1
|
Sharf Y, Khan MA. Dietary leucine requirement of fingerling Channa punctatus (Bloch) based on growth, feed conversion and leucine retention efficiency, hematological parameters, antioxidant and intestinal enzyme activities. Amino Acids 2023; 55:451-468. [PMID: 36682022 DOI: 10.1007/s00726-023-03240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/09/2023] [Indexed: 01/23/2023]
Abstract
To find out the dietary leucine requirement of fingerling Channa punctatus (5.24 ± 0.07 g), six purified experimental diets (45% CP and 14.73 kJ/g DE) with various leucine concentrations (0.5, 1.0,1.5, 2.0, 2.5 and 3.0% diet) were fed to apparent satiation to triplicate groups for 12 weeks (714/02/a/CPCSEA). Absolute weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, protein and leucine retention efficiency, and RNA/DNA ratio improved up to 2.0% leucine in the diet. Carcass protein and fat increased significantly with increasing leucine levels up to a 2.0% dry diet. Moisture content showed a reverse pattern. Red blood corpuscles hemoglobin and hematocrit increased with incremental levels of leucine up to 2.0% diet. Significant changes were also noted in serum total protein, superoxide dismutase, aspartate aminotransferase, alanine aminotransferase, and lysozyme activity. Serum protein, superoxide dismutase and lysozyme activity were positively correlated with increasing leucine levels up to 2.0% diet, whereas aspartate aminotransferase and alanine aminotransferase showed the opposite trend. Based on the quadratic regression analysis of absolute weight gain, specific growth rate, feed conversion ratio, protein, and leucine retention efficiency, inclusion of 2.0% leucine is recommended for optimum growth of fingerling C. punctatus.
Collapse
Affiliation(s)
- Yusra Sharf
- Fish Nutrition Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Mukhtar A Khan
- Fish Nutrition Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
2
|
Park TJ, Park SY, Lee HJ, Abd El-Aty A, Jeong JH, Jung TW. α-ketoisocaproic acid promotes ER stress through impairment of autophagy, thereby provoking lipid accumulation and insulin resistance in murine preadipocytes. Biochem Biophys Res Commun 2022; 603:109-115. [DOI: 10.1016/j.bbrc.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/03/2023]
|
3
|
Uddin GM, Karwi QG, Pherwani S, Gopal K, Wagg CS, Biswas D, Atnasious M, Wu Y, Wu G, Zhang L, Ho KL, Pulinilkunnil T, Ussher JR, Lopaschuk GD. Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism 2021; 124:154871. [PMID: 34478752 DOI: 10.1016/j.metabol.2021.154871] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUNDS Branched chain amino acid (BCAA) oxidation is impaired in cardiac insulin resistance, leading to the accumulation of BCAAs and the first products of BCAA oxidation, the branched chain ketoacids. However, it is not clear whether it is the BCAAs, BCKAs or both that are mediating cardiac insulin resistance. To determine this, we produced mice with a cardiac-specific deletion of BCAA aminotransferase (BCATm-/-), the first enzyme in the BCAA oxidation pathway that is responsible for converting BCAAs to BCKAs. METHODS Eight-week-old BCATm cardiac specific knockout (BCATm-/-) male mice and their α-MHC (myosin heavy chain) - Cre expressing wild type littermates (WT-Cre+/+) received tamoxifen (50 mg/kg i.p. 6 times over 8 days). At 16-weeks of age, cardiac energy metabolism was assessed in isolated working hearts. RESULTS BCATm-/- mice have decreased cardiac BCAA oxidation rates, increased cardiac BCAAs and a reduction in cardiac BCKAs. Hearts from BCATm-/- mice showed an increase in insulin stimulation of glucose oxidation and an increase in p-AKT. To determine the impact of reversing these events, we perfused isolated working mice hearts with high levels of BCKAs, which completely abolished insulin-stimulated glucose oxidation rates, an effect associated with decreased p-AKT and inactivation of pyruvate dehydrogenase (PDH), the rate-limiting enzyme in glucose oxidation. CONCLUSION This implicates the BCKAs, and not BCAAs, as the actual mediators of cardiac insulin resistance and suggests that lowering cardiac BCKAs can be used as a therapeutic strategy to improve insulin sensitivity in the heart.
Collapse
Affiliation(s)
- Golam M Uddin
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Dipsikha Biswas
- Department of Biochemistry Molecular Biology, Dalhousie University, Canada
| | - Mariam Atnasious
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Yikuan Wu
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Guoqing Wu
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | | | - John R Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
4
|
Yamanashi K, Kinugawa S, Fukushima A, Kakutani N, Takada S, Obata Y, Nakano I, Yokota T, Kitaura Y, Shimomura Y, Anzai T. Branched-chain amino acid supplementation ameliorates angiotensin II-induced skeletal muscle atrophy. Life Sci 2020; 250:117593. [PMID: 32234320 DOI: 10.1016/j.lfs.2020.117593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/30/2023]
Abstract
AIMS Sarcopenia is characterized by muscle mass and strength loss and reduced physical activity. Branched-chain amino acids (BCAAs) were recently described as an activator of protein synthesis via mammalian target of rapamycin (mTOR) signaling for muscle atrophy. In cardiovascular diseases, excessive activation of the renin-angiotensin system may induce an imbalance of protein synthesis and degradation, and this plays a crucial role in muscle atrophy. We investigated the effects of BCAAs on angiotensin II (Ang II)-induced muscle atrophy in mice. MATERIALS AND METHODS We administered Ang II (1000 ng/kg/min) or vehicle to 10-12-week-old male C57BL/6J mice via subcutaneous osmotic minipumps for 4 weeks with or without BCAA supplementation (3% BCAA in tap water). KEY FINDINGS The skeletal muscle weight/tibial length and cross-sectional area were smaller in the Ang II mice than the vehicle mice; these changes were induced by an imbalance of protein synthesis and degradation signaling such as Akt/mTOR and MuRF-1/Atrogin-1. Compared to the Ang II mice, the mTOR signaling was significantly activated and Ang II-induced muscle atrophy was ameliorated in the Ang II + BCAA mice, and this attenuated the reduction of exercise capacity. Notably, the decrease of muscle weight/tibial length in the fast-twitch dominant muscles (e.g., the extensor digitorum longus) was significantly ameliorated compared to that in the slow-twitch dominant muscles (e.g., soleus). Histologically, the effect of BCAA was larger in fast-twitch than slow-twitch fibers, which may be related to the difference in BCAA catabolism. SIGNIFICANCE BCAA supplementation could contribute to the prevention of skeletal muscle atrophy induced by Ang II.
Collapse
Affiliation(s)
- Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan.
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan; Research Fellow of the Japan Society for the Promotion of Science, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan; Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu 0698511, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 4648601, Japan
| | - Yoshiharu Shimomura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 4648601, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| |
Collapse
|
5
|
Webb L, Sadri H, Schuh K, Egert S, Stehle P, Meyer I, Koch C, Dusel G, Sauerwein H. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. J Dairy Sci 2020; 103:2847-2863. [DOI: 10.3168/jds.2019-17147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
|
6
|
Fillmore N, Wagg CS, Zhang L, Fukushima A, Lopaschuk GD. Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart. Am J Physiol Endocrinol Metab 2018; 315:E1046-E1052. [PMID: 30106622 DOI: 10.1152/ajpendo.00097.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent studies have proposed that elevated branched-chain amino acids (BCAAs) may induce insulin resistance (IR) in muscle secondary to increased BCAA oxidation inhibiting glucose oxidation (GO) and fatty acid oxidation (FAO). However, BCAA oxidation rates have not been assessed in muscle IR, and cardiac FAO rates are actually already elevated in obesity-associated IR. We therefore directly examined cardiac BCAA oxidation in mice fed a high-fat diet (HFD) to induce insulin resistance to better understand the role of cardiac BCAA oxidation in cardiac IR. BCAA oxidation, GO, FAO, and glycolysis were measured in isolated working hearts from mice fed either a low-fat diet (LFD) or HFD for 10 wk. Insulin stimulation of cardiac GO and inhibition of FAO were blunted in HFD mice, resulting in a marked increase in FAO contribution to ATP production compared with LFD mice hearts (71.2% vs. 37.1%, respectively). Surprisingly, cardiac BCAA oxidation rate was reduced in HFD compared with LFD mice (33.5 ± 3.4 vs. 56.7 ± 7.1 nmol·min-1·g dry wt-1, respectively, P < 0.05, n = 9/group). In addition, BCAA oxidation contributed ~1% of the ATP production of the heart, and, as a result, alterations in BCAA oxidation could not significantly impact either GO or FAO rates. However, the decrease in BCAA oxidation was accompanied by an increase in BCAA concentration and impaired insulin signaling. These results suggest that cardiac IR is not due to an increase in BCAA oxidation and subsequent inhibition of GO and FAO. Rather, we propose that an inhibition of BCAA oxidation rate contributes to IR by leading to increased BCAA concentration, which negatively impacts insulin signaling.
Collapse
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton , Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton , Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton , Canada
| | - Arata Fukushima
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton , Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton , Canada
| |
Collapse
|
7
|
Gender-Associated Impact of Early Leucine Supplementation on Adult Predisposition to Obesity in Rats. Nutrients 2018; 10:nu10010076. [PMID: 29329236 PMCID: PMC5793304 DOI: 10.3390/nu10010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 01/06/2018] [Indexed: 12/14/2022] Open
Abstract
Early nutrition plays an important role in development and may constitute a relevant contributor to the onset of obesity in adulthood. The aim of this study was to evaluate the long-term impact of maternal leucine (Leu) supplementation during lactation on progeny in rats. A chow diet, supplemented with 2% Leu, was supplied during lactation (21 days) and, from weaning onwards, was replaced by a standard chow diet. Then, at adulthood (6 months of age), this was replaced with hypercaloric diets (either with high-fat (HF) or high-carbohydrate (HC) content), for two months, to induce obesity. Female offspring from Leu-supplemented dams showed higher increases in body weight and in body fat (62%) than their respective controls; whereas males were somehow protected (15% less fat than the corresponding controls). This profile in Leu-females was associated with altered neuronal architecture at the paraventricular nucleus (PVN), involving neuropeptide Y (NPY) fibers and impaired expression of neuropeptides and factors of the mTOR signaling pathway in the hypothalamus. Interestingly, leptin and adiponectin expression in adipose tissue at weaning and at the time before the onset of obesity could be defined as early biomarkers of metabolic disturbance, predisposing towards adult obesity under the appropriate environment.
Collapse
|
8
|
Pinto A, Daly A, Evans S, Almeida MF, Assoun M, Belanger-Quintana A, Bernabei S, Bollhalder S, Cassiman D, Champion H, Chan H, Dalmau J, de Boer F, de Laet C, de Meyer A, Desloovere A, Dianin A, Dixon M, Dokoupil K, Dubois S, Eyskens F, Faria A, Fasan I, Favre E, Feillet F, Fekete A, Gallo G, Gingell C, Gribben J, Kaalund-Hansen K, Horst N, Jankowski C, Janssen-Regelink R, Jones I, Jouault C, Kahrs GE, Kok IL, Kowalik A, Laguerre C, Le Verge S, Lilje R, Maddalon C, Mayr D, Meyer U, Micciche A, Robert M, Rocha JC, Rogozinski H, Rohde C, Ross K, Saruggia I, Schlune A, Singleton K, Sjoqvist E, Stolen LH, Terry A, Timmer C, Tomlinson L, Tooke A, Vande Kerckhove K, van Dam E, van den Hurk T, van der Ploeg L, van Driessche M, van Rijn M, van Teeffelen-Heithoff A, van Wegberg A, Vasconcelos C, Vestergaard H, Vitoria I, Webster D, White FJ, White L, Zweers H, MacDonald A. Dietary practices in isovaleric acidemia: A European survey. Mol Genet Metab Rep 2017; 12:16-22. [PMID: 28275552 PMCID: PMC5328917 DOI: 10.1016/j.ymgmr.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background In Europe, dietary management of isovaleric acidemia (IVA) may vary widely. There is limited collective information about dietetic management. Aim To describe European practice regarding the dietary management of IVA, prior to the availability of the E-IMD IVA guidelines (E-IMD 2014). Methods A cross-sectional questionnaire was sent to all European dietitians who were either members of the Society for the Study of Inborn Errors of Metabolism Dietitians Group (SSIEM-DG) or whom had responded to previous questionnaires on dietetic practice (n = 53). The questionnaire comprised 27 questions about the dietary management of IVA. Results Information on 140 patients with IVA from 39 centres was reported. 133 patients (38 centres) were given a protein restricted diet. Leucine-free amino acid supplements (LFAA) were routinely used to supplement protein intake in 58% of centres. The median total protein intake prescribed achieved the WHO/FAO/UNU [2007] safe levels of protein intake in all age groups. Centres that prescribed LFAA had lower natural protein intakes in most age groups except 1 to 10 y. In contrast, when centres were not using LFAA, the median natural protein intake met WHO/FAO/UNU [2007] safe levels of protein intake in all age groups. Enteral tube feeding was rarely prescribed. Conclusions This survey demonstrates wide differences in dietary practice in the management of IVA across European centres. It provides unique dietary data collectively representing European practices in IVA which can be used as a foundation to compare dietary management changes as a consequence of the first E-IMD IVA guidelines availability.
Collapse
Affiliation(s)
- A Pinto
- Birmingham Children's Hospital, Birmingham, UK
| | - A Daly
- Birmingham Children's Hospital, Birmingham, UK
| | - S Evans
- Birmingham Children's Hospital, Birmingham, UK
| | - M F Almeida
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto-UMIB/ICBAS/UP, Porto, Portugal
| | - M Assoun
- Centre de référence des maladies héréditaires du métabolisme, hôpital Necker enfants Malades, Paris
| | - A Belanger-Quintana
- Unidad de Enfermedades Metabolicas, Servicio de Pediatria, Hospital Ramon y Cajal Madrid, Spain
| | - S Bernabei
- Children's Hospital Bambino Gesù, Division of Metabolism, Rome, Italy
| | | | - D Cassiman
- Metabolic Center, University Hospitals Leuven and KU Leuven, Belgium
| | | | - H Chan
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Dalmau
- Unit of Nutrition and Metabolopathies, Hospital La Fe, Valencia, Spain
| | - F de Boer
- University of Groningen, University Medical Center Groningen, Netherlands
| | - C de Laet
- Hôpital Universitaire des Enfants, Reine Fabiola, Bruxelles, Belgium
| | - A de Meyer
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | | | - A Dianin
- Pediatric Department, University Hospital of Borgo Roma Verona, Italy
| | - M Dixon
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - K Dokoupil
- Dr. von Hauner Children's Hospital, Munich, Germany
| | - S Dubois
- Centre de référence des maladies héréditaires du métabolisme, hôpital Necker enfants Malades, Paris
| | - F Eyskens
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | - A Faria
- Hospital Pediatrico, Centro Hospitalar e Universitário de Coimbra, EPE, Portugal
| | - I Fasan
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital of Padova, Italy
| | - E Favre
- Reference center for Inborn Errors of Metabolism, Department of Pediatrics, Children's University Hospital, Nancy, France
| | - F Feillet
- Reference center for Inborn Errors of Metabolism, Department of Pediatrics, Children's University Hospital, Nancy, France
| | - A Fekete
- Metabolic Centre of Vienna, Austria
| | - G Gallo
- Children's Hospital Bambino Gesù, Division of Metabolism, Rome, Italy
| | | | - J Gribben
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - K Kaalund-Hansen
- Charles Dent Metabolic Unit National Hospital for Neurology and Surgery, London, UK
| | - N Horst
- Emma Children's Hospital, AMC Amsterdam, Netherlands
| | - C Jankowski
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, UK
| | | | - I Jones
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | | | - G E Kahrs
- Haukeland University Hospital, Bergen, Norway
| | - I L Kok
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - A Kowalik
- Institute of Mother & Child, Warsaw, Poland
| | - C Laguerre
- Centre de Compétence de L'Hôpital des Enfants de Toulouse, France
| | - S Le Verge
- Centre de référence des maladies héréditaires du métabolisme, hôpital Necker enfants Malades, Paris
| | - R Lilje
- Oslo University Hospital, Norway
| | - C Maddalon
- University Children's Hospital Zurich, Switzerland
| | - D Mayr
- Ernährungsmedizinische Beratung, Universitätsklinik für Kinder- und Jugendheilkunde, Salzburg, Austria
| | - U Meyer
- Clinic of Paediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - A Micciche
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M Robert
- Hôpital Universitaire des Enfants, Reine Fabiola, Bruxelles, Belgium
| | - J C Rocha
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP, Porto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Portugal; Centre for Health Technology and Services Research (CINTESIS), Portugal
| | - H Rogozinski
- Bradford Teaching Hospital NHS Foundation Trust, UK
| | - C Rohde
- Hospital of Children's & Adolescents, University of Leipzig, Germany
| | - K Ross
- Royal Aberdeen Children's Hospital, Scotland
| | - I Saruggia
- Centre de Reference des Maladies Héréditaires du Métabolisme du Pr. B. Chabrol CHU Timone Enfant, Marseille, France
| | - A Schlune
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | | | - E Sjoqvist
- Children's Hospital, University Hospital, Lund, Sweden
| | | | - A Terry
- Alder Hey Children's Hospital NHS Foundation Trust Liverpool, UK
| | - C Timmer
- Academisch Medisch Centrum, Amsterdam, Netherlands
| | - L Tomlinson
- University Hospitals Birmingham NHS Foundation Trust, UK
| | - A Tooke
- Nottingham University Hospitals, UK
| | - K Vande Kerckhove
- Metabolic Center, University Hospitals Leuven and KU Leuven, Belgium
| | - E van Dam
- University of Groningen, University Medical Center Groningen, Netherlands
| | - T van den Hurk
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - L van der Ploeg
- Maastricht University Medical Centre + (MUMC +), Netherlands
| | | | - M van Rijn
- University of Groningen, University Medical Center Groningen, Netherlands
| | | | - A van Wegberg
- Radboud University Medical Center Nijmegen, The Netherlands
| | - C Vasconcelos
- Centro Hospitalar São João - Unidade de Doenças Metabólicas, Porto, Portugal
| | | | - I Vitoria
- Unit of Nutrition and Metabolopathies, Hospital La Fe, Valencia, Spain
| | - D Webster
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, UK
| | - F J White
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - L White
- Sheffield Children's Hospital, UK
| | - H Zweers
- Radboud University Medical Center Nijmegen, The Netherlands
| | - A MacDonald
- Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
9
|
Crowell KT, Soybel DI, Lang CH. Inability to replete white adipose tissue during recovery phase of sepsis is associated with increased autophagy, apoptosis, and proteasome activity. Am J Physiol Regul Integr Comp Physiol 2017; 312:R388-R399. [PMID: 28100477 DOI: 10.1152/ajpregu.00498.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022]
Abstract
Adipose tissue is an important energy depot and endocrine organ, and the degree of adiposity impacts the host response to infection. However, little is known regarding the mechanisms by which white adipose tissue (WAT) is lost acutely and then restored after the resolution of sepsis. Therefore, the signaling pathways governing protein synthesis, autophagy, apoptosis, and the ubiquitin-proteasome were investigated to identify potential mechanisms mediating the acute (24 h) loss of WAT after cecal ligation and puncture as well as the failure to replenish WAT during recovery (day 10). While whole body fat mass was decreased equally in pair-fed control and septic mice at 5 days after cecal ligation and puncture, fat mass remained 35% lower in septic mice at day 10 During sepsis-recovery, protein synthesis in epididymal WAT was increased compared with control values, and this increase was associated with an elevation in eukaryotic translation initiation factor (eIF)2Bε but no change in mammalian target of rapamycin complex 1 activity (eIF4E-binding protein-1 or S6 kinase 1 phosphorylation). Protein breakdown was increased during sepsis-recovery, as evidenced by the elevation in ubiquitin-proteasome activity. Moreover, indexes of autophagy (light chain 3B-II, autophagy-related protein 5/12, and beclin) were increased during sepsis-recovery and associated with increased AMP-activated kinase-dependent Ser555-phosphorylated Unc-51-like autophagy activating kinase-1. Apoptosis was increased, as suggested by the increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. These changes were associated with increased inflammasome activity (increased NLR family, pyrin domain containing 3; TMS1; and caspase-1 cleavage) and the endoplasmic reticulum stress response (increased eIF2α and activating transcription factor-4) and browning (uncoupling protein-1) in epididymal WAT. Our data suggest that WAT stores remain depleted during recovery from sepsis due to sustained inflammation and elevations in protein and cellular degradation, despite the increase in protein synthesis.
Collapse
Affiliation(s)
- Kristen T Crowell
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania
| | - David I Soybel
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania; and.,Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania
| | - Charles H Lang
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania .,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
10
|
Moghei M, Tavajohi-Fini P, Beatty B, Adegoke OAJ. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner. Am J Physiol Cell Physiol 2016; 311:C518-27. [PMID: 27488662 DOI: 10.1152/ajpcell.00062.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Abstract
Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (-34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Mahshid Moghei
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Pegah Tavajohi-Fini
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Brendan Beatty
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A J Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Crowell KT, Steiner JL, Coleman CS, Lang CH. Decreased Whole-Body Fat Mass Produced by Chronic Alcohol Consumption is Associated with Activation of S6K1-Mediated Protein Synthesis and Increased Autophagy in Epididymal White Adipose Tissue. Alcohol Clin Exp Res 2016; 40:1832-45. [PMID: 27464336 DOI: 10.1111/acer.13159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic alcohol consumption leads to a loss of white adipose tissue (WAT) but the underlying mechanisms for this lipodystrophy are not fully elucidated. This study tested the hypothesis that the reduction in WAT mass in chronic alcohol-fed mice is associated with a decreased protein synthesis specifically related to impaired function of mammalian target of rapamycin (mTOR). METHODS Adult male mice were provided an alcohol-containing liquid diet for 24 weeks or an isonitrogenous isocaloric control diet. In vivo protein synthesis was determined at this time and thereafter epididymal WAT (eWAT) was excised for analysis of signal transduction pathways central to controling protein synthesis and degradation. RESULTS While chronic alcohol feeding decreased whole-body and eWAT mass, this was associated with a discordant increase in protein synthesis in eWAT. This increase was not associated with a change in mTOR, 4E-BP1, Akt, or PRAS40 phosphorylation. Instead, a selective increase in phosphorylation of S6K1 and its downstream substrates, S6 and eIF4B was detected in alcohol-fed mice. Alcohol also increased eEF2K phosphorylation and decreased eEF2 phosphorylation consistent with increased translation elongation. Alcohol increased Atg12-5, LC3B-I and -II, and ULK1 S555 phosphorylation, suggesting increased autophagy, while markers of apoptosis (cleaved caspase-3 and -9, and PARP) were unchanged. Lipolytic enzymes (ATGL and HSL phosphorylation) were increased and lipogenic regulators (PPARγ and C/EBPα) were decreased in eWAT by alcohol. Although alcohol increased TNF-α, IL-6, and IL-1β mRNA, no change in key components of the NLRP3 inflammasome (NLRP3, ACS, and cleaved caspase-1) was detected suggesting alcohol did not increase pyroptosis. Plasma insulin did not differ between groups. CONCLUSIONS These results demonstrate that the alcohol-induced decrease in whole-body fat mass resulted in part from activation of autophagy in eWAT as protein synthesis was increased and mediated by the specific increase in the activity of S6K1.
Collapse
Affiliation(s)
- Kristen T Crowell
- Department of Cellular and Molecular Physiology, Penn State College Medicine, Hershey, Pennsylvania.,Department of Surgery, Penn State College Medicine, Hershey, Pennsylvania
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College Medicine, Hershey, Pennsylvania
| | - Catherine S Coleman
- Department of Cellular and Molecular Physiology, Penn State College Medicine, Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College Medicine, Hershey, Pennsylvania.,Department of Surgery, Penn State College Medicine, Hershey, Pennsylvania
| |
Collapse
|
12
|
Kao M, Columbus DA, Suryawan A, Steinhoff-Wagner J, Hernandez-Garcia A, Nguyen HV, Fiorotto ML, Davis TA. Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E1072-84. [PMID: 27143558 PMCID: PMC4935142 DOI: 10.1152/ajpendo.00520.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) μmol HMB·kg body wt(-1)·day(-1) Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation.
Collapse
Affiliation(s)
- Michelle Kao
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Adriana Hernandez-Garcia
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Boutry C, El-Kadi SW, Suryawan A, Steinhoff-Wagner J, Stoll B, Orellana RA, Nguyen HV, Kimball SR, Fiorotto ML, Davis TA. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E699-E713. [PMID: 26884386 PMCID: PMC4835946 DOI: 10.1152/ajpendo.00479.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
Abstract
Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 μmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Samer W El-Kadi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Renán A Orellana
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
14
|
Yu C, Li Y, Zhang B, Lin M, Li J, Zhang L, Wang T, Gao F, Zhou G. Suppression of mTOR Signaling Pathways in Skeletal Muscle of Finishing Pigs by Increasing the Ratios of Ether Extract and Neutral Detergent Fiber at the Expense of Starch in Iso-energetic Diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1557-64. [PMID: 26878419 DOI: 10.1021/acs.jafc.5b06089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Three iso-energetic and iso-nitrogenous diets were fed to finishing pigs for 28 days to investigate the mammalian target of rapamycin (mTOR) and ubiquitin-proteasome signaling pathways of skeletal muscle by altering compositions of dietary energy sources. Diet A, diet B, and diet C contained 44.1%, 37.6%, and 30.9% starch; 5.9%, 9.5%, and 14.3% ether extract (EE); and 12.6%, 15.4%, and 17.8% neutral detergent fiber (NDF), respectively. An increase of mRNA expression of MuRF1 (1.09 ± 0.10 vs 1.00 ± 0.08) and MAFbx (1.10 ± 0.06 vs 1.00 ± 0.11) and a decrease of concentrations of plasma insulin (8.2 ± 0.8 vs 10.8 ± 1.2) and glucose (5.76 ± 0.12 vs 6.43 ± 0.33) together with mRNA expression of IRS (0.78 ± 0.19 vs 1.01 ± 0.05) and Akt (0.92 ± 0.01 vs 1.00 ± 0.05) were observed in pigs fed diet C compared with diet A. Protein levels of total and phosphorylated mTOR (0.31 ± 0.04 vs 0.48 ± 0.03 and 0.39 ± 0.01 vs 0.56 ± 0.02), 4EBP1 (0.66 ± 0.06 vs 0.90 ± 0.09 and 0.60 ± 0.12 vs 0.84 ± 0.09), and S6K1 (0.66 ± 0.01 vs 0.89 ± 0.01 and 0.48 ± 0.03 vs 0.79 ± 0.02) were decreased; however, total and phosphorylated AMPK (0.96 ± 0.06 vs 0.64 ± 0.04 and 0.97 ± 0.09 vs 0.61 ± 0.09) were increased in pigs fed diet C compared with diet A. In conclusion, diet C suppressed the mTOR pathway and accelerated the ubiquitin-proteasome pathway in skeletal muscle of finishing pigs.
Collapse
Affiliation(s)
- Changning Yu
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Yanjiao Li
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Bolin Zhang
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Meng Lin
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Jiaolong Li
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Lin Zhang
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Tianjiao Wang
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Feng Gao
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| | - Guanghong Zhou
- Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University , No. 1 Weigang Road, Nanjing, 210095 Jiangsu China
| |
Collapse
|
15
|
Holecek M, Siman P, Vodenicarovova M, Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr Metab (Lond) 2016; 13:12. [PMID: 26877757 PMCID: PMC4751732 DOI: 10.1186/s12986-016-0072-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/05/2016] [Indexed: 11/26/2022] Open
Abstract
Background Many people believe in favourable effects of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), especially leucine, on muscle protein balance and consume BCAAs for many years. We determined the effects of the chronic intake of a BCAA- or leucine-enriched diet on protein and amino acid metabolism in fed and postabsorptive states. Methods Rats were fed a standard diet, a diet with a high content of valine, leucine, and isoleucine (HVLID), or a high content of leucine (HLD) for 2 months. Half of the animals in each group were sacrificed in the fed state on the last day, and the other half were sacrificed after overnight fast. Protein synthesis was assessed using the flooding dose method (L-[3,4,5-3H]phenylalanine), proteolysis on the basis of chymotrypsin-like activity (CHTLA) of proteasome and cathepsin B and L activities. Results Chronic intake of HVLID or HLD enhanced plasma levels of urea, alanine and glutamine. HVLID also increased levels of all three BCAA and branched-chain keto acids (BCKA), HLD increased leucine, ketoisocaproate and alanine aminotransferase and decreased valine, ketovaline, isoleucine, ketoisoleucine, and LDL cholesterol. Tissue weight and protein content were lower in extensor digitorum longus muscles in the HLD group and higher in kidneys in the HVLID and HLD groups. Muscle protein synthesis in postprandial state was higher in the HVLID group, and CHTLA was lower in muscles of the HVLID and HLD groups compared to controls. Overnight starvation enhanced alanine aminotransferase activity in muscles, and decreased protein synthesis in gastrocnemius (in HVLID group) and extensor digitorum longus (in HLD group) muscles more than in controls. Effect of HVLID and HLD on CHTLA in muscles in postabsorptive state was insignificant. Conclusions The results failed to demonstrate positive effects of the chronic consumption of a BCAA-enriched diet on protein balance in skeletal muscle and indicate rather negative effects from a leucine-enriched diet. The primary effects of both diets are an activated catabolism of BCAAs, which leads to an enhanced production of BCKA, alanine and glutamine and their utilization in visceral tissues and an impaired protein synthesis in postabsorptive state, particularly in fast-twitch (white) muscles.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove, 500 38 Czech Republic
| | - Pavel Siman
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University Prague, Hradec Kralove, Czech Republic
| | - Melita Vodenicarovova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove, 500 38 Czech Republic
| | - Roman Kandar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| |
Collapse
|
16
|
Madani Z, Sener A, Malaisse WJ, Dalila AY. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet. Mol Med Rep 2015; 12:7017-26. [PMID: 26398482 DOI: 10.3892/mmr.2015.4324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Zohra Madani
- Department of Biology, Faculty of Natural and Life Sciences, University of Oran, Oran 31000, Algeria
| | - Abdullah Sener
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Free University of Brussels, Brussels B‑1070, Belgium
| | - Willy J Malaisse
- Department of Biochemistry, Free University of Brussels, Brussels B‑1070, Belgium
| | - Ait Yahia Dalila
- Department of Biology, Faculty of Natural and Life Sciences, University of Oran, Oran 31000, Algeria
| |
Collapse
|
17
|
Lynch CJ, Kimball SR, Xu Y, Salzberg AC, Kawasawa YI. Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover. Physiol Genomics 2015; 47:569-80. [PMID: 26351290 DOI: 10.1152/physiolgenomics.00055.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023] Open
Abstract
Consumption of a protein-containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, α-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), which interconverts leucine and α-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wild-type mice were compared by next-generation RNA sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1,486/∼39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis [eukaryotic initiation factor (eIF)-2, mammalian target of rapamycin, eIF4, and p70S6K pathways including 40S and 60S ribosomal proteins], protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy, and cell death) were upregulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways was altered in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids, and branched chain amino acids were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wild-type mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania;
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Yuping Xu
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Anna C Salzberg
- The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Yuka Imamura Kawasawa
- The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania; Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania; and Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
18
|
Doelman J, Kim JJM, Carson M, Metcalf JA, Cant JP. Branched-chain amino acid and lysine deficiencies exert different effects on mammary translational regulation. J Dairy Sci 2015; 98:7846-55. [PMID: 26342977 DOI: 10.3168/jds.2015-9819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022]
Abstract
Deficiencies and imbalances of specific group II essential amino acids (EAA) were created in lactating cows by an infusion subtraction protocol to explore effects on milk production and abundance and phosphorylation state of regulators of mRNA translation in the mammary glands. Five lactating cows on a diet of 11.2% crude protein were infused abomasally for 5d with saline, 563 g/d of a complete EAA mix, or EAA mixes without the branched-chain amino acids (BCAA), Leu, or Lys in a 5 × 5 Latin square design. Milk protein yield was stimulated by EAA infusion and returned to saline levels upon subtraction of BCAA, Leu, or Lys. Mammary abundance of phosphorylated S6K1 was measured as an indicator of mammalian target of rapamycin complex 1 (mTORC1) activity and was found not to be affected by the complete EAA mix but was increased by the mixture lacking Lys. Total S6K1 abundances in mammary tissue were elevated by complete and BCAA-lacking infusions. All of the EAA treatments except the one lacking BCAA upregulated mammary eIF2Bε and eIF2α abundances, which is stimulatory to global mRNA translation. Phosphorylation state of eIF2Bε tended to decrease when complete or Lys-lacking EAA mixtures were infused. Phosphorylation state of eIF2α was not affected by treatment. We detected a correlation of 0.62 between phosphorylation state of S6K1 and total eIF2Bε abundance, and a correlation of 0.58 between phosphorylation state of S6K1 and total eIF2α abundance, suggesting that mTORC1 activation may have upregulated eIF2Bε and eIF2α expression. Despite maintenance of mammary eIF2Bε and eIF2α abundances during Leu and Lys deficiencies, milk protein yield declined, suggesting that other factors are responsible for mediating effects of Lys and Leu. A deficiency of all 3 BCAA may impair milk protein yield through deactivation of mTORC1-mediated upregulation of eIF2Bε and eIF2α abundances.
Collapse
Affiliation(s)
- John Doelman
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada.
| | - Julie J M Kim
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | | - John A Metcalf
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada
| | - John P Cant
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| |
Collapse
|
19
|
Doelman J, Curtis R, Carson M, Kim J, Metcalf J, Cant J. Essential amino acid infusions stimulate mammary expression of eukaryotic initiation factor 2Bε but milk protein yield is not increased during an imbalance. J Dairy Sci 2015; 98:4499-508. [DOI: 10.3168/jds.2014-9051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
|
20
|
Reviewing the Effects of L-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis. Nutrients 2015; 7:3914-37. [PMID: 26007339 PMCID: PMC4446786 DOI: 10.3390/nu7053914] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss.
Collapse
|
21
|
Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 2015; 47:1167-82. [PMID: 25721400 DOI: 10.1007/s00726-015-1944-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/14/2015] [Indexed: 12/11/2022]
Abstract
The mitochondrial branched chain aminotransferase-deficient mouse model (BCATm KO), which exhibits elevated plasma and tissue branched chain amino acids (BCAAs), was used to study the effect of BCAAs on mammalian target of rapamycin complex 1 (mTORC1) regulation of organ size. BCATm is the first enzyme in the BCAA catabolic pathway. BCATm KO mouse exhibited hypertrophy of heart, kidneys, and spleen. On the other hand, the mass of the gastrocnemius was reduced relative to body mass. Feeding the mice with a diet supplemented with rapamycin prevented the enlargement of the heart and spleen, suggesting that mTORC1 is the mediator of these effects. Consistently, enlargement of these organs was accompanied by the activation of mTORC1 complex as evidenced by enhanced levels of S6 and 4E-BP1 phosphorylation. HSP20, HSP27 and GAPDH were also increased in the heart but not gastrocnemius, consistent with mTORC1 activation. Liver, however, displayed no weight difference between the KO and the wild-type mice despite the highest activation level of mTORC1 complex. These observations suggest that the anabolic effect of mTORC1 activation at the organ level by BCAAs and inhibition by rapamycin are complex phenomenon and tissue-specific. In addition, it suggests that rapamycin can be used to counter hypertrophy of the organs when activation of mTORC1 is the underlying cause.
Collapse
|
22
|
Unaffected arm muscle hypercatabolism in dysphagic subacute stroke patients: the effects of essential amino acid supplementation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964365. [PMID: 25431770 PMCID: PMC4241696 DOI: 10.1155/2014/964365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 11/17/2022]
Abstract
Alterations in muscle protein turnover of the unaffected side of stroke patients could contribute to physical disability. We investigated whether hypercatabolic activity occurred in unaffected arm muscle and whether supplemented essential amino acids (EAAs) could limit muscle hypercatabolism (MH). Thirty-eight dysphagic subacute stroke subjects (<3 months after acute event) (29 males+9 females; 69.7±11.4 yrs) were enrolled and randomized to receive 8 g/day EAAs (n=19; EAA group) or isocaloric placebo (maltodextrin; n=19, Plac group). Before randomization, all patients had their arterial (A) and venous (V) amino acids measured and muscle (A-V) differences calculated in the unaffected arm. Eight matched and healthy subjects served as controls. When compared to healthy controls, the entire stroke population showed significant muscle release (=negative value A-V) of the amino acid phenylalanine (phenyl-) indicating a prevalence of MH. Moreover, randomized EAA and Plac groups had similar rates of MH. After 38 days from the start of the protocol, the EAA group but not the Plac group had MH converted to balanced protein turnover or anabolic activity. We concluded that muscle protein metabolism of the unaffected arm of dysphagic subacute stroke individuals could be characterized by MH which can be corrected by supplemented EAAs.
Collapse
|
23
|
Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 2014; 289:18793-804. [PMID: 24847056 DOI: 10.1074/jbc.m114.554113] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we show that expression of the cytosolic branched chain aminotransferase (BCATc) is triggered by the T cell receptor (TCR) of CD4(+) T cells. Induction of BCATc correlates with increased Leu transamination, whereas T cells from the BCATc(-/-) mouse exhibit lower Leu transamination and higher intracellular Leu concentrations than the cells from wild type (WT) mice. Induction of BCATc by TCR in WT cells is prevented by the calcineurin-nuclear factor of activated T cells (NFAT) inhibitor, cyclosporin A (CsA), suggesting that NFAT controls BCATc expression. Leu is a known activator of the mammalian target of rapamycin complex 1 (mTORC1). mTOR is emerging as a critical regulator of T cell activation, differentiation, and metabolism. Activated T cells from BCATc(-/-) mice show increased phosphorylation of mTORC1 downstream targets, S6 and 4EBP-1, indicating higher mTORC1 activation than in T cells from WT mice. Furthermore, T cells from BCATc(-/-) mice display higher rates of glycolysis, glycolytic capacity, and glycolytic reserve when compared with activated WT cells. These findings reveal BCATc as a novel regulator of T cell activation and metabolism and highlight the important role of Leu metabolism in T cells.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- From the Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061 and
| | - Chirag H Patel
- the Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Charles H Drake
- the Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Jonathan D Powell
- the Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Susan M Hutson
- From the Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061 and
| |
Collapse
|
24
|
L-leucine supplementation worsens the adiposity of already obese rats by promoting a hypothalamic pattern of gene expression that favors fat accumulation. Nutrients 2014; 6:1364-73. [PMID: 24699194 PMCID: PMC4011039 DOI: 10.3390/nu6041364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 01/03/2023] Open
Abstract
Several studies showed that l-leucine supplementation reduces adiposity when provided before the onset of obesity. We studied rats that were exposed to a high-fat diet (HFD) for 10 weeks before they started to receive l-leucine supplementation. Fat mass was increased in l-leucine-supplemented rats consuming the HFD. Accordingly, l-leucine produced a hypothalamic pattern of gene expression that favors fat accumulation. In conclusion, l-leucine supplementation worsened the adiposity of rats previously exposed to HFD possibly by central mechanisms.
Collapse
|
25
|
Increasing the protein to carbohydrate ratio in yogurts consumed as a snack reduces post-consumption glycemia independent of insulin. Clin Nutr 2014; 33:29-38. [DOI: 10.1016/j.clnu.2013.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/16/2013] [Indexed: 11/21/2022]
|
26
|
Petzke KJ, Freudenberg A, Klaus S. Beyond the role of dietary protein and amino acids in the prevention of diet-induced obesity. Int J Mol Sci 2014; 15:1374-91. [PMID: 24447927 PMCID: PMC3907874 DOI: 10.3390/ijms15011374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/22/2022] Open
Abstract
High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.
Collapse
Affiliation(s)
- Klaus J Petzke
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| | - Anne Freudenberg
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| | - Susanne Klaus
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
27
|
Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus. PLoS One 2013; 8:e84094. [PMID: 24349566 PMCID: PMC3862776 DOI: 10.1371/journal.pone.0084094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.
Collapse
|
28
|
Boutry C, El-Kadi SW, Suryawan A, Wheatley SM, Orellana RA, Kimball SR, Nguyen HV, Davis TA. Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs. Am J Physiol Endocrinol Metab 2013; 305:E620-31. [PMID: 23839523 PMCID: PMC3761169 DOI: 10.1152/ajpendo.00135.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infants unable to maintain oral feeding can be nourished by orogastric tube. We have shown that orogastric continuous feeding restricts muscle protein synthesis compared with intermittent bolus feeding in neonatal pigs. To determine whether leucine infusion can be used to enhance protein synthesis during continuous feeding, neonatal piglets received the same amount of formula enterally by orogastric tube for 25.25 h continuously (CON) with or without LEU or intermittently by bolus every 4 h (BOL). For the CON+LEU group, leucine pulses were administered parenterally (800 μmol·kg(-1)·h(-1)) every 4 h. Insulin and glucose concentrations increased after the BOL meal and were unchanged in groups fed continuously. LEU infusion during CON feeding increased plasma leucine after the leucine pulse and decreased essential amino acids compared with CON feeding. Protein synthesis in longissimus dorsi (LD), gastrocnemius, and soleus muscles, but not liver or heart, were greater in CON+LEU and BOL than in the CON group. BOL feeding increased protein synthesis in the small intestine. Muscle S6K1 and 4E-BP1 phosphorylation and active eIF4E·eIF4G complex formation were higher in CON+LEU and BOL than in CON but AMPKα, eIF2α, and eEF2 phosphorylation were unchanged. LC3-II-to-total LC3 ratio was lower in CON+LEU and BOL than in CON, but there were no differences in atrogin-1 and MuRF-1 abundance and FoxO3 phosphorylation. In conclusion, administration of leucine pulses during continuous orogastric feeding in neonates increases muscle protein synthesis by stimulating translation initiation and may reduce protein degradation via the autophagy-lysosome, but not the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston Texas; and
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zimmerman HA, Olson KC, Chen G, Lynch CJ. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Mol Genet Metab 2013; 109:345-53. [PMID: 23800641 PMCID: PMC3955948 DOI: 10.1016/j.ymgme.2013.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
Abstract
Liver transplantation appears to be quite beneficial for treatment of maple syrup urine disease (MSUD, an inherited disorder of branched chain amino acid metabolism); however, there is a limited availability of donor livers worldwide and the first year costs of liver transplants are quite high. Recent studies have suggested that intact adipose tissue, already widely used in reconstructive surgery, may have an underappreciated high capacity for branched chain amino acid (BCAA) metabolism. Here we examined the potential for adipose tissue transplant to lower circulating BCAAs in two models of defective BCAA metabolism, BCATm and PP2Cm [branched chain keto acid dehydrogenase complex (BCKDC) phosphatase] knockout (KO) mice. After 1-2g fat transplant, BCATm and PP2Cm KO mice gained or maintained body weight 3weeks after surgery and consumed similar or more food/BCAAs the week before phlebotomy. Transplant of fat into the abdominal cavity led to a sterile inflammatory response and nonviable transplanted tissue. However when 1-2g of fat was transplanted subcutaneously into the back, either as small (0.1-0.3g) or finely minced pieces introduced with an 18-ga. needle, plasma BCAAs decreased compared to Sham operated mice. In two studies on BCATm KO mice and one study on PP2Cm KO mice, fat transplant led to 52-81% reductions in plasma BCAAs compared to baseline plasma BCAA concentrations of untreated WT type siblings. In PP2Cm KO mice, individual BCAAs in plasma were also significantly reduced by fat transplant, as were the alloisoleucine/Phe ratios. Therefore, subcutaneous fat transplantation may have merit as an adjunct to dietary treatment of MSUD. Additional studies are needed to further refine this approach.
Collapse
Affiliation(s)
- Heather A. Zimmerman
- Department of Comparative Medicine, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Kristine C. Olson
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Gang Chen
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- The Macromolecular Core Facility, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Christopher J. Lynch
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- Correspondence: Christopher J. Lynch, Ph.D., Dept. of Cellular & Molecular Physiology, Penn State College of Medicine. 500 University Drive, MC-H166, Hershey, PA 17033, USA FAX: +1 717 531 7667,
| |
Collapse
|
30
|
Leucine and protein metabolism in obese Zucker rats. PLoS One 2013; 8:e59443. [PMID: 23527196 PMCID: PMC3603883 DOI: 10.1371/journal.pone.0059443] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/14/2013] [Indexed: 12/15/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein turnover along with impaired BCKDC activity. Elevated BCAAs/BCKAs may contribute to observed elevations in protein synthesis and BCAA oxidation.
Collapse
|
31
|
Dose and latency effects of leucine supplementation in modulating glucose homeostasis: opposite effects in healthy and glucocorticoid-induced insulin-resistance states. Nutrients 2012; 4:1851-67. [PMID: 23363994 PMCID: PMC3546611 DOI: 10.3390/nu4121851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/01/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022] Open
Abstract
Dexamethasone (DEXA) is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus) on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage) versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e.g., reduced insulin levels) only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.
Collapse
|
32
|
Adechian S, Balage M, Remond D, Migné C, Quignard-Boulangé A, Marset-Baglieri A, Rousset S, Boirie Y, Gaudichon C, Dardevet D, Mosoni L. Protein feeding pattern, casein feeding, or milk-soluble protein feeding did not change the evolution of body composition during a short-term weight loss program. Am J Physiol Endocrinol Metab 2012; 303:E973-82. [PMID: 22895782 DOI: 10.1152/ajpendo.00285.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.
Collapse
Affiliation(s)
- Solange Adechian
- Unité de Nutrition Humaine, Unité Mixte de Recherche 1019, Institut National de la Recherche Agronomique, Clermont Université, Université d’Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maki T, Yamamoto D, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr Res 2012; 32:676-83. [PMID: 23084640 DOI: 10.1016/j.nutres.2012.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
Atrogin-1 and MuRF1, muscle-specific ubiquitin ligases, and autophagy play a role in protein degradation in muscles. We hypothesized that branched-chain amino acids (BCAAs) may decrease atrogin-1, MuRF1, and autophagy, and may have a protective effect on disuse muscle atrophy. To test this hypothesis, we selected hindlimb suspension (HS)-induced muscle atrophy as a model of disuse muscle atrophy because it is an established model to investigate the effects of decreased muscle activity. Sprague-Dawley male rats were assigned to 4 groups: control, HS (14 days), oral BCAA administration (600 mg/[kg day], 22.9% L-isoleucine, 45.8% L-leucine, and 27.6% L-valine), and HS and BCAA administration. After 14 days of the treatment, muscle weights and protein concentrations, cross-sectional area (CSA) of the muscle fibers, atrogin-1 and MuRF1 proteins, and microtubule-associated protein 1 light chain 3 II/I (ratio of LC3 II/I) were measured. Hindlimb suspension significantly reduced soleus muscle weight and CSA of the muscle fibers. Branched-chain amino acid administration partly but significantly reversed the HS-induced decrease in CSA. Hindlimb suspension increased atrogin-1 and MuRF1 proteins, which play a pivotal role in various muscle atrophies. Branched-chain amino acid attenuated the increase in atrogin-1 and MuRF1 in soleus muscles. Hindlimb suspension significantly increased the ratio of LC3 II/I, an indicator of autophagy, whereas BCAA did not attenuate the increase in the ratio of LC3 II/I. These results indicate the possibility that BCAA inhibits HS-induced muscle atrophy, at least in part, via the inhibition of the ubiquitin-proteasome pathway. Oral BCAA administration appears to have the potential to prevent disuse muscle atrophy.
Collapse
Affiliation(s)
- Taiki Maki
- Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.
Collapse
|
35
|
Zeanandin G, Balage M, Schneider SM, Dupont J, Hébuterne X, Mothe-Satney I, Dardevet D. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. AGE (DORDRECHT, NETHERLANDS) 2012; 34:371-87. [PMID: 21472380 PMCID: PMC3312629 DOI: 10.1007/s11357-011-9246-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/24/2011] [Indexed: 05/15/2023]
Abstract
Leucine acts as a signal nutrient in promoting protein synthesis in skeletal muscle and adipose tissue via mTOR pathway activation, and may be of interest in age-related sarcopenia. However, hyper-activation of mTOR/S6K1 has been suggested to inhibit the first steps of insulin signaling and finally promote insulin resistance. The impact of long-term dietary leucine supplementation on insulin signaling and sensitivity was investigated in old rats (18 months old) fed a 15% protein diet supplemented (LEU group) or not (C group) with 4.5% leucine for 6 months. The resulting effects on muscle and fat were examined. mTOR/S6K1 signaling pathway was not significantly altered in muscle from old rats subjected to long-term dietary leucine excess, whereas it was increased in adipose tissue. Overall glucose tolerance was not changed but insulin-stimulated glucose transport was improved in muscles from leucine-supplemented rats related to improvement in Akt expression and phosphorylation in response to food intake. No change in skeletal muscle mass was observed, whereas perirenal adipose tissue mass accumulated (+45%) in leucine-supplemented rats. A prolonged leucine supplementation in old rats differently modulates mTOR/S6K pathways in muscle and adipose tissue. It does not increase muscle mass but seems to promote hypertrophy and hyperplasia of adipose tissue that did not result in insulin resistance.
Collapse
Affiliation(s)
- Gilbert Zeanandin
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Michèle Balage
- INRA, Centre Clermont-Ferrand—Theix, UMR 1019, Unité Nutrition Humaine, 63122 Saint Genès Champanelle, France
- Univ Clermont 1, UFR Médecine, UMR 1019 Unité Nutrition Humaine, 63001 Clermont-Ferrand, France
| | - Stéphane M. Schneider
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Xavier Hébuterne
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
| | - Isabelle Mothe-Satney
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Dominique Dardevet
- INRA, Centre Clermont-Ferrand—Theix, UMR 1019, Unité Nutrition Humaine, 63122 Saint Genès Champanelle, France
- Univ Clermont 1, UFR Médecine, UMR 1019 Unité Nutrition Humaine, 63001 Clermont-Ferrand, France
| |
Collapse
|
36
|
Magne H, Savary-Auzeloux I, Migné C, Peyron MA, Combaret L, Rémond D, Dardevet D. Contrarily to whey and high protein diets, dietary free leucine supplementation cannot reverse the lack of recovery of muscle mass after prolonged immobilization during ageing. J Physiol 2012; 590:2035-49. [PMID: 22351629 DOI: 10.1113/jphysiol.2011.226266] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During ageing, immobilization periods increase and are partially responsible of sarcopaenia by inducing a muscle atrophy which is hardly recovered from. Immobilization-induced atrophy is due to an increase of muscle apoptotic and proteolytic processes and decreased protein synthesis. Moreover, previous data suggested that the lack of muscle mass recovery might be due to a defect in protein synthesis response during rehabilitation. This study was conducted to explore protein synthesis during reloading and leucine supplementation effect as a nutritional strategy for muscle recovery. Old rats (22–24 months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10–40 days (R10–R40). They were fed a casein (±leucine) diet during the recovery. Immobilized gastrocnemius muscles atrophied by 20%, and did not recover even at R40. Amount of polyubiquitinated conjugates and chymotrypsin- and trypsin-like activities of the 26S proteasome increased. These changes paralleled an ‘anabolic resistance' of the protein synthesis at the postprandial state (decrease of protein synthesis, P-S6 and P-4E-BP1). During the recovery, proteasome activities remained elevated until R10 before complete normalization and protein synthesis was slightly increased. With free leucine supplementation during recovery, if proteasome activities were normalized earlier and protein synthesis was higher during the whole recovery, it nevertheless failed in muscle mass gain. This discrepancy could be due to a ‘desynchronization' between the leucine signal and the availability of amino acids coming from casein digestion. Thus, when supplemented with leucine-rich proteins (i.e. whey) and high protein diets, animals partially recovered the muscle mass loss.
Collapse
Affiliation(s)
- Hugues Magne
- Clermont Université, Université d’Auvergne,Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Webhofer C, Gormanns P, Tolstikov V, Zieglgänsberger W, Sillaber I, Holsboer F, Turck CW. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation. Transl Psychiatry 2011; 1:e58. [PMID: 22832350 PMCID: PMC3309495 DOI: 10.1038/tp.2011.56] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 11/09/2022] Open
Abstract
Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery.
Collapse
Affiliation(s)
- C Webhofer
- Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - P Gormanns
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | - W Zieglgänsberger
- Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - I Sillaber
- Max Planck Institute of Psychiatry, Munich, Germany
- Phenoquest AG, Martinsried, Germany
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
| | - C W Turck
- Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
38
|
Vianna D, Resende GFT, Torres-Leal FL, Pantaleão LC, Donato J, Tirapegui J. Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition 2011; 28:182-9. [PMID: 21872432 DOI: 10.1016/j.nut.2011.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/16/2011] [Accepted: 04/10/2011] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. METHODS Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. RESULTS Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. CONCLUSION The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging.
Collapse
Affiliation(s)
- Daiana Vianna
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y, Ito H, Suetsugu A, Nagaki M, Moriwaki H, Saito K, Seishima M. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem 2011; 286:34800-8. [PMID: 21841000 PMCID: PMC3186417 DOI: 10.1074/jbc.m111.235473] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease is one of the most common liver diseases. l-Tryptophan and its metabolite serotonin are involved in hepatic lipid metabolism and inflammation. However, it is unclear whether l-tryptophan promotes hepatic steatosis. To explore this issue, we examined the role of l-tryptophan in mouse hepatic steatosis by using a high fat and high fructose diet (HFHFD) model. l-Tryptophan treatment in combination with an HFHFD exacerbated hepatic steatosis, expression of HNE-modified proteins, hydroxyproline content, and serum alanine aminotransaminase levels, whereas l-tryptophan alone did not result in these effects. We also found that l-tryptophan treatment increases serum serotonin levels. The introduction of adenoviral aromatic amino acid decarboxylase, which stimulates the serotonin synthesis from l-tryptophan, aggravated hepatic steatosis induced by the HFHFD. The fatty acid-induced accumulation of lipid was further increased by serotonin treatment in cultured hepatocytes. These results suggest that l-tryptophan increases the sensitivity to hepatic steatosis through serotonin production. Furthermore, l-tryptophan treatment, adenoviral AADC introduction, and serotonin treatment induced phosphorylation of the mammalian target of rapamycin (mTOR), and a potent mTOR inhibitor rapamycin attenuated hepatocyte lipid accumulation induced by fatty acid with serotonin. These results suggest the importance of mTOR activation for the exacerbation of hepatic steatosis. In conclusion, l-tryptophan exacerbates hepatic steatosis induced by HFHFD through serotonin-mediated activation of mTOR.
Collapse
Affiliation(s)
- Yosuke Osawa
- Departments of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Giordano E, Hillary RA, Vary TC, Pegg AE, Sumner AD, Caldarera CM, Zhang XQ, Song J, Wang J, Cheung JY, Shantz LM. Overexpression of ornithine decarboxylase decreases ventricular systolic function during induction of cardiac hypertrophy. Amino Acids 2011; 42:507-518. [PMID: 21814794 DOI: 10.1007/s00726-011-1023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 01/04/2023]
Abstract
Ornithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls. The current work studies the cooperation between the cardiac polyamines and L-arginine (L-Arg) availability in MHC-ODC mice. Although ISO-induced hypertrophy is well-compensated, MHC-ODC mice administered L-Arg along with ISO showed a rapid onset of systolic dysfunction and died within 48 h. Myocytes isolated from MHC-ODC mice administered L-Arg/ISO exhibited reduced contractility and altered calcium transients, suggesting an alteration in [Ca(2+)] homeostasis, and abbreviated action potential duration, which may contribute to arrhythmogenesis. The already elevated levels of spermidine and spermine were not further altered in MHC-ODC hearts by L-Arg/ISO treatment, suggesting alternative L-Arg utilization pathways lead to dysregulation of intracellular calcium. MHC-ODC mice administered an arginase inhibitor (Nor-NOHA) along with ISO died almost as rapidly as L-Arg/ISO-treated mice, while the iNOS inhibitor S-methyl-isothiourea (SMT) was strongly protective against L-Arg/ISO. These results point to the induction of arginase as a protective response to β-adrenergic stimulation in the setting of high polyamines. Further, NO generated by exogenously supplied L-Arg may contribute to the lethal consequences of L-Arg/ISO treatment. Since considerable variations in human cardiac polyamine and L-Arg content are likely, it is possible that alterations in these factors may influence myocyte contractility.
Collapse
Affiliation(s)
- Emanuele Giordano
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA.,Dipartimento di Biochimica "G. Moruzzi", Università di Bologna, 40126 Bologna, Italia.,National Institute for Cardiovascular Research (INRC), Bologna, 40126 Bologna, Italia
| | - Rebecca A Hillary
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Thomas C Vary
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Anthony E Pegg
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Andrew D Sumner
- Department of Cardiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Claudio M Caldarera
- National Institute for Cardiovascular Research (INRC), Bologna, 40126 Bologna, Italia
| | - Xue-Qian Zhang
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jianliang Song
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - JuFang Wang
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph Y Cheung
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lisa M Shantz
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| |
Collapse
|
41
|
Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 2011; 41:1185-93. [DOI: 10.1007/s00726-011-0983-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/15/2011] [Indexed: 12/14/2022]
|
42
|
Tardito S, Chiu M, Franchi-Gazzola R, Dall'Asta V, Comi P, Bussolati O. The non-proteinogenic amino acids L-methionine sulfoximine and DL-phosphinothricin activate mTOR. Amino Acids 2011; 42:2507-12. [PMID: 21769496 DOI: 10.1007/s00726-011-0981-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/20/2011] [Indexed: 01/01/2023]
Abstract
L-Methionine sulfoximine (MSO) and DL-Phosphinothricin (PPT), two non-proteinogenic amino acids known as inhibitors of Glutamine Synthetase, cause a dose-dependent increase in the phosphorylation of the mTOR substrate S6 kinase 1. The effect is particularly evident in glutamine-depleted cells, where mTOR activity is very low, but is detectable for PPT also in the presence of glutamine. The stimulation of mTOR activity by either MSO or PPT is strongly synergized by essential amino acids. Thus, the non-proteinogenic amino acids MSO and PPT are mTOR activators.
Collapse
Affiliation(s)
- Saverio Tardito
- Unit of General and Clinical Pathology, Department of Experimental Medicine, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011; 3:574-603. [PMID: 22254112 PMCID: PMC3257691 DOI: 10.3390/nu3050574] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023] Open
Abstract
Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
44
|
Suryawan A, Orellana RA, Fiorotto ML, Davis TA. Triennial Growth Symposium: leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs. J Anim Sci 2010; 89:2004-16. [PMID: 20935141 DOI: 10.2527/jas.2010-3400] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The postprandial increases in AA and insulin independently stimulate protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to AA. We have shown that the postprandial increase in leucine, but not isoleucine or valine, acutely stimulates muscle protein synthesis in piglets. Leucine increases muscle protein synthesis by modulating the activation of mammalian target of rapamycin (mTOR) complex 1 and signaling components of translation initiation. Leucine increases the phosphorylation of mTOR, 70-kDa ribosomal protein S6 kinase-1, eukaryotic initiation factor (eIF) 4E-binding protein-1, and eIF4G; decreases eIF2α phosphorylation; and increases the association of eIF4E with eIF4G. However, leucine does not affect the upstream activators of mTOR, that is, protein kinase B, adenosine monophosphate-activated protein kinase, and tuberous sclerosis complex 1/2, or the activation of translation elongation regulator, eukaryotic elongation factor 2. The action of leucine can be replicated by α-ketoisocaproate but not by norleucine. Interference by rapamycin with the raptor-mTOR interaction blocks leucine-induced muscle protein synthesis. The acute leucine-induced stimulation of muscle protein synthesis is not maintained for prolonged periods, despite continued activation of mTOR signaling, because circulating AA fall as they are utilized for protein synthesis. However, when circulating AA concentrations are maintained, the leucine-induced stimulation of muscle protein synthesis is maintained for prolonged periods. Thus, leucine acts as a nutrient signal to stimulate translation initiation, but whether this translates into a prolonged increase in protein synthesis depends on the sustained availability of all AA.
Collapse
Affiliation(s)
- A Suryawan
- USDA/ARS, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
45
|
Kimball SR, Jefferson LS. Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem 2010; 285:29027-32. [PMID: 20576612 PMCID: PMC2937931 DOI: 10.1074/jbc.r110.137208] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Control of translation initiation in a tissue of an intact mammalian organism is a highly complex process requiring the continuous integration of multiple positive and negative stimuli. For a tissue such as skeletal muscle, which has the capacity to undergo dramatic changes in size and protein content, translation initiation contributes importantly to the regulation of global rates of protein synthesis and is controlled by numerous stimuli, including those arising from nutrients and hormones in the circulating blood, as well as from contraction-induced signaling within the tissue. Many of the pathways conveying signals generated by these stimuli converge on mTORC1, a serine-threonine protein kinase that has been termed the nutrient and energy sensor of the cell and that plays a prominent role in the regulation of cell growth. Control of translation initiation by mTORC1 is mediated through phosphorylation of downstream targets that modulate the binding of mRNA to the 43 S preinitiation complex. Control of translation initiation is also mediated through modulation of binding of initiator methionyl-tRNA to the 40 S ribosomal subunit. Together, modulation of these two regulatory steps in translation initiation accounts in large part for changes in protein synthesis in skeletal muscle produced by the integration of inputs from hormones, nutrients, and exercise.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
46
|
Escobar J, Frank JW, Suryawan A, Nguyen HV, Van Horn CG, Hutson SM, Davis TA. Leucine and alpha-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 2010; 140:1418-24. [PMID: 20534881 PMCID: PMC2903301 DOI: 10.3945/jn.110.123042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The branched-chain amino acid, leucine, acts as a nutrient signal to stimulate protein synthesis in skeletal muscle of young pigs. However, the chemical structure responsible for this effect has not been identified. We have shown that the other branched-chain amino acids, isoleucine and valine, are not able to stimulate protein synthesis when raised in plasma to levels within the postprandial range. In this study, we evaluated the effect of leucine, alpha-ketoisocaproic acid (KIC), and norleucine infusion (0 or 400 micromol kg(-1) h(-1) for 60 min) on protein synthesis and activation of translation initiation factors in piglets. Infusion of leucine, KIC, and norleucine raised plasma levels of each compound compared with controls. KIC also increased (P < 0.01) and norleucine reduced (P < 0.02) plasma levels of leucine compared with controls. Administration of leucine and KIC resulted in greater (P < 0.006) phosphorylation of eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) and eIF4G, lower (P < 0.04) abundance of the inactive 4E-BP1.eIF4E complex, and greater (P < 0.05) active eIF4G.eIF4E complex formation in skeletal muscle compared with controls. Protein synthesis in skeletal muscle was greater (P < 0.02) in leucine- and KIC-infused pigs than in those in the control group. Norleucine infusion did not affect muscle protein synthesis or translation initiation factor activation. In liver, neither protein synthesis nor activation of translation initiation factors was affected by treatment. These results suggest that the ability of leucine to act as a nutrient signal to stimulate skeletal muscle protein synthesis is specific for leucine and/or its metabolite, KIC.
Collapse
Affiliation(s)
- Jeffery Escobar
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jason W. Frank
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Agus Suryawan
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Hanh V. Nguyen
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cynthia G. Van Horn
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Susan M. Hutson
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Teresa A. Davis
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Guo K, Yu YH, Hou J, Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab (Lond) 2010; 7:57. [PMID: 20624298 PMCID: PMC2914079 DOI: 10.1186/1743-7075-7-57] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/12/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Leucine may function as a signaling molecule to regulate metabolism. We have previously shown that dietary leucine supplementation significantly improves glucose and energy metabolism in diet-induced obese mice, suggesting that leucine supplementation could potentially be a useful adjuvant therapy for obesity and type 2 diabetes. Since the underlying cause for obesity and type 2 diabetes is multifold, we further investigated metabolic effects of leucine supplementation in obese/diabetes mouse models with different etiologies, and explored the underlying molecular mechanisms. METHODS Leucine supplementation was carried out in NONcNZO10/LtJ (RCS10) - a polygenic model predisposed to beta cell failure and type 2 diabetes, and in B6.Cg-Ay/J (Ay) - a monogenic model for impaired central melanocortin receptor signaling, obesity, and severe insulin resistance. Mice in the treatment group received the drinking water containing 1.5% leucine for up to 8 months; control mice received the tap water. Body weight, body composition, blood HbA1c levels, and plasma glucose and insulin levels were monitored throughout and/or at the end of the study period. Indirect calorimetry, skeletal muscle gene expression, and adipose tissue inflammation were also assessed in Ay mice. RESULTS Leucine supplementation significantly reduced HbA1c levels throughout the study period in both RCS10 and Ay mice. However, the treatment had no long term effect on body weight or adiposity. The improvement in glycemic control was associated with an increased insulin response to food challenge in RCS10 mice and decreased plasma insulin levels in Ay mice. In leucine-treated Ay mice, energy expenditure was increased by ~10% (p < 0.05) in both dark and light cycles while the physical activity level was unchanged. The expression levels of UCP3, CrAT, PPAR-alpha, and NRF-1, which are known to regulate mitochondrial oxidative function, were significantly increased in the soleus muscle of leucine-treated Ay mice whereas the expression levels of MCP-1 and TNF-alpha and macrophage infiltration in adipose tissue were significantly reduced. CONCLUSIONS Chronic leucine supplementation significantly improves glycemic control in multiple mouse models of obesity and diabetes with distinct etiologies. The metabolic benefits of leucine supplementation are likely mediated via multiple mechanisms in different tissues, but are not necessarily dependent of weight reduction.
Collapse
Affiliation(s)
- Kaiying Guo
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, New York, USA.
| | | | | | | |
Collapse
|
48
|
Zanchi NE, Gerlinger-Romero F, Guimarães-Ferreira L, de Siqueira Filho MA, Felitti V, Lira FS, Seelaender M, Lancha AH. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids 2010; 40:1015-25. [DOI: 10.1007/s00726-010-0678-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/25/2010] [Indexed: 11/28/2022]
|
49
|
López N, Sánchez J, Picó C, Palou A, Serra F. Dietary l-leucine supplementation of lactating rats results in a tendency to increase lean/fat ratio associated to lower orexigenic neuropeptide expression in hypothalamus. Peptides 2010; 31:1361-7. [PMID: 20347902 DOI: 10.1016/j.peptides.2010.03.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 11/28/2022]
Abstract
The aim of this study was to assess the effects of dietary leucine supplementation in lactating dams, particularly on energy homeostasis through signaling mechanisms in the central nervous system. Dams were fed ad libitum with standard diet during pregnancy (control dams) or supplemented with 2% leucine (leucine-supplemented dams) from delivery onwards. Food intake, body weight and composition were periodically recorded. Hypothalamus was collected at the end of lactation, and the expression of neuropeptide Y (NPY), agouti-related protein (AgRP) pro-opiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), insulin receptor (InsR), ghrelin receptor (GSHR), melanocortin receptor (MCR4), leptin receptor (Ob-Rb) and suppressor of cytokine signaling 3 (SOCS3) were analyzed. Dietary leucine supplementation to lactating rats increased plasma leucine by 56%, modulated body composition and contributed to a tendency of higher ratio of lean/fat mass content of dams during lactation, without affecting food intake, thermogenesis capacity or body or tissue/organs weights. No differences in body weight of offspring from control and leucine-supplemented dams were found. The expression of orexigenic peptides (NPY and AgRP) decreased in leucine-dams, whereas the expression of anorexigenic peptides (POMC and CART), the hypothalamic receptors of insulin, ghrelin, melanocortin and leptin and SOCS3 did not change by leucine supplementation. In conclusion, increased leucine intake during lactation may contribute to a healthier profile of body composition in dams, without compromising the growth and development of the progeny by a mechanism associated with lower expression of orexigenic neuropeptides in hypothalamus.
Collapse
Affiliation(s)
- N López
- Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
50
|
Wilson FA, Suryawan A, Orellana RA, Gazzaneo MC, Nguyen HV, Davis TA. Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino Acids 2010; 40:157-65. [PMID: 20505962 DOI: 10.1007/s00726-010-0629-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
Abstract
Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal pigs but this response cannot be maintained unless the leucine-induced fall in amino acids is prevented. To determine whether leucine can stimulate protein synthesis in muscles of different fiber types and in visceral tissues of the neonate in the long-term if baseline amino acid concentrations are maintained, overnight fasted neonatal pigs were infused for 24 h with saline, leucine (400 micromol kg(-1) h(-1)), or leucine with replacement amino acids to prevent the leucine-induced hypoaminoacidemia. Changes in the fractional rate of protein synthesis and activation of mTOR, as determined by eukaryotic initiation factor 4E binding protein (4E-BP1) and S6 kinase 1 (S6K1) phosphorylation, in the gastrocnemius and masseter muscles, heart, liver, jejunum, kidney, and pancreas were measured. Leucine increased mTOR activation in the gastrocnemius and masseter muscles, liver, and pancreas, in both the absence and presence of amino acid replacement. However, protein synthesis in these tissues was increased only when amino acids were infused to maintain baseline levels. There were no changes in mTOR signaling or protein synthesis in the other tissues we examined. Thus, long-term infusion of leucine stimulates mTOR signaling in skeletal muscle and some visceral tissues but the leucine-induced stimulation of protein synthesis in these tissues requires sustained amino acid availability.
Collapse
Affiliation(s)
- Fiona A Wilson
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agriculture Research Service Children's Nutrition Research Center, Houston, TX, 77030, USA
| | | | | | | | | | | |
Collapse
|