1
|
Balaji P, Liulu X, Sivakumar S, Chong JJH, Kizana E, Vandenberg JI, Hill AP, Hau E, Qian PC. Mechanistic Insights and Knowledge Gaps in the Effects of Radiation Therapy on Cardiac Arrhythmias. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03316-9. [PMID: 39222823 DOI: 10.1016/j.ijrobp.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Stereotactic body radiation therapy (SBRT) is an innovative modality for the treatment of refractory ventricular arrhythmias (VAs). Phase 1/2 clinical trials have demonstrated the remarkable efficacy of SBRT at reducing VA burden (by >85%) in patients with good short-term safety. SBRT as an option for VA treatment delivered in an ambulatory nonsedated patient in a single fraction during an outpatient session of 15 to 30 minutes, without added risks of anesthetic or surgery, is clinically relevant. However, the underlying mechanism remains unclear. Currently, the clinical dosing of SBRT has been derived from preclinical studies aimed at inducing transmural fibrosis in the atria. The propitious clinical effects of SBRT appear earlier than the time course for fibrosis. This review addresses the plausible mechanisms by which radiation alters the electrophysiological properties of myocytes and myocardial conduction to impart an antiarrhythmic effect, elucidate clinical observations, and point the direction for further research in this promising area.
Collapse
Affiliation(s)
- Poornima Balaji
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Xingzhou Liulu
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sonaali Sivakumar
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - James J H Chong
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Eric Hau
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia; Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Pierre C Qian
- Cardiology Department, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia; Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Lu X, Wang T, Hou B, Han N, Li H, Wang X, Xin J, He Y, Zhang D, Jia Z, Wei C. Shensong yangxin, a multi-functional traditional Chinese medicine for arrhythmia: A review of components, pharmacological mechanisms, and clinical applications. Heliyon 2024; 10:e35560. [PMID: 39224243 PMCID: PMC11367280 DOI: 10.1016/j.heliyon.2024.e35560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
As a common cardiovascular disease (CVD), Arrhythmia refers to any abnormality in the origin, frequency, rhythm, conduction velocity, timing, pathway, sequence, or other aspect of cardiac impulses, and it is one of the common cardiovascular diseases in clinical practice. At present, various ion channel blockers are used for treatment of arrhythmia that include Na+ ion channel blockers, K+ ion channel blockers and Ca2+ ion channel blockers. While these drugs offer benefits, they have led to a gradual increase in drug-related adverse reactions across various systems. As a result, the quest for safe and effective antiarrhythmic drugs is pressing. Recent years have seen some advancements in the treatment of ventricular arrhythmias using traditional Chinese medicine(TCM). The theory of Luobing in TCM has proposed a new drug intervention strategy of "fast and slow treatment, integrated regulation" leading to a shift in mindset from "antiarrhythmic" to "rhythm-regulating". Guided by this theory, the development of Shen Song Yang Xin Capsules (SSYX) has involved various Chinese medicinal ingredients that comprehensively regulate the myocardial electrophysiological mechanism, exerting antiarrhythmic effects on multiple ion channels and non-ion channels. Similarly, in clinical studies, evidence-based research has confirmed that SSYX combined with conventional antiarrhythmic drugs can more effectively reduce the occurrence of arrhythmias. Therefore, this article provides a comprehensive review of the composition and mechanisms of action, pharmacological components, network pharmacology analysis, and clinical applications of SSYX guided by the theory of Luobing, aiming to offer valuable insights for improved clinical management of arrhythmias and related research.
Collapse
Affiliation(s)
- Xuan Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Tongxing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Bin Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Ningxin Han
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Hongrong Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Xiaoqi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Jingjing Xin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Yanling He
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Dan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, 050035, China
| | - Cong Wei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, 050035, China
| |
Collapse
|
3
|
Shen J, Fu H, Ding Y, Yuan Z, Xiang Z, Ding M, Huang M, Peng Y, Li T, Zha K, Ye Q. The role of iron overload and ferroptosis in arrhythmia pathogenesis. IJC HEART & VASCULATURE 2024; 52:101414. [PMID: 38694269 PMCID: PMC11060960 DOI: 10.1016/j.ijcha.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.
Collapse
Affiliation(s)
- Jingsong Shen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hengsong Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yanling Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ziyang Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zeming Xiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Miao Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Min Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yongquan Peng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Kelan Zha
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Amioka M, Kinoshita H, Sairaku A, Shokawa T, Nakano Y. Impact of ABO blood type on the risk of atrial fibrillation recurrence after catheter ablation. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100384. [PMID: 38586426 PMCID: PMC10994962 DOI: 10.1016/j.ahjo.2024.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
Background Blood types are classified based on the specific antigenic characteristics they possess. Despite documented associations between antigens and inflammation, a scarcity of data exists concerning the impact of antigens on atrial fibrillation (AF). Methods OSHOH-rhythm study is a multi-center, prospective observational study of 601 patients who underwent catheter ablation for AF. We examined the correlation between blood type groups and both the incidence and recurrence of AF. Additionally, we analyzed the recurrence of AF across antigenic profiles. Results The frequencies of individual blood types were 239 (39.8 %), 190 (31.6 %), 122 (20.3 %), and 50 (8.3 %) for A, O, B, and AB, respectively, aligning closely with the prevalent blood type distribution among the Japanese populace. During follow-up period (18.8 months, median), AF recurrence occurred in 96 patients (22.4 %) lacking the B antigen (A and O), and 26 patients (15.1 %) possessing B antigen (B and AB), respectively (Log-rank test: P = 0.034). A multivariate analysis demonstrated that blood types lacking the B antigen (hazard ratio [HR], 1.55; 95 % CI, 1.01 to 2.42; P = 0.037), hypertension (HR, 1.51; 95 % CI, 1.05 to 2.17; P = 0.026) and non-paroxysmal AF (HR, 1.70; 95 % CI, 1.17 to 2.47; P = 0.005) were independently associated with the recurrence of AF. Conclusions This study elucidates that, despite the absence of direct correlation between blood types and the occurrence of AF, blood types devoid of the B antigen exhibit an enhanced predisposition to AF recurrence. Nonetheless, the intricate mechanism linking blood type to recurrence remains elusive, warranting further comprehensive foundational research on blood types.
Collapse
Affiliation(s)
- Michitaka Amioka
- Deparment of Cardiovascular Medicine, Hiroshima General Hospital, Hiroshima, Japan
| | - Hiroki Kinoshita
- Deparment of Cardiovascular Medicine, Onomichi General Hospital, Hiroshima, Japan
| | - Akinori Sairaku
- Deparment of Cardiovascular Medicine, NHO Higashihiroshima Medical Center, Hiroshima, Japan
| | - Tomoki Shokawa
- Deparment of Cardiovascular Medicine, Hiroshima General Hospital, Hiroshima, Japan
| | - Yukiko Nakano
- Deparment of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
5
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
6
|
Xu J, Zhang D, Ma Y, Du H, Wang Y, Luo W, Wang R, Yi F. ROS in diabetic atria regulate SK2 degradation by Atrogin-1 through the NF-κB signaling pathway. J Biol Chem 2024; 300:105735. [PMID: 38336298 PMCID: PMC10938124 DOI: 10.1016/j.jbc.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.
Collapse
Affiliation(s)
- Jian Xu
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yibo Ma
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Du
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenping Luo
- Institute of Cardiovascular and Vascular Disease, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ruxing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fu Yi
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
8
|
Bennett M, Nault I, Koehle M, Wilton S. Air Pollution and Arrhythmias. Can J Cardiol 2023; 39:1253-1262. [PMID: 37023893 DOI: 10.1016/j.cjca.2023.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Air pollution is commonly defined as the contamination of the air we breathe by any chemical, physical, or biological agent that is potentially threatening to human and ecosystem health. The common pollutants known to be disease-causing are particulate matter, ground-level ozone, sulphur dioxide, nitrogen dioxide, and carbon monoxide. Although the association between increasing concentrations of these pollutants and cardiovascular disease is now accepted, the association of air pollution and arrhythmias is less well established. In this review we provide an in-depth discussion of the association of acute and chronic air pollution exposure and arrhythmia incidence, morbidity, and mortality, and the purported pathophysiological mechanisms. Increases in concentrations of air pollutants have multiple proarrhythmic mechanisms including systemic inflammation (via increases in reactive oxygen species, tumour necrosis factor, and direct effects from translocated particulate matter), structural remodelling (via an increased risk of atherosclerosis and myocardial infarction or by affecting the cell-to-cell coupling and gap junction function), and mitochondrial and autonomic dysfunction. Furthermore, we describe the associations of air pollution and arrhythmias. There is a strong correlation of acute and chronic air pollutant exposure and the incidence of atrial fibrillation. Acute increases in air pollution increase the risk of emergency room visits and hospital admissions for atrial fibrillation and the risk of stroke and mortality in patients with atrial fibrillation. Similarly, there is a strong correlation of increases of air pollutants and the risk of ventricular arrhythmias, out-of-hospital cardiac arrest, and sudden cardiac death.
Collapse
Affiliation(s)
- Matthew Bennett
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Isabelle Nault
- Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Quebec, Canada
| | - Michael Koehle
- Division of Sport and Exercise Medicine, School of Kinesiology and Department of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Wilton
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
10
|
Ihara K, Sasano T. Role of Inflammation in the Pathogenesis of Atrial Fibrillation. Front Physiol 2022; 13:862164. [PMID: 35492601 PMCID: PMC9047861 DOI: 10.3389/fphys.2022.862164] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias encountered in clinical practice. AF is a major risk factor for stroke, which is associated with high mortality and great disability and causes a significant burden on society. With the development of catheter ablation, AF has become a treatable disease, but its therapeutic outcome has been limited so far. In persistent and long-standing AF, the expanded AF substrate is difficult to treat only by ablation, and a better understanding of the mechanism of AF substrate formation will lead to the development of a new therapeutic strategy for AF. Inflammation is known to play an important role in the substrate formation of AF. Inflammation causes and accelerates the electrical and structural remodeling of the atria via pro-inflammatory cytokines and other inflammatory molecules, and enhances the AF substrate, leading to the maintenance of AF and further inflammation, which forms a vicious spiral, so-called "AF begets AF". Breaking this vicious cycle is expected to be a key therapeutic intervention in AF. In this review, we will discuss the relationship between AF and inflammation, the inflammatory molecules included in the AF-related inflammatory process, and finally the potential of those molecules as a therapeutic target.
Collapse
Affiliation(s)
- Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
11
|
Li DS, Xue GL, Yang JM, Li CZ, Zhang RX, Tian T, Li Z, Shen KW, Guo Y, Liu XN, Wang J, Lu YJ, Pan ZW. Knockout of interleukin-17A diminishes ventricular arrhythmia susceptibility in diabetic mice via inhibiting NF-κB-mediated electrical remodeling. Acta Pharmacol Sin 2022; 43:307-315. [PMID: 33911193 PMCID: PMC8791974 DOI: 10.1038/s41401-021-00659-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023] Open
Abstract
Interleukin-17A (IL-17), a potent proinflammatory cytokine, has been shown to participate in cardiac electrical disorders. Diabetes mellitus is an independent risk factor for ventricular arrhythmia. In this study, we investigated the role of IL-17 in ventricular arrhythmia of diabetic mice. Diabetes was induced in both wild-type and IL-17 knockout mice by intraperitoneal injection of streptozotocin (STZ). High-frequency electrical stimuli were delivered into the right ventricle to induce ventricular arrhythmias. We showed that the occurrence rate of ventricular tachycardia was significantly increased in diabetic mice, which was attenuated by IL-17 knockout. We conducted optical mapping on perfused mouse hearts and found that cardiac conduction velocity (CV) was significantly decreased, and action potential duration (APD) was prolonged in diabetic mice, which were mitigated by IL-17 knockout. We performed whole-cell patch clamp recordings from isolated ventricular myocytes, and found that the densities of Ito, INa and ICa,L were reduced, the APDs at 50% and 90% repolarization were increased, and early afterdepolarization (EAD) was markedly increased in diabetic mice. These alterations were alleviated by the knockout of IL-17. Moreover, knockout of IL-17 alleviated the downregulation of Nav1.5 (the pore forming subunit of INa), Cav1.2 (the main component subunit of ICa,L) and KChIP2 (potassium voltage-gated channel interacting protein 2, the regulatory subunit of Ito) in the hearts of diabetic mice. The expression of NF-κB was significantly upregulated in the hearts of diabetic mice, which was suppressed by IL-17 knockout. In neonatal mouse ventricular myocytes, knockdown of NF-κB significantly increased the expression of Nav1.5, Cav1.2 and KChIP2. These results imply that IL-17 may represent a potential target for the development of agents against diabetes-related ventricular arrhythmias.
Collapse
Affiliation(s)
- De-Sheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Gen-Long Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ji-Ming Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Zhu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Rui-Xin Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tao Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ke-Wei Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Ning Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jin Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan-Jie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhen-Wei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
Ren C, Han X, Lu C, Yang T, Qiao P, Sun Y, Yu Z. Ubiquitination of NF-κB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ 2022; 29:381-392. [PMID: 34465889 PMCID: PMC8816940 DOI: 10.1038/s41418-021-00862-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
The F-box and WD-repeat-containing protein 2 (FBXW2) plays a crucial role as an E3 ligase in regulating tumorigenesis. However, the functions of FBXW2 in breast cancer are still unknown. Here, we find that nuclear factor-kB (NF-κB) p65 is a new substrate of FBXW2. FBXW2 directly binds to p65, leading to its ubiquitination and degradation. Interestingly, p300 acetylation of p65 blocks FBXW2 induced p65 ubiquitination. FBXW2-p65 axis is a crucial regulator of SOX2-induced stemness in breast cancer. Moreover, FBXW2 inhibits breast tumor growth by regulating p65 degradation in vitro and in vivo. FBXW2 overexpression abrogates the effects of p65 on paclitaxel resistance in vitro and in vivo. Furthermore, FBXW2 induced p65 degradation is also confirmed in FBXW2-knockout mice. Our results identify FBXW2 as an important E3 ligase for p65 degradation, which provide insights into the tumor suppressor functions of FBXW2 in breast cancer.
Collapse
Affiliation(s)
- Chune Ren
- grid.268079.20000 0004 1790 6079Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Xue Han
- grid.268079.20000 0004 1790 6079Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Chao Lu
- grid.268079.20000 0004 1790 6079Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Tingting Yang
- grid.268079.20000 0004 1790 6079Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Pengyun Qiao
- grid.268079.20000 0004 1790 6079Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Yonghong Sun
- grid.268079.20000 0004 1790 6079Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Zhenhai Yu
- grid.268079.20000 0004 1790 6079Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, PR China
| |
Collapse
|
13
|
Meraviglia V, Alcalde M, Campuzano O, Bellin M. Inflammation in the Pathogenesis of Arrhythmogenic Cardiomyopathy: Secondary Event or Active Driver? Front Cardiovasc Med 2022; 8:784715. [PMID: 34988129 PMCID: PMC8720743 DOI: 10.3389/fcvm.2021.784715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare inherited cardiac disease characterized by arrhythmia and progressive fibro-fatty replacement of the myocardium, which leads to heart failure and sudden cardiac death. Inflammation contributes to disease progression, and it is characterized by inflammatory cell infiltrates in the damaged myocardium and inflammatory mediators in the blood of ACM patients. However, the molecular basis of inflammatory process in ACM remains under investigated and it is unclear whether inflammation is a primary event leading to arrhythmia and myocardial damage or it is a secondary response triggered by cardiomyocyte death. Here, we provide an overview of the proposed players and triggers involved in inflammation in ACM, focusing on those studied using in vivo and in vitro models. Deepening current knowledge of inflammation-related mechanisms in ACM could help identifying novel therapeutic perspectives, such as anti-inflammatory therapy.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Mireia Alcalde
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain.,Centro Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain.,Centro Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands.,Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
14
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Goette A, Lendeckel U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells 2021; 10:cells10102605. [PMID: 34685585 PMCID: PMC8533786 DOI: 10.3390/cells10102605] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Around the world there are 33.5 million patients suffering from atrial fibrillation (AF) with an annual increase of 5 million cases. Most AF patients have an established form of an atrial cardiomyopathy. The concept of atrial cardiomyopathy was introduced in 2016. Thus, therapy of underlying diseases and atrial tissue changes appear as a cornerstone of AF therapy. Furthermore, therapy or prevention of atrial endocardial changes has the potential to reduce atrial thrombogenesis and thereby cerebral stroke. The present manuscript will summarize the underlying pathophysiology and remodeling processes observed in the development of an atrial cardiomyopathy, thrombogenesis, and atrial fibrillation. In particular, the impact of oxidative stress, inflammation, diabetes, and obesity will be addressed.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, 33098 Paderborn, Germany
- MAESTRIA Consortium/AFNET, 48149 Münster, Germany
- Correspondence:
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| |
Collapse
|
16
|
Ajmal M, Ajmal A, Huang L, Zeng L. The Potential Therapeutic Role of Celastrol in Patients With Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:725602. [PMID: 34490381 PMCID: PMC8418197 DOI: 10.3389/fcvm.2021.725602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/07/2022] Open
Abstract
Analysis of left ventricular systolic dysfunction remained at the centre of heart failure research for many years (also known as heart failure with reduced ejection fraction, HFrEF). Although more than 50% of all heart failure patients experience a form of heart failure characterised by preserved ejection fraction (HFpEF), the pathophysiological mechanisms leading to this form of heart failure remain not well-understood. Several evidence-based treatments for HFrEF are in routine use, but there are limited evidence-based therapies for HFpEF. The effects of these remain controversial, with current treatment options being limited to managing the associated symptoms and conditions. Accumulating evidence demonstrates that pro-inflammatory and oxidative stress pathways play key roles in the development and progression of HFpEF, such as the Unfolded Protein Response (UPR) and inducible nitric oxide synthase. Celastrol, derived from medicinal plants, is a bioactive compound with strong anti-inflammatory properties, which could deem it as fruitful in overcoming the effects of such dysregulated UPR. This literature review therefore focuses on Celastrol's anti-inflammatory and antioxidant activities, alongside its other potential therapeutic activities, and its ability to impede the pathways that are thought to be involved in the development of HFpEF, such as the JAK2/STAT pathway, to elucidate the potential therapeutic role of this bioactive compound, in the treatment of HFpEF.
Collapse
Affiliation(s)
- Maryam Ajmal
- GKT School of Medical Education, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Aisha Ajmal
- St. George's Hospital Medical School, University of London, London, United Kingdom
| | - Lei Huang
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
18
|
Elevated EZH2 in ischemic heart disease epigenetically mediates suppression of Na V1.5 expression. J Mol Cell Cardiol 2020; 153:95-103. [PMID: 33370552 DOI: 10.1016/j.yjmcc.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Suppression of the cardiac sodium channel NaV1.5 leads to fatal arrhythmias in ischemic heart disease (IHD). However, the transcriptional regulation of NaV1.5 in cardiac ischemia is still unclear. Our studies are aimed to investigate the expression of enhancer of zeste homolog 2 (EZH2) in IHD and regulation of cardiac NaV1.5 expression by EZH2. Human heart tissue was obtained from IHD and non-failing heart (NFH) patients; mouse heart tissue was obtained from the peri-infarct zone of hearts with myocardial infarction (MI) and hearts with a sham procedure. Protein and mRNA expression were measured by immunoblotting, immunostaining, and qRT-PCR. Protein-DNA binding and promoter activity were analyzed by ChIP-qPCR and luciferase assays, respectively. Na+ channel activity was assessed by whole-cell patch clamp recordings. EZH2 and H3K27me3 were increased while NaV1.5 expression was reduced in IHD hearts and in mouse MI hearts compared to the controls. Reduced NaV1.5 and increased EZH2 mRNA levels were observed in mouse MI hearts. A selective EZH2 inhibitor, GSK126 decreased H3K27me3 and elevated NaV1.5 in HL-1 cells. Silencing of EZH2 expression decreased H3K27me3 and increased NaV1.5 in these cells. EZH2 and H3K27me3 were enriched in the promoter regions of Scn5a and were decreased by treatment with EZH2 siRNA. GSK126 inhibited the enrichment of H3K27me3 in the Scn5a promoter and enhanced Scn5a transcriptional activity. GSK126 significantly increased Na+ channel activity. Taken together, EZH2 is increased in ischemic hearts and epigenetically suppresses Scn5a transcription by H3K27me3, leading to decreased NaV1.5 expression and Na+ channel activity underlying the pathogenesis of arrhythmias.
Collapse
|
19
|
Dong C, Wang Y, Ma A, Wang T. Life Cycle of the Cardiac Voltage-Gated Sodium Channel Na V1.5. Front Physiol 2020; 11:609733. [PMID: 33391024 PMCID: PMC7773603 DOI: 10.3389/fphys.2020.609733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac voltage-gated sodium channel NaV1.5, encoded by SCN5A, is crucial for the upstroke of action potential and excitation of cardiomyocytes. NaV1.5 undergoes complex processes before it reaches the target membrane microdomains and performs normal functions. A variety of protein partners are needed to achieve the balance between SCN5A transcription and mRNA decay, endoplasmic reticulum retention and export, Golgi apparatus retention and export, selective anchoring and degradation, activation, and inactivation of sodium currents. Subtle alterations can impair NaV1.5 in terms of expression or function, eventually leading to NaV1.5-associated diseases such as lethal arrhythmias and cardiomyopathy.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
20
|
Kang GJ, Xie A, Liu H, Dudley SC. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel. JCI Insight 2020; 5:140759. [PMID: 33108349 PMCID: PMC7714400 DOI: 10.1172/jci.insight.140759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac ischemia is associated with arrhythmias; however, effective therapies are currently limited. The cardiac voltage-gated sodium channel α subunit (SCN5A), encoding the Nav1.5 current, plays a key role in the cardiac electrical conduction and arrhythmic risk. Here, we show that hypoxia reduces Nav1.5 through effects on a miR, miR-448. miR-448 expression is increased in ischemic cardiomyopathy. miR-448 has a conserved binding site in 3′-UTR of SCN5A. miR-448 binding to this site suppressed SCN5A expression and sodium currents. Hypoxia-induced HIF-1α and NF-κB were major transcriptional regulators for MIR448. Moreover, hypoxia relieved MIR448 transcriptional suppression by RE1 silencing transcription factor. Therefore, miR-448 inhibition reduced arrhythmic risk after myocardial infarction. Here, we show that ischemia drove miR-448 expression, reduced Nav1.5 current, and increased arrhythmic risk. Arrhythmic risk was improved by preventing Nav1.5 downregulation, suggesting a new approach to antiarrhythmic therapy. Ischemic induction of miR-448 negatively regulates the cardiac sodium channel Nav1.5, and inhibiting miR-448 raises Nav1.5 and reduces arrhythmic risk after myocardial infarction in mice.
Collapse
|
21
|
Aonuma K, Ferdousi F, Xu D, Tominaga K, Isoda H. Effects of Isorhamnetin in Human Amniotic Epithelial Stem Cells in vitro and Its Cardioprotective Effects in vivo. Front Cell Dev Biol 2020; 8:578197. [PMID: 33117805 PMCID: PMC7552739 DOI: 10.3389/fcell.2020.578197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy and fibrosis are major pathophysiologic disorders that lead to serious cardiovascular diseases (CVDs), such as heart failure and arrhythmia. It is well known that transforming growth factor β (TGFβ) signaling pathways play a major role in the proliferation of cardiac hypertrophy and fibrosis, which is mainly stimulated by angiotensin II (AgII). This study aimed to investigate the cardioprotective potential of isorhamnetin (ISO) in human amniotic epithelial stem cells (hAESCs) through global gene expression analysis and to confirm its beneficial effects on cardiac hypertrophy and fibrosis in the AgII-induced in vivo model. In vitro, biological processes including TGFβ, collagen-related functions, and inflammatory processes were significantly suppressed in ISO pretreated hAESCs. In vivo, continuous AgII infusion using an osmotic pump induced significant pathological fibrosis and myocardial hypertrophy, which were remarkably suppressed by ISO pretreatment. ISO was found to reverse the enhanced TGFβ and Collagen type I alpha 1 mRNA expression induced by AgII exposure, which causes cardiovascular remodeling in ventricular tissue. These findings indicate that ISO could be a potential agent against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Kazuhiro Aonuma
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - DongZhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Adameova A, Shah AK, Dhalla NS. Role of Oxidative Stress in the Genesis of Ventricular Arrhythmias. Int J Mol Sci 2020; 21:E4200. [PMID: 32545595 PMCID: PMC7349053 DOI: 10.3390/ijms21124200] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Ventricular arrhythmias, mainly lethal arrhythmias, such as ventricular tachycardia and fibrillation, may lead to sudden cardiac death. These are triggered as a result of cardiac injury due to chronic ischemia, acute myocardial infarction and various stressful conditions associated with increased levels of circulating catecholamines and angiotensin II. Several mechanisms have been proposed to underlie electrical instability of the heart promoting ventricular arrhythmias; however, oxidative stress which adversely affects ion homeostasis due to changes in the ion channel structure and function, seems to play a critical role in eliciting different types of ventricular arrhythmias. Prevention or mitigation of the severity of ventricular arrhythmias due to antioxidants has been indicated as the fundamental contribution in the field of preventive cardiology; however, novel interventions have to be developed for greater effectiveness and specificity in attenuating the adverse effects of oxidative stress. In this review, we have attempted to discuss proarrhythmic effects of oxidative stress differing in time and concentration dependence and highlight a molecular and cellular concept how it alters cardiac cell automaticity and conduction velocity sensitizing the probability of ventricular arrhythmias with resultant sudden cardiac death due to ischemic heart disease and other stressful situations. It is concluded that pharmacological approaches targeting multiple mechanisms besides oxidative stress might be more effective in the treatment of ventricular arrhythmias than current antiarrhythmic therapy.
Collapse
Affiliation(s)
- Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, and Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Anureet K. Shah
- Department of Kinesiology, Nutrition and Food Science, California State University, Los Angeles, CA 90032, USA;
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| |
Collapse
|
23
|
Williams EA, Russo V, Ceraso S, Gupta D, Barrett-Jolley R. Anti-arrhythmic properties of non-antiarrhythmic medications. Pharmacol Res 2020; 156:104762. [PMID: 32217149 PMCID: PMC7248574 DOI: 10.1016/j.phrs.2020.104762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Traditional anti-arrhythmic drugs are classified by the Vaughan-Williams classification scheme based on their mechanisms of action, which includes effects on receptors and/or ion channels. Some known anti-arrhythmic drugs do not perfectly fit into this classification scheme. Other medications/molecules with established non-anti-arrhythmic indications have shown anti-arrhythmic properties worth exploring. In this narrative review, we discuss the molecular mechanisms and evidence base for the anti-arrhythmic properties of traditional non-antiarrhythmic drugs such as inhibitors of the renin angiotensin system (RAS), statins and polyunsaturated fatty acids (PUFAs). In summary, RAS antagonists, statins and PUFAs are 'upstream target modulators' that appear to have anti-arrhythmic roles. RAS blockers prevent the downstream arrhythmogenic effects of angiotensin II - the main effector peptide of RAS - and the angiotensin type 1 receptor. Statins have pleiotropic effects including anti-inflammatory, immunomodulatory, modulation of autonomic nervous system, anti-proliferative and anti-oxidant actions which appear to underlie their anti-arrhythmic properties. PUFAs have the ability to alter ion channel function and prevent excessive accumulation of calcium ions in cardiac myocytes, which might explain their benefits in certain arrhythmic conditions. Clearly, whilst a number of anti-arrhythmic drugs exist, there is still a need for randomised trials to establish whether additional agents, including those already in clinical use, have significant anti-arrhythmic effects.
Collapse
Affiliation(s)
- Emmanuel Ato Williams
- Department of Cardiology, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, United Kingdom; Institute of Aging and Chronic Disease, University of Liverpool, United Kingdom
| | - Vincenzo Russo
- Chair of Cardiology, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Sergio Ceraso
- Specialization Fellow in Cardiology, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy
| | - Dhiraj Gupta
- Department of Cardiology, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, United Kingdom
| | - Richard Barrett-Jolley
- Chair Neuropharmacology, Institute of Aging and Chronic Disease, University of Liverpool, United Kingdom.
| |
Collapse
|
24
|
Zhou X, Dudley SC. Evidence for Inflammation as a Driver of Atrial Fibrillation. Front Cardiovasc Med 2020; 7:62. [PMID: 32411723 PMCID: PMC7201086 DOI: 10.3389/fcvm.2020.00062] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common types of arrhythmias and increases cardiovascular morbidity and mortality. Current therapeutic approaches to AF that focus on rhythm control have high recurrence rates and no life prolongation value. While possible explanations include toxicity of current therapies, another likely explanation may be that current therapies do not address fundamental mechanisms of AF initiation and maintenance. Inflammation has been shown to affect signaling pathways that lead to the development of AF. This paper reviews the roles of inflammation in the occurrence, development, and mechanisms of AF and reviews the therapeutic implications of the correlation of inflammation and AF.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN, United States
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
25
|
Shuai W, Kong B, Yang H, Fu H, Huang H. Loss of myeloid differentiation protein 1 promotes atrial fibrillation in heart failure with preserved ejection fraction. ESC Heart Fail 2020; 7:626-638. [PMID: 31994333 PMCID: PMC7160510 DOI: 10.1002/ehf2.12620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS Myeloid differentiation protein 1 (MD1) is expressed in the mammalian heart and exerts an anti-arrhythmic effect. Atrial fibrillation (AF) is closely related to heart failure with preserved ejection fraction (HFpEF). The potential impact of MD1 on AF vulnerability in an HFpEF model is not clear. METHODS AND RESULTS MD1 knock-out and wild-type (WT) mice were subjected to uninephrectomy and continuous saline or d-aldosterone infusion and given 1% sodium chloride drinking water for 4 weeks. Echocardiographic and haemodynamic measurements, electrophysiological studies, Masson staining, and molecular analysis were performed. Aldosterone-infused WT mice develop HFpEF with left ventricular hypertrophy, moderate hypertension, pulmonary congestion, and diastolic dysfunction. Aldosterone infusion increased the vulnerability of WT mice to AF, as shown by a prolonged interatrial conduction time, shortened effective refractory period, and higher incidence of AF. In addition, aldosterone infusion increased myocardial fibrosis and inflammation, decreased sarcoplasmic reticulum Ca2+ -ATPase 2a protein expression and the phosphorylation of phospholamban at Thr17, and increased sodium/calcium exchanger 1 protein expression and the phosphorylation of ryanodine receptor 2 in WT mice. All of the above adverse effects of aldosterone infusion were further exacerbated in MD1 knock-out mice compare with WT mice. Mechanistically, MD1 deletion increased the activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway in in vivo and in vitro experiments. CONCLUSIONS MD1 deficiency increases the vulnerability of HFpEF mice to AF. This is mainly caused by aggravated maladaptive left atrial fibrosis and inflammation and worsened dysregulation of calcium handling, which is induced by the enhanced activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway.
Collapse
Affiliation(s)
- Wei Shuai
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Bin Kong
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Hongjie Yang
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Hui Fu
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - He Huang
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
26
|
Fazmin IT, Huang CLH, Jeevaratnam K. Bisphosphonates and atrial fibrillation: revisiting the controversy. Ann N Y Acad Sci 2020; 1474:15-26. [PMID: 32208537 DOI: 10.1111/nyas.14332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022]
Abstract
Bisphosphonates (BPs) are widely prescribed drugs used to treat osteoporosis, commonly arising in postmenopausal women and in chronic glucocorticoid use. Their mechanism of action is through inhibiting osteoclast-induced bone remodeling, and they also possess calcium sequestering properties. Common side effects involve the gastrointestinal system and rare but serious side effects, including osteonecrosis of the jaw. However, a link between BPs and atrial fibrillation (AF) has been proposed, with early clinical trials, such as the Fracture Intervention Trial and the HORIZON Pivotal Fracture Trial, reporting that BPs are associated with increased risk of AF. Nevertheless, subsequent studies have reported contrasting results, ranging from no effect of BPs to antiarrhythmic effects of BPs. Preclinical and electrophysiological studies on any proarrhythmic effect of BPs are limited in scope and number, but suggest possible mechanisms that include antiangionesis-related myocardial remodeling, calcium handling abnormalities, and inflammatory changes. Contrastingly, some studies indicate that BPs are antiarrhythmic by inhibiting fibrotic myocardial remodeling. In order to continue established clinical prescribing of BPs within absolute margins of safety, it will be necessary to systematically rule in/rule out these mechanisms. Thus, we discuss these studies and examine in detail the potential mechanistic links, with the aim of suggesting further avenues for research.
Collapse
Affiliation(s)
- Ibrahim T Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
27
|
Zhao L, Sun L, Lu Y, Li F, Xu H. A small-molecule LF3 abrogates β-catenin/TCF4-mediated suppression of Na V1.5 expression in HL-1 cardiomyocytes. J Mol Cell Cardiol 2019; 135:90-96. [PMID: 31419437 PMCID: PMC7088444 DOI: 10.1016/j.yjmcc.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Increased nuclear β-catenin interacting with T-cell factor 4 (TCF4) affects the expression of target genes including SCN5A in ischemic heart disease, which is characterized by frequent ventricular tachycardia/fibrillation. A complex of β-catenin and TCF4 inhibits cardiac Na+ channel activity by reducing NaV1.5 expression through suppressing SCN5A promoter activity in HL-1 cardiomyocytes. LF3, a 4-thioureido-benzenesulfonamide derivative and an inhibitor of β-catenin/TCF4 interaction, has been shown to block the self-renewal capacity of cancer stem cells. We performed studies to determine if LF3 can reverse suppressive effects of β-catenin/TCF4 signaling on the expression of NaV1.5 in HL-1 cardiomyocytes. Western blotting and real-time qRT-PCR analyses showed that 10 μM LF3 significantly increased the expression of NaV1.5 but it did not alter β-catenin and TCF4 expression. Subcellular fractionation analysis demonstrated that LF3 significantly increased the levels of NaV1.5 in both membrane and cytoplasm. Whole-cell patch-clamp recordings revealed that Na+ currents were significantly increased with no changes in the steady-state parameters, activation and inactivation time constants and recovery from inactivation of Na+ channel in HL-1 cells treated with LF3. Immunoprecipitation exhibited that LF3 blocked the interaction of β-catenin and TCF4. Luciferase reporter assays performed in HEK 293 cells and HL-1 revealed that LF3 increased the SCN5A promoter activity in HL-1 cells and prevented β-catenin suppressive effect on SCN5A promoter activity in HEK 293 cells. Taken together, we conclude that LF3, an inhibitor of β-catenin/TCF4 interaction, elevates NaV1.5 expression, leading to increase Na+ channel activity in HL-1 cardiomyocytes.
Collapse
Affiliation(s)
- Limei Zhao
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America
| | - Lihua Sun
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America
| | - Yan Lu
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Haodong Xu
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America.
| |
Collapse
|
28
|
Chadda KR, Fazmin IT, Ahmad S, Valli H, Edling CE, Huang CLH, Jeevaratnam K. Arrhythmogenic mechanisms of obstructive sleep apnea in heart failure patients. Sleep 2019; 41:5054592. [PMID: 30016501 DOI: 10.1093/sleep/zsy136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Heart failure (HF) affects 23 million people worldwide and results in 300000 annual deaths. It is associated with many comorbidities, such as obstructive sleep apnea (OSA), and risk factors for both conditions overlap. Eleven percent of HF patients have OSA and 7.7% of OSA patients have left ventricular ejection fraction <50% with arrhythmias being a significant comorbidity in HF and OSA patients. Forty percent of HF patients develop atrial fibrillation (AF) and 30%-50% of deaths from cardiac causes in HF patients are from sudden cardiac death. OSA is prevalent in 32%-49% of patients with AF and there is a dose-dependent relationship between OSA severity and resistance to anti-arrhythmic therapies. HF and OSA lead to various downstream arrhythmogenic mechanisms, including metabolic derangement, remodeling, inflammation, and autonomic imbalance. (1) Metabolic derangement and production of reactive oxidative species increase late Na+ currents, decrease outward K+ currents and downregulate connexin-43 and cell-cell coupling. (2) remodeling also features downregulated K+ currents in addition to decreased Na+/K+ ATPase currents, altered Ca2+ homeostasis, and increased density of If current. (3) Chronic inflammation leads to downregulation of both Nav1.5 channels and K+ channels, altered Ca2+ homeostasis and reduced cellular coupling from alterations of connexin expression. (4) Autonomic imbalance causes arrhythmias by evoking triggered activity through increased Ca2+ transients and reduction of excitation wavefront wavelength. Thus, consideration of these multiple pathophysiological pathways (1-4) will enable the development of novel therapeutic strategies that can be targeted against arrhythmias in the context of complex disease, such as the comorbidities of HF and OSA.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Ibrahim T Fazmin
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Charlotte E Edling
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom.,Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| |
Collapse
|
29
|
Li MCH, O'Brien TJ, Todaro M, Powell KL. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia 2019; 60:1753-1767. [PMID: 31353444 DOI: 10.1111/epi.16301] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that cardiac dysfunction in patients with chronic epilepsy could play a pathogenic role in sudden unexpected death in epilepsy (SUDEP). Recent animal studies have revealed that epilepsy secondarily alters the expression of cardiac ion channels alongside abnormal cardiac electrophysiology and remodeling. These molecular findings represent novel evidence for an acquired cardiac channelopathy in epilepsy, distinct from inherited ion channels mutations associated with cardiocerebral phenotypes. Specifically, seizure activity has been shown to alter the messenger RNA (mRNA) and protein expression of voltage-gated sodium channels (Nav 1.1, Nav 1.5), voltage-gated potassium channels (Kv 4.2, Kv 4.3), sodium-calcium exchangers (NCX1), and nonspecific cation-conducting channels (HCN2, HCN4). The pathophysiology may involve autonomic dysfunction and structural cardiac disease, as both are independently associated with epilepsy and ion channel dysregulation. Indeed, in vivo and in vitro studies of cardiac pathology reveal a complex network of signaling pathways and transcription factors regulating ion channel expression in the setting of sympathetic overactivity, cardiac failure, and hypertrophy. Other mechanisms such as circulating inflammatory mediators or exogenous effects of antiepileptic medications lack evidence. Moreover, an acquired cardiac channelopathy may underlie the electrophysiologic cardiac abnormalities seen in chronic epilepsy, potentially contributing to the increased risk of malignant arrhythmias and sudden death. Therefore, further investigation is necessary to establish whether cardiac ion channel dysregulation similarly occurs in patients with epilepsy, and to characterize any pathogenic relationship with SUDEP.
Collapse
Affiliation(s)
- Michael C H Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Marian Todaro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Cheikh A, Tabka H, Tlili Y, Santulli A, Bouzouaya N, Bouhaouala-Zahar B, Benkhalifa R. Xenopus Oocyte's Conductance for Bioactive Compounds Screening and Characterization. Int J Mol Sci 2019; 20:ijms20092083. [PMID: 31035589 PMCID: PMC6539028 DOI: 10.3390/ijms20092083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Astaxanthin (ATX) is a lipophilic compound found in many marine organisms. Studies have shown that ATX has many strong biological properties, including antioxidant, antiviral, anticancer, cardiovascular, anti-inflammatory, neuro-protective and anti-diabetic activities. However, no research has elucidated the effect of ATX on ionic channels. ATX can be extracted from shrimp by-products. Our work aims to characterize ATX cell targets to lend value to marine by-products. Methods: We used the Xenopus oocytes cell model to characterize the pharmacological target of ATX among endogenous Xenopus oocytes’ ionic channels and to analyze the effects of all carotenoid-extract samples prepared from shrimp by-products using a supercritical fluid extraction (SFE) method. Results: ATX inhibits amiloride-sensitive sodium conductance, xINa, in a dose-dependent manner with an IC50 of 0.14 µg, a maximum inhibition of 75% and a Hill coefficient of 0.68. It does not affect the potential of half activation, but significantly changes the kinetics, according to the slope factor values. The marine extract prepared from shrimp waste at 10 µg inhibits xINa in the same way as ATX 0.1 µg does. When ATX was added to the entire extract at 10 µg, inhibition reached that induced with ATX 1 µg. Conclusions: ATX and the shrimp Extract inhibit amiloride-sensitive sodium channels in Xenopus oocytes and the TEVC method makes it possible to measure the ATX inhibitory effect in bioactive SFE-Extract samples.
Collapse
Affiliation(s)
- Amani Cheikh
- Laboratoire Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia.
| | - Hager Tabka
- Laboratoire Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia.
| | - Yassine Tlili
- Laboratoire Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia.
| | - Andrea Santulli
- Laboratorio di Biochimica Marina ed ecotossicologia, Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, 91100 Trapani, Italy.
| | | | - Balkiss Bouhaouala-Zahar
- Laboratoire Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia.
- Faculté de Médecine de Tunis, Université Tunis El Manar, 15 Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia.
| | - Rym Benkhalifa
- Laboratoire Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia.
| |
Collapse
|
31
|
Liu RZ, Wang R, An HM, Liu XG, Li CR, Li P, Yang H. A strategy for screening bioactive components from natural products based on two-dimensional cell membrane chromatography and component-knockout approach. J Chromatogr A 2019; 1601:171-177. [PMID: 31056273 DOI: 10.1016/j.chroma.2019.04.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022]
Abstract
Cell membrane chromatography (CMC) is a bioaffinity chromatographic method used to screen active compounds from natural products. However, since the receptor capacity of CMC column is limited, high content/affinity compounds may cause column overloading and thus lead to ignorance of other positive candidates. For avoiding this effect and comprehensively discovering bioactive components, a strategy based on two-dimensional CMC and component-knockout approach was proposed. As an illustrative case study, red yeast rice (RYR), a rice product with good myocardial protective effect in clinical studies, was selected as the model experimental sample. For discovering its potential cardioprotective compounds, a CMC model with H9c2 rat cardiac myoblasts (H9c2/CMC) with good selectivity, stability and reproducibility was established. By using two-dimensional H9c2/CMC-HPLC coupled with QTOF MS system, three components were firstly screened out. After knocking out high content/affinity compound, another four bioactive compounds were then found. By this two-round screening, column overloading caused by high concentration or infinity compounds was avoided, and trace compounds were enriched. As a result, one pigment and six monacolins from RYR were fished out. The results indicate the proposed strategy might be used to discover active compounds from complex matrix.
Collapse
Affiliation(s)
- Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hai-Ming An
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chao-Ran Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
32
|
Schizas D, Kosmopoulos M, Giannopoulos S, Giannopoulos S, Kokkinidis DG, Karampetsou N, Papanastasiou CA, Rouvelas I, Liakakos T. Meta-analysis of risk factors and complications associated with atrial fibrillation after oesophagectomy. Br J Surg 2019; 106:534-547. [DOI: 10.1002/bjs.11128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Background
Oesophagectomy is associated with high morbidity and mortality rates. New-onset atrial fibrillation (AF) is a frequent complication following oesophagectomy. Several studies have explored whether new-onset AF is associated with adverse events after oesophagectomy.
Methods
This review was performed according to PRISMA guidelines. Eligible studies were identified through a search of PubMed, Scopus and Cochrane CENTRAL databases up to 25 November 2018. A meta-analysis was conducted with the use of random-effects modelling. The I2 statistic was used to assess for heterogeneity.
Results
In total, 53 studies including 9087 patients were eligible for analysis. The overall incidence of postoperative AF was 16·5 per cent. Coronary artery disease and hypertension were associated with AF, whereas diabetes, smoking and chronic obstructive pulmonary disease were not. Patients with AF had a significantly higher risk of overall postoperative adverse events than those without fibrillation (odds ratio (OR) 5·50, 95 per cent c.i. 3·51 to 8·30), including 30-day mortality (OR 2·49, 1·70 to 3·64), anastomotic leak (OR 2·65, 1·53 to 4·59) and pneumonia (OR 3·42, 2·39 to 4·90).
Conclusion
Postoperative AF is frequently observed in patients undergoing oesophagectomy for cancer. It is associated with an increased risk of death and postoperative complications.
Collapse
Affiliation(s)
- D Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - M Kosmopoulos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - S Giannopoulos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - D G Kokkinidis
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - N Karampetsou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - C A Papanastasiou
- Division of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Rouvelas
- Division of Surgery, Department of Clinical Science Intervention and Technology and Department of Upper Abdominal Diseases, Karolinska Institutet, Stockholm, Sweden
| | - T Liakakos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
33
|
Song J, Yang R, Yang J, Zhou L. Mitochondrial Dysfunction-Associated Arrhythmogenic Substrates in Diabetes Mellitus. Front Physiol 2018; 9:1670. [PMID: 30574091 PMCID: PMC6291470 DOI: 10.3389/fphys.2018.01670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that diabetic cardiomyopathy increases the risk of cardiac arrhythmia and sudden cardiac death. While the detailed mechanisms remain incompletely understood, the loss of mitochondrial function, which is often observed in the heart of patients with diabetes, has emerged as a key contributor to the arrhythmogenic substrates. In this mini review, the pathophysiology of mitochondrial dysfunction in diabetes mellitus is explored in detail, followed by descriptions of several mechanisms potentially linking mitochondria to arrhythmogenesis in the context of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiajia Song
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruilin Yang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | - Jing Yang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Wang X, Li G. Irbesartan prevents sodium channel remodeling in a canine model of atrial fibrillation. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318755269. [PMID: 29378480 PMCID: PMC5843850 DOI: 10.1177/1470320318755269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Activation of the renin-angiotensin system (RAS) plays an important role in atrial electrical remodeling (AER). The purpose of the present study was to evaluate the effects of irbesartan on cardiac sodium current (INa) in a canine model of atrial fibrillation. Materials and methods: Eighteen dogs were randomized into sham, pacing or pacing+irbesartan groups (n = 6 in each group). The dogs in the pacing and irbesartan group were paced at 500 bpm for two weeks. Irbesartan (60 mg·kg−1·d−1) was administered orally in the pacing+irbesartan groups. INa was recorded using the whole-cell patch clamp technique from canine atrial myocytes. The expressions of cardiac Na+ channels (Nav1.5) mRNA were semi-quantified by reverse transcription-polymerase chain reaction. Results: Our results showed that INa density and Nav1.5 mRNA expression in the pacing group decreased significantly (p < 0.05 vs. sham). However, rapid atrial pacing had no effects on the half-activation voltage (V1/2act) and half-inactivation voltage (V1/2inact) of INa (p > 0.05 vs. sham). Irbesartan significantly increased INa densities and gene expression and hyperpolarized V1/2act without concomitant changes in V1/2inact. Conclusions: Irbesartan significantly increased INa densities, which contributed to improving intra-atrial conduction and prevented the induction and promotion of AF in atrial pacing dogs.
Collapse
Affiliation(s)
- Xuewen Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| |
Collapse
|
35
|
Tu H, Zhang D, Li YL. Cellular and Molecular Mechanisms Underlying Arterial Baroreceptor Remodeling in Cardiovascular Diseases and Diabetes. Neurosci Bull 2018; 35:98-112. [PMID: 30146675 DOI: 10.1007/s12264-018-0274-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 01/23/2023] Open
Abstract
Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
36
|
Podzolkov МШ, Tarzimanova AI, Gataulin RG. CARDIOPROTECTIVE PROPERTIES OF LISINOPRIL: NEW POSSIBILITIES. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2018. [DOI: 10.20996/1819-6446-2018-14-3-319-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To study the changes in the stiffness of the arterial wall, vasomotor function of the endothelium, and appearance of new cases of atrial fibrillation (AF) in patients with arterial hypertension with long-term treatment with lisinopril.Material and method. 66 hypertensive patients with cardiac sinus rhythm at the age of 48-64 years (mean age 58.4±4.2 years) were included into the study. They were randomized into 2 groups: patients of group 1 (n=35) were prescribed lisinopril or a combination of lisinopril with hydrochlorothiazide over the 5-year follow-up; patients of group 2 (control) did not receive angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. The follow-up duration was from September 2010 until June 2016. It included telephone calls once every 3 months and annual clinical, instrumental and laboratory examination. The new-onset AF was identified by the 24-hour Holter ECG monitoring results and by patient symptom diaries.Results. New-onset AF was registered in 2 patients (6%) in the lisinopril group and in 4 patients (13%) from the control group (p=0.001) over the 5-year follow-up. Lisinopril significantly reduced AF incidence in hypertensive patients. The patients on lisinopril were found to have no significant changes in the left ventricular mass index and left atrial size according to echocardiography done after the 5-year follow-up whereas in the patients of control group both parameters increased significantly. Lisinopril contributed to the maintenance of endothelial vasodilator function and prevented increase in arterial wall stiffness.Conclusion. Long term lisinopril treatment was found to significantly reduce the AF incidence in hypertensive patients over the 5-year follow-up. Lisinopril demonstrated organoprotective properties throughout the cardiovascular disease continuum and can be recommended for primary prevention of arrhythmia in hypertensive patients.
Collapse
|
37
|
Zhou A, Shi G, Kang GJ, Xie A, Liu H, Jiang N, Liu M, Jeong EM, Dudley SC. RNA Binding Protein, HuR, Regulates SCN5A Expression Through Stabilizing MEF2C transcription factor mRNA. J Am Heart Assoc 2018; 7:JAHA.117.007802. [PMID: 29678826 PMCID: PMC6015277 DOI: 10.1161/jaha.117.007802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although transcription is the initial process of gene expression, posttranscriptional gene expression regulation has also played a critical role for fine-tuning gene expression in a fast, precise, and cost-effective manner. Although the regulation of sodium channel α-subunit (SCN5A) mRNA expression has been studied at both transcriptional and pre-mRNA splicing levels, the molecular mechanisms governing SCN5A mRNA expression are far from clear. METHODS AND RESULTS Herein, we show that, as evidenced by ribonucleoprotein immunoprecipitation assay, RNA binding protein Hu antigen R/ELAV like RNA binding protein 1 (HuR/ELAVL1) and myocyte enhancer factor-2C (MEF2C) transcription factor mRNA are associated. HuR positively regulated transcription factor MEF2C mRNA expression by protecting its mRNA from degradation. As demonstrated by both chromatin immunoprecipitation-quantitative polymerase chain reaction assay and an electrophoretic mobility shift assay, MEF2C enhanced SCN5A transcription by binding to a putative MEF2C binding site within SCN5A promoter region. Overexpression of HuR increased the expression of SCN5A mRNA, and this effect was attenuated by the presence of MEF2C small interfering RNA in cardiomyocytes. CONCLUSIONS In conclusion, our results suggested that HuR participates in a combined network at the DNA and RNA levels that regulates SCN5A mRNA expression. HuR upregulates MEF2C mRNA expression by protecting MEF2C mRNA from degradation, and consequently, the elevated MEF2C enhances SCN5A mRNA transcription.
Collapse
Affiliation(s)
- Anyu Zhou
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Guangbin Shi
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - An Xie
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI.,Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Hong Liu
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI.,Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Ning Jiang
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Man Liu
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI.,Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Euy-Myoung Jeong
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Samuel C Dudley
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI .,Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
38
|
Probucol prevents atrial ion channel remodeling in an alloxan-induced diabetes rabbit model. Oncotarget 2018; 7:83850-83858. [PMID: 27863381 PMCID: PMC5356629 DOI: 10.18632/oncotarget.13339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of developing atrial fibrillation (AF), but the molecular mechanisms of diabetes-induced atrial remodeling processes have not been fully characterized. The aim of this study was to examine the mechanisms underlying atrial ion channel remodeling in alloxan-induced diabetes model in rabbits. A total of 40 Japanese rabbits were randomly assigned to a control group (C), alloxan-induced diabetic group (DM), probucol-treated control group (Control-P), and probucol-treated diabetic group (DM-P). Using whole-cell voltage-clamp techniques, ICa,L, INa and action potential durations (APDs) were measured in cardiomyocytes isolated from the left atria in the four groups, respectively. In the DM group, increased Ica,L and decreased INa currents were reflected in prolonged APD90 and APD50 values. These changes were reversed in the DM-P group. In conclusion, probucol cured AF by alleviating the ion channel remodeling of atrial myocytes in the setting of diabetes and the promising therapeutic potential of anti-oxidative compounds in the treatment of AF warrants further study.
Collapse
|
39
|
Abstract
BACKGROUND Downregulated sodium currents in heart failure (HF) have been linked to increased arrhythmic risk. Reduced expression of the messenger RNA (mRNA)-stabilizing protein HuR (also known as ELAVL1) may be responsible for the downregulation of sodium channel gene SCN5A mRNA. OBJECTIVE The purpose of this article was to investigate whether HuR regulates SCN5A mRNA expression and whether manipulation of HuR benefits arrhythmia control in HF. METHODS Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of SCN5A. Optical mapping of the intact heart was adopted to study the effects of HuR on the conduction velocity and action potential upstroke in mice with myocardial infarct and HF after injection of AAV9 viral particles carrying HuR. RESULTS HuR was associated with SCN5A mRNA in cardiomyocytes, and expression of HuR was downregulated in failing hearts. The association of HuR and SCN5A mRNA protected SCN5A mRNA from decay. Injection of AAV9 viral particles carrying HuR increased SCN5A expression in mouse heart tissues after MI. Optical mapping of the intact heart demonstrated that overexpression of HuR improved action potential upstroke and conduction velocity in the infarct border zone, which reduced the risk of reentrant arrhythmia after MI. CONCLUSION Our data indicate that HuR is an important RNA-binding protein in maintaining SCN5A mRNA abundance in cardiomyocytes. Reduced expression of HuR may be at least partially responsible for the downregulation of SCN5A mRNA expression in ischemic HF. Overexpression of HuR may rescue decreased SCN5A expression and reduce arrhythmic risk in HF. Increasing mRNA stability to increase ion channel currents may correct a fundamental defect in HF and represent a new paradigm in antiarrhythmic therapy.
Collapse
|
40
|
Luo L, Ning F, Du Y, Song B, Yang D, Salvage SC, Wang Y, Fraser JA, Zhang S, Ma A, Wang T. Calcium-dependent Nedd4-2 upregulation mediates degradation of the cardiac sodium channel Nav1.5: implications for heart failure. Acta Physiol (Oxf) 2017; 221:44-58. [PMID: 28296171 DOI: 10.1111/apha.12872] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
AIM Reductions in voltage-gated sodium channel (Nav1.5) function/expression provide a slowed-conduction substrate for cardiac arrhythmias. Nedd4-2, which is activated by calcium, post-translationally modulates Nav1.5. We aim to investigate whether elevated intracellular calcium ([Ca2+ ]i ) reduces Nav1.5 through Nedd4-2 and its role in heart failure (HF). METHODS Using a combination of biochemical, electrophysiological, cellular and in vivo methods, we tested the effect and mechanism of calcium on Nedd4-2 and in turn Nav1.5. RESULTS Increased [Ca2+ ]i , following 24-h ionomycin treatment, decreased sodium current (INa ) density and Nav1.5 protein without altering its mRNA in both neonatal rat cardiomyocytes (NRCMs) and HEK 293 cells stably expressing Nav1.5. The calcium chelator BAPTA-AM restored the reduced Nav1.5 and INa in NRCMs pre-treated by ionomycin. Nav1.5 was decreased by Nedd4-2 transfection and further decreased by 6-h ionomycin treatment. These effects were not observed in cells transfected with the catalytically inactive mutant, Nedd4-2 C801S, or with Y1977A-Nav1.5 mutant containing the impaired Nedd4-2 binding motif. Furthermore, elevated [Ca2+ ]i increased Nedd4-2, the interaction between Nedd4-2 and Nav1.5, and Nav1.5 ubiquitination. Nav1.5 protein is decreased, whereas Nedd4-2 is increased in volume-overload HF rat hearts, with increased co-localization of Nav1.5 with ubiquitin or Nedd4-2 as indicated by immunofluorescence staining. BAPTA-AM rescued the reduced Nav1.5 protein, INa and increased Nedd4-2 in hypertrophied NRCMs induced by isoproterenol or angiotensin II. CONCLUSION Calcium-mediated increases in Nedd4-2 downregulate Nav1.5 by ubiquitination. Nav1.5 is downregulated and co-localizes with Nedd4-2 and ubiquitin in failing rat heart. These data suggest a role of Nedd4-2 in Nav1.5 downregulation in HF.
Collapse
Affiliation(s)
- L. Luo
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - F. Ning
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Y. Du
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - B. Song
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - D. Yang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - S. C. Salvage
- Physiological Laboratory; University of Cambridge; Cambridge UK
| | - Y. Wang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - J. A. Fraser
- Physiological Laboratory; University of Cambridge; Cambridge UK
| | - S. Zhang
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - A. Ma
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Key Laboratory of Molecular Cardiology; Xi'an Shaanxi Province China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an China
| | - T. Wang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Key Laboratory of Molecular Cardiology; Xi'an Shaanxi Province China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an China
| |
Collapse
|
41
|
Zhang X, Zhang Z, Zhao Y, Jiang N, Qiu J, Yang Y, Li J, Liang X, Wang X, Tse G, Li G, Liu T. Alogliptin, a Dipeptidyl Peptidase-4 Inhibitor, Alleviates Atrial Remodeling and Improves Mitochondrial Function and Biogenesis in Diabetic Rabbits. J Am Heart Assoc 2017; 6:JAHA.117.005945. [PMID: 28507060 PMCID: PMC5524117 DOI: 10.1161/jaha.117.005945] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background There is increasing evidence implicating atrial mitochondrial dysfunction in the pathogenesis of atrial fibrillation. In this study, we explored whether alogliptin, a dipeptidyl peptidase‐4 inhibitor, can prevent mitochondrial dysfunction and atrial remodeling in a diabetic rabbit model. Methods and Results A total of 90 rabbits were randomized into 3 groups as follows: control group (n=30), alloxan‐induced diabetes mellitus group (n=30), and alogliptin‐treated (12.5 mg/kg per day for 8 weeks) diabetes mellitus group (n=30). Echocardiographic and hemodynamic assessments were performed in vivo. The serum concentrations of glucagon‐like peptide‐1, insulin, and inflammatory and oxidative stress markers were measured. Electrophysiological properties of Langendorff‐perfused rabbit hearts were assessed. Mitochondrial morphology, respiratory function, membrane potential, and reactive oxygen species generation rate were assessed. The protein expression of transforming growth factor β1, nuclear factor κB p65, and mitochondrial biogenesis–related proteins were measured by Western blot analysis. Diabetic rabbits exhibited left ventricular hypertrophy and left atrial dilation without obvious hemodynamic abnormalities, and all of these changes were attenuated by alogliptin. Compared with the control group, higher atrial fibrillation inducibility in the diabetes mellitus group was observed, and markedly reduced by alogliptin. Alogliptin decreased mitochondrial reactive oxygen species production rate, prevented mitochondrial membrane depolarization, and alleviated mitochondrial swelling in diabetic rabbits. It also improved mitochondrial biogenesis by peroxisome proliferator–activated receptor‐γ coactivator 1α/nuclear respiratory factor‐1/mitochondrial transcription factor A signaling regulated by adiponectin/AMP‐activated protein kinase. Conclusions Dipeptidyl peptidase‐4 inhibitors can prevent atrial fibrillation by reversing electrophysiological abnormalities, improving mitochondrial function, and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, SAR, China.,Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, SAR, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
42
|
Zhao HY, Zhang SD, Zhang K, Wang X, Zhao QY, Zhang SJ, Dai ZX, Qian YS, Zhang YJ, Wei HT, Tang YH, Huang CX. Effect of Shensong Yangxin on the Progression of Paroxysmal Atrial Fibrillation is Correlated with Regulation of Autonomic Nerve Activity. Chin Med J (Engl) 2017; 130:171-178. [PMID: 28091409 PMCID: PMC5282674 DOI: 10.4103/0366-6999.197997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Shensong Yangxin (SSYX), a traditional Chinese herbal medicine, has long been used clinically to treat arrhythmias in China. However, the mechanism of SSYX on atrial fibrillation (AF) is unknown. In this study, we tested the hypothesis that the effect of SSYX on the progression of paroxysmal AF is correlated with the regulation of autonomic nerve activity. METHODS Eighteen mongrel dogs were randomly divided into control group (n = 6), pacing group (n = 6), and pacing + SSYX group (n = 6). The control group was implanted with pacemakers without pacing; the pacing group was implanted with pacemakers with long-term intermittent atrial pacing; the pacing + SSYX group underwent long-term intermittent atrial pacing and SSYX oral administration. RESULTS Compared to the pacing group, the parameters of heart rate variability were lower after 8 weeks in the pacing + SSYX group (low-frequency [LF] component: 20.85 ± 3.14 vs. 15.3 ± 1.89 ms 2 , P = 0.004; LF component/high-frequency component: 1.34 ± 0.33 vs. 0.77 ± 0.15, P < 0.001). The atrial effective refractory period (AERP) was shorter and the dispersion of the AERP was higher after 8 weeks in the pacing group, while the changes were suppressed by SSYX intake. The dogs in the pacing group had more episodes and longer durations of AF than that in the pacing + SSYX group. SSYX markedly inhibited the increase in sympathetic nerves and upregulation of tumor necrosis factor-alpha and interleukin-6 expression in the pacing + SSYX group. Furthermore, SSYX suppressed the decrease of acetylcholine and α7 nicotinic acetylcholine receptor protein induced by long-term intermittent atrial pacing. CONCLUSIONS SSYX substantially prevents atrial electrical remodeling and the progression of AF. These effects of SSYX may have association with regulating the imbalance of autonomic nerve activity and the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Shu-Di Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kai Zhang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Shu-Juan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Zi-Xuan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Yong-Sheng Qian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - You-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Hao-Tian Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060; Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| |
Collapse
|
43
|
Tse G, Yan BP, Chan YWF, Tian XY, Huang Y. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis. Front Physiol 2016; 7:313. [PMID: 27536244 PMCID: PMC4971160 DOI: 10.3389/fphys.2016.00313] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. METHOD A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. RESULTS Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. CONCLUSION ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| | - Yin W. F. Chan
- Department of Psychology, School of Biological Sciences, University of CambridgeCambridge, UK
| | - Xiao Yu Tian
- Faculty of Medicine, School of Biomedical Sciences, Chinese University of Hong KongHong Kong, China
| | - Yu Huang
- Faculty of Medicine, School of Biomedical Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
44
|
Wang N, Huo R, Cai B, Lu Y, Ye B, Li X, Li F, Xu H. Activation of Wnt/β-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. Free Radic Biol Med 2016; 96:34-44. [PMID: 27068063 PMCID: PMC4912406 DOI: 10.1016/j.freeradbiomed.2016.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Oxidants and canonical Wnt/β-catenin signaling have been shown to decrease cardiac Na(+) channel activity by suppressing NaV1.5 expression. Our aims are to determine if hydrogen peroxide (H2O2), one oxidant of reactive oxygen species (ROS), activates Wnt/β-catenin signaling and promotes β-catenin nuclear activity, leading to suppression of NaV1.5 expression and if this suppression requires the interaction of β-catenin with its nuclear partner, TCF4 (also called TCF7L2) to decrease SCN5a promoter activity. The results demonstrated that H2O2 increased β-catenin, but not TCF4 nuclear localization determined by immunofluorescence without affecting total β-catenin protein level. Furthermore, H2O2 exerted a dose- and time-dependent suppressive effect on NaV1.5 expression. RT-PCR and/or Western blot analyses revealed that overexpressing active form of β-catenin or stabilizing β-catenin by GSK-3β inhibitors, LiCl and Bio, suppressed NaV1.5 expression in HL-1 cells. In contrast, destabilization of β-catenin by a constitutively active GSK-3β mutant (S9A) upregulated NaV1.5 expression. Whole-cell recording showed that LiCl significantly inhibited Na(+) channel activity in these cells. Using immunoprecipitation (IP), we showed that β-catenin interacted with TCF4 indicating that β-catenin as a co-transfactor, regulates NaV1.5 expression through TCF4. Analyses of the SCN5a promoter sequences among different species by using VISTA tools indicated that SCN5a promoter harbors TCF4 binding sites. Chromatin IP assays demonstrated that both β-catenin and TCF4 were recruited in the SCN5a promoter, and regulated its activity. Luciferase promoter assays exhibited that β-catenin inhibited the SCN5a promoter activity at a dose-dependent manner and this inhibition required TCF4. Small interfering (Si) RNA targeting β-catenin significantly increased SCN5a promoter activity, leading to enhanced NaV1.5 expression. As expected, β-catenin SiRNA prevents H2O2 suppressive effects on both SCN5a promoter activity and NaV1.5 expression. Our findings indicate that H2O2 inhibits NaV1.5 expression by activating the Wnt/β-catenin signaling and β-catenin interacts with TCF4 to transcriptionally suppress cardiac NaV1.5 expression.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Corresponding author at: Haodong Xu, MD, PhD, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., CHS 13-145E Los Angeles, CA 90095-1732 USA. Tel.: 310-206-3582; fax: 310-267-2658.
| | - Rong Huo
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Corresponding author at: Haodong Xu, MD, PhD, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., CHS 13-145E Los Angeles, CA 90095-1732 USA. Tel.: 310-206-3582; fax: 310-267-2658.
| | - Benzhi Cai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Corresponding author at: Haodong Xu, MD, PhD, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., CHS 13-145E Los Angeles, CA 90095-1732 USA. Tel.: 310-206-3582; fax: 310-267-2658.
| | - Yan Lu
- Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Bo Ye
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiang Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Haodong Xu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Corresponding author at: Haodong Xu, MD, PhD, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., CHS 13-145E Los Angeles, CA 90095-1732 USA. Tel.: 310-206-3582; fax: 310-267-2658.
| |
Collapse
|
45
|
Tse G, Lai ETH, Yeo JM, Yan BP. Electrophysiological Mechanisms of Bayés Syndrome: Insights from Clinical and Mouse Studies. Front Physiol 2016; 7:188. [PMID: 27303306 PMCID: PMC4886053 DOI: 10.3389/fphys.2016.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Bayés syndrome is an under-recognized clinical condition characterized by inter-atrial block (IAB). This is defined electrocardiographically as P-wave duration > 120 ms and can be categorized into first, second and third degree IAB. It can be caused by inflammatory conditions such as systemic sclerosis and rheumatoid arthritis, abnormal protein deposition in cardiac amyloidosis, or neoplastic processes invading the inter-atrial conduction system, such as primary cardiac lymphoma. It may arise transiently during volume overload, autonomic dysfunction or electrolyte disturbances from vomiting. In other patients without an obvious cause, the predisposing factors are diabetes mellitus, hypertensive heart disease, and hypercholesterolemia. IAB has a strong association with atrial arrhythmogenesis, left atrial enlargement (LAE), and electro-mechanical discordance, increasing the risk of cerebrovascular accidents as well as myocardial and mesenteric ischemia. The aim of this review article is to synthesize experimental evidence on the pathogenesis of IAB and its underlying molecular mechanisms. Current medical therapies include anti-fibrotic, anti-arrhythmic and anti-coagulation agents, whereas interventional options include atrial resynchronization therapy by single or multisite pacing. Future studies will be needed to elucidate the significance of the link between IAB and atrial tachyarrhythmias in patients with different underlying etiologies and optimize the management options in these populations.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
46
|
Liu M, Yang KC, Dudley SC. Cardiac Sodium Channel Mutations: Why so Many Phenotypes? CURRENT TOPICS IN MEMBRANES 2016; 78:513-59. [PMID: 27586294 DOI: 10.1016/bs.ctm.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- M Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - K-C Yang
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - S C Dudley
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
47
|
Mathieu S, El Khoury N, Rivard K, Gélinas R, Goyette P, Paradis P, Nemer M, Fiset C. Reduction in Na(+) current by angiotensin II is mediated by PKCα in mouse and human-induced pluripotent stem cell-derived cardiomyocytes. Heart Rhythm 2016; 13:1346-54. [PMID: 26921763 DOI: 10.1016/j.hrthm.2016.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ventricular arrhythmias and sudden cardiac deaths are among the leading causes of mortality in patients with heart failure, and the underlying mechanisms remain incompletely understood. Chronic elevation of angiotensin II (ANGII) is known to be one of the main contributors to heart failure. OBJECTIVE We tested whether ANGII can alter ventricular conduction and Na(+) current using transgenic mice with cardiomyocyte-restricted overexpression of ANGII type 1 receptor (AT1R). METHODS We used surface electrocardiograms along with current- and voltage-clamp techniques to characterize the electrophysiological properties of AT1R mice while the underlying regulatory mechanisms were explored using reverse transcription/quantitative polymerase chain reaction, Western blots, and immunofluorescence techniques. RESULTS Electrophysiological data indicated that chronic AT1R activation in ventricular myocytes caused a 60% reduction in Na(+) current density that slowed the maximal velocity of the action potential upstroke, leading to a prolongation of the QRS complex. These changes occur independently of cardiac hypertrophy, suggesting a direct role for ANGII/AT1R in slowing ventricular conduction. Western blots demonstrated a selective increase in sarcolemmal protein kinase Cα (PKCα) in AT1R mice, indicating PKCα activation. Furthermore, immunofluorescence analysis showed reorganization of PKCα expression to sarcolemma and colocalization with NaV1.5 in AT1R myocytes. The involvement of PKCα in regulating Na(+) current was subsequently demonstrated in human-induced pluripotent stem cell-derived cardiomyocytes where ANGII treatment reduced Na(+) current density. Concomitant treatment with αV5-3, a PKCα translocation inhibitor peptide, blocked the ANGII effect. CONCLUSION Overall, this study suggests that in mouse and human cardiomyocytes, PKCα is an important mediator of the ANGII-induced reduction in Na(+) current and may contribute to ventricular arrhythmias.
Collapse
Affiliation(s)
- Sophie Mathieu
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Nabil El Khoury
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Katy Rivard
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Roselle Gélinas
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Philippe Goyette
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Pierre Paradis
- Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Mona Nemer
- Ottawa University, Ottawa, Ontario, Canada
| | - Céline Fiset
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Sovari AA. Cellular and Molecular Mechanisms of Arrhythmia by Oxidative Stress. Cardiol Res Pract 2016; 2016:9656078. [PMID: 26981310 PMCID: PMC4770129 DOI: 10.1155/2016/9656078] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/10/2016] [Indexed: 12/25/2022] Open
Abstract
Current therapies for arrhythmia using ion channel blockade, catheter ablation, or an implantable cardioverter defibrillator have limitations, and it is important to search for new antiarrhythmic therapeutic targets. Both atrial fibrillation and heart failure, a condition with increased arrhythmic risk, are associated with excess amount of reactive oxygen species (ROS). There are several possible ways for ROS to induce arrhythmia. ROS can cause focal activity and reentry. ROS alter multiple cardiac ionic currents. ROS promote cardiac fibrosis and impair gap junction function, resulting in reduced myocyte coupling and facilitation of reentry. In order to design effective antioxidant drugs for treatment of arrhythmia, it is essential to explore the molecular mechanisms by which ROS exert these arrhythmic effects. Activation of Ca(2+)/CaM-dependent kinase II, c-Src tyrosine kinase, protein kinase C, and abnormal splicing of cardiac sodium channels are among the recently discovered molecular mechanisms of ROS-induced arrhythmia.
Collapse
Affiliation(s)
- Ali A. Sovari
- Cardiac Electrophysiology Section, Heart Institute, Cedars Sinai Medical Center, 127 S. San Vicente Boulevard, A3308, Los Angeles, CA 90048, USA
| |
Collapse
|
49
|
Horton RE, Yadid M, McCain ML, Sheehy SP, Pasqualini FS, Park SJ, Cho A, Campbell P, Parker KK. Angiotensin II Induced Cardiac Dysfunction on a Chip. PLoS One 2016; 11:e0146415. [PMID: 26808388 PMCID: PMC4725954 DOI: 10.1371/journal.pone.0146415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/16/2015] [Indexed: 11/29/2022] Open
Abstract
In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.
Collapse
Affiliation(s)
- Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Agriculture and Biological Engineering, James Worth Bagley College of Engineering, College of Agriculture and Life Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Moran Yadid
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Megan L. McCain
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Patrick Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fraser SP, Hemsley F, Djamgoz MBA. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int J Biochem Cell Biol 2015; 71:111-118. [PMID: 26724521 DOI: 10.1016/j.biocel.2015.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Caffeic acid phenethyl ester, derived from natural propolis, has been reported to have anti-cancer properties. Voltage-gated sodium channels are upregulated in many cancers where they promote metastatic cell behaviours, including invasiveness. We found that micromolar concentrations of caffeic acid phenethyl ester blocked voltage-gated sodium channel activity in several invasive cell lines from different cancers, including breast (MDA-MB-231 and MDA-MB-468), colon (SW620) and non-small cell lung cancer (H460). In the MDA-MB-231 cell line, which was adopted as a 'model', long-term (48 h) treatment with 18 μM caffeic acid phenethyl ester reduced the peak current density by 91% and shifted steady-state inactivation to more hyperpolarized potentials and slowed recovery from inactivation. The effects of long-term treatment were also dose-dependent, 1 μM caffeic acid phenethyl ester reducing current density by only 65%. The effects of caffeic acid phenethyl ester on metastatic cell behaviours were tested on the MDA-MB-231 cell line at a working concentration (1 μM) that did not affect proliferative activity. Lateral motility and Matrigel invasion were reduced by up to 14% and 51%, respectively. Co-treatment of caffeic acid phenethyl ester with tetrodotoxin suggested that the voltage-gated sodium channel inhibition played a significant intermediary role in these effects. We conclude, first, that caffeic acid phenethyl ester does possess anti-metastatic properties. Second, the voltage-gated sodium channels, commonly expressed in strongly metastatic cancers, are a novel target for caffeic acid phenethyl ester. Third, more generally, ion channel inhibition can be a significant mode of action of nutraceutical compounds.
Collapse
Affiliation(s)
- Scott P Fraser
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK.
| | - Faye Hemsley
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre (BRC), Cyprus International University, Haspolat, Lefkosa, North Cyprus, Mersin 10, Turkey
| |
Collapse
|