrotic syndromes that typically lead to end-stage renal disease. Many but not all of these mutations result in a gain in the function of the resulting channel protein. Since those observations were first made, substantial work has supported the hypothesis that TRPC6 channels can also contribute to progression of acquired (non-genetic) glomerular diseases, including primary and secondary FSGS, glomerulosclerosis during autoimmune glomerulonephritis, and possibly in type-1 diabetes. Their regulation has been extensively studied, especially in podocytes, but also in mesangial cells and other cell types present in the kidney. More recent evidence has implicated TRPC6 in renal fibrosis and tubulointerstitial disease caused by urinary obstruction. Consequently TRPC6 is being extensively investigated as a target for drug discovery. Other TRPC family members are present in kidney. TRPC6 can form a functional heteromultimer with TRPC3, and it has been suggested that TRPC5 may also play a role in glomerular disease progression, although the evidence on this is contradictory. Here we review literature on the expression and regulation of TRPC6, TRPC3 and TRPC5 in various cell types of the vertebrate kidney, the evidence that these channels are dysregulated in disease models, and research showing that knock-out or pharmacological inhibition of these channels can reduce the severity of kidney disease. We also summarize several areas that remain controversial, and some of the large gaps of knowledge concerning the fundamental role of these proteins in regulation of renal function.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Internal Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
19
|
Chen QZ, Zhou YB, Zhou LF, Fu ZD, Wu YS, Chen Y, Li SN, Huang JR, Li JH. TRPC6 modulates adhesion of neutrophils to airway epithelial cells via NF-κB activation and ICAM-1 expression with ozone exposure. Exp Cell Res 2019; 377:56-66. [PMID: 30779919 DOI: 10.1016/j.yexcr.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Ozone (O3) is a major component of air pollution, which has been associated with airway inflammation characterized by the influx of neutrophils in asthmatic subjects. Canonical transient receptor potential 6 (TRPC6) channel is recently identified as a target of oxidative stress which is involved in airway inflammation. However, the regulatory role of TRPC6 in airway epithelial cells and neutrophils has not yet been illuminated in detail. In this study, we investigated the role of TRPC6 in neutrophil adhesion to airway epithelial cells exposed to O3 in vivo and in vitro approaches. Using transgenic mice, the results showed that TRPC6-deficiency attenuated O3-induced neutrophil recruitment to airway epithelial cells and intercellular adhesion molecule-1 (ICAM-1) expression. In vitro, O3 induced ICAM-1 expression and neutrophil adhesion to 16HBE cells (human airway epithelial cell line) and which were reduced by both TRPC6 silencing short hairpin RNA (shRNA) and TRPC6 inhibitor Larixyl Acetate (LA). We also confirmed that TRPC6-dependent Ca2+ entry and NF-κB activation in 16HBE cells were required for ICAM-1-mediated neutrophil adhesion exposed to O3. In conclusion, this study demonstrated the contribution of TRPC6 to O3-induced neutrophil adhesion to airway epithelial cells via NF-κB activation and ICAM-1 expression, which may provide new potential concepts for preventing and treating air pollutant-related inflammatory lung diseases.
Collapse
Affiliation(s)
- Qing-Zi Chen
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Yu-Bo Zhou
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Li-Fen Zhou
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhao-Di Fu
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - You-Sen Wu
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Yan Chen
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Shu-Ni Li
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Jian-Rong Huang
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China; The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jian-Hua Li
- Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Ramirez GA, Coletto LA, Sciorati C, Bozzolo EP, Manunta P, Rovere-Querini P, Manfredi AA. Ion Channels and Transporters in Inflammation: Special Focus on TRP Channels and TRPC6. Cells 2018; 7:E70. [PMID: 29973568 PMCID: PMC6070975 DOI: 10.3390/cells7070070] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Allergy and autoimmune diseases are characterised by a multifactorial pathogenic background. Several genes involved in the control of innate and adaptive immunity have been associated with diseases and variably combine with each other as well as with environmental factors and epigenetic processes to shape the characteristics of individual manifestations. Systemic or local perturbations in salt/water balance and in ion exchanges between the intra- and extracellular spaces or among tissues play a role. In this field, usually referred to as elementary immunology, novel evidence has been recently acquired on the role of members of the transient potential receptor (TRP) channel family in several cellular mechanisms of potential significance for the pathophysiology of the immune response. TRP canonical channel 6 (TRPC6) is emerging as a functional element for the control of calcium currents in immune-committed cells and target tissues. In fact, TRPC6 influences leukocytes’ tasks such as transendothelial migration, chemotaxis, phagocytosis and cytokine release. TRPC6 also modulates the sensitivity of immune cells to apoptosis and influences tissue susceptibility to ischemia-reperfusion injury and excitotoxicity. Here, we provide a view of the interactions between ion exchanges and inflammation with a focus on the pathogenesis of immune-mediated diseases and potential future therapeutic implications.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Lavinia A Coletto
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Clara Sciorati
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Enrica P Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Paolo Manunta
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Nephrology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Patrizia Rovere-Querini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Angelo A Manfredi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
21
|
Jiang H, Zou S, Chaudhari S, Ma R. Short-term high-glucose treatment decreased abundance of Orai1 protein through posttranslational mechanisms in rat mesangial cells. Am J Physiol Renal Physiol 2018; 314:F855-F863. [PMID: 29363325 DOI: 10.1152/ajprenal.00513.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The short-term effect of high-glucose (HG) treatment on store-operated Ca2+ entry in mesangial cells (MCs) is not well-known. The aim of the present study was to determine whether and how HG treatment for a short period altered protein abundance of Orai1, the channel mediating store-operated Ca2+ entry in MCs. Rat and human MCs were exposed to HG (25 mM) for 2, 4, 8, and 24 h, and the abundance of Orai1 protein was significantly decreased at the time points of 8 and 16 h. Consistently, HG treatment for 8 h significantly reduced store-operated Ca2+ entry in rat MCs. However, HG treatment for the same time periods did not alter the levels of Orai1 transcript. Cycloheximide, a protein synthesis inhibitor, did not affect the HG-induced decrease of Orai1 protein, suggesting a posttranslational mechanism was involved. However, the HG effect on Orai1 protein was significantly attenuated by MG132 (a ubiquitin-proteasome inhibitor) and NH4Cl (a lysosomal pathway inhibitor). Furthermore, HG treatment for 8 h stimulated ubiquitination of Orai1 protein. We further found that polyethylene glycol-catalase, an antioxidant, significantly blunted the HG-induced reduction of Orai1 protein. In support of involvement of reactive oxygen species in the HG effects, hydrogen peroxide (H2O2) itself significantly decreased abundance of Orai1 protein and increased the level of ubiquitinated Orai1. Taken together, these results suggest that a short-term HG treatment decreased abundance of Orai1 protein in MCs by promoting the protein degradation through the ubiquitination-proteasome and -lysosome mechanisms. This HG-stimulated posttranslational mechanism was mediated by H2O2.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Department of Pharmacy, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine , Hefei , China
| | - Shubiao Zou
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Department of Laboratory Medicine, the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Department of Physiology, Anhui Medical University , Hefei , China
| |
Collapse
|
22
|
Yamaguchi Y, Iribe G, Kaneko T, Takahashi K, Numaga-Tomita T, Nishida M, Birnbaumer L, Naruse K. TRPC3 participates in angiotensin II type 1 receptor-dependent stress-induced slow increase in intracellular Ca 2+ concentration in mouse cardiomyocytes. J Physiol Sci 2018; 68:153-164. [PMID: 28105583 PMCID: PMC10718017 DOI: 10.1007/s12576-016-0519-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/26/2016] [Indexed: 11/26/2022]
Abstract
When a cardiac muscle is held in a stretched position, its [Ca2+] transient increases slowly over several minutes in a process known as stress-induced slow increase in intracellular Ca2+ concentration ([Ca2+]i) (SSC). Transient receptor potential canonical (TRPC) 3 forms a non-selective cation channel regulated by the angiotensin II type 1 receptor (AT1R). In this study, we investigated the role of TRPC3 in the SSC. Isolated mouse ventricular myocytes were electrically stimulated and subjected to sustained stretch. An AT1R blocker, a phospholipase C inhibitor, and a TRPC3 inhibitor suppressed the SSC. These inhibitors also abolished the observed SSC-like slow increase in [Ca2+]i induced by angiotensin II, instead of stretch. Furthermore, the SSC was not observed in TRPC3 knockout mice. Simulation and immunohistochemical studies suggest that sarcolemmal TRPC3 is responsible for the SSC. These results indicate that sarcolemmal TRPC3, regulated by AT1R, causes the SSC.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Gentaro Iribe
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Toshiyuki Kaneko
- Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| |
Collapse
|
23
|
Lu R, Wang J, Tao R, Wang J, Zhu T, Guo W, Sun Y, Li H, Gao Y, Zhang W, Fowler CJ, Li Q, Chen S, Wu Z, Masters CL, Zhong C, Jing N, Wang Y, Wang Y. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer's disease and mild cognitive impairment. Mol Psychiatry 2018; 23:767-776. [PMID: 28696436 DOI: 10.1038/mp.2017.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 02/01/2023]
Abstract
Transient receptor potential canonical 6 (TRPC6) inhibits β-amyloid (Aβ) production. Hyperforin, the TRPC6 agonist, reduces Aβ levels and improves cognitive performance in Alzheimer's disease (AD) models. However, it's unknown whether TRPC6 expression is changed in AD patients. In this case-control study, we measured TRPC6 expression levels in the peripheral blood cells of four independent AD sets from five hospitals and one mild cognitive impairment (MCI) set from a local community (229 AD, 70 MCI, 40 Parkinson disease and 359 controls from China, total n=698) using quantitative real-time PCR assay. We found a specific reduction of TRPC6 mRNA levels in four AD sets and one MCI set. The median TRPC6 mRNA levels were lower in the following: (1) combined AD patients than in age-matched controls (0.78 vs 1.73, P<0.001); (2) mild-to-moderate AD patients than in age-matched controls (0.81 vs 1.73, P<0.001); and (3) MCI patients than in age-matched controls (0.76 vs 1.72, P<0.001). In the receiver-operating characteristic curve analysis, the area under curve was 0.85 for combined AD, 0.84 for mild-to-moderate AD and 0.79 for MCI. In a subgroup of AD patients with brain Aβ examination, TRPC6 was associated with standardized uptake value ratio of Pittsburgh Compound B (Spearman's r=-0.49, P=0.04) and cerebrospinal fluid Aβ42 (Spearman's r=0.43, P=0.04). The TRPC6 reduction in AD patients was further confirmed in blood RNA samples from The Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging, in post-mortem brain tissues from The Netherlands Brain Bank and in induced pluripotent stem cells-derived neurons from Chinese donors. We conclude that TRPC6 mRNA levels in the blood cells are specifically reduced in AD and MCI patients, and TRPC6 might be a biomarker for the early diagnosis of AD.
Collapse
Affiliation(s)
- R Lu
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Beijing Institute of Medical Sciences, Beijing, China
| | - J Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - R Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - T Zhu
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - W Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Y Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - H Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Y Gao
- Department of Neurology and Institute of Neurology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zhang
- Department of Geriatrics, Tiantan Hospital, Capital Medical University, Beijing, China
| | - C J Fowler
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Q Li
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - S Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - C L Masters
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - C Zhong
- Department of Neurology, Zhongshan Hospital and Shanghai Medical College, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Fudan University, Shanghai, China
| | - N Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Y Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Beijing Institute of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Fu Y, Wang C, Zhang D, Xin Y, Li J, Zhang Y, Chu X. Increased TRPC6 expression is associated with tubular epithelial cell proliferation and inflammation in diabetic nephropathy. Mol Immunol 2018; 94:75-81. [DOI: 10.1016/j.molimm.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
|
25
|
Liu B, He X, Li S, Xu B, Birnbaumer L, Liao Y. Deletion of diacylglycerol-responsive TRPC genes attenuates diabetic nephropathy by inhibiting activation of the TGFβ1 signaling pathway. Am J Transl Res 2017; 9:5619-5630. [PMID: 29312514 PMCID: PMC5752912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
TRPC6 plays a critical role in proteinuric kidney diseases, and TRPC3 is involved in tubulointerstitial damage and renal fibrosis in obstructed kidneys. Podocyte loss is a characteristic event in diabetic nephropathy (DN). The aim of this study was to examine whether deletion of the closely related diacylglycerol (DAG)-responsive TRPCs in mice (TRPC3/6/7-/-) affects diabetes-induced renal dysfunction and podocyte loss. We compared urine volume, kidney hypertrophy, glomerular enlargement, albuminuria and podocyte loss between wild type (WT) and TRPC3/6/7-/- diabetic mice. Finally, we examined whether the TGFβ1 signaling pathway is changed in diabetic WT and TRPC3/6/7-/- mice. TRPC6 protein in the renal cortex was increased in WT diabetic mice. High glucose (HG) treatment increased TRPC6 expression in human podocytes. TRPC3 protein, however, was not altered in either diabetic mice or HG-treated human podocytes. Although diabetic WT and TRPC3/6/7-/- mice had similar levels of hyperglycemia, the TRPC3/6/7-/- diabetic mice showed less polyuria, kidney hypertrophy, glomerular enlargement, albuminuria, and had lost less podocytes compared with WT diabetic mice. In addition, we observed decreased expression of anti-apoptotic Bcl2 and increased expression of pro-apoptotic cleaved caspase 3 in WT diabetic mice, but such changes were not significant in TRPC3/6/7-/- diabetic mice. Western blot and immunohistochemistry revealed that TGFβ1, p-Smad2/3, and fibronectin were upregulated in WT diabetic mice; however, expression of these signaling molecules was not changed in TRPC3/6/7-/- diabetic mice. In conclusion, deletion of DAG-responsive TRPCs attenuates diabetic renal injury via inhibiting the upregulation of TGFβ1 signaling in diabetic kidneys.
Collapse
Affiliation(s)
- Benju Liu
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Department of Anatomy, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Xiju He
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Shoutian Li
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Benke Xu
- Department of Anatomy, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle ParkDurham, NC 27709, USA
- Institute of Biomedical Research (BIOMED), Catholic University of ArgentinaC1107AFF Buenos Aires, Argentina
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| |
Collapse
|
26
|
He KQ, Li WZ, Chai XQ, Yin YY, Jiang Y, Li WP. Astragaloside IV prevents kidney injury caused by iatrogenic hyperinsulinemia in a streptozotocin‑induced diabetic rat model. Int J Mol Med 2017; 41:1078-1088. [PMID: 29207011 DOI: 10.3892/ijmm.2017.3265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/08/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetic patients are able to manage their blood glucose with exogenous insulin but, ultimately, remain at risk of diabetic nephropathy (DN). Long‑term use of insulin may lead to iatrogenic hyperinsulinemia, which has been suggested to cause kidney injury. However, there are no effective interventions for iatrogenic hyperinsulinemia leading to kidney damage. In the present paper, the hypothesis that astragaloside IV (AS‑IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bunge, may prevent DN in iatrogenic hyperinsulinemic diabetic rats through antioxidative and anti‑inflammatory mechanisms was investigated. Diabetes was induced with streptozotocin (STZ) (55 mg/kg) by intraperitoneal injection in rats. At 1 week following STZ injection, the diabetic rats were treated with Levemir subcutaneously for 4 weeks. Diabetic rat insulin levels >30 µU/ml were considered as iatrogenic hyperinsulinemia. Rats were divided into six groups (n=8 per group): Iatrogenic hyperinsulinemic rats, and iatrogenic hyperinsulinemic rats treated with Tempol and AS‑IV at 2.5, 5 and 10 mg/kg/day, intragastric infusion, for 12 weeks. The normal rats were used as a non‑diabetic control group. AS‑IV ameliorated albuminuria, mesangial cell proliferation, basement membrane thickening and podocyte foot process effacement in iatrogenic hyperinsulinemic rats. In iatrogenic hyperinsulinemic rat renal tissues, malondialdehyde, interleukin‑1β (IL‑1β), tumor necrosis factor‑α (TNF‑α), type IV collagen and laminin levels were increased, whereas glutathione peroxidase and superoxide dismutase activity levels were decreased. Nicotinamide adenine dinucleotide phosphate oxidase 4 expression and extracellular signal‑regulated kinase 1/2 (ERK1/2) activation were upregulated, and canonical transient receptor potential cation channel 6 (TRPC6) protein expression was downregulated. However, all these abnormalities were attenuated by AS‑IV. These findings suggested that AS‑IV prevented rat kidney injury caused by iatrogenic hyperinsulinemia by inhibiting oxidative stress, IL‑1β and TNF‑α overproduction, downregulating ERK1/2 activation, and upregulating TRPC6 expression.
Collapse
Affiliation(s)
- Ke-Qiang He
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Zu Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Qing Chai
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yan-Yan Yin
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Jiang
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Ping Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
27
|
Wright KD, Staruschenko A, Sorokin A. Role of adaptor protein p66Shc in renal pathologies. Am J Physiol Renal Physiol 2017; 314:F143-F153. [PMID: 28978535 DOI: 10.1152/ajprenal.00414.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p66Shc is one of the three adaptor proteins encoded by the Shc1 gene, which are expressed in many organs, including the kidney. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by p66Shc. The central goal of this review article is to summarize recent findings on p66Shc and the role it plays in kidney physiology and pathology. This article provides a review of the various mechanisms whereby p66Shc has been shown to function within the kidney through a wide range of actions. The mitochondrial and cytoplasmic signaling of p66Shc, as it relates to production of reactive oxygen species (ROS) and renal pathologies, is further discussed.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
28
|
Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, Zhao B, Xia Z, Wang C. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol 2017; 44:760-770. [PMID: 28394420 DOI: 10.1111/1440-1681.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Ping Jiang
- Department of Cardiovascular Medicine; The People's Hospital of Gongan County; Gongan China
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Deling Zhang
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Hong Qiu
- Department of Laboratory; Dongfeng General Hospital of Hubei Medical University; Shiyan China
| | - Xianqi Yi
- Department of Cardiovascular Medicine; The People's Hospital of Gongan County; Gongan China
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Yingkang Cao
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Bo Zhao
- Department of Anesthesiology; Wuhan University Renmin Hospital; Wuhan China
| | - Zhongyuan Xia
- Department of Anesthesiology; Wuhan University Renmin Hospital; Wuhan China
| | - Changhua Wang
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| |
Collapse
|
29
|
Li W, Ding Y, Smedley C, Wang Y, Chaudhari S, Birnbaumer L, Ma R. Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. Sci Rep 2017. [PMID: 28646178 PMCID: PMC5482875 DOI: 10.1038/s41598-017-04067-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The present study was conducted to determine if TRPC6 regulates glomerular filtration rate (GFR) and the contractile function of glomerular mesangial cells (MCs). GFR was assessed in conscious TRPC6 wild type and knockout mice, and in anesthetized rats with and without in vivo knockdown of TRPC6 in kidneys. We found that GFR was significantly greater, and serum creatinine level was significantly lower in TRPC6 deficient mice. Consistently, local knockdown of TRPC6 in kidney using TRPC6 specific shRNA construct significantly attenuated Ang II-induced GFR decline in rats. Furthermore, Ang II-stimulated contraction and Ca2+ entry were significantly suppressed in primary MCs isolated from TRPC6 deficient mice, and the Ca2+ response could be rescued by re-introducing TRPC6. Moreover, inhibition of reverse mode of Na+-Ca2+ exchange by KB-R7943 significantly reduced Ca2+ entry response in TRPC6-expressing, but not in TRPC6-knocked down MCs. Ca2+ entry response was also significantly attenuated in Na+ free solution. Single knockdown of TRPC6 and TRPC1 resulted in a comparable suppression on Ca2+ entry with double knockdown of both. These results suggest that TRPC6 may regulate GFR by modulating MC contractile function through multiple Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yanfeng Ding
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Crystal Smedley
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Yanxia Wang
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Lutz Birnbaumer
- Transmembrane Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Rong Ma
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA.
| |
Collapse
|
30
|
miR-706 inhibits the oxidative stress-induced activation of PKCα/TAOK1 in liver fibrogenesis. Sci Rep 2016; 6:37509. [PMID: 27876854 PMCID: PMC5120320 DOI: 10.1038/srep37509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress induces the activation of liver fibrogenic cells (myofibroblasts), thus promoting the expression of fibrosis-related genes, leading to hepatic fibrogenesis. MicroRNAs (miRNAs) are a new class of small RNAs ~18–25 nucleotides in length involved in post-transcriptional regulation of gene expression. Wound-healing and remodeling processes in liver fibrosis have been associated with changes in hepatic miRNA expression. However, the role of miR-706 in liver fibrogenesis is currently unknown. In the present study, we show that miR-706 is abundantly expressed in hepatocytes. Moreover, oxidative stress leads to a significant downregulation of miR-706, and the further reintroduction of miR-706 inhibits oxidative stress-induced expression of fibrosis-related markers such as α-SMA. Subsequent studies revealed that miR-706 directly inhibits PKCα and TAOK1 expression via binding to the 3′-untranslated region, preventing epithelial mesenchymal transition. In vivo studies showed that intravenous injection of miR-706 agomir successfully increases hepatic miR-706 and decreases α-SMA, PKCα, and TAOK1 protein levels in livers of carbon tetrachloride (CCl4)-treated mice. In summary, this study reveals a protective role for miR-706 by blocking the oxidative stress-induced activation of PKCα/TAOK1. Our results further identify a major implication for miR-706 in preventing hepatic fibrogenesis and suggest that miR-706 may be a suitable molecular target for anti-fibrosis therapy.
Collapse
|
31
|
Ma R, Chaudhari S, Li W. Canonical Transient Receptor Potential 6 Channel: A New Target of Reactive Oxygen Species in Renal Physiology and Pathology. Antioxid Redox Signal 2016; 25:732-748. [PMID: 26937558 PMCID: PMC5079416 DOI: 10.1089/ars.2016.6661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Regulation of Ca2+ signaling cascade by reactive oxygen species (ROS) is becoming increasingly evident and this regulation represents a key mechanism for control of many fundamental cellular functions. Canonical transient receptor potential (TRPC) 6, a member of Ca2+-conductive channel in the TRPC family, is widely expressed in kidney cells, including glomerular mesangial cells, podocytes, tubular epithelial cells, and vascular myocytes in renal microvasculature. Both overproduction of ROS and dysfunction of TRPC6 channel are involved in renal injury in animal models and human subjects. Although regulation of TRPC channel function by ROS has been well described in other tissues and cell types, such as vascular smooth muscle, this important cell regulatory mechanism has not been fully reviewed in kidney cells. Recent Advances: Accumulating evidence has shown that TRPC6 is a redox-sensitive channel, and modulation of TRPC6 Ca2+ signaling by altering TRPC6 protein expression or TRPC6 channel activity in kidney cells is a downstream mechanism by which ROS induce renal damage. CRITICAL ISSUES This review highlights how recent studies analyzing function and expression of TRPC6 channels in the kidney and their response to ROS improve our mechanistic understanding of oxidative stress-related kidney diseases. FUTURE DIRECTIONS Although it is evident that ROS regulate TRPC6-mediated Ca2+ signaling in several types of kidney cells, further study is needed to identify the underlying molecular mechanism. We hope that the newly identified ROS/TRPC6 pathway will pave the way to new, promising therapeutic strategies to target kidney diseases such as diabetic nephropathy. Antioxid. Redox Signal. 25, 732-748.
Collapse
Affiliation(s)
- Rong Ma
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
32
|
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal 2016; 25:657-684. [PMID: 26906673 PMCID: PMC5069735 DOI: 10.1089/ars.2016.6664] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.
Collapse
Affiliation(s)
- Jay C Jha
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Claudine Banal
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Bryna S M Chow
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Mark E Cooper
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| | - Karin Jandeleit-Dahm
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
33
|
Roshanravan H, Kim EY, Dryer SE. 20-Hydroxyeicosatetraenoic Acid (20-HETE) Modulates Canonical Transient Receptor Potential-6 (TRPC6) Channels in Podocytes. Front Physiol 2016; 7:351. [PMID: 27630573 PMCID: PMC5005377 DOI: 10.3389/fphys.2016.00351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
The arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) regulates renal function, including changes in glomerular function evoked during tubuloglomerular feedback (TGF). This study describes the cellular actions of 20-HETE on cultured podocytes, assessed by whole-cell recordings from cultured podocytes combined with pharmacological and cell-biological manipulations of cells. Bath superfusion of 20-HETE activates cationic currents that are blocked by the pan-TRP blocker SKF-96365 and by 50 μM La3+, and which are attenuated after siRNA knockdown of TRPC6 subunits. Similar currents are evoked by a membrane-permeable analog of diacylgycerol (OAG), but OAG does not occlude responses to maximally-activating concentrations of 20-HETE (20 μM). Exposure to 20-HETE also increased steady-state surface abundance of TRPC6 subunits in podocytes as assessed by cell-surface biotinylation assays, and increased cytosolic concentrations of reactive oxygen species (ROS). TRPC6 activation by 20-HETE was eliminated in cells pretreated with TEMPOL, a membrane-permeable superoxide dismutase mimic. Activation of TRPC6 by 20-HETE was also blocked when whole-cell recording pipettes contained GDP-βS, indicating a role for either small or heterotrimeric G proteins in the transduction cascade. Responses to 20-HETE were eliminated by siRNA knockdown of podocin, a protein that organizes NADPH oxidase complexes with TRPC6 subunits in this cell type. In summary, modulation of ionic channels in podocytes may contribute to glomerular actions of 20-HETE.
Collapse
Affiliation(s)
- Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston Houston, TX, USA
| | - Eun Y Kim
- Department of Biology and Biochemistry, University of Houston Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of HoustonHouston, TX, USA; Division of Nephrology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
34
|
Soni H, Adebiyi A. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways. Sci Rep 2016; 6:29041. [PMID: 27383564 PMCID: PMC4935859 DOI: 10.1038/srep29041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023] Open
Abstract
Glomerular mesangial cell (GMC) proliferation and death are involved in the pathogenesis of glomerular disorders. The mechanisms that control GMC survival are poorly understood, but may include signal transduction pathways that are modulated by changes in intracellular Ca2+ ([Ca2+]i) concentration. In this study, we investigated whether activation of the canonical transient receptor potential (TRPC) 6 channels and successive [Ca2+]i elevation alter neonatal GMC survival. Hyperforin (HF)-induced TRPC6 channel activation increased [Ca2+]i concentration, inhibited proliferation, and triggered apoptotic cell death in primary neonatal pig GMCs. HF-induced neonatal GMC apoptosis was not associated with oxidative stress. However, HF-induced TRPC6 channel activation stimulated nuclear translocation of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). HF also increased cell death surface receptor Fas ligand (FasL) level and caspase-8 activity in the cells; effects mitigated by [Ca2+]i chelator BAPTA, calcineurin/NFAT inhibitor VIVIT, and TRPC6 channel knockdown. Accordingly, HF-induced neonatal GMC apoptosis was attenuated by BAPTA, VIVIT, Fas blocking antibody, and a caspase-3/7 inhibitor. These findings suggest that TRPC6 channel-dependent [Ca2+]i elevation and the ensuing induction of the calcineurin/NFAT, FasL/Fas, and caspase signaling cascades promote neonatal pig GMC apoptosis.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology University of Tennessee Health Science Center, Memphis TN, USA
| | - Adebowale Adebiyi
- Department of Physiology University of Tennessee Health Science Center, Memphis TN, USA
| |
Collapse
|
35
|
Cao A, Wang L, Chen X, Guo H, Chu S, Zhang X, Peng W. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress. Biol Pharm Bull 2016; 39:1300-8. [PMID: 27193377 DOI: 10.1248/bpb.b16-00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects.
Collapse
Affiliation(s)
- Aili Cao
- Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine
| | | | | | | | | | | | | |
Collapse
|
36
|
Bouron A, Chauvet S, Dryer S, Rosado JA. Second Messenger-Operated Calcium Entry Through TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:201-49. [PMID: 27161231 DOI: 10.1007/978-3-319-26974-0_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca(2+). This latter response can reflect the entry of Ca(2+) through open TRPC6 channels but it can also be due to the Na(+)/Ca(2+) exchanger (operating in its reverse mode) or voltage-gated Ca(2+) channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, 38000, Grenoble, France. .,CNRS, iRTSV-LCBM, 38000, Grenoble, France.
| | - Sylvain Chauvet
- Université Grenoble Alpes, 38000, Grenoble, France.,CNRS, iRTSV-LCBM, 38000, Grenoble, France
| | - Stuart Dryer
- University of Houston, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| |
Collapse
|
37
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
38
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
39
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
40
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
41
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci Rep 2015; 5:17637. [PMID: 26656101 PMCID: PMC4674698 DOI: 10.1038/srep17637] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023] Open
Abstract
Injury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats, and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Andrea Lowing
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Leonid S Shuyskiy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
42
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
43
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
44
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
45
|
Ambrus L, Oláh A, Oláh T, Balla G, Saleem MA, Orosz P, Zsuga J, Bíró K, Csernoch L, Bíró T, Szabó T. Inhibition of TRPC6 by protein kinase C isoforms in cultured human podocytes. J Cell Mol Med 2015; 19:2771-9. [PMID: 26404773 PMCID: PMC4687697 DOI: 10.1111/jcmm.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical‐6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up‐regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) induced Ca2+‐influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12‐myristate 13‐acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down‐regulated the expression levels of PKCα, PKCβ, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a ‘tonic’ inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte‐expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.
Collapse
Affiliation(s)
- Lídia Ambrus
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Moin A Saleem
- Renal Academic Unit, University of Bristol, Bristol, UK
| | - Petronella Orosz
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Klára Bíró
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Immunology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Szabó
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
46
|
Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. Functional and physiopathological implications of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1772-82. [DOI: 10.1016/j.bbamcr.2015.04.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
47
|
Zhang X, Song Z, Guo Y, Zhou M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol Cell Biochem 2014; 399:155-65. [DOI: 10.1007/s11010-014-2242-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023]
|
48
|
Gan X, Wu L, Huang S, Zhong C, Shi H, Li G, Yu H, Howard Swerdlow R, Xi Chen J, Yan SS. Oxidative stress-mediated activation of extracellular signal-regulated kinase contributes to mild cognitive impairment-related mitochondrial dysfunction. Free Radic Biol Med 2014; 75:230-40. [PMID: 25064321 PMCID: PMC4392773 DOI: 10.1016/j.freeradbiomed.2014.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/29/2014] [Accepted: 07/16/2014] [Indexed: 02/05/2023]
Abstract
Mild cognitive impairment (MCI) occurs during the predementia stage of Alzheimer disease (AD) and is characterized by a decline in cognitive abilities that frequently represents a transition between normal cognition and AD dementia. Its pathogenesis is not well understood. Here, we demonstrate the direct consequences and potential mechanisms of oxidative stress and mitochondrial dynamic and functional defects in MCI-derived mitochondria. Using a cytoplasmic hybrid (cybrid) cell model in which mitochondria from MCI or age-matched non-MCI subjects were incorporated into a human neuronal cell line depleted of endogenous mitochondrial DNA, we evaluated the mitochondrial dynamics and functions, as well as the role of oxidative stress in the resultant cybrid lines. We demonstrated that increased expression levels of mitofusin 2 (Mfn2) are markedly induced by oxidative stress in MCI-derived mitochondria along with aberrant mitochondrial functions. Inhibition of oxidative stress rescues MCI-impaired mitochondrial fusion/fission balance as shown by the suppression of Mfn2 expression, attenuation of abnormal mitochondrial morphology and distribution, and improvement in mitochondrial function. Furthermore, blockade of MCI-related stress-mediated activation of extracellular signal-regulated kinase (ERK) signaling not only attenuates aberrant mitochondrial morphology and function but also restores mitochondrial fission and fusion balance, in particular inhibition of overexpressed Mfn2. Our results provide new insights into the role of the oxidative stress-ERK-Mfn2 signal axis in MCI-related mitochondrial abnormalities, indicating that the MCI phase may be targetable for the development of new therapeutic approaches that improve mitochondrial function in age-related neurodegeneration.
Collapse
Affiliation(s)
- Xueqi Gan
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Long Wu
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shengbin Huang
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Changjia Zhong
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Honglian Shi
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Guangyue Li
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | | | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
49
|
Oguri G, Nakajima T, Yamamoto Y, Takano N, Tanaka T, Kikuchi H, Morita T, Nakamura F, Yamasoba T, Komuro I. Effects of methylglyoxal on human cardiac fibroblast: roles of transient receptor potential ankyrin 1 (TRPA1) channels. Am J Physiol Heart Circ Physiol 2014; 307:H1339-52. [PMID: 25172898 DOI: 10.1152/ajpheart.01021.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cardiac fibroblasts contribute to the pathogenesis of cardiac remodeling. Methylglyoxal (MG) is an endogenous carbonyl compound produced under hyperglycemic conditions, which may play a role in the development of pathophysiological conditions including diabetic cardiomyopathy. However, the mechanism by which this occurs and the molecular targets of MG are unclear. We investigated the effects of MG on Ca(2+) signals, its underlying mechanism, and cell cycle progression/cell differentiation in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, Western blot, immunocytochemical analysis, and intracellular Ca(2+) concentration [Ca(2+)]i measurement were applied. Cell cycle progression was assessed using the fluorescence activated cell sorting. MG induced Ca(2+) entry concentration dependently. Ruthenium red (RR), a general cation channel blocker, and HC030031, a selective transient receptor potential ankyrin 1 (TRPA1) antagonist, inhibited MG-induced Ca(2+) entry. Treatment with aminoguanidine, a MG scavenger, also inhibited it. Allyl isothiocyanate, a selective TRPA1 agonist, increased Ca(2+) entry. The use of small interfering RNA to knock down TRPA1 reduced the MG-induced Ca(2+) entry as well as TRPA1 mRNA expression. The quantitative real-time RT-PCR analysis showed the prominent existence of TRPA1 mRNA. Expression of TRPA1 protein was confirmed by Western blotting and immunocytochemical analyses. MG promoted cell cycle progression from G0/G1 to S/G2/M, which was suppressed by HC030031 or RR. MG also enhanced α-smooth muscle actin expression. The present results suggest that methylglyoxal activates TRPA1 and promotes cell cycle progression and differentiation in human cardiac fibroblasts. MG might participate the development of pathophysiological conditions including diabetic cardiomyopathy via activation of TRPA1.
Collapse
Affiliation(s)
- Gaku Oguri
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Nakajima
- Department of Ischemic Circulatory Physiology, University of Tokyo, Tokyo, Japan;
| | - Yumiko Yamamoto
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Nami Takano
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Tomofumi Tanaka
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Hironobu Kikuchi
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Toshihiro Morita
- Department of Ischemic Circulatory Physiology, University of Tokyo, Tokyo, Japan
| | | | - Tatsuya Yamasoba
- Department of Otolaryngology, University of Tokyo, Tokyo, Japan; and
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Pereira L, Ruiz-Hurtado G, Rueda A, Mercadier JJ, Benitah JP, Gómez AM. Calcium signaling in diabetic cardiomyocytes. Cell Calcium 2014; 56:372-80. [PMID: 25205537 DOI: 10.1016/j.ceca.2014.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/24/2014] [Accepted: 08/07/2014] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is one of the most common medical conditions. It is associated to medical complications in numerous organs and tissues, of which the heart is one of the most important and most prevalent organs affected by this disease. In fact, cardiovascular complications are the most common cause of death among diabetic patients. At the end of the 19th century, the weakness of the heart in diabetes was noted as part of the general muscular weakness that exists in that disease. However, it was only in the eighties that diabetic cardiomyopathy was recognized, which comprises structural and functional abnormalities in the myocardium in diabetic patients even in the absence of coronary artery disease or hypertension. This disorder has been associated with both type 1 and type 2 diabetes, and is characterized by early-onset diastolic dysfunction and late-onset systolic dysfunction, in which alteration in Ca(2+) signaling is of major importance, since it controls not only contraction, but also excitability (and therefore is involved in rhythmic disorder), enzymatic activity, and gene transcription. Here we attempt to give a brief overview of Ca(2+) fluxes alteration reported on diabetes, and provide some new data on differential modulation of Ca(2+) handling alteration in males and females type 2 diabetic mice to promote further research. Due to space limitations, we apologize for those authors whose important work is not cited.
Collapse
Affiliation(s)
- Laetitia Pereira
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Angélica Rueda
- Departamento de Bioquímica, Cinvestav-IPN, México, DF, Mexico
| | - Jean-Jacques Mercadier
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France; Université Paris Diderot - Sorbonne Paris Cité, Assistance Publique - Hôpitaux de Paris (AP-HP), France
| | - Jean-Pierre Benitah
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Ana María Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France.
| |
Collapse
|