1
|
Philippi CI, Hagens J, Heuer KM, Schmidt HC, Schuppert P, Pagerols Raluy L, Trochimiuk M, Li Z, Bunders MJ, Reinshagen K, Tomuschat C. Exploring cell death mechanisms in spheroid cultures using a novel application of the RIP3-caspase3-assay. Sci Rep 2024; 14:16032. [PMID: 38992075 PMCID: PMC11239891 DOI: 10.1038/s41598-024-66805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
This study explores the application of the RIP3-caspase3-assay in heterogeneous spheroid cultures to analyze cell death pathways, emphasizing the nuanced roles of apoptosis and necroptosis. By employing directly conjugated monoclonal antibodies, we provide detailed insights into the complex mechanisms of cell death. Our findings demonstrate the assay's capability to differentiate between RIP1-independent apoptosis, necroptosis, and RIP1-dependent apoptosis, marking a significant advancement in organoid research. Additionally, we investigate the effects of TNFα on isolated intestinal epithelial cells, revealing a concentration-dependent response and an adaptive or threshold reaction to TNFα-induced stress. The results indicate a preference for RIP1-independent cell death pathways upon TNFα stimulation, with a notable increase in apoptosis and a secondary role of necroptosis. Our research underscores the importance of the RIP3-caspase3-assay in understanding cell death mechanisms in organoid cultures, offering valuable insights for disease modeling and the development of targeted therapies. The assay's adaptability and robustness in spheroid cultures enhances its potential as a tool in personalized medicine and translational research.
Collapse
Affiliation(s)
- C I Philippi
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Hagens
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K M Heuer
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H C Schmidt
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Schuppert
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Z Li
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M J Bunders
- Research Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- Division of Regenerative Medicine and Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Tomuschat
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
3
|
Surve MV, Lin B, Reedy JL, Crossen AJ, Xu A, Klein BS, Vyas JM, Rajagopal J. Single-Cell Transcriptomes, Lineage, and Differentiation of Functional Airway Microfold Cells. Am J Respir Cell Mol Biol 2023; 69:698-701. [PMID: 38038398 PMCID: PMC10704116 DOI: 10.1165/rcmb.2023-0292le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Affiliation(s)
- Manalee V. Surve
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Stem Cell InstituteCambridge, Massachusetts
- Broad Institute of MIT and HarvardCambridge, Massachusetts
| | - Brian Lin
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Stem Cell InstituteCambridge, Massachusetts
- Broad Institute of MIT and HarvardCambridge, Massachusetts
- Tufts University School of MedicineBoston, Massachusetts
| | - Jennifer L. Reedy
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | | | - Anthony Xu
- Massachusetts General HospitalBoston, Massachusetts
- Harvard UniversityCambridge, Massachusetts
| | - Bruce S. Klein
- University of Wisconsin School of Medicine and Public HealthMadison, Wisconsin
| | - Jatin M. Vyas
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | - Jayaraj Rajagopal
- Massachusetts General HospitalBoston, Massachusetts
- Harvard Stem Cell InstituteCambridge, Massachusetts
- Broad Institute of MIT and HarvardCambridge, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
4
|
Tong T, Qi Y, Rollins D, Bussiere LD, Dhar D, Miller CL, Yu C, Wang Q. Rational design of oral drugs targeting mucosa delivery with gut organoid platforms. Bioact Mater 2023; 30:116-128. [PMID: 37560199 PMCID: PMC10406959 DOI: 10.1016/j.bioactmat.2023.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Effective oral drugs and vaccines require high delivery efficiency across the gastrointestinal epithelia and protection of medically effective payloads (i.e., immunogens) against gastric damage. In this study, hollowed nanocarriers (NCs: silica nanospheres and gold nanocages) with poly-l-lysine (PLL) coating and mammalian orthoreovirus cell attachment protein σ1 functionalization (NC-PLL-σ1) were explored as functional oral drug delivery vehicles (ODDVs). The transport of these ODDVs to mucosal lymphoid tissues could be facilitated by microfold cells (M-cells) mediated transcytosis (via σ1-α2-3-linked sialic acids adherence) across gastrointestinal epithelia. PLL coating provided protection and slow-release of rhodamine 6 G (R6G), a model payload. The transport effectiveness of these ODDVs was tested on intestinal organoid monolayers in vitro. When compared with other experimental groups, the fully functionalized ODDV system (with PLL-σ1) demonstrated two significant advantages: a significantly higher transport efficiency (198% over blank control at 48 h); and protection of payloads which led to both better transport efficiency and extended-release of payloads (61% over uncoated carriers at 48 h). In addition, it was shown that the M cell presence in intestinal organoid monolayers (modulated by Rank L stimulation) was a determining factor on the transport efficiency of the ODDVs: more M-cells (induced by higher Rank L) in the organoid monolayers led to higher transport efficiency for ODDV-delivered model payload (R6G). The fully functionalized ODDVs showed great potential as effective oral delivery vehicles for drugs and vaccines.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural Biosystem and Engineering, Iowa State University, Ames, IA, USA
| | - Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Derrick Rollins
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Luke D. Bussiere
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Debarpan Dhar
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Cathy L. Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Chenxu Yu
- Department of Agricultural Biosystem and Engineering, Iowa State University, Ames, IA, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
6
|
Surve MV, Lin B, Reedy JL, Crossen AJ, Xu A, Klein BS, Vyas JM, Rajagopal J. Single Cell Transcriptomes, Lineage, and Differentiation of Functional Airway Microfold Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552176. [PMID: 37609222 PMCID: PMC10441290 DOI: 10.1101/2023.08.06.552176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The airway epithelium is frequently exposed to pathogens and allergens, but the cells that are responsible for sampling these inhaled environmental agents have not been fully defined. Thus, there is a critical void in our understanding of how luminal antigens are delivered to the immune cells that drive the appropriate immune defenses against environmental assaults. In this study, we report the first single cell transcriptomes of airway Microfold (M) cells, whose gut counterparts have long been known for their antigen sampling abilities. Given their very recent discovery in the lower respiratory airways, the mechanisms governing the differentiation and functions of airway M cells are largely unknown. Here, we shed light on the pathways of airway M cell differentiation, establish their lineage, and identify a functional M cell-specific endocytic receptor, the complement receptor 2 (CR2). Lastly, we demonstrate that airway M cells can endocytose Aspergillus fumigatus conidia in a CR2-dependent manner. Collectively, this work lays a foundation for deepening our understanding of lung mucosal immunology and the mechanisms that drive lung immunity and tolerance.
Collapse
Affiliation(s)
- Manalee V. Surve
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA
| | - Jennifer L. Reedy
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arianne J. Crossen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Anthony Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Bruce S. Klein
- Department of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jatin M. Vyas
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Park JI, Cho SW, Kang JH, Park TE. Intestinal Peyer's Patches: Structure, Function, and In Vitro Modeling. Tissue Eng Regen Med 2023; 20:341-353. [PMID: 37079198 PMCID: PMC10117255 DOI: 10.1007/s13770-023-00543-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGOUND Considering the important role of the Peyer's patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases. METHODS In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish in vitro intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA+ B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed. RESULTS PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses. CONCLUSION Current in vitro PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.
Collapse
Affiliation(s)
- Jung In Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea.
| |
Collapse
|
8
|
Hsu NY, Nayar S, Gettler K, Talware S, Giri M, Alter I, Argmann C, Sabic K, Thin TH, Ko HBM, Werner R, Tastad C, Stappenbeck T, Azabdaftari A, Uhlig HH, Chuang LS, Cho JH. NOX1 is essential for TNFα-induced intestinal epithelial ROS secretion and inhibits M cell signatures. Gut 2023; 72:654-662. [PMID: 36191961 PMCID: PMC9998338 DOI: 10.1136/gutjnl-2021-326305] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/20/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Loss-of-function mutations in genes generating reactive oxygen species (ROS), such as NOX1, are associated with IBD. Mechanisms whereby loss of ROS drive IBD are incompletely defined. DESIGN ROS measurements and single-cell transcriptomics were performed on colonoids stratified by NOX1 genotype and TNFα stimulation. Clustering of epithelial cells from human UC (inflamed and uninflamed) scRNASeq was performed. Validation of M cell induction was performed by immunohistochemistry using UEA1 (ulex europaeus agglutin-1 lectin) and in vivo with DSS injury. RESULTS TNFα induces ROS production more in NOX1-WT versus NOX1-deficient murine colonoids under a range of Wnt-mediated and Notch-mediated conditions. scRNASeq from inflamed and uninflamed human colitis versus TNFα stimulated, in vitro colonoids defines substantially shared, induced transcription factors; NOX1-deficient colonoids express substantially lower levels of STAT3 (signal transducer and activator of transcription 3), CEBPD (CCAAT enhancer-binding protein delta), DNMT1 (DNA methyltransferase) and HIF1A (hypoxia-inducible factor) baseline. Subclustering unexpectedly showed marked TNFα-mediated induction of M cells (sentinel cells overlying lymphoid aggregates) in NOX1-deficient colonoids. M cell induction by UEA1 staining is rescued with H2O2 and paraquat, defining extra- and intracellular ROS roles in maintenance of LGR5+ stem cells. DSS injury demonstrated GP2 (glycoprotein-2), basal lymphoplasmacytosis and UEA1 induction in NOX1-deficiency. Principal components analyses of M cell genes and decreased DNMT1 RNA velocity correlate with UC inflammation. CONCLUSIONS NOX1 deficiency plus TNFα stimulation contribute to colitis through dysregulation of the stem cell niche and altered cell differentiation, enhancing basal lymphoplasmacytosis. Our findings prioritise ROS modulation for future therapies.
Collapse
Affiliation(s)
- Nai-Yun Hsu
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shikha Nayar
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyle Gettler
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sayali Talware
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai Department of Medicine, New York, New York, USA
- The Icahn Genomic Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mamta Giri
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Isaac Alter
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ksenija Sabic
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tin Htwe Thin
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huai-Bin Mabel Ko
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Robert Werner
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher Tastad
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thaddeus Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Ling-Shiang Chuang
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy H Cho
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Staab JF, Lemme-Dumit JM, Latanich R, Pasetti MF, Zachos NC. Co-culturing Human Intestinal Enteroid Monolayers with Innate Immune Cells. Methods Mol Biol 2023; 2650:207-223. [PMID: 37310634 DOI: 10.1007/978-1-0716-3076-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coordinated interaction between the intestinal epithelium and immune cells is required to maintain proper barrier function and mucosal host defenses to the harsh external environment of the gut lumen. Complementary to in vivo models, there is a need for practical and reproducible in vitro models that employ primary human cells to confirm and advance our understanding of mucosal immune responses under physiologic and pathophysiologic conditions. Here we describe the methods to co-culture human intestinal stem cell-derived enteroids grown as confluent monolayers on permeable supports with primary human innate immune cells (e.g., monocyte-derived macrophages and polymorphonuclear neutrophils). This co-culture model reconstructs the cellular framework of the human intestinal epithelial-immune niche with distinct apical and basolateral compartments to recreate host responses to luminal and submucosal challenges, respectively. Enteroid-immune co-cultures enable multiple outcome measures to interrogate important biological processes such as epithelial barrier integrity, stem cell biology, cellular plasticity, epithelial-immune cells crosstalk, immune cell effector functions, changes in gene expression (i.e., transcriptomic, proteomic, epigenetic), and host-microbiome interactions.
Collapse
Affiliation(s)
- Janet F Staab
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose M Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rachel Latanich
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Lee J, Khang D. Mucosal delivery of nanovaccine strategy against COVID-19 and its variants. Acta Pharm Sin B 2022; 13:S2211-3835(22)00489-0. [PMID: 36438851 PMCID: PMC9676163 DOI: 10.1016/j.apsb.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.
Collapse
Affiliation(s)
- Junwoo Lee
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
11
|
Transcytosis of IgA Attenuates Salmonella Invasion in Human Enteroids and Intestinal Organoids. Infect Immun 2022; 90:e0004122. [PMID: 35579465 DOI: 10.1128/iai.00041-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract. We confirm that Enteroids and HIO-derived monolayers are permissive to STm infection, dependent on HilD, the master transcriptional regulator of the SPI-I type three secretion system (T3SS). Stimulation of M-like cells in both Enteroids and HIOs by the addition of RANKL further enhanced STm invasion. The apical addition of Sal4 mouse IgA, as well as recombinant human Sal4 dimeric IgA (dIgA) and SIgA resulted a dose-dependent reduction in bacterial invasion. Moreover, basolateral application of Sal4 dIgA to Enteroid and HIO monolayers gave rise to SIgA in the apical compartment via a pathway dependent on expression of the polymeric immunoglobulin receptor (pIgR). The resulting Sal4 SIgA was sufficient to reduce STm invasion of Enteroid and HIO epithelial cell monolayers by ~20-fold. Recombinant Sal4 IgG was also transported in the Enteroid and HIOs, but to a lesser degree and via a pathway dependent on the neonatal Fc receptor (FCGRT). The models described lay the foundation for future studies into detailed mechanisms of IgA and IgG protection against STm and other pathogens.
Collapse
|
12
|
Fasciano AC, Dasanayake GS, Estes MK, Zachos NC, Breault DT, Isberg RR, Tan S, Mecsas J. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes 2022; 13:1988390. [PMID: 34793276 PMCID: PMC8604394 DOI: 10.1080/19490976.2021.1988390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many pathogens use M cells to access the underlying Peyer's patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb), and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyer's patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.
Collapse
Affiliation(s)
- Alyssa C. Fasciano
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA
| | - Gaya S. Dasanayake
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Ralph R. Isberg
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA,CONTACT Joan Mecsas Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| |
Collapse
|
13
|
Shao M, Jiang C, Yu C, Jia H, Wang Y, Mao X. Capecitabine inhibits epithelial‑to‑mesenchymal transition and proliferation of colorectal cancer cells by mediating the RANK/RANKL pathway. Oncol Lett 2022; 23:96. [PMID: 35154427 PMCID: PMC8822391 DOI: 10.3892/ol.2022.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy globally. Capecitabine is an important form of chemotherapy for colorectal cancer. The present study aims to investigate the underlying mechanism of action of the drug in CRC cells. In the present study, 50 pairs of CRC and adjacent normal tissues were collected, and CRC cell lines (SW480, SW620, HT29, LOVO and HCT116) and NCM460 colonic epithelial cells were also purchased and used. Western blotting was used to measure the expression levels of proteins involved in the receptor activator of nuclear factor-κB (RANK)/receptor activator of nuclear factor-κB ligand (RANKL) pathway and epithelial-to-mesenchymal transition (EMT), including RANK, RANKL, osteoprotegerin (OPG), E-cadherin, vimentin and N-cadherin. Proliferation and migration were measured using MTT, Cell Counting Kit-8, EdU, Transwell and wound healing assays, respectively. In the present study, it was found that the RANK/RANKL pathway was activated in cancer tissues and cells. Additionally, it was observed that capecitabine treatment reduced the protein expression of RANK, RANKL and OPG in HT29 cells, suggesting that capecitabine has a repressive effect on the RANK/RANKL pathway. Furthermore, functional experiments revealed that the proliferative ability and the EMT process observed in HT29 cells were inhibited after they were treated with capecitabine or transfected with si-RANK. Rescue assays were then performed, which revealed that the promotion of RANK via transfection of cells with 50 nM pcDNA3.1-RANK reversed the inhibitory effects of capecitabine on HT29 cell proliferation and EMT. These findings suggest that the regulatory role of capecitabine is at least partially mediated through the RANK/RANKL pathway in colorectal cancer. The present study demonstrated that capecitabine-induced repression of CRC is exerted by inhibiting the RANK/RANKL pathway, where this new mechanism potentially provides a novel therapeutic target.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Caiping Jiang
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Changhui Yu
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Haijian Jia
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Yanli Wang
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xinli Mao
- Department of Gastroenterology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
14
|
Intestinal Organoids: New Tools to Comprehend the Virulence of Bacterial Foodborne Pathogens. Foods 2022; 11:foods11010108. [PMID: 35010234 PMCID: PMC8750402 DOI: 10.3390/foods11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Foodborne diseases cause high morbidity and mortality worldwide. Understanding the relationships between bacteria and epithelial cells throughout the infection process is essential to setting up preventive and therapeutic solutions. The extensive study of their pathophysiology has mostly been performed on transformed cell cultures that do not fully mirror the complex cell populations, the in vivo architectures, and the genetic profiles of native tissues. Following advances in primary cell culture techniques, organoids have been developed. Such technological breakthroughs have opened a new path in the study of microbial infectious diseases, and thus opened onto new strategies to control foodborne hazards. This review sheds new light on cellular messages from the host–foodborne pathogen crosstalk during in vitro organoid infection by the foodborne pathogenic bacteria with the highest health burden. Finally, future perspectives and current challenges are discussed to provide a better understanding of the potential applications of organoids in the investigation of foodborne infectious diseases.
Collapse
|
15
|
Nickerson KP, Llanos-Chea A, Ingano L, Serena G, Miranda-Ribera A, Perlman M, Lima R, Sztein MB, Fasano A, Senger S, Faherty CS. A Versatile Human Intestinal Organoid-Derived Epithelial Monolayer Model for the Study of Enteric Pathogens. Microbiol Spectr 2021; 9:e0000321. [PMID: 34106568 PMCID: PMC8552518 DOI: 10.1128/spectrum.00003-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.
Collapse
Affiliation(s)
- Kourtney P. Nickerson
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandro Llanos-Chea
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Ingano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gloria Serena
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alba Miranda-Ribera
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Staab JF, Lemme-Dumit JM, Latanich R, Pasetti MF, Zachos NC. Co-Culture System of Human Enteroids/Colonoids with Innate Immune Cells. ACTA ACUST UNITED AC 2021; 131:e113. [PMID: 33166041 DOI: 10.1002/cpim.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human intestinal enteroids derived from adult stem cells offer a relevant ex vivo system to study biological processes of the human gut. They recreate cellular and functional features of the intestinal epithelium of the small intestine (enteroids) or colon (colonoids) albeit limited by the lack of associated cell types that help maintain tissue homeostasis and respond to external challenges. In the gut, innate immune cells interact with the epithelium, support barrier function, and deploy effector functions. We have established a co-culture system of enteroid/colonoid monolayers and underlying macrophages and polymorphonuclear neutrophils to recapitulate the cellular framework of the human intestinal epithelial niche. Enteroids are generated from biopsies or resected tissue from any segment of the human gut and maintained in long-term cultures as three-dimensional structures through supplementation of stem cell growth factors. Immune cells are isolated from fresh human whole blood or frozen peripheral blood mononuclear cells (PBMC). Monocytes from PBMC are differentiated into macrophages by cytokine stimulation prior to co-culture. The methods are divided into the two main components of the model: (1) generating enteroid/colonoid monolayers and isolating immune cells and (2) assembly of enteroid/colonoid-immune cell co-cultures with separate apical and basolateral compartments. Co-cultures containing macrophages can be maintained for 48 hr while those involving neutrophils, due to their shorter life span, remain viable for 4 hr. Enteroid-immune co-cultures enable multiple outcome measures, including transepithelial resistance, production of cytokines/chemokines, phenotypic analysis of immune cells, tissue immunofluorescence imaging, protein or mRNA expression, antigen or microbe uptake, and other cellular functions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Seeding enteroid fragments onto Transwells for monolayer formation Alternate Protocol: Seeding enteroid fragments for monolayer formation using trituration Basic Protocol 2: Isolation of monocytes and derivation of immune cells from human peripheral blood Basic Protocol 3: Isolation of neutrophils from human peripheral blood Basic Protocol 4: Assembly of enteroid/macrophage or enteroid/neutrophil co-culture.
Collapse
Affiliation(s)
- Janet F Staab
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose M Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcella F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Kurashima Y, Kigoshi T, Murasaki S, Arai F, Shimada K, Seki N, Kim YG, Hase K, Ohno H, Kawano K, Ashida H, Suzuki T, Morimoto M, Saito Y, Sasou A, Goda Y, Yuki Y, Inagaki Y, Iijima H, Suda W, Hattori M, Kiyono H. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat Commun 2021; 12:1067. [PMID: 33594081 PMCID: PMC7887276 DOI: 10.1038/s41467-021-21277-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Increases in adhesive and invasive commensal bacteria, such as Escherichia coli, and subsequent disruption of the epithelial barrier is implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the protective systems against such barrier disruption are not fully understood. Here, we show that secretion of luminal glycoprotein 2 (GP2) from pancreatic acinar cells is induced in a TNF-dependent manner in mice with chemically induced colitis. Fecal GP2 concentration is also increased in Crohn's diease patients. Furthermore, pancreas-specific GP2-deficient colitis mice have more severe intestinal inflammation and a larger mucosal E. coli population than do intact mice, indicating that digestive-tract GP2 binds commensal E. coli, preventing epithelial attachment and penetration. Thus, the pancreas-intestinal barrier axis and pancreatic GP2 are important as a first line of defense against adhesive and invasive commensal bacteria during intestinal inflammation.
Collapse
Affiliation(s)
- Yosuke Kurashima
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, CA, USA.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Takaaki Kigoshi
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Sayuri Murasaki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fujimi Arai
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Shimada
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Natsumi Seki
- Division of Biochemistry, Graduate School of Pharmacological Science, Keio University, Tokyo, Japan
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Biochemistry, Graduate School of Pharmacological Science, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Kazuya Kawano
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masako Morimoto
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukari Saito
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ai Sasou
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuki Goda
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, CA, USA.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
18
|
Derer S, Brethack AK, Pietsch C, Jendrek ST, Nitzsche T, Bokemeyer A, Hov JR, Schäffler H, Bettenworth D, Grassl GA, Sina C. Inflammatory Bowel Disease-associated GP2 Autoantibodies Inhibit Mucosal Immune Response to Adherent-invasive Bacteria. Inflamm Bowel Dis 2020; 26:1856-1868. [PMID: 32304568 DOI: 10.1093/ibd/izaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Adherent-invasive Escherichia coli have been suggested to play a pivotal role within the pathophysiology of inflammatory bowel disease (IBD). Autoantibodies against distinct splicing variants of glycoprotein 2 (GP2), an intestinal receptor of the bacterial adhesin FimH, frequently occur in IBD patients. Hence, we aimed to functionally characterize GP2-directed autoantibodies as a putative part of IBD's pathophysiology. Ex vivo, GP2-splicing variant 4 (GP2#4) but not variant 2 was expressed on intestinal M or L cells with elevated expression patterns in IBD patients. The GP2#4 expression was induced in vitro by tumor necrosis factor (TNF)-α. The IBD-associated GP2 autoantibodies inhibited FimH binding to GP2#4 and were decreased in anti-TNFα-treated Crohn's disease patients with ileocolonic disease manifestation. In vivo, mice immunized against GP2 before infection with adherent-invasive bacteria displayed exacerbated intestinal inflammation. In summary, autoimmunity against intestinal expressed GP2#4 results in enhanced attachment of flagellated bacteria to the intestinal epithelium and thereby may drive IBD's pathophysiology.
Collapse
Affiliation(s)
- Stefanie Derer
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany
| | - Ann-Kathrin Brethack
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany
| | - Carlotta Pietsch
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany
| | - Sebastian T Jendrek
- Department of Rheumatology, University of Schleswig-Holstein, Lübeck, Germany
| | - Thomas Nitzsche
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany.,Institute for Experimental Immunology, Euroimmun Corp., Lübeck, Germany
| | - Arne Bokemeyer
- Department of Medicine B, Gastroenterology and Hepatology, University of Münster, Münster, Germany
| | - Johannes R Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Section of Gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Holger Schäffler
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University of Münster, Münster, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover Medical School, Hannover, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig- Holstein, Campus Lübeck, Lübeck, Germany.,1st Department of Medicine, Section of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Ranganathan S, Smith EM, Foulke-Abel JD, Barry EM. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes 2020; 12:1795492. [PMID: 32795243 PMCID: PMC7524385 DOI: 10.1080/19490976.2020.1795389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
Enteric bacterial pathogens cause significant morbidity and mortality globally. Studies in tissue culture and animal models shaped our initial understanding of these host-pathogen interactions. However, intrinsic shortcomings in these models limit their application, especially in translational applications like drug screening and vaccine development. Human intestinal enteroid and organoid models overcome some limitations of existing models and advance the study of enteric pathogens. In this review, we detail the use of human enteroids and organoids to investigate the pathogenesis of invasive bacteria Shigella, Listeria, and Salmonella, and noninvasive bacteria pathogenic Escherichia coli, Clostridium difficile, and Vibrio cholerae. We highlight how these studies confirm previously identified mechanisms and, importantly, reveal novel ones. We also discuss the challenges for model advancement, including platform engineering to integrate environmental conditions, innate immune cells and the resident microbiome, and the potential for pre-clinical testing of recently developed antimicrobial drugs and vaccines.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer D. Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
21
|
Saraf S, Jain S, Sahoo RN, Mallick S. Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization. Curr Drug Targets 2020; 21:1276-1284. [DOI: 10.2174/1389450121666200609113252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The immune system plays an important role in the prevention of infection and forms the
first line of defense against pathogen attack. Delivering of antigen through mucosal route may elicit
mucosal immune system as the mucosal surface is the most common site of pathogen entry. Mucosal
immune system will be capable to counter pathogen at mucosal surface. Oral mucosal immunization
opens the ways to deliver antigens at gut-associated lymphoid tissue. This can elicit both local and
systemic immune response. Mucosal vaccines are economical, highly accessible, non parenteral delivery
and capacity to produce mass immunization at the time of pandemics. To deliver antigens on the
mucosal surface of the gastrointestinal tract, the immune system relies on specialized epithelial cell
i.e. Microfold (M)-cell. An approach to exploit the targeting specific receptors on M-cell for entry of
antigens has made a breakthrough in vaccine development. In this review, various strategies have been
discussed for the possible entry of antigens through M-cells and an approach to increase the uptake
and efficacy of vaccines for oral mucosal immunization.
Collapse
Affiliation(s)
- Surendra Saraf
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| | - Shailesh Jain
- Dean, Faculty of Pharmacy and Pharmaceutical Sciences at Madhyanchal Professional University Bhopal (MP), India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| | - Subrata Mallick
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| |
Collapse
|
22
|
Tong T, Qi Y, Bussiere LD, Wannemuehler M, Miller CL, Wang Q, Yu C. Transport of artificial virus-like nanocarriers through intestinal monolayers via microfold cells. NANOSCALE 2020; 12:16339-16347. [PMID: 32725029 DOI: 10.1039/d0nr03680c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compared with subcutaneous or intramuscular routes for vaccination, vaccine delivery via the gastrointestinal mucosa has tremendous potential as it is easy to administer and pain-free. Robust immune responses can be triggered successfully once the vaccine carrying an antigen reaches the mucosal associated lymphoid sites (e.g., Peyer's patches). However, the absence of an efficient delivery method has always been an issue for successful oral vaccine development. In our study, inspired by mammalian orthoreovirus (MRV) transport into the gut mucosal lymphoid tissue via Microfold cells (M cells), artificial virus-like nanocarriers (AVNs), consisting of gold nanocages functionalized with the σ1 protein from mammalian reovirus (MRV), were tested as an effective oral vaccine delivery vehicle targeting M cells. AVNs were shown to have a significantly higher transport compared to other experimental groups across mouse organoid monolayers containing M cells. These findings suggest that AVNs have the potential to be an M cell-specific oral vaccine/drug delivery vehicle.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural Biosystem and Engineering, Iowa State University, Ames, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ding S, Song Y, Brulois KF, Pan J, Co JY, Ren L, Feng N, Yasukawa LL, Sánchez-Tacuba L, Wosen JE, Mellins ED, Monack DM, Amieva MR, Kuo CJ, Butcher EC, Greenberg HB. Retinoic Acid and Lymphotoxin Signaling Promote Differentiation of Human Intestinal M Cells. Gastroenterology 2020; 159:214-226.e1. [PMID: 32247021 PMCID: PMC7569531 DOI: 10.1053/j.gastro.2020.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Intestinal microfold (M) cells are a unique subset of intestinal epithelial cells in the Peyer's patches that regulate mucosal immunity, serving as portals for sampling and uptake of luminal antigens. The inability to efficiently develop human M cells in cell culture has impeded studies of the intestinal immune system. We aimed to identify signaling pathways required for differentiation of human M cells and establish a robust culture system using human ileum enteroids. METHODS We analyzed transcriptome data from mouse Peyer's patches to identify cell populations in close proximity to M cells. We used the human enteroid system to determine which cytokines were required to induce M-cell differentiation. We performed transcriptome, immunofluorescence, scanning electron microscope, and transcytosis experiments to validate the development of phenotypic and functional human M cells. RESULTS A combination of retinoic acid and lymphotoxin induced differentiation of glycoprotein 2-positive human M cells, which lack apical microvilli structure. Upregulated expression of innate immune-related genes within M cells correlated with a lack of viral antigens after rotavirus infection. Human M cells, developed in the enteroid system, internalized and transported enteric viruses, such as rotavirus and reovirus, across the intestinal epithelium barrier in the enteroids. CONCLUSIONS We identified signaling pathways required for differentiation of intestinal M cells, and used this information to create a robust culture method to develop human M cells with capacity for internalization and transport of viruses. Studies of this model might increase our understanding of antigen presentation and the systemic entry of enteric pathogens in the human intestine.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri.
| | - Yanhua Song
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kevin F. Brulois
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Junliang Pan
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Julia Y. Co
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ningguo Feng
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Linda L. Yasukawa
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Liliana Sánchez-Tacuba
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan E. Wosen
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Manuel R. Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - Eugene C. Butcher
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Harry B. Greenberg
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Fasciano AC, Mecsas J. Eat Your Vitamin A: A Role for Retinoic Acid in the Development of Microfold Cells. Gastroenterology 2020; 159:34-36. [PMID: 32413355 DOI: 10.1053/j.gastro.2020.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Alyssa C Fasciano
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences and, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
25
|
Guo F, Yuan Y. Tumor Necrosis Factor Alpha-Induced Proteins in Malignant Tumors: Progress and Prospects. Onco Targets Ther 2020; 13:3303-3318. [PMID: 32368089 PMCID: PMC7182456 DOI: 10.2147/ott.s241344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is the first cytokine used in tumor biotherapy, but TNF-related drugs are limited by the lack of specific targets. Tumor necrosis factor alpha-induced proteins (TNFAIPs), derived from TNF, is a protein family and participates in proliferation, invasion and metastasis of tumor cells. In order to better understand biological functions and potential roles of TNFAIPs in malignant tumors, this paper in the form of “Gene–Protein–Tumor correlation” summarizes the biological characteristics, physiological functions and mechanisms of TNFAIPs by searching National Center of Biotechnology Information, GeneCards, UniProt and STRING databases. The relationship between TNFAIPs and malignant tumors is analyzed, and protein–protein interaction diagram in members of TNFAIPs is drawn based on TNF for the first time. We find that TNF as a key factor is related to TNFAIP1, TNFAIP3, TNFAIP5, TNFAIP6, TNFAIP8 and TNFAIP9, which can be directly involved in activating TNFAIP1, TNFAIP5, TNFAIP8 and TNFAIP9. We confirm that the mechanism of TNFAIP1, TNFAIP2 and TNFAIP3 inducing tumors may be related to NF-κB signaling pathway, but the mechanism of tumor induction by other members of TNFAIPs is not clear. In the future, translational studies are needed to explore the mechanisms of TNF-TNFAIPs-tumors.
Collapse
Affiliation(s)
- Fang Guo
- Liaoning Provincial Education Department, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang City, Liaoning Province, People's Republic of China.,Department of Oncology, PLA Cancer Center, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, People's Republic of China
| | - Yuan Yuan
- Liaoning Provincial Education Department, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
26
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Kanaya T, Williams IR, Ohno H. Intestinal M cells: Tireless samplers of enteric microbiota. Traffic 2019; 21:34-44. [DOI: 10.1111/tra.12707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Kanaya
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| | - Ifor R. Williams
- Laboratory for Intestinal EcosystemRIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Hiroshi Ohno
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| |
Collapse
|
28
|
Abstract
Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development. The Shigella species are Gram-negative, facultative intracellular pathogens that invade the colonic epithelium and cause significant diarrheal disease. Despite extensive research on the pathogen, a comprehensive understanding of how Shigella initiates contact with epithelial cells remains unknown. Shigella maintains many of the same Escherichia coli adherence gene operons; however, at least one critical gene component in each operon is currently annotated as a pseudogene in reference genomes. These annotations, coupled with a lack of structures upon microscopic analysis following growth in laboratory media, have led the field to hypothesize that Shigella is unable to produce fimbriae or other traditional adherence factors. Nevertheless, our previous analyses have demonstrated that a combination of bile salts and glucose induces both biofilm formation and adherence to colonic epithelial cells. The goal of this study was to perform transcriptomic and genetic analyses to demonstrate that adherence gene operons in Shigella flexneri strain 2457T are functional, despite the gene annotations. Our results demonstrate that at least three structural genes facilitate S. flexneri 2457T adherence for epithelial cell contact and biofilm formation. Furthermore, our results demonstrate that host factors, namely, glucose and bile salts at their physiological concentrations in the small intestine, offer key environmental stimuli required for adherence factor expression in S. flexneri. This research may have a significant impact on Shigella vaccine development and further highlights the importance of utilizing in vivo-like conditions to study bacterial pathogenesis. IMPORTANCE Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development.
Collapse
|
29
|
Seet LF, Toh LZ, Chu SWL, Wong TT. RelB regulates basal and proinflammatory induction of conjunctival CCL2. Ocul Immunol Inflamm 2019; 29:29-42. [PMID: 31618101 DOI: 10.1080/09273948.2019.1662060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study investigated the involvement of NF-kB in regulating postoperative conjunctival inflammation.Methods: Experimental surgery was performed as described for the mouse model of conjunctival scarring. Expression of NF-κB in postoperative conjunctival tissues or conjunctival fibroblasts were assessed by real-time PCR, immunoblotting and immunofluorescence analyses. Downregulation of RelB was achieved using small interfering RNA. Cellular cytokine secretion was determined using multiplex cytokine assay.Results: RelB was the most highly induced member of the NF-kB family on day 2 post-surgery. Elevated RelB may be found associated with vimentin-positive cells and fibroblasts in vivo and in vitro. In conjunctival fibroblasts, RelB may be induced by TNF-α but not TGF-β2 while its silencing caused selective induction of CCL2 secretion by both basal and TNF-α-stimulated fibroblasts.Conclusions: High RelB induction in the inflammatory phase and the selective modulation of CCL2 suggest a specific anti-inflammatory role for RelB in the postoperative conjunctiva.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore.,Glaucoma Service, Singapore National Eye Center, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
30
|
Fasciano AC, Blutt SE, Estes MK, Mecsas J. Induced Differentiation of M Cell-like Cells in Human Stem Cell-derived Ileal Enteroid Monolayers. J Vis Exp 2019. [PMID: 31403623 DOI: 10.3791/59894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
M (microfold) cells of the intestine function to transport antigen from the apical lumen to the underlying Peyer's patches and lamina propria where immune cells reside and therefore contribute to mucosal immunity in the intestine. A complete understanding of how M cells differentiate in the intestine as well as the molecular mechanisms of antigen uptake by M cells is lacking. This is because M cells are a rare population of cells in the intestine and because in vitro models for M cells are not robust. The discovery of a self-renewing stem cell culture system of the intestine, termed enteroids, has provided new possibilities for culturing M cells. Enteroids are advantageous over standard cultured cell lines because they can be differentiated into several major cell types found in the intestine, including goblet cells, Paneth cells, enteroendocrine cells and enterocytes. The cytokine RANKL is essential in M cell development, and addition of RANKL and TNF-α to culture media promotes a subset of cells from ileal enteroids to differentiate into M cells. The following protocol describes a method for the differentiation of M cells in a transwell epithelial polarized monolayer system of the intestine using human ileal enteroids. This method can be applied to the study of M cell development and function.
Collapse
Affiliation(s)
- Alyssa C Fasciano
- Program in Immunology, Sackler School of Graduate Biomedical Sciences;
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University;
| |
Collapse
|
31
|
Dillon A, Lo DD. M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Front Immunol 2019; 10:1499. [PMID: 31312204 PMCID: PMC6614372 DOI: 10.3389/fimmu.2019.01499] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
M cells are specialized intestinal epithelial cells that provide the main machinery for sampling luminal microbes for mucosal immune surveillance. M cells are usually found in the epithelium overlying organized mucosal lymphoid tissues, but studies have identified multiple distinct lineages of M cells that are produced under different conditions, including intestinal inflammation. Among these lineages there is a common morphology that helps explain the efficiency of M cells in capturing luminal bacteria and viruses; in addition, M cells recruit novel cellular mechanisms to transport the particles across the mucosal barrier into the lamina propria, a process known as transcytosis. These specializations used by M cells point to a novel engineering of cellular machinery to selectively capture and transport microbial particles of interest. Because of the ability of M cells to effectively violate the mucosal barrier, the circumstances of M cell induction have important consequences. Normal immune surveillance insures that transcytosed bacteria are captured by underlying myeloid/dendritic cells; in contrast, inflammation can induce development of new M cells not accompanied by organized lymphoid tissues, resulting in bacterial transcytosis with the potential to amplify inflammatory disease. In this review, we will discuss our own perspectives on the life history of M cells and also raise a few questions regarding unique aspects of their biology among epithelia.
Collapse
Affiliation(s)
- Andrea Dillon
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
32
|
Kimura S, Mutoh M, Hisamoto M, Saito H, Takahashi S, Asakura T, Ishii M, Nakamura Y, Iida J, Hase K, Iwanaga T. Airway M Cells Arise in the Lower Airway Due to RANKL Signaling and Reside in the Bronchiolar Epithelium Associated With iBALT in Murine Models of Respiratory Disease. Front Immunol 2019; 10:1323. [PMID: 31244859 PMCID: PMC6579949 DOI: 10.3389/fimmu.2019.01323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/24/2019] [Indexed: 01/20/2023] Open
Abstract
Microfold (M) cells residing in the follicle-associated epithelium of mucosa-associated lymphoid tissues are specialized for sampling luminal antigens to initiate mucosal immune responses. In the past decade, glycoprotein 2 (GP2) and Tnfaip2 were identified as reliable markers for M cells in the Peyer's patches of the intestine. Furthermore, RANKL-RANK signaling, as well as the canonical and non-canonical NFκB pathways downstream, is essential for M-cell differentiation from the intestinal stem cells. However, the molecular characterization and differentiation mechanisms of M cells in the lower respiratory tract, where organized lymphoid tissues exist rarely, remain to be fully elucidated. Therefore, this study aimed to explore M cells in the lower respiratory tract in terms of their specific molecular markers, differentiation mechanism, and functions. Immunofluorescence analysis revealed a small number of M cells expressing GP2, Tnfaip2, and RANK is present in the lower respiratory tract of healthy mice. The intraperitoneal administration of RANKL in mice effectively induced M cells, which have a high capacity to take up luminal substrates, in the lower respiratory epithelium. The airway M cells associated with lymphoid follicles were frequently detected in the pathologically induced bronchus-associated lymphoid tissue (iBALT) in the murine models of autoimmune disease as well as pulmonary emphysema. These findings demonstrate that RANKL is a common inducer of M cells in the airway and digestive tracts and that M cells are associated with the respiratory disease. We also established a two-dimensional culture method for airway M cells from the tracheal epithelium in the presence of RANKL successfully. This model may be useful for functional studies of M cells in the sampling of antigens at airway mucosal surfaces.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Mami Mutoh
- Department of Orthodontics, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Meri Hisamoto
- Division of Oral Functional Science, Department of Oral Functional Prosthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Saito
- School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Junichiro Iida
- Department of Orthodontics, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Evaluating Shigella flexneri Pathogenesis in the Human Enteroid Model. Infect Immun 2019; 87:IAI.00740-18. [PMID: 30642900 PMCID: PMC6434113 DOI: 10.1128/iai.00740-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/06/2019] [Indexed: 01/02/2023] Open
Abstract
The enteric pathogen Shigella is one of the leading causes of moderate-to-severe diarrhea and death in young children in developing countries. Transformed cell lines and animal models have been widely used to study Shigella pathogenesis. The enteric pathogen Shigella is one of the leading causes of moderate-to-severe diarrhea and death in young children in developing countries. Transformed cell lines and animal models have been widely used to study Shigella pathogenesis. In addition to altered physiology, transformed cell lines are composed of a single cell type that does not sufficiently represent the complex multicellular environment of the human colon. Most available animal models do not accurately mimic human disease. The human intestinal enteroid model, derived from LGR5+ stem cell-containing intestinal crypts from healthy subjects, represents a technological leap in human gastrointestinal system modeling and provides a more physiologically relevant system that includes multiple cell types and features of the human intestine. We established the utility of this model for studying basic aspects of Shigella pathogenesis and host responses. In this study, we show that Shigellaflexneri is capable of infecting and replicating intracellularly in human enteroids derived from different segments of the intestine. Apical invasion by S. flexneri is very limited but increases ∼10-fold when enteroids are differentiated to include M cells. Invasion via the basolateral surface was at least 2-log10 units more efficient than apical infection. Increased secretion of interleukin-8 and higher expression levels of the mucin glycoprotein Muc2 were observed in the enteroids following S. flexneri infection. The human enteroid model promises to bridge some of the gaps between traditional cell culture, animal models, and human infection.
Collapse
|
34
|
Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D, Fujiki R, Mutoh M, Obata Y, Iwanaga T, Nakagawa T, Kato N, Sato S, Kaisho T, Ohno H, Hase K. Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J Exp Med 2019; 216:831-846. [PMID: 30877171 PMCID: PMC6446867 DOI: 10.1084/jem.20181604] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/29/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Microfold (M) cells residing in the follicle-associated epithelium (FAE) of the gut-associated lymphoid tissue are specialized for antigen uptake to initiate mucosal immune responses. The molecular machinery and biological significance of M cell differentiation, however, remain to be fully elucidated. Here, we demonstrate that Sox8, a member of the SRY-related HMG box transcription factor family, is specifically expressed by M cells in the intestinal epithelium. The expression of Sox8 requires activation of RANKL-RelB signaling. Chromatin immunoprecipitation and luciferase assays revealed that Sox8 directly binds the promoter region of Gp2 to increase Gp2 expression, which is the hallmark of functionally mature M cells. Furthermore, genetic deletion of Sox8 causes a marked decrease in the number of mature M cells, resulting in reduced antigen uptake in Peyer's patches. Consequently, juvenile Sox8-deficient mice showed attenuated germinal center reactions and antigen-specific IgA responses. These findings indicate that Sox8 plays an essential role in the development of M cells to establish mucosal immune responses.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhide Kobayashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ryoji Fujiki
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Mami Mutoh
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shintaro Sato
- Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
35
|
Ramakrishnan SK, Zhang H, Ma X, Jung I, Schwartz AJ, Triner D, Devenport SN, Das NK, Xue X, Zeng MY, Hu Y, Mortensen RM, Greenson JK, Cascalho M, Wobus CE, Colacino JA, Nunez G, Rui L, Shah YM. Intestinal non-canonical NFκB signaling shapes the local and systemic immune response. Nat Commun 2019; 10:660. [PMID: 30737385 PMCID: PMC6368617 DOI: 10.1038/s41467-019-08581-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Microfold cells (M-cells) are specialized cells of the intestine that sample luminal microbiota and dietary antigens to educate the immune cells of the intestinal lymphoid follicles. The function of M-cells in systemic inflammatory responses are still unclear. Here we show that epithelial non-canonical NFkB signaling mediated by NFkB-inducing kinase (NIK) is highly active in intestinal lymphoid follicles, and is required for M-cell maintenance. Intestinal NIK signaling modulates M-cell differentiation and elicits both local and systemic IL-17A and IgA production. Importantly, intestinal NIK signaling is active in mouse models of colitis and patients with inflammatory bowel diseases; meanwhile, constitutive NIK signaling increases the susceptibility to inflammatory injury by inducing ectopic M-cell differentiation and a chronic increase of IL-17A. Our work thus defines an important function of non-canonical NFkB and M-cells in immune homeostasis, inflammation and polymicrobial sepsis.
Collapse
Affiliation(s)
| | - Huabing Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Xiaoya Ma
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Inkyung Jung
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Andrew J Schwartz
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Daniel Triner
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Samantha N Devenport
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Nupur K Das
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Melody Y Zeng
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Richard M Mortensen
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marilia Cascalho
- Transplantation Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA.
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
36
|
Natural Secretory Immunoglobulins Promote Enteric Viral Infections. J Virol 2018; 92:JVI.00826-18. [PMID: 30232191 DOI: 10.1128/jvi.00826-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.
Collapse
|
37
|
Nakamura Y, Kimura S, Hase K. M cell-dependent antigen uptake on follicle-associated epithelium for mucosal immune surveillance. Inflamm Regen 2018; 38:15. [PMID: 30186536 PMCID: PMC6120081 DOI: 10.1186/s41232-018-0072-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 01/22/2023] Open
Abstract
The follicle-associated epithelium (FAE) covering mucosa-associated lymphoid tissue is distinct from the villous epithelium in cellular composition and functions. Interleukin-22 binding protein (IL-22BP), provided by dendritic cells at the sub-epithelial dome region, inhibits the IL-22-mediated secretion of antimicrobial peptides by the FAE. The Notch signal from stromal cells underneath the FAE diminishes goblet cell differentiation. These events dampen the mucosal barrier functions to allow luminal microorganisms to readily gain access to the luminal surface of the FAE. Furthermore, receptor activator of nucleic factor-kappa B ligand (RANKL) from a certain stromal cell type induces differentiation into microfold (M) cells that specialize in antigen uptake in the mucosa. Microfold (M) cells play a key role in mucosal immune surveillance by actively transporting external antigens from the gut lumen to the lymphoid follicle. The molecular basis of antigen uptake by M cells has been gradually identified in the last decade. For example, GPI-anchored molecules (e.g., glycoprotein 2 (GP2) and cellular prion protein (PrPC)) and β1-integrin facilitate the transport of specific types of xenobiotics. The antigen transport by M cells initiates antigen-specific mucosal immune responses represented by the induction of secretory immunoglobulin A (S-IgA). Meanwhile, several invasive pathogens exploit M cells as a portal to establish a systemic infection. Recent findings have uncovered the molecular machinery of differentiation and functions of M cells.
Collapse
Affiliation(s)
- Yutaka Nakamura
- 1Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-0011 Japan.,2Graduate School of Medicine, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Shunsuke Kimura
- 3Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Koji Hase
- 1Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-0011 Japan.,4International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| |
Collapse
|
38
|
Henry KL, Kellner D, Bajrami B, Anderson JE, Beyna M, Bhisetti G, Cameron T, Capacci AG, Bertolotti-Ciarlet A, Feng J, Gao B, Hopkins B, Jenkins T, Li K, May-Dracka T, Murugan P, Wei R, Zeng W, Allaire N, Buckler A, Loh C, Juhasz P, Lucas B, Ennis KA, Vollman E, Cahir-McFarland E, Hett EC, Ols ML. CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling. Sci Signal 2018; 11:eaam8216. [PMID: 30065029 DOI: 10.1126/scisignal.aam8216] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin β receptor (LTβR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTβR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.
Collapse
Affiliation(s)
- Kate L Henry
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - John E Anderson
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Tom Cameron
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Jun Feng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Benbo Gao
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Kejie Li
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Ru Wei
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Weike Zeng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Norm Allaire
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Peter Juhasz
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Brian Lucas
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Erik C Hett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
39
|
Hamilton CA, Young R, Jayaraman S, Sehgal A, Paxton E, Thomson S, Katzer F, Hope J, Innes E, Morrison LJ, Mabbott NA. Development of in vitro enteroids derived from bovine small intestinal crypts. Vet Res 2018; 49:54. [PMID: 29970174 PMCID: PMC6029049 DOI: 10.1186/s13567-018-0547-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However, these cultures lack the cellular diversity encountered in the intestinal epithelium, and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium, and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid, or "mini gut", cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes, bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells, enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics, morphology or transcriptome. Furthermore, the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel, physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function, and host-pathogen interactions in the bovine small intestine can be studied.
Collapse
Affiliation(s)
- Carly A Hamilton
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Rachel Young
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Siddharth Jayaraman
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Anuj Sehgal
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, 5/20 Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Edith Paxton
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sarah Thomson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Jayne Hope
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Elisabeth Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Liam J Morrison
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
40
|
Andrews C, McLean MH, Durum SK. Cytokine Tuning of Intestinal Epithelial Function. Front Immunol 2018; 9:1270. [PMID: 29922293 PMCID: PMC5996247 DOI: 10.3389/fimmu.2018.01270] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.
Collapse
Affiliation(s)
- Caroline Andrews
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Mairi H McLean
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Scott K Durum
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
41
|
Van Itallie CM, Tietgens AJ, Aponte A, Gucek M, Cartagena-Rivera AX, Chadwick RS, Anderson JM. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci 2018; 131:jcs.210237. [PMID: 29222109 DOI: 10.1242/jcs.210237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/04/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Alexander X Cartagena-Rivera
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Richard S Chadwick
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - James M Anderson
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Wang Y, Kim R, Hinman SS, Zwarycz B, Magness ST, Allbritton NL. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche. Cell Mol Gastroenterol Hepatol 2018; 5:440-453.e1. [PMID: 29675459 PMCID: PMC5904029 DOI: 10.1016/j.jcmgh.2018.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The relationship between intestinal stem cells (ISCs) and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.
Collapse
Key Words
- 3D, 3-dimensional
- BMP, Bone morphogenetic protein
- Bioengineering
- ECM, extracellular matrix
- Eph, erythropoietin-producing human hepatocellular receptor
- Ephrin, Eph family receptor interacting proteins
- Gradients
- IFN-γ, interferon-γ
- ISC, intestinal stem cell
- Intestinal Epithelial Cells
- NO, nitric oxide
- SFCA, short-chain fatty acids
- Stem Cell Niche
- TA, transit amplifying
- Wnt, wingless-related integration site
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Samuel S. Hinman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Bailey Zwarycz
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Scott T. Magness, PhD, Department of Biomedical Engineering, 111 Mason Farm Road, Room 4337 Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2284.
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Correspondence Address correspondence to: Nancy L. Allbritton, MD, PhD, Department of Biomedical Engineering, Chapman Hall, Room 241, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2963.
| |
Collapse
|
43
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
44
|
Kimura S. Molecular insights into the mechanisms of M-cell differentiation and transcytosis in the mucosa-associated lymphoid tissues. Anat Sci Int 2017; 93:23-34. [PMID: 29098649 DOI: 10.1007/s12565-017-0418-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Microfold cells (M cells), which are located in the follicle-associated epithelium (FAE) covering mucosal lymphoid follicles, are specialized epithelial cells that initiate mucosal immune responses. These cells take luminal antigens and transport them via transcytosis across the FAE to the antigen-presenting cells underneath. Several intestinal pathogens exploit M cells as their portal for entry to invade the host and cause disease conditions. Recent studies have revealed that the uptake of antigens by M cells is essential for efficient antigen-specific IgA production and that this process likely maintains the homeostasis of mucosal tissues. The present article reviews recent advances in understanding the molecular mechanism of M-cell differentiation and describes the molecules expressed by M cells that are associated with antigen uptake and/or the transcytosis process. Current efforts to augment M-cell-mediated uptake for use in the development of effective mucosal vaccines are also discussed.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
45
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Arai M, Yokoyama T, Tsuruta H, Kawano J, Hoshi N, Kitagawa H. Mechanism of M-cell differentiation accelerated by proliferation of indigenous bacteria in rat Peyer's patches. J Vet Med Sci 2017; 79:1826-1835. [PMID: 28993550 PMCID: PMC5709560 DOI: 10.1292/jvms.17-0470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanism by which indigenous bacteria on the follicle-associated epithelium (FAE) of lymphatic follicles (LFs) accelerate the differentiation of microvillous columnar epithelial cells (MV) into M-cells was
immunohistochemically investigated in rat Peyer’s patches. The results showed that the number of Toll-like receptor (TLR) -4+ M-cells was greater in the FAE with expansion of bacterial colonies (LFs with bacterial
colonies on the FAE: b-LF) than the FAE without expansion of bacterial colonies (nb-LF). TLR-4 was also expressed in the striated borders of MV upstream next to M-cells in the FAE of the b-LF. TLR-4+ vesicles were
frequently detected in the cytoplasms of MV with TLR-4+ striated borders upstream next to TLR-4+ M-cells in the FAE of b-LF. These findings suggest that TLR-4+ MV take up TLR-4 ligands and
differentiate into M-cells in the b-LF. Neither the distribution of RANK nor that of RANKL was coincident with that of M-cells in the b-LF. Moreover, RANK, but not RANKL, was expressed in intestinal villi, whereas cleaved
caspase-3 was immunonegative in the MV and M-cells of the FAE, unlike in villous epithelial cells. Therefore, RANK/RANKL signaling in the LF might contribute to the down-regulation of epithelial apoptosis to facilitate the
differentiation of MV into M-cells in rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Natsumi Masuda
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaya Arai
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroki Tsuruta
- Center for Collaborative Research and Technology Development, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Junichi Kawano
- Laboratory of Microbiology and Immunology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
46
|
Vigilance or Subversion? Constitutive and Inducible M Cells in Mucosal Tissues. Trends Immunol 2017; 39:185-195. [PMID: 28958392 DOI: 10.1016/j.it.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Microfold (M) cells are epithelial cells present in mucosal tissues and specialized for the capture of luminal microparticles and their delivery to underlying immune cells; thus, they are crucial participants in mucosal immune surveillance. Multiple phenotypic subsets of M cells have now been described, all sharing a unique apical morphology that provides clues to their ability to capture microbial particles. The existence of diverse M cell phenotypes, especially inflammation-inducible M cells, provides an intriguing puzzle: some variants may augment luminal surveillance to boost mucosal immunity, while others may promote microbial access to tissues. Here, I consider the unique induction requirements of each M cell subset and functional differences, highlighting the potentially distinct consequences in mucosal immunity.
Collapse
|
47
|
Beloqui A, Brayden DJ, Artursson P, Préat V, des Rieux A. A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat Protoc 2017; 12:1387-1399. [PMID: 28617450 DOI: 10.1038/nprot.2017.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The specialized microfold cells (M cells) in the follicle-associated epithelium (FAE) of intestinal Peyer's patches serve as antigen-sampling cells of the intestinal innate immune system. Unlike 'classical' enterocytes, they are able to translocate diverse particulates without digesting them. They act as pathways for microorganism invasion and mediate food tolerance by transcellular transport of intestinal microbiota and antigens. Their ability to transcytose intact particles can be used to develop oral drug delivery and oral immunization strategies. This protocol describes a reproducible and versatile human M-cell-like in vitro model. This model can be exploited to evaluate M-cell transport of microparticles and nanoparticles for protein, drug or vaccine delivery and to study bacterial adherence and translocation across M cells. The inverted in vitro M-cell model consists of three main steps. First, Caco-2 cells are seeded at the apical side of the inserts. Second, the inserts are inverted and B lymphocytes are seeded at the basolateral side of the inserts. Third, the conversion to M cells is assessed. Although various M-cell culture systems exist, this model provides several advantages over the rest: (i) it is based on coculture with well-established differentiated human cell lines; (ii) it is reproducible under the conditions described herein; (iii) it can be easily mastered; and (iv) it does not require the isolation of primary cells or the use of animals. The protocol requires skills in cell culture and microscopy analysis. The model is obtained after 3 weeks, and transport experiments across the differentiated model can be carried out over periods of up to 10 h.
Collapse
Affiliation(s)
- Ana Beloqui
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - David J Brayden
- Veterinary Biosciences Section, School of Veterinary Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Véronique Préat
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne des Rieux
- Department of Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Institute of the Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
48
|
Parnell EA, Walch EM, Lo DD. Inducible Colonic M Cells Are Dependent on TNFR2 but Not Ltβr, Identifying Distinct Signalling Requirements for Constitutive Versus Inducible M Cells. J Crohns Colitis 2017; 11:751-760. [PMID: 27932454 PMCID: PMC5881705 DOI: 10.1093/ecco-jcc/jjw212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS M cells associated with organised lymphoid tissues such as intestinal Peyer's patches provide surveillance of the intestinal lumen. Inflammation or infection in the colon can induce an M cell population associated with lymphoid infiltrates; paradoxically, induction is dependent on the inflammatory cytokine tumour necrosis factor [TNF]-α. Anti-TNFα blockade is an important therapeutic in inflammatory bowel disease, so understanding the effects of TNFα signalling is important in refining therapeutics. METHODS To dissect pro-inflammatory signals from M cell inductive signals, we used confocal microscopy image analysis to assess requirements for specific cytokine receptor signals using TNF receptor 1 [TNFR1] and 2 [TNFR2] knockouts [ko] back-crossed to the PGRP-S-dsRed transgene; separate groups were treated with soluble lymphotoxin β receptor [sLTβR] to block LTβR signalling. All groups were treated with dextran sodium sulphate [DSS] to induce colitis. RESULTS Deficiency of TNFR1 or TNFR2 did not prevent DSS-induced inflammation nor induction of stromal cell expression of receptor activator of nuclear factor kappa-B ligand [RANKL], but absence of TNFR2 prevented M cell induction. LTβR blockade had no effect on M cell induction, but it appeared to reduce RANKL induction below adjacent M cells. CONCLUSIONS TNFR2 is required for inflammation-inducible M cells, indicating that constitutive versus inflammation-inducible M cells depend on different triggers. The inducible M cell dependence on TNFR2 suggests that this specific subset is dependent on TNFα in addition to a presumed requirement for RANKL. Since inducible M cell function will influence immune responses, selective blockade of TNFα may affect colonic inflammation.
Collapse
Affiliation(s)
- Erinn A. Parnell
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| | - Erin M. Walch
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| | - David D. Lo
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| |
Collapse
|
49
|
Bockerstett KA, DiPaolo RJ. Regulation of Gastric Carcinogenesis by Inflammatory Cytokines. Cell Mol Gastroenterol Hepatol 2017; 4:47-53. [PMID: 28560288 PMCID: PMC5439239 DOI: 10.1016/j.jcmgh.2017.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Chronic inflammation caused by infection with Helicobacter pylori and autoimmune gastritis increases an individual's risk of developing gastric cancer. More than 90% of gastric cancers are adenocarcinomas, which originate from epithelial cells in the chronically inflamed gastric mucosa. However, only a small subset of chronic gastritis patients develops gastric cancer, implying a role for genetic and environmental factors in cancer development. A number of DNA polymorphisms that increase gastric cancer risk have mapped to genes encoding cytokines. Many different cytokines secreted by immune cells and epithelial cells during chronic gastritis have been identified, but a better understanding of how cytokines regulate the severity of gastritis, epithelial cell changes, and neoplastic transformation is needed. This review summarizes studies in both human and mouse models, describing a number of different findings that implicate various cytokines in regulating the development of gastric cancer.
Collapse
Affiliation(s)
| | - Richard J. DiPaolo
- Correspondence Address correspondence to: Richard DiPaolo, PhD, 1100 South Grand Boulevard, DRC707, St. Louis, Missouri 63104. fax: (314) 977-8717.1100 South Grand Boulevard, DRC707St. LouisMissouri 63104
| |
Collapse
|
50
|
Kurashima Y, Kiyono H. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing. Annu Rev Immunol 2017; 35:119-147. [PMID: 28125357 DOI: 10.1146/annurev-immunol-051116-052424] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.
Collapse
Affiliation(s)
- Yosuke Kurashima
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan.,Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccine, La Jolla, CA 92093
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccine, La Jolla, CA 92093.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|