1
|
Jolly JT, Blackburn JS. The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease. Int J Mol Sci 2025; 26:1528. [PMID: 40003994 PMCID: PMC11855589 DOI: 10.3390/ijms26041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins' structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders.
Collapse
Affiliation(s)
- Jeffery T. Jolly
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Zhu Y, Qi Z, Zu S, Yang F, Wang Y, Zhu L, Li X, Li R, Zhu H. NIPAL1 as a prognostic biomarker associated with pancreatic adenocarcinoma progression and immune infiltration. BMC Cancer 2025; 25:165. [PMID: 39875873 PMCID: PMC11776251 DOI: 10.1186/s12885-025-13567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in the digestive system, with an increasing incidence and mortality rate globally. Recent genetic studies have revealed that the abnormal expression and functional dysregulation of various genes are involved in the occurrence and progression of pancreatic cancer. NIPA-like proteins (NIPAs) are expressed in a variety of cancer types, yet the role of NIPAL1 in cancer remains unclear. Therefore, further research is required to determine its diagnostic significance and understand its biological functions in cancer. Primitive RNA sequencing (RNA-seq) data of PAAD from The Cancer Genome Atlas (TCGA) was utilized for bioinformatics analysis to characterize the expression levels of NIPAL1 in tumor and normal tissues. Differentially expressed genes (DEGs) were identified, and Gene Set Enrichment Analysis (GSEA) was performed to elucidate potential biological mechanisms of NIPAL1 involved in PAAD development. Additionally, we analyzed the correlation between NIPAL1 expression, immune cell infiltration, and PAAD progression. The Genomics of Drug Sensitivity in Cancer (GDSC) database was utilized to investigate the relationship between NIPAL1 expression and the efficacy of common drugs used in chemotherapy and targeted therapy in patients with pancreatic cancer. Subsequently, we predicted five small-molecule drugs targeted at NIPAL1 using molecular docking. Finally, high expression of NIPAL1 in tumor tissues was validated through immunohistochemistry. In pancreatic cancer cell lines, changes in phenotypes such as proliferation, migration, and invasion following the knockdown of NIPAL1 were assessed. Finally, we established a subcutaneous tumor-bearing mouse model to further validate its therapeutic significance in vivo.
Collapse
Affiliation(s)
- Youlong Zhu
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zongze Qi
- Department of General Surgery, No. 1 Hospital of the Xundian County, Kunming, Yunnan Province, China
| | - Shaoqi Zu
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fangchao Yang
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanming Wang
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Zhu
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xintong Li
- Academy of Basic Medicine, Kunming Medical University, Kunming, China
| | - Ruixue Li
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Hong Zhu
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Habela CW, Liu S, Taga A, Dastgheyb R, Haughey N, Bergles D, Song H, Ming GL, Maragakis NJ. Altered development and network connectivity in a human neuronal model of 15q11.2 deletion-related neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613912. [PMID: 39345567 PMCID: PMC11429947 DOI: 10.1101/2024.09.19.613912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The chromosome 15q11.2 locus is deleted in 1.5% of patients with genetic epilepsy and confers a risk for intellectual disability and schizophrenia. Individuals with this deletion demonstrate increased cortical thickness, decreased cortical surface area and white matter abnormalities. Human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPC) from 15q11.2 deletion individuals exhibit early adhesion junction and migration abnormalities, but later neuronal development and function have not been fully assessed. Imaging studies indicating altered structure and network connectivity in the anterior brain regions and the cingulum suggest that in addition to alterations in progenitor dynamics, there may also be structural and functional changes within discrete networks of mature neurons. To explore this, we generated human forebrain cortical neurons from iPSCs derived from individuals with or without 15q11.2 deletion and used longitudinal imaging and multielectrode array analysis to evaluate neuronal development over time. 15q11.2 deleted neurons exhibited fewer connections and an increase in inhibitory neurons. Individual neurons had decreased neurite complexity and overall decreased neurite length. These structural changes were associated with a reduction in multiunit action potential generation, bursting and synchronization. The 15q11.2 deleted neurons also demonstrated specific functional deficits in glutamate and GABA mediated network activity and synchronization with a delay in the maturation of the inhibitory response to GABA. These data indicate that deletion of the 15q11.2 region is sufficient to impair the structural and functional maturation of cortical neuron networks which likely underlies the pathologic changes in humans with the 15q11.2 deletion.
Collapse
|
4
|
Yamaji M, Ohno Y, Shimada M, Kihara A. Alteration of epidermal lipid composition as a result of deficiency in the magnesium transporter Nipal4. J Lipid Res 2024; 65:100550. [PMID: 38692573 PMCID: PMC11153242 DOI: 10.1016/j.jlr.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Lipids in the stratum corneum play an important role in the formation of the skin permeability barrier. The causative gene for congenital ichthyosis, NIPAL4, encodes a Mg2+ transporter and is involved in increases in intracellular Mg2+ concentrations that depend on keratinocyte differentiation. However, the role of this increased Mg2+ concentration in skin barrier formation and its effect on the lipid composition of the stratum corneum has remained largely unknown. Therefore, in the present study, we performed a detailed analysis of epidermal lipids in Nipal4 KO mice via TLC and MS. Compared with WT mice, the Nipal4 KO mice showed compositional changes in many ceramide classes (including decreases in ω-O-acylceramides and increases in ω-hydroxy ceramides), together with increases in ω-hydroxy glucosylceramides, triglycerides, and free fatty acids and decreases in ω-O-acyl hydroxy fatty acids containing a linoleic acid. We also found increases in unusual ω-O-acylceramides containing oleic acid or palmitic acid in the KO mice. However, there was little change in levels of cholesterol or protein-bound ceramides. The TLC analysis showed that some unidentified lipids were increased, and the MS analysis showed that these were special ceramides called 1-O-acylceramides. These results suggest that elevated Mg2+ concentrations in differentiated keratinocytes affect the production of various lipids, resulting in the lipid composition necessary for skin barrier formation.
Collapse
Affiliation(s)
- Marino Yamaji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Madoka Shimada
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
van Abswoude DH, Pellikaan K, Nguyen N, Rosenberg AGW, Davidse K, Hoekstra FME, Rood IM, Poitou C, Grugni G, Høybye C, Markovic TP, Caixàs A, Crinò A, van den Berg SAA, van der Lely AJ, de Graaff LCG. Kidney disease in adults with Prader-Willi syndrome: international cohort study and systematic literature review. Front Endocrinol (Lausanne) 2023; 14:1168648. [PMID: 37547314 PMCID: PMC10402738 DOI: 10.3389/fendo.2023.1168648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background Prader-Willi syndrome (PWS) is a rare, complex, genetic disorder characterized by hyperphagia, hypotonia, delayed psychomotor development, low muscle mass and hypothalamic dysfunction. Adults with PWS often have obesity, hypertension and type 2 diabetes mellitus (DM2), known risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD). Early symptoms of CVD and CKD may be masked by intellectual disability and inability to express physical complaints. Furthermore, kidney diseases are often asymptomatic. Therefore, renal and cardiovascular disease might be missed in patients with PWS. Microalbuminuria is an early sign of microvascular damage in the kidneys and other vascular beds. Therefore, we screened our adult PWS cohort for the presence of elevated urinary albumin and (micro)albuminuria. Methods We retrospectively collected anthropometric measurements, blood pressure, medical history, medication use, urine dipstick and biochemical measurements form electronic patient files. In addition, we performed a systematic literature review on kidney disease in PWS. Results We included 162 adults with genetically confirmed PWS (56% male, median age 28 years), of whom 44 (27%) had DM2. None had known CVD. All subjects had normal estimated glomerular filtration rate (eGFR) according to non-PWS reference intervals. Elevated urinary albumin or (micro)albuminuria was present in 28 (18%); 19 out of 75 (25%) had an increased urinary albumin-to-creatinine ratio (UACR) and 10 out of 57 (18%) had an increased urinary protein-to-creatinine ratio. Elevated urinary albumin was present at a young age (median age 26 (IQR 24-32) years) and was associated with an significantly higher BMI and LDL-cholesterol levels and higher prevalence of DM2, hypertension and dyslipidemia than those with normal UACR (p=0.027, p=0.019, p<0.001, p<0.001, p=0.011 and respectively). Conclusion Upon screening, one in every five adults with PWS had increased urinary albumin or (micro)albuminuria, early signs of microvascular disease. All had normal eGFR, according to non-PWS reference intervals, and none had a formal diagnosis of CVD. As muscle mass is low in PWS, creatinine levels and eGFR may be spuriously normal. Urinalysis in this patient group can be used as a screening tool for microvascular (kidney) disease. We propose an algorithm for the detection and management of microvascular disease in adults with PWS.
Collapse
Affiliation(s)
- Denise H. van Abswoude
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, Rotterdam, Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, Rotterdam, Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Naomi Nguyen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, Rotterdam, Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, Rotterdam, Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Franciska M. E. Hoekstra
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Internal Medicine, Division of Nephrology, Reinier de Graaf Gasthuis, Delft, Netherlands
| | - Ilse M. Rood
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Rare Diseases Center of Reference ‘Prader-Willi Syndrome and Obesity with Eating Disorders’ (PRADORT), Nutrition Department, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Sorbonne Université, National Institute of Health and Medical Research (INSERM), Nutriomics, Paris, France
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN)
| | - Graziano Grugni
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN)
- Division of Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Piancavallo, Italy
| | - Charlotte Høybye
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN)
- Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Endocrinology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Tania P. Markovic
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- Metabolism & Obesity Service, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Charles Perkins Center and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Assumpta Caixàs
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- Department of Endocrinology and Nutrition, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT) Instituto de Salud Carlos III (CERCA-ISCIII), Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Antonino Crinò
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- Reference Center for Prader-Willi syndrome, Bambino Gesù Hospital, Research Institute, Palidoro, Italy
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Sjoerd A. A. van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Clinical Chemistry, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, Rotterdam, Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN)
| |
Collapse
|
6
|
Liu W, Khan S, Tong M, Hu H, Yin L, Huang J. Identification and Expression of the CorA/MRS2/ALR Type Magnesium Transporters in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2512. [PMID: 37447072 DOI: 10.3390/plants12132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Magnesium (Mg2+) is the most abundant divalent ion in plants, participating in numerous metabolic processes in growth and development. CorA/MRS2/ALR type Mg2+ transporters are essential for maintaining Mg2+ homeostasis in plants. However, the candidate protein and its potential functions in the tomato plant have not been fully understood. In this study, we identified seven MGT genes (SlMRS2) in tomato based on sequence similarity, domain analysis, conserved motif identification, and structure prediction. Two SlMRS2 genes were analyzed in the bacterial strain MM281, and a functional complementary assay demonstrated their high-affinity transport of Mg2+. Quantitative real-time PCR analysis revealed that the expressions of these Mg2+ transporters were down-regulated in leaves under Mg2+ limitation, with a greater impact on lower and middle leaves compared to young leaves. Conversely, under Mg2+ toxicity, several genes were up-regulated in leaves with a circadian rhythm. Our findings indicate that members of the SlMRS2 family function as Mg2+ transporters and lay the groundwork for further analysis of their distinct functions in tomato.
Collapse
Affiliation(s)
- Wen Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shahbaz Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mengying Tong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Jiaquan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Johnson ET, Lyon R, Zaitlin D, Khan AB, Jairajpuri MA. A comparison of transporter gene expression in three species of Peronospora plant pathogens during host infection. PLoS One 2023; 18:e0285685. [PMID: 37262030 PMCID: PMC10234565 DOI: 10.1371/journal.pone.0285685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Protein transporters move essential metabolites across membranes in all living organisms. Downy mildew causing plant pathogens are biotrophic oomycetes that transport essential nutrients from their hosts to grow. Little is known about the functions and gene expression levels of membrane transporters produced by downy mildew causing pathogens during infection of their hosts. Approximately 170-190 nonredundant transporter genes were identified in the genomes of Peronospora belbahrii, Peronospora effusa, and Peronospora tabacina, which are specialized pathogens of basil, spinach, and tobacco, respectively. The largest groups of transporter genes in each species belonged to the major facilitator superfamily, mitochondrial carriers (MC), and the drug/metabolite transporter group. Gene expression of putative Peronospora transporters was measured using RNA sequencing data at two time points following inoculation onto leaves of their hosts. There were 16 transporter genes, seven of which were MCs, expressed in each Peronospora species that were among the top 45 most highly expressed transporter genes 5-7 days after inoculation. Gene transcripts encoding the ADP/ATP translocase and the mitochondrial phosphate carrier protein were the most abundant mRNAs detected in each Peronospora species. This study found a number of Peronospora genes that are likely critical for pathogenesis and which might serve as future targets for control of these devastating plant pathogens.
Collapse
Affiliation(s)
- Eric T Johnson
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - Rebecca Lyon
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Abdul Burhan Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | | |
Collapse
|
8
|
Biswal SR, Singh M, Dwibedy SLL, Kumari S, Muthuswamy S, Kumar A, Kumar S. Deciphering the RNA-binding protein interaction with the mRNAs encoded from human chromosome 15q11.2 BP1-BP2 microdeletion region. Funct Integr Genomics 2023; 23:174. [PMID: 37219715 DOI: 10.1007/s10142-023-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Mandakini Singh
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | | | - Subhadra Kumari
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
9
|
Meossi C, Carrer A, Ciaccio C, Estienne M, Silipigni R, Sciacca FL, Pantaleoni C, D'Arrigo S, Milani D. Clinical features and magnesium levels: Novel insights in 15q11.2 BP1-BP2 copy number variants. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023. [PMID: 37129092 DOI: 10.1111/jir.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Investigating copy number variations (CNVs) such as microdeletions or microduplications can significantly contribute to discover the aetiology of neurodevelopmental disorders. 15q11.2 genomic region, including NIPA1 and NIPA2 genes, contains a recurrent but rare CNV, flanked by the break points BP1 and BP2. Both BP1-BP2 microdeletion and microduplication have been associated with intellectual disability (ID), neuropsychiatric/behavioural disturbances and mild clinical features, even if with incomplete penetrance and variable expressivity. The pathogenic role of this CNV is quite unclear though. Unknown variants in other DNA regions and parent-of-origin effect (POE) are some of the mechanisms that have been proposed as an explanation of the wide phenotypic variability. As NIPA1 and NIPA2 encode for proteins that mediate magnesium (Mg2+ ) metabolism, it has been suggested that urinary Mg2+ levels could potentially represent informative and affordable biomarkers for a rapid screening of 15q11.2 duplications or deletions. Furthermore, magnesium supplementation has been proposed as possible therapeutic strategy. METHODS Thirty one children with ID and/or other neurodevelopmental disorders carrying either a duplication or a deletion in 15q11.2 BP1-BP2 region have been recruited. When available, blood samples from parents have been analysed to identify the CNV origin. All participants underwent family and medical data collection, physical examination and neuropsychiatric assessment. Electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) scan were performed in 15 children. In addition, 11 families agreed to participate to the assessment of blood and urinary Mg2+ levels. RESULTS We observed a highly variable phenotypic spectrum of developmental issues encompassing ID in most subjects as well as a variety of behavioural disorders such as autism and attention-deficit disorder/attention-deficit hyperactivity disorder. Dysmorphic traits and malformations were detected only in a minority of the participants, and no clear association with growth anomalies was found. Abnormal brain MRI and/or EEG were reported respectively in 64% and 92% of the subjects. Inheritance assessment highlighted an excess of duplication of maternal origin, while cardiac alterations were detected only in children with 15q11.2 CNV inherited from the father. We found great variability in Mg2+ urinary values, without correlation with 15q11.2 copy numbers. However, the variance of urinary Mg2+ levels largely increases in individuals with 15q11.2 deletion/duplication. CONCLUSIONS This study provides further evidence that 15q11.2 BP1-BP2 CNV is associated with a broad spectrum of neurodevelopmental disorders and POE might be an explanation for clinical variability. However, some issues may question the real impact of 15q11.2 CNV on the phenotype in the carriers: DNA sequencing could be useful to exclude other pathogenic gene mutations. Our results do not support the possibility that urinary Mg2+ levels can be used as biomarkers to screen children with neurodevelopmental disorders for 15q11.2 duplication/deletion. However, there are evidences of correlations between 15q11.2 BP1-BP2 CNV and Mg2+ metabolism and future studies may pave the way to new therapeutic options.
Collapse
Affiliation(s)
- C Meossi
- Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Carrer
- Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Ciaccio
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - M Estienne
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F L Sciacca
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - C Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - S D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Wang Y, Zhang X, Zhang W, Peng M, Tan G, Qaseem MF, Li H, Wu AM. Physiological and transcriptomic responses to magnesium deficiency in Neolamarckia Cadamba. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107645. [PMID: 36963300 DOI: 10.1016/j.plaphy.2023.107645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg2+) is a critical component of chlorophyll and enzymes involved in various physiological and biochemical processes essential for plant growth, biomass accumulation, and photosynthesis. Mg2+ deficiency (MgD) is common in hot and rainy subtropical areas due to its easy loss from soil. Neolamarckia cadamba, an important tropical tree in South Asia, faces severe effects of MgD, however, the responses of N. cadamba to MgD stress remain unclear. In here, effects of N. cadamba under MgD stress were investigated. The study revealed that MgD had lower plant biomass, fresh and dry weight, root length, root volume, and surface area compared to CK (normal Mg2+). As treatment time increased, the leaves began to yellow, and lesions appeared. Chlorophyll a, chlorophyll b, and total chlorophyll content, along with fluorescence-related parameters and leaf photosynthetic capacity, were significantly reduced in MgD stress compared to CK treatment. Transcriptome analysis showed that transporters as well as transcription factors (TFs) from MYC (v-myc avian myelocytomatosis viral oncogene homolog), MYB (v-myb avian myeloblastosis viral oncogene homolog), bHLH (basic helix-loop-helix) and WRKY families were upregulated in leaves at 10 d of MgD stress, indicating that magnesium signaling transduction might be activated to compensate MgD. In addition, genes including chlorophyll(ide) b reductase (NYC1/NOL) chlorophyll/bacteriochlorophyll synthase (G4) and 7-hydroxymethyl chlorophyll a reductase synthesizing (HCAR) chlorophyll a and chlorophyll b were down-regulated in leaves, while those scavenging reactive oxygen species (ROS) were mainly up-regulated at 10 d of MgD stress. These results shed light on underlying MgD in N. cadamba.
Collapse
Affiliation(s)
- Yueyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengxuan Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoqing Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Toli EA, Bounas A, Merilä J, Sotiropoulos K. Genetic diversity and detection of candidate loci associated with alternative morphotypes in a tailed amphibian. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Phenotypic changes in response to environmental cues allow organisms to adapt and enhance their fitness in a given habitat. Despite the significance of phenotypic plasticity in the evolution and ecology of natural populations and the ongoing development of new genomic tools, the underlying genetic basis is still largely unknown. Herein, we examined the underlying mechanisms of genetic and phenotypic divergence among alternative morphs of a natural population of the Greek smooth newt (Lissotriton graecus). The studied population consists of fully aquatic individuals exhibiting facultative paedomorphosis, the retention of larval traits such as gills, and individuals that have passed metamorphosis (paedomorphic vs. metamorphic newts). Based on the single nucleotide polymorphisms (SNPs) obtained, we observed low genetic divergence between the two alternative morphs and similar levels of gene diversity on neutral markers. Despite the observed high gene flow between the morphs, an Fst approach for outliers detected candidate loci putatively associated with the alternative morphs that mapped to four genes. These identified genes have functional roles in metabolic processes that may mediate the persistence of alternative ontogenetic trajectories.
Collapse
Affiliation(s)
- Elisavet A Toli
- Molecular Ecology and Conservation Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina , 45110 Ioannina , Greece
| | - Anastasios Bounas
- Molecular Ecology and Conservation Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina , 45110 Ioannina , Greece
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki , 00014 Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, The University of Hong Kong , Hong Kong SAR
| | - Konstantinos Sotiropoulos
- Molecular Ecology and Conservation Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina , 45110 Ioannina , Greece
| |
Collapse
|
12
|
Sønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, Thompson PM, Bearden CE, Andreassen OA. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp 2022; 43:300-328. [PMID: 33615640 PMCID: PMC8675420 DOI: 10.1002/hbm.25354] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Collapse
Affiliation(s)
- Ida E. Sønderby
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Christopher R. K. Ching
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Mental HealthVeterans Affairs Greater Los Angeles Healthcare System, Los AngelesCaliforniaUSA
| | - Julio E. Villalon‐Reina
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Ingrid Agartz
- NORMENT, Institute of Clinical PsychiatryUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Rosa Ayesa‐Arriola
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
| | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health (APH) Research InstituteAmsterdam UMCAmsterdamThe Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute for Anatomy IMedical Faculty & University Hospital Düsseldorf, University of DüsseldorfDüsseldorfGermany
| | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Simone Ciufolini
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Michael C. Craig
- Department of Forensic and Neurodevelopmental SciencesThe Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | | | - Adam C. Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Anders M. Dale
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paola Dazzan
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Greig I. de Zubicaray
- Faculty of HealthQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Srdjan Djurovic
- Department of Medical GeneticsOslo University HospitalOsloNorway
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Gary Donohoe
- Center for Neuroimaging, Genetics and GenomicsSchool of Psychology, NUI GalwayGalwayIreland
| | - Bogdan Draganski
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- Neurology DepartmentMax‐Planck Institute for Human Brain and Cognitive SciencesLeipzigGermany
| | - Courtney A. Durdle
- MIND Institute and Department of Psychiatry and Behavioral SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU DresdenDresdenGermany
| | - Beverly S. Emanuel
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas Espeseth
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychologyBjørknes CollegeOsloNorway
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics UnitCenter for Genomic Medicine, Massachusetts General HospitalBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David C. Glahn
- Tommy Fuss Center for Neuropsychiatric Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Hans J. Grabe
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Youth Suicide Prevention, Intervention and Research CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Boris A. Gutman
- Medical Imaging Research Center, Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Jan Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Asta K. Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs HospitalTrondheimNorway
| | - Laura A. Hansen
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Derrek P. Hibar
- Personalized Healthcare AnalyticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jouke‐Jan Hottenga
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Emma E. M. Knowles
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - David E. J. Linden
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
| | - Jingyu Liu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Astri J. Lundervold
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Sandra Martin‐Brevet
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
| | - Kenia Martínez
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Facultad de PsicologíaUniversidad Autónoma de MadridMadridSpain
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Samuel R. Mathias
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Donna M. McDonald‐McGinn
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Human Genetics and 22q and You CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Allan F. McRae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Torgeir Moberget
- Department of Psychology, Faculty of Social SciencesUniversity of OsloOsloNorway
| | - Claudia Modenato
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- University of LausanneLausanneSwitzerland
| | - Jennifer Monereo Sánchez
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Clara A. Moreau
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
| | - Thomas W. Mühleisen
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Zdenka Pausova
- Translational Medicine, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Carlos Prieto
- Bioinformatics Service, NucleusUniversity of SalamancaSalamancaSpain
| | | | - Céline S. Reinbold
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Centre for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway
| | - Tiago Reis Marques
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith HospitalImperial College LondonLondonUnited Kingdom
| | - Gabriela M. Repetto
- Center for Genetics and GenomicsFacultad de Medicina, Clinica Alemana Universidad del DesarrolloSantiagoChile
| | - Alexandre Reymond
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - James J. Rucker
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyNew South WalesAustralia
| | - James E. Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Ana I. Silva
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | | | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Diana Tordesillas‐Gutiérrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute (IDIVAL), SantanderSpain
| | - Magnus O. Ulfarsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of Electrical and Computer EngineeringUniversity of Iceland, ReykjavikIceland
| | - Ariana Vajdi
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marianne B. M. van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Javier Vázquez‐Bourgon
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
- School of MedicineUniversity of CantabriaSantanderSpain
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - G. Bragi Walters
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lars T. Westlye
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Elaine H. Zackai
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kári Stefánsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
- Department of PediatricsUniversity of Montreal, MontrealQCCanada
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Center for Neurobehavioral GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| |
Collapse
|
13
|
Xia Y, Jiang X, Huang Y, Liu Q, Huang Y, Zhang B, Mei Z, Xu D, Shi Y, Tu W. Construction of a Tumor Immune Microenvironment-Related Prognostic Model in BRAF-Mutated Papillary Thyroid Cancer. Front Endocrinol (Lausanne) 2022; 13:895428. [PMID: 35757399 PMCID: PMC9215106 DOI: 10.3389/fendo.2022.895428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
BRAF mutation is a representative oncogenic mutation, with a frequency of 60% in papillary thyroid carcinoma (PTC), but the reasons for the poor prognosis and more aggressive course of BRAF-mutated PTC are controversial. Tumor immune microenvironment (TIME) is an essential factor permitting the development and progression of malignancy, but whether TIME participates in the prognosis of BRAF-mutated PTC has not yet been reported. The primary goal of the present study was to provide a comprehensive TIME-related prognostic model to increase the predictive accuracy of progression-free survival (PFS) in patients with BRAF-mutated PTC. In this study, we analyzed the mRNA-seq data and corresponding clinical data of PTC patients obtained from the TCGA database. By calculating the TIME scores (immune score, stromal score and ESTIMATE score), the BRAF mutation group (n=237) was dichotomized into the high- and low-score groups. By functional analysis of differentially expressed genes (DEGs) in different high/low score groups, we identified 2 key TIME-related genes, HTR3A and NIPAL4, which affected PFS in BRAF-mutated PTC. A risk scoring system was developed by multivariate Cox analysis based on the abovementioned 2 TIME-related genes. Then, the BRAF-mutated cohort was divided into the high- and low-risk groups using the median risk score as a cutoff. A high risk score correlated positively with a higher HTR3A/NIPAL4 expression level but negatively with PFS in BRAF-mutated PTC. Ultimately, a nomogram was constructed by combining risk score with clinical parameter (Tumor stage), and the areas under the ROC curve (AUCs) of the nomogram for predicting 1-, 3- and 5-year PFS were then calculated and found to be 0.694, 0.707 and 0.738, respectively, indicating the improved accuracy and clinical utility of the nomogram versus the risk score model in the BRAF-mutated PTC cohort. Moreover, we determined the associations between prognostic genes or risk score and immune cell infiltration by two-way ANOVA. In the high-risk score, high HTR3A expression, and high NIPAL4 expression groups, higher infiltration of immune cells was found. Collectively, these findings confirm that the nomogram is effective in predicting the outcome of BRAF-mutated PTC and will add a spatial dimension to the developing risk stratification system.
Collapse
Affiliation(s)
- Yuxiao Xia
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Xue Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuan Huang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Qian Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yin Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Bo Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhanjun Mei
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Dongkun Xu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Wenling Tu, ; Yuhong Shi,
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
- *Correspondence: Wenling Tu, ; Yuhong Shi,
| |
Collapse
|
14
|
Huang TX, Ma GC, Chen M, Li WF, Shaw SW. Difficulties of Prenatal Genetic Counseling for a Subsequent Child in a Family With Multiple Genetic Variations. Front Genet 2022; 12:612100. [PMID: 34970295 PMCID: PMC8712678 DOI: 10.3389/fgene.2021.612100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Many parents with a disabled child caused by a genetic condition appreciate the option of prenatal genetic diagnosis to understand the chance of recurrence in a future pregnancy. Genome-wide tests, such as chromosomal microarray analysis and whole-exome sequencing, have been increasingly used for prenatal diagnosis, but prenatal counseling can be challenging due to the complexity of genomic data. This situation is further complicated by incidental findings of additional genetic variations in subsequent pregnancies. Here, we report the prenatal identification of a baby with a MECP2 missense variant and 15q11.2 microduplication in a family that has had a child with developmental and epileptic encephalopathy caused by a de novo KCNQ2 variant. An extended segregation analysis including extended relatives, in addition to the parents, was carried out to provide further information for genetic counseling. This case illustrates the challenges of prenatal counseling and highlights the need to understand the clinical and ethical implications of genome-wide tests.
Collapse
Affiliation(s)
- Ting-Xuan Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Fang Li
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Steven W Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health University College London, London, United Kingdom
| |
Collapse
|
15
|
Marunaka K, Shu S, Kobayashi M, Goto M, Katsuta Y, Yoshino Y, Ikari A. Elevation of Hyaluronan Synthase by Magnesium Supplementation Mediated through the Activation of GSK3 and CREB in Human Keratinocyte-Derived HaCaT Cells. Int J Mol Sci 2021; 23:ijms23010071. [PMID: 35008494 PMCID: PMC8744730 DOI: 10.3390/ijms23010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin barrier damage is present in the patients with hereditary disorders of the magnesium channel, but the molecular mechanism has not been fully understood. We found that the expressions of hyaluronan synthase (HAS), HAS2 and HAS3 are influenced by MgCl2 concentration in human keratinocyte-derived HaCaT cells. The exposure of cells to a high concentration (5.8 mM) of MgCl2 induced the elevation of HAS2/3 expression, which was inhibited by mRNA knockdown of nonimprinted in Prader-Willi/Angelman syndrome-like domain containing 4 (NIPAL4). Similarly, the content of hyaluronic acid (HA) was changed according to MgCl2 concentration and the expression of NIPAL4. The MgCl2 supplementation increased the reporter activities of HAS2/3, which were inhibited by NIPAL4 knockdown, indicating that the expressions of HAS2/3 are up-regulated at the transcriptional level. The reporter activities and mRNA levels of HAS2/3, and the production of HA were inhibited by CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor, and naphthol AS-E, a cyclic AMP-response element binding protein (CREB) inhibitor. Furthermore, the mutation in putative CREB-binding sites of promoter region in HAS2/3 genes inhibited the MgCl2 supplementation-induced elevation of promoter activity. Our results indicate that the expressions of HAS2/3 are up-regulated by MgCl2 supplementation in HaCaT cells mediated through the activation of GSK3 and CREB. Magnesium may play a pivotal role in maintaining the skin barrier function and magnesium supplementation may be useful to enhance moisturization and wound repair in the skin.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Makiko Goto
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuji Katsuta
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
16
|
Correa‐da‐Silva F, Fliers E, Swaab DF, Yi C. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021; 33:e12994. [PMID: 34156126 PMCID: PMC8365683 DOI: 10.1111/jne.12994] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
17
|
Screening of genes coupled to heat response in Mongolian and Dorper sheep breeds. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
19
|
Akbar A, Bint-E-Farrakh M, Crosby AH, Gul A, Harlalka GV. Variants in NIPAL4 and ALOXE3 cause autosomal recessive congenital ichthyosis in Pakistani families. Congenit Anom (Kyoto) 2020; 60:149-150. [PMID: 31883158 DOI: 10.1111/cga.12366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Abida Akbar
- RILD Building, Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Muneeba Bint-E-Farrakh
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Andrew H Crosby
- RILD Building, Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Gaurav V Harlalka
- RILD Building, Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| |
Collapse
|
20
|
Manialawy Y, Khan SR, Bhattacharjee A, Wheeler MB. The magnesium transporter NIPAL1 is a pancreatic islet-expressed protein that conditionally impacts insulin secretion. J Biol Chem 2020; 295:9879-9892. [PMID: 32439805 DOI: 10.1074/jbc.ra120.013277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Indexed: 01/23/2023] Open
Abstract
Type 2 diabetes is a chronic metabolic disease characterized by pancreatic β-cell dysfunction and peripheral insulin resistance. Among individuals with type 2 diabetes, ∼30% exhibit hypomagnesemia. Hypomagnesemia has been linked to insulin resistance through reduced tyrosine kinase activity of the insulin receptor; however, its impact on pancreatic β-cell function is unknown. In this study, through analysis of several single-cell RNA-sequencing data sets in tandem with quantitative PCR validation in both murine and human islets, we identified NIPAL1 (NIPA-like domain containing 1), encoding a magnesium influx transporter, as an islet-enriched gene. A series of immunofluorescence experiments confirmed NIPAL1's magnesium-dependent expression and that it specifically localizes to the Golgi in Min6-K8 cells, a pancreatic β-cell-like cell line (mouse insulinoma 6 clone K8). Under varying magnesium concentrations, NIPAL1 knockdown decreased both basal insulin secretion and total insulin content; in contrast, its overexpression increased total insulin content. Although the expression, distribution, and magnesium responsiveness of NIPAL1 in α-TC6 glucagonoma cells (a pancreatic α-cell line) were similar to the observations in Min6-K8 cells, no effect was observed on glucagon secretion in α-TC6 cells under the conditions studied. Overall, these results suggest that NIPAL1 expression is regulated by extracellular magnesium and that down-regulation of this transporter decreases glucose-stimulated insulin secretion and intracellular insulin content, particularly under conditions of hypomagnesemia.
Collapse
Affiliation(s)
- Yousef Manialawy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Saifur R Khan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada .,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alpana Bhattacharjee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada .,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
van der Meer D, Sønderby IE, Kaufmann T, Walters GB, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Cahn W, Calhoun VD, Caspers S, Cavalleri GL, Ching CRK, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivieres S, Di Forti M, Doherty JL, Donohoe G, Ehrlich S, Eising E, Espeseth T, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jacquemont S, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Kikuchi M, Knowles EEM, Kwok JB, Le Hellard S, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Martin NG, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Moberget T, Moreau C, Morris DW, Mühleisen TW, Murray RM, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff RA, Owen MJ, Paus T, Pausova Z, Peralta JM, Pike B, Prieto C, Quinlan EB, Reinbold CS, Reis Marques T, Rucker JJH, Sachdev PS, Sando SB, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Silva AI, Sisodiya SM, Steen VM, Stein DJ, Strike LT, Tamnes CK, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Uhlmann A, Úlfarsson MÖ, van 't Ent D, van den Bree MBM, Vassos E, Wen W, Wittfeld K, Wright MJ, Zayats T, Dale AM, Djurovic S, Agartz I, Westlye LT, Stefánsson H, Stefánsson K, Thompson PM, Andreassen OA. Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry 2020; 77:420-430. [PMID: 31665216 PMCID: PMC6822096 DOI: 10.1001/jamapsychiatry.2019.3779] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023]
Abstract
Importance Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities. Objective To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance. Design, Setting, and Participants In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019. Main Outcomes and Measures The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort. Results Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks. Conclusions and Relevance These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - G Bragi Walters
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, Kew, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Micael Andersson
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Manon Bernard
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Dorret I Boomsma
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Altrecht Science, Utrecht, the Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gianpiero L Cavalleri
- The School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Christopher R K Ching
- Interdepartmental Neuroscience Program, University of California, Los Angeles
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Sven Cichon
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IdahoIVAL, Centre de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- University Hospital Virgen del Rocío, IBiS, Centre de Investigación Biomédica en Red Salud Mental (CIBERSAM), Sevilla, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Shareefa Dalvie
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sonja M C de Zwarte
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Norman Delanty
- The SFI FutureNeuro Research Centre, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Anouk den Braber
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sylvane Desrivieres
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marta Di Forti
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Stefan Ehrlich
- Psychological and Social Medicine, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tormod Fladby
- Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Lorenskog, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Frouin
- Neurospin, Le Commissariat à l'énergie atomique et aux énergies alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Life Science, Sokendai, Hayama, Japan
| | - Thomas Gareau
- Neurospin, Le Commissariat à l'énergie atomique et aux énergies alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David C Glahn
- Boston Children's Hospital, Boston, Massachusetts
- Institute of Living, Hartford, Connecticut
- Harvard Medical School, Boston, Massachusetts
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- St Olav's Hospital, Department of Radiology and Nuclear Medicine, Trondheim, Norway
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Osaka University, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emma E M Knowles
- Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - John B Kwok
- The University of Sydney Central Clinical School, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Samuel R Mathias
- Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Moreau
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | | | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - James J H Rucker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | | | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology and Chalfont Centre for Epilepsy, London, United Kingdom
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Diana Tordesillas-Gutiérrez
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute, IdahoIVAL, Santander, Spain
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Magnús Ö Úlfarsson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík, Iceland
| | - Dennis van 't Ent
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Kári Stefánsson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep 2020; 10:3078. [PMID: 32080264 PMCID: PMC7033235 DOI: 10.1038/s41598-020-59743-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The highly selective magnesium transporter non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2) has recently been associated with the development and progression of type 2 diabetes osteoporosis, but the mechanisms involved are still poorly understood. Because mitophagy is involved in the pathology of type 2 diabetes osteoporosis, the present study aimed to explore the relationship among NIPA2, mitophagy and osteoblast osteogenic capacity. NIPA2 expression was reduced in C57BKS background db/db mice and in vitro models of type 2 diabetes osteoporosis, and the activation of mitophagy in primary culture osteoblast-derived from db/db mice and in high glucose-treated human fetal osteoblastic cells (hFOB1.19) was observed. Knockdown, overexpression of NIPA2 and pharmacological inhibition of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) showed that NIPA2 increased osteoblast function, which was likely regulated by PTEN induced kinase 1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy via the PGC-1α/forkhead box O3a(FoxO3a)/mitochondrial membrane potential (MMP) pathway. Furthermore, the negative effect of mitophagy on osteoblast function was confirmed by pharmacological regulation of mitophagy and knockdown of Parkin. Taken together, these results suggest that NIPA2 positively regulates the osteogenic capacity of osteoblasts via the mitophagy pathway in type 2 diabetes.
Collapse
|
23
|
Laadhar S, Ben Mansour R, Marrakchi S, Miled N, Ennouri M, Fischer J, Kaddechi MA, Turki H, Fakhfakh F. Identification of a novel missense mutation in NIPAL4 gene: First 3D model construction predicted its pathogenicity. Mol Genet Genomic Med 2019; 8:e1104. [PMID: 31876100 PMCID: PMC7057103 DOI: 10.1002/mgg3.1104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background The NIPAL4 gene is described to be implicated of Congenital Ichthyosiform Erythroderma (CIE). It encodes a magnesium transporter membrane‐associated protein, hypothetically involved in epidermal lipid processing and in lamellar body formation. The aim of this work is to investigate the causative mutation in a consanguineous Tunisian family with a clinical feature of CIE with a yellowish severe palmoplantar keratoderma. Methods Four patients were dignosed with CIE. The blood samples were collected from patients and all members of their nuclear family for mutation analysis. The novel mutation of NIPAL4 gene was analysed with several software tools to predict its pathogenicity. Then, the secondary structure and the 3D model of ichthyn was generated in silico. Results The sequencing analysis of the NIPAL4 gene in patients revealed a novel homozygous missense mutation c.534A>C (p.E178D) in the exon 4. Bioinformatic tools predicted its pathogenicity. The secondary structure prediction and the 3D model construction expected the presence of 9 transmembrane helices and revealed that mutation p.E178D was located in the middle of the second transmembrane helices. Besides, the 3D model construction revealed that the p.E178D mutation is inducing a shrinking in the transport channel containing the mutated NIPA4 protein. Conclusion We found a homozygous mutation in exon 4 of NIPAL4 c.534A>C (p.E178D), which was identified for the first time in our study. Bioinformatic investigations supported its involvement in the phenotype of patients with CIE. Interestingly, this mutation was located in the hypothetical transport channel cavity and leads to changes in the channel architecture, which would probably affect its transport function.
Collapse
Affiliation(s)
- Sahar Laadhar
- Faculty of Sciencs of SfaxLaboratory of Molecular and Functional GeneticsSfaxTunisia
| | - Riadh Ben Mansour
- Laboratory of Food Analysis Valorization and Security, Research Group "Biotechnology and pathologies"National School of Engineer of SfaxSfaxTunisia
- Faculty of Sciences of GafsaDepartment of Life SciencesGafsaTunisia
| | | | - Nabil Miled
- Faculty of SciencesDepartment of Biological SciencesUniversity of JeddahJeddahKSA
| | - Mariem Ennouri
- Faculty of Sciencs of SfaxLaboratory of Molecular and Functional GeneticsSfaxTunisia
| | - Judith Fischer
- Institute of Human GeneticsMedical Center‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Hamida Turki
- Dermatology DepartmentHediChaker HospitalSfaxTunisia
| | - Faiza Fakhfakh
- Faculty of Sciencs of SfaxLaboratory of Molecular and Functional GeneticsSfaxTunisia
| |
Collapse
|
24
|
Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum. Comput Biol Chem 2019; 80:498-511. [DOI: 10.1016/j.compbiolchem.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022]
|
25
|
Zhao W, Zhang WL, Yang B, Sun J, Yang MW. NIPA2 regulates osteoblast function via its effect on apoptosis pathways in type 2 diabetes osteoporosis. Biochem Biophys Res Commun 2019; 513:883-890. [PMID: 31003774 DOI: 10.1016/j.bbrc.2019.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes osteoporosis has recently become a hot topic in the study of diabetic complications, but the specific mechanism of its development remains unclear. Non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2), a highly-selective magnesium ion transporter, has been found to be associated with type 2 diabetes. In this study we aimed to investigate the specific role and mechanism of NIPA2 in the pathogenesis of type 2 diabetes osteoporosis. We first used western blotting, PCR, immunofluorescence, and magnesium ion probes to detect changes of NIPA2 and intracellular magnesium levels in osteoblasts at different concentrations of advanced glycation end products (AGEs). We then up- or down-regulated NIPA2 using a lentivirus and analyzed apoptotic biomarkers as well as the osteogenic ability of osteoblasts. We found that AGEs dose-dependently down-regulated the expression of NIPA2 in osteoblasts. NIPA2 also regulated osteoblast apoptosis by affecting the intracellular magnesium level and further affecting the osteogenic capacity of osteoblasts. Our study revealed the changes of NIPA2 in response to AGEs in the environment, as well as its function and mechanism in osteoblasts, demonstrating its important role in the pathogenesis of type 2 diabetes osteoporosis. The study suggests that NIPA2 is a potential target for the treatment of type 2 diabetes osteoporosis.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei-Lin Zhang
- Department of Orthopedics, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Sun
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mao-Wei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Liu NN, Xie H, Xiang-Wei WS, Gao K, Wang TS, Jiang YW. The absence of NIPA2 enhances neural excitability through BK (big potassium) channels. CNS Neurosci Ther 2019; 25:865-875. [PMID: 30895737 PMCID: PMC6630003 DOI: 10.1111/cns.13119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022] Open
Abstract
AIM To reveal the pathogenesis and find the precision treatment for the childhood absence epilepsy (CAE) patients with NIPA2 mutations. METHODS We performed whole-cell patch-clamp recordings to measure the electrophysiological properties of layer V neocortical somatosensory pyramidal neurons in wild-type (WT) and NIPA2-knockout mice. RESULTS We identified that layer V neocortical somatosensory pyramidal neurons isolated from the NIPA2-knockout mice displayed higher frequency of spontaneous and evoked action potential, broader half-width of evoked action potential, and smaller currents of BK channels than those from the WT mice. NS11021, a specific BK channel opener, reduced neuronal excitability in the NIPA2-knockout mice. Paxilline, a selective BK channel blocker, treated WT neurons and could simulate the situation of NIPA2-knockout group, thereby suggesting that the absence of NIPA2 enhanced the excitability of neocortical somatosensory pyramidal neurons by decreasing the currents of BK channels. Zonisamide, an anti-epilepsy drug, reduced action potential firing in NIPA2-knockout mice through increasing BK channel currents. CONCLUSION The results indicate that the absence of NIPA2 enhances neural excitability through BK channels. Zonisamide is probably a potential treatment for NIPA2 mutation-induced epilepsy, which may provide a basis for the development of new treatment strategies for epilepsy.
Collapse
Affiliation(s)
- Na-Na Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Wen-Shu Xiang-Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Tian-Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| |
Collapse
|
27
|
Shen C, Shi X, Xie C, Li Y, Yang H, Mei X, Xu Y, Dong C. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:320-333. [PMID: 30553968 DOI: 10.1016/j.jplph.2018.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 05/26/2023]
Abstract
Potassium (K) is one of the most important mineral nutrients required for fruit growth and development and is known as a 'quality element'. To investigate the role of K in more detail, we performed experiments in which seven-year-old pot-grown 'Huangguan' pear trees were treated with three levels of K (0, 0.4, or 0.8 g K2O kg-1 soil). K supply improved the development of vascular bundles in pear petioles and fruit peduncles and enhanced expression of genes involved in nutrients and sugar transport. Different from K and calcium (Ca), magnesium (Mg) concentrations in the leaves, petioles, and fruit peduncles were significantly higher under low K but lower under high K. However, the concentrations of K, Ca, and Mg in fruit all increased as more K was applied. Correspondingly, the expression of leaf Mg transporters (MRS2-1 and MRS2-3) increased under low K, indicating that Mg had an obvious compensation effect on K, while their expression decreased under medium and high K, showing that K had an obvious antagonistic effect on Mg. Except for NIPA2, the expressions of fruit K, Ca, and Mg transporters increased under high K, implying a synergistic effect among them in fruit. The concentration of sorbitol, sucrose, and total sugar in leaves and fruit at maturity significantly increased in response to the supply of K. The increase in sugar concentration was closely related to the up-regulated expression of sucrose transporter (SUT) and sorbitol transporter (SOT) genes. Together, these effects may promote the transport of nutrients and sugar from sources (leaves) to sinks (fruit) and increase the accumulation of sugar in the fruit.
Collapse
Affiliation(s)
- Changwei Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Xiaoqian Shi
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Changyan Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yan Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Han Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinlan Mei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caixia Dong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Abstract
Since its discovery, aldosterone and ion modulation have been entwined. While scientific investigations throughout the decades have emphasized aldosterone's connection to Na+, K+, and H+ homeostasis, more recent research has demonstrated a relationship between aldosterone and Mg2+, Ca2+, and Cl- homeostasis. The mechanisms connecting aldosterone to ion regulation frequently involve ion channels; the membrane localized proteins containing at least one aqueous pore for ion conduction. In order to precisely control intracellular or intraorganelle ion concentrations, ion channels have evolved highly specific regions within the conduction pore that select ions by charge, size, and/or dehydration energy requirement, meaning aldosterone must be able to modulate multiple ion channels to regulate the many ions described above. The list of ion channels presently connected to aldosterone includes ENaC (Na+), ROMK/BK (K+), TRPV4/5/6 (Ca2+), TRPM7/6 (Mg2+), and ClC-K/CFTR (Cl-), among others. This list is only expected to grow over time, as the promiscuity of aldosterone becomes more understood.
Collapse
Affiliation(s)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Zhu W, Deng Y, Zhou X. Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout. Open Rheumatol J 2018; 12:94-113. [PMID: 30123371 PMCID: PMC6062909 DOI: 10.2174/1874312901812010094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Gout is a common form of inflammatory arthritis caused by hyperuricemia and the deposition of Monosodium Urate (MSU) crystals. It is also considered as a complex disorder in which multiple genetic factors have been identified in association with its susceptibility and/or clinical outcomes. Major genes that were associated with gout include URAT1, GLUT9, OAT4, NPT1 (SLC17A1), NPT4 (SLC17A3), NPT5 (SLC17A4), MCT9, ABCG2, ABCC4, KCNQ1, PDZK1, NIPAL1, IL1β, IL-8, IL-12B, IL-23R, TNFA, MCP-1/CCL2, NLRP3, PPARGC1B, TLR4, CD14, CARD8, P2X7R, EGF, A1CF, HNF4G and TRIM46, LRP2, GKRP, ADRB3, ADH1B, ALDH2, COMT, MAOA, PRKG2, WDR1, ALPK1, CARMIL (LRRC16A), RFX3, BCAS3, CNIH-2, FAM35A and MYL2-CUX2. The proteins encoded by these genes mainly function in urate transport, inflammation, innate immunity and metabolism. Understanding the functions of gout-associated genes will provide important insights into future studies to explore the pathogenesis of gout, as well as to develop targeted therapies for gout.
Collapse
Affiliation(s)
- Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Deng
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Ophthalmology of Children, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
30
|
Schäffers OJM, Hoenderop JGJ, Bindels RJM, de Baaij JHF. The rise and fall of novel renal magnesium transporters. Am J Physiol Renal Physiol 2018; 314:F1027-F1033. [DOI: 10.1152/ajprenal.00634.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Body Mg2+ balance is finely regulated in the distal convoluted tubule (DCT), where a tight interplay among transcellular reabsorption, mitochondrial exchange, and basolateral extrusion takes place. In the last decades, several research groups have aimed to identify the molecular players in these processes. A multitude of proteins have been proposed to function as Mg2+ transporter in eukaryotes based on phylogenetic analysis, differential gene expression, and overexpression studies. However, functional evidence for many of these proteins is lacking. The aim of this review is, therefore, to critically reconsider all putative Mg2+ transporters and put their presumed function in context of the renal handling of Mg2+. Sufficient experimental evidence exists to acknowledge transient receptor potential melastatin (TRPM) 6 and TRPM7, solute carrier family 41 (SLC41) A1 and SLC41A3, and mitochondrial RNA splicing 2 (MRS2) as Mg2+ transporters. TRPM6/7 facilitate Mg2+ influx, SLC41A1 mediates Mg2+ extrusion, and MRS2 and SLC41A3 are implicated in mitochondrial Mg2+ homeostasis. These proteins are highly expressed in the DCT. The function of cyclin M (CNNM) proteins is still under debate. For the other proposed Mg2+ transporters including Mg2+ transporter subtype 1 (MagT1), nonimprinted in Prader-Willi/Angelman syndrome (NIPA), membrane Mg2+ transport (MMgT), Huntingtin-interacting protein 14 (HIP14), and ATP13A4, functional evidence is limited, or functions alternative to Mg2+ transport have been suggested. Additional characterization of their Mg2+ transport proficiency should be provided before further claims about their role as Mg2+ transporter can be made.
Collapse
Affiliation(s)
- Olivier J. M. Schäffers
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Sasahira T, Nishiguchi Y, Kurihara-Shimomura M, Nakashima C, Kuniyasu H, Kirita T. NIPA-like domain containing 1 is a novel tumor-promoting factor in oral squamous cell carcinoma. J Cancer Res Clin Oncol 2018; 144:875-882. [PMID: 29464350 DOI: 10.1007/s00432-018-2612-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE In our previous global gene expression analysis, we identified NIPA-like domain containing 1 (NIPAL1), which encodes a magnesium transporter, as one of the most overexpressed genes in recurrent oral squamous cell carcinoma (OSCC). Although has been NIPAL1 linked with gout pathogenesis, little is known about its expression and function in human malignancies. METHODS In this study, we examined NIPAL1 expression in 192 cases of OSCC by immunohistochemistry and performed a functional analysis of human OSCC cells. RESULTS NIPAL1 immunostaining was observed in 39 of 192 OSCC patients (20.3%). NIPAL1 expression correlated significantly with cancer cell intravsation (P = 0.0062), as well as with poorer disease-free survival in a Kaplan-Meier analysis (P < 0.0001). Moreover, a multivariate Cox proportional hazards model analysis revealed that NIPAL1 expression was an independent predictor of disease-free survival in OSCC (P < 0.0001). In a functional analysis, NIPAL1 regulated the growth and adhesion of OSCC tumor cells and endothelial cells. CONCLUSIONS Our findings suggest that NIPAL1 might be a novel factor promoting OSCC tumorigenesis, as well as a useful molecular marker of OSCC.
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Miyako Kurihara-Shimomura
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Chie Nakashima
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
32
|
Mauldin EA, Crumrine D, Casal ML, Jeong S, Opálka L, Vavrova K, Uchida Y, Park K, Craiglow B, Choate KA, Shin KO, Lee YM, Grove GL, Wakefield JS, Khnykin D, Elias PM. Cellular and Metabolic Basis for the Ichthyotic Phenotype in NIPAL4 (Ichthyin)-Deficient Canines. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1419-1429. [PMID: 29548991 DOI: 10.1016/j.ajpath.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mutations in several lipid synthetic enzymes that block fatty acid and ceramide production produce autosomal recessive congenital ichthyoses (ARCIs) and associated abnormalities in permeability barrier homeostasis. However, the basis for the phenotype in patients with NIPAL4 (ichthyin) mutations (among the most prevalent ARCIs) remains unknown. Barrier function was abnormal in an index patient and in canines with homozygous NIPAL4 mutations, attributable to extensive membrane stripping, likely from detergent effects of nonesterified free fatty acid. Cytotoxicity compromised not only lamellar body secretion but also formation of the corneocyte lipid envelope (CLE) and attenuation of the cornified envelope (CE), consistent with a previously unrecognized, scaffold function of the CLE. Together, these abnormalities result in failure to form normal lamellar bilayers, accounting for the permeability barrier abnormality and clinical phenotype in NIPA-like domain-containing 4 (NIPAL4) deficiency. Thus, NIPAL4 deficiency represents another lipid synthetic ARCI that converges on the CLE (and CE), compromising their putative scaffold function. However, the clinical phenotype only partially improved after normalization of CLE and CE structure with topical ω-O-acylceramide because of ongoing accumulation of toxic metabolites, further evidence that proximal, cytotoxic metabolites contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Elizabeth A Mauldin
- Department of Dermatopathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Margret L Casal
- Department of Dermatopathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sekyoo Jeong
- Department of BioCosmetics, Seowon University, Cheongju, South Korea
| | - Lukáš Opálka
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Katerina Vavrova
- Department of BioCosmetics, Seowon University, Cheongju, South Korea; Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Yoshikazu Uchida
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Kyungho Park
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Brittany Craiglow
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic; Department of Dermatology, Genetics, and Pathology, Yale University, New Haven, Connecticut
| | - Keith A Choate
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic; Department of Dermatology, Genetics, and Pathology, Yale University, New Haven, Connecticut
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk Natl University, Cheongju, South Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk Natl University, Cheongju, South Korea
| | - Gary L Grove
- Department of Research and Development, cyberDERM, Media, Pennsylvania
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
33
|
Magnesium Extravaganza: A Critical Compendium of Current Research into Cellular Mg 2+ Transporters Other than TRPM6/7. Rev Physiol Biochem Pharmacol 2018; 176:65-105. [PMID: 30406297 DOI: 10.1007/112_2018_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnesium research has boomed within the last 20 years. The real breakthrough came at the start of the new millennium with the discovery of a plethora of possible Mg homeostatic factors that, in particular, included putative Mg2+ transporters. Until that point, Mg research was limited to biochemical and physiological work, as no target molecular entities were known that could be used to explore the molecular biology of Mg homeostasis at the level of the cell, tissue, organ, or organism and to translate such knowledge into the field of clinical medicine and pharmacology. Because of the aforementioned, Mg2+ and Mg homeostasis, both of which had been heavily marginalized within the biomedical field in the twentieth century, have become overnight a focal point of many studies ranging from primary biomedical research to translational medicine.The amount of literature concerning cellular Mg2+ transport and cellular Mg homeostasis is increasing, together with a certain amount of confusion, especially about the function(s) of the newly discovered and, in the majority of instances, still only putative Mg2+ transporters/Mg2+ homeostatic factors. Newcomers to the field of Mg research will thus find it particularly difficult to orient themselves.Here, we briefly but critically summarize the status quo of the current understanding of the molecular entities behind cellular Mg2+ homeostasis in mammalian/human cells other than TRPM6/7 chanzymes, which have been universally accepted as being unspecific cation channel kinases allowing the flux of Mg2+ while constituting the major gateway for Mg2+ to enter the cell.
Collapse
|
34
|
Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense. J Genet Genomics 2018; 45:33-40. [DOI: 10.1016/j.jgg.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022]
|
35
|
Honda Y, Kitamura T, Naganuma T, Abe T, Ohno Y, Sassa T, Kihara A. Decreased Skin Barrier Lipid Acylceramide and Differentiation-Dependent Gene Expression in Ichthyosis Gene Nipal4-Knockout Mice. J Invest Dermatol 2017; 138:741-749. [PMID: 29174370 DOI: 10.1016/j.jid.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
NIPAL4 is one of the causative genes for autosomal recessive congenital ichthyosis. However, the role of NIPAL4 in skin barrier formation and the molecular mechanism of ichthyosis pathology caused by NIPAL4 mutations, have not yet been determined. Here, we found that Nipal4-knockout (KO) mice exhibited neonatal lethality due to skin barrier defects. Histological analyses showed several morphological abnormalities in the Nipal4-KO epidermis, including impairment of lipid multilayer structure formation, hyperkeratosis, immature keratohyalin granules, and developed heterochromatin structures. The levels of the skin barrier lipid acylceramide were decreased in Nipal4-KO mice. Expression of genes involved in skin barrier formation normally increases during keratinocyte differentiation, in which chromatin remodeling is involved. However, the induction of Krt1, Lor, Flg, Elovl1, and Dgat2 was impaired in Nipal4-KO mice. NIPAL4 is a putative Mg2+ transporter, and Mg2+ concentration in differentiated keratinocytes of Nipal4-KO mice was indeed lower than that of wild-type mice. Our results suggest that low Mg2+ concentration causes aberration in the proper chromatin remodeling process, which in turn leads to failure of differentiation-dependent gene induction in keratinocytes. Our findings provide insights into Mg2+-dependent regulation of gene expression and skin barrier formation during keratinocyte differentiation.
Collapse
Affiliation(s)
- Yuichi Honda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Kitamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takaya Abe
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
36
|
Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, Okada Y, Kamatani Y, Nakamura T, Takada T, Inoue K, Yasujima T, Yuasa H, Shirahama Y, Nakashima H, Shimizu S, Higashino T, Kawamura Y, Ogata H, Kawaguchi M, Ohkawa Y, Danjoh I, Tokumasu A, Ooyama K, Ito T, Kondo T, Wakai K, Stiburkova B, Pavelka K, Stamp LK, Dalbeth N, Sakurai Y, Suzuki H, Hosoyamada M, Fujimori S, Yokoo T, Hosoya T, Inoue I, Takahashi A, Kubo M, Ooyama H, Shimizu T, Ichida K, Shinomiya N, Merriman TR, Matsuo H. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis 2017; 76:869-877. [PMID: 27899376 PMCID: PMC5530361 DOI: 10.1136/annrheumdis-2016-209632] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/05/2022]
Abstract
OBJECTIVE A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10-8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10-8). CONCLUSIONS Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Dermatology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Amara Shaukat
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuko Shirahama
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiraku Ogata
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Inaho Danjoh
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | | | | | - Toshimitsu Ito
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Takaaki Kondo
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Blanka Stiburkova
- First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Institute of Inherited Metabolic Disorders, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Grafton, Auckland, New Zealand
| | - Yutaka Sakurai
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Shin Fujimori
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Osaka, Japan
- Kyoto Industrial Health Association, Kyoto, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
37
|
Chiang ACY, Yang H, Yamashita YM. spict, a cyst cell-specific gene, regulates starvation-induced spermatogonial cell death in the Drosophila testis. Sci Rep 2017; 7:40245. [PMID: 28071722 PMCID: PMC5223112 DOI: 10.1038/srep40245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Tissues are maintained in a homeostatic state by balancing the constant loss of old cells with the continued production of new cells. Tissue homeostasis can shift between high and low turnover states to cope with environmental changes such as nutrient availability. Recently, we discovered that the elimination of transit-amplifying cells plays a critical role in maintaining the stem cell population during protein starvation in the Drosophila testis. Here, we identify spict, a gene expressed specifically in differentiating cyst cells, as a regulator of spermatogonial death. Spict is upregulated in cyst cells that phagocytose dying spermatogonia. We propose that phagocytosis and subsequent clearance of dead spermatogonia, which is partly promoted by Spict, contribute to stem cell maintenance during prolonged protein starvation.
Collapse
Affiliation(s)
- Ason C-Y Chiang
- Department of Cell and Developmental Biology, Medical School, University of Michigan Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan Ann Arbor, MI 48109
| | - Heiko Yang
- Life Sciences Institute, University of Michigan Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan Ann Arbor, MI 48109.,Cellular and Molecular Biology Program, University of Michigan Ann Arbor, MI 48109
| | - Yukiko M Yamashita
- Department of Cell and Developmental Biology, Medical School, University of Michigan Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan Ann Arbor, MI 48109.,Cellular and Molecular Biology Program, University of Michigan Ann Arbor, MI 48109.,Howard Hughes Medical Institute, University of Michigan Ann Arbor, MI 48109
| |
Collapse
|
38
|
Picinelli C, Lintas C, Piras IS, Gabriele S, Sacco R, Brogna C, Persico AM. Recurrent 15q11.2 BP1-BP2 microdeletions and microduplications in the etiology of neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1088-1098. [PMID: 27566550 DOI: 10.1002/ajmg.b.32480] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/22/2016] [Indexed: 01/04/2023]
Abstract
Rare and common CNVs can contribute to the etiology of neurodevelopmental disorders. One of the recurrent genomic aberrations associated with these phenotypes and proposed as a susceptibility locus is the 15q11.2 BP1-BP2 CNV encompassing TUBGCP5, CYFIP1, NIPA2, and NIPA1. Characterizing by array-CGH a cohort of 243 families with various neurodevelopmental disorders, we identified five patients carrying the 15q11.2 duplication and one carrying the deletion. All CNVs were confirmed by qPCR and were inherited, except for one duplication where parents were not available. The phenotypic spectrum of CNV carriers was broad but mainly neurodevelopmental, in line with all four genes being implicated in axonal growth and neural connectivity. Phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. This variability may be due to reduced penetrance or altered gene dosage on a particular genetic background. We evaluated the expression levels of the four genes in peripheral blood RNA and found the expected reduction in the deleted case, while duplicated carriers displayed high interindividual variability. These data suggest that differential expression of these genes could partially account for differences in clinical phenotypes, especially among duplication carriers. Furthermore, urinary Mg2+ levels appear negatively correlated with NIPA2 gene copy number, suggesting they could potentially represent a useful biomarker, whose reliability will need replication in larger samples. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Picinelli
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Carla Lintas
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Ignazio Stefano Piras
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Stefano Gabriele
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Claudia Brogna
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Antonio Maria Persico
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.,Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Valinsky WC, Jolly A, Miquel P, Touyz RM, Shrier A. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7). J Biol Chem 2016; 291:20163-72. [PMID: 27466368 PMCID: PMC5025699 DOI: 10.1074/jbc.m116.735175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed.
Collapse
Affiliation(s)
- William C Valinsky
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Anna Jolly
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Perrine Miquel
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Rhian M Touyz
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| |
Collapse
|
40
|
Wang Q, Wu W, Xu Z, Luo F, Zhou Q, Li P, Xie J. Copy number changes and methylation patterns in an isodicentric and a ring chromosome of 15q11-q13: report of two cases and review of literature. Mol Cytogenet 2015; 8:97. [PMID: 26697114 PMCID: PMC4687147 DOI: 10.1186/s13039-015-0198-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/10/2015] [Indexed: 01/27/2023] Open
Abstract
Background The low copy repeats (LCRs) in chromosome 15q11-q13 have been recognized as breakpoints (BP) for not only intrachromosomal deletions and duplications but also small supernumerary marker chromosomes 15, sSMC(15)s, in the forms of isodicentric chromosome or small ring chromosome. Further characterization of copy number changes and methylation patterns in these sSMC(15)s could lead to better understanding of their phenotypic consequences. Methods Routine G-band karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay were performed on two Chinese patients with a sSMC(15). Results Patient 1 showed an isodicentric 15, idic(15)(q13), containing symmetrically two copies of a 7.7 Mb segment of the 15q11-q13 region by a BP3::BP3 fusion. Patient 2 showed a ring chromosome 15, r(15)(q13), with alternative one-copy and two-copy segments spanning a 12.3 Mb region. The defined methylation pattern indicated that the idic(15)(q13) and the r(15)(q13) were maternally derived. Conclusions Results from these two cases and other reported cases from literature indicated that combined karyotyping, aCGH and MS-MLPA analyses are effective to define the copy number changes and methylation patterns for sSMC(15)s in a clinical setting. The characterized genomic structure and epigenetic pattern of sSMC(15)s could lead to further gene expression profiling for better phenotype correlation.
Collapse
Affiliation(s)
- Qin Wang
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| | - Weiqing Wu
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China ; Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Zhiyong Xu
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| | - Fuwei Luo
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| | - Qinghua Zhou
- Department of Genetics, Yale School of Medicine, New Haven, CT USA ; First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong China
| | - Peining Li
- Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Jiansheng Xie
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| |
Collapse
|
41
|
Torres F, Barbosa M, Maciel P. Recurrent copy number variations as risk factors for neurodevelopmental disorders: critical overview and analysis of clinical implications. J Med Genet 2015; 53:73-90. [DOI: 10.1136/jmedgenet-2015-103366] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
|
42
|
Skoneczny D, Oskiera M, Szczech M, Bartoszewski G. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol (Praha) 2015; 60:297-307. [PMID: 25791292 PMCID: PMC4445485 DOI: 10.1007/s12223-015-0385-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/05/2015] [Indexed: 11/30/2022]
Abstract
Molecular markers that enable monitoring of fungi in their natural environment or assist in the identification of specific strains would facilitate Trichoderma utilization, particularly as an agricultural biocontrol agent (BCA). In this study, sequence analysis of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the ribosomal RNA (rRNA) gene cluster, a fragment of the translation elongation factor 1-alpha (tef1) gene, and random amplified polymorphic DNA (RAPD) markers were applied to determine the genetic diversity of Trichoderma atroviride strains collected in Poland, and also in order to identify loci and PCR-based molecular markers useful in genetic variation assessment of that fungus. Although tef1 and RAPD analysis showed limited genetic diversity among T. atroviride strains collected in Poland, it was possible to distinguish major groups that clustered most of the analyzed strains. Polymorphic RAPD amplicons were cloned and sequenced, yielding sequences representing 13 T. atroviride loci. Based on these sequences, a set of PCR-based markers specific to T. atroviride was developed and examined. Three cleaved amplified polymorphic sequence (CAPS) markers could assist in distinguishing T. atroviride strains. The genomic regions identified may be useful for further exploration and development of more precise markers suitable for T. atroviride identification and monitoring, especially in environmental samples.
Collapse
Affiliation(s)
- Dominik Skoneczny
- Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warszawa, Poland
| | | | | | | |
Collapse
|
43
|
15q11.2 microdeletion (BP1–BP2) and developmental delay, behaviour issues, epilepsy and congenital heart disease: A series of 52 patients. Eur J Med Genet 2015; 58:140-7. [DOI: 10.1016/j.ejmg.2015.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 01/04/2015] [Indexed: 12/29/2022]
|
44
|
Xie H, Zhang Y, Zhang P, Wang J, Wu Y, Wu X, Netoff T, Jiang Y. Functional study of NIPA2 mutations identified from the patients with childhood absence epilepsy. PLoS One 2014; 9:e109749. [PMID: 25347071 PMCID: PMC4209971 DOI: 10.1371/journal.pone.0109749] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/10/2014] [Indexed: 01/10/2023] Open
Abstract
Recently many genetic mutations that are associated with epilepsy have been identified. The protein NIPA2 (non-imprinted in Prader-Willi/Angelman syndrome region protein 2) is a highly selective magnesium transporter encoded by the gene NIPA2 in which we have found three mutations (p.I178F, p.N244S and p.N334_E335insD) within a population of patients with childhood absence epilepsy (CAE). In this study, immunofluorescence labeling, inductively coupled plasma-optical emission spectroscopy (ICP-OES), MTT metabolic rate detection and computational modeling were utilized to elucidate how these mutations result in CAE. We found in cultured neurons that NIPA2 (wild-type) proteins were localized to the cell periphery, whereas mutant proteins were not effectively trafficked to the cell membrane. Furthermore, we found a decrease in intracellular magnesium concentration in the neurons transfected with mutant NIPA2, but no effect on the survival of neurons. To understand how low intracellular magnesium resulted in hyperexcitability, we built and analyzed a computational model to simulate the effects of mutations. The model suggested that lower intracellular magnesium concentration enhanced synaptic N-methyl-D-aspartate receptor (NMDAR) currents. This study primarily reveals that a selective magnesium transporter NIPA2 may play a role in the pathogenesis of CAE.
Collapse
Affiliation(s)
- Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Pingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Theoden Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (TN); (YJ)
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- * E-mail: (TN); (YJ)
| |
Collapse
|
45
|
Cafferkey M, Ahn JW, Flinter F, Ogilvie C. Phenotypic features in patients with 15q11.2(BP1-BP2) deletion: further delineation of an emerging syndrome. Am J Med Genet A 2014; 164A:1916-22. [PMID: 24715682 DOI: 10.1002/ajmg.a.36554] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/05/2014] [Indexed: 12/13/2022]
Abstract
15q11.2 deletions flanked by BP1 and BP2 of the Prader-Willi/Angelman syndrome region have recently been linked to a range of neurodevelopment disorders including intellectual disability, speech and language delay, motor delay, autism spectrum disorders, epilepsy, and schizophrenia. Array CGH analysis of 14,605 patients referred for diagnostic cytogenetic testing found that 83 patients (0.57%) carried the 15q11.2(BP1-BP2) deletion. Phenotypic frequencies in the deleted cohort (n = 83) were compared with frequencies in the non-deleted cohort (n = 14,522); developmental delay, motor delay, and speech and language delay were all more prevalent in the deleted cohort. Notably, motor delay was significantly more common (OR = 6.37). These data indicate that developmental delay, motor delay, and speech and language delay are common clinical features associated with this deletion, providing substantial evidence to support this CNV as a susceptibility locus for a spectrum of neurodevelopmental disorders. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michiala Cafferkey
- Department of Medical and Molecular Genetics, King's College, London, UK
| | | | | | | |
Collapse
|
46
|
Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process. BMC Genomics 2014; 15:220. [PMID: 24649854 PMCID: PMC3999959 DOI: 10.1186/1471-2164-15-220] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. RESULTS Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). CONCLUSIONS Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality.
Collapse
Affiliation(s)
| | | | | | - Joël Gautron
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| |
Collapse
|
47
|
Congenital Arthrogryposis: An Extension of the 15q11.2 BP1-BP2 Microdeletion Syndrome? Case Rep Genet 2014; 2014:127258. [PMID: 24778887 PMCID: PMC3978403 DOI: 10.1155/2014/127258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022] Open
Abstract
The proximal 15q11–q13 region contains 5 breakpoints (BP1–BP5). The BP1-BP2 region spans approximately 500 kb and contains four evolutionarily conserved genes. The genes in this region are known to play a role in central nervous system development and/or function. Microdeletions within the 15q11.2 BP1-BP2 region have been reported in patients with neurological dysfunction, developmental delays, behavioral problems, and dysmorphic features. We report two unrelated subjects with the 15q11.2 BP1-BP2 microdeletion and presenting with congenital arthrogryposis, a feature which has not been previously reported as part of this newly recognized microdeletion syndrome. While arthrogryposis seen in these two subjects may be coincidental, we propose that congenital arthrogryposis may result from neurological dysfunction and involvement of the microdeletion of the 15q11.2 BP1-BP2 region, further expanding the phenotype of this microdeletion syndrome. We encourage others to report patients with this chromosome microdeletion and neurological findings to further characterize the clinical phenotype.
Collapse
|
48
|
Fleig A, Schweigel-Röntgen M, Kolisek M. Solute Carrier Family SLC41, what do we really know about it? ACTA ACUST UNITED AC 2013; 2. [PMID: 24340240 DOI: 10.1002/wmts.95] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 41st family of solute carriers (SLC41) comprises three members A1, A2 and A3, which are distantly homologous to bacterial Mg2+ channel MgtE. SLC41A1 was recently characterized as being an Na+/Mg2+ exchanger (NME; a predominant cellular Mg2+ efflux system). Little is known about the exact function of SLC41A2 and SLC41A3, although, these proteins have also been linked to Mg2+ transport in human (animal) cells. The molecular biology (including membrane topology, cellular localization, transcriptomics and proteomics) of SLC41A2 and SLC41A3 compared with SLC41A1 has only been poorly explored. Significantly more data with regard to function, functional regulation, involvement in cellular signalling, complex-forming ability, spectrum of binding partners and involvement in the pathophysiology of human diseases are available for SLC41A1. Three recent observations namely the identification of the null mutation, c.698G>T, in SLC41A1 underlying the nephronophthisis-like phenotype, the recognition of a putative link between SLC41A1 and Parkinson's disease, and the observation that nearly 55% of preeclamptic placental samples overexpress SLC41A1, marks the protein as a possible therapeutic target of these diseases. A potential role of the SLC41 family of Mg2+ transporters in the pathophysiology of human diseases is further substantiated by the finding that SLC41A3 knockout mice develop abnormal locomotor coordination.
Collapse
Affiliation(s)
- Andrea Fleig
- Laboratory of Cell and Molecular Signalling, Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI USA
| | | | | |
Collapse
|
49
|
Islam Z, Hayashi N, Yamamoto Y, Doi H, Romero MF, Hirose S, Kato A. Identification and proximal tubular localization of the Mg²⁺ transporter, Slc41a1, in a seawater fish. Am J Physiol Regul Integr Comp Physiol 2013; 305:R385-96. [PMID: 23761638 DOI: 10.1152/ajpregu.00507.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The second most abundant cation in seawater (SW), Mg²⁺, is present at concentrations of ~53 mM. Marine teleosts maintain plasma Mg²⁺ concentration at 1-2 mM by excreting Mg²⁺ into the urine. Urine Mg²⁺ concentrations of SW teleosts exceed 70 mM, most of which is secreted by the renal tubular epithelial cells. However, molecular mechanisms of the Mg²⁺ secretion have yet to be clarified. To identify transporters involved in Mg²⁺ secretion, we analyzed the expression of fish homologs of the Slc41 Mg²⁺ transporter family in various tissues of SW pufferfish torafugu (Takifugu rubripes) and its closely related euryhaline species mefugu (Takifugu obscurus). Takifugu genome contained five members of Slc41 genes, and only Slc41a1 was highly expressed in the kidney. Renal expression of Slc41a1 was markedly elevated when mefugu were transferred from fresh water (FW) to SW. In situ hybridization analysis and immunohistochemistry at the light and electron microscopic levels revealed that Slc41a1 is localized to vacuoles in the apical cytoplasm of the proximal tubules. These results suggest that pufferfish Slc41a1 is a Mg²⁺ transporter involved in renal tubular transepithelial Mg²⁺ secretion by mediating Mg²⁺ transport from the cytosol to the vacuolar lumen, and support the hypothesis that Mg²⁺ secretion is mediated by exocytosis of Mg²⁺-rich vacuoles to the lumen.
Collapse
Affiliation(s)
- Zinia Islam
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhao Q, Li T, Zhao X, Huang K, Wang T, Li Z, Ji J, Zeng Z, Zhang Z, Li K, Feng G, St Clair D, He L, Shi Y. Rare CNVs and tag SNPs at 15q11.2 are associated with schizophrenia in the Han Chinese population. Schizophr Bull 2013; 39:712-9. [PMID: 22317777 PMCID: PMC3627771 DOI: 10.1093/schbul/sbr197] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rare copy number variations (CNVs) were involved in the etiology of neuropsychiatric disorders, and some of them appeared to be shared risk factors for several different diseases. One of those promising loci is the CNV at 15q11.2, including 4 genes, TUBGCP5, CYFIP1, NIPA2, and NIPA1. Several studies showed that microdeletions at this locus were significant associated with schizophrenia. In the current study, we investigated the role of both rare CNVs and common single nucleotide polymorphisms (SNPs) at 15q11.2 in schizophrenia in the Chinese Han population. METHODS We screened deletions at 15q11.2 in 2058 schizophrenia patients and 3275 normal controls in Chinese Han population by Affymetrix 500K/6.0 SNP arrays and SYBR green real-time polymerase chain reaction and then validated deletions by multiplex ligation-dependent probe amplification and Taqman real-time assays. We successfully genotyped 27 tag SNPs in total and tested associations in 1144 schizophrenia cases and 1144 normal controls. RESULTS We found a triple increase of deletions in cases over controls, with OR=4.45 (95% CI=1.36-14.60) and P=.014. In the analysis of common SNPs, we found that the most significant SNP in schizophrenia was rs4778334 (OR=.72, 95% CI=0.60-0.87, allelic P=.0056 after permutation, genotypic P=.015 after permutation). We also found SNP rs1009153 in CYFIP1 was associated with schizophrenia (OR=0.82, 95% CI=0.73-0.93, allelic P=.044 after permutation). CONCLUSION We found that both rare deletions and common variants at 15q11.2 were associated with schizophrenia in the Chinese Han population.
Collapse
Affiliation(s)
- Qian Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China,Changning Mental Health Center, Bio-X Institutes Affiliated Hospital, Shanghai Jiao Tong University, 299 XieHe Road, Shanghai 200042, People's Republic of China
| | - Tao Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China,Changning Mental Health Center, Bio-X Institutes Affiliated Hospital, Shanghai Jiao Tong University, 299 XieHe Road, Shanghai 200042, People's Republic of China
| | - XinZhi Zhao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ke Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ti Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - ZhiQiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhen Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhao Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kan Li
- East China University of Science and Technology, Shanghai, People's Republic of China
| | - GuoYin Feng
- Shanghai Institute of Mental Health, Shanghai, People's Republic of China
| | - David St Clair
- Department of Mental Health, University of Aberdeen, Aberdeen, UK
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China,Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - YongYong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People's Republic of China,Changning Mental Health Center, Bio-X Institutes Affiliated Hospital, Shanghai Jiao Tong University, 299 XieHe Road, Shanghai 200042, People's Republic of China,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China,To whom correspondence should be addressed; tel: 86-21-62933338, fax: 86-21-62933338, e-mail:
| |
Collapse
|