1
|
Giunti S, Blanco MG, De Rosa MJ, Rayes D. The ketone body β-hydroxybutyrate ameliorates neurodevelopmental deficits in the GABAergic system of daf-18/PTEN Caenorhabditis elegans mutants. eLife 2024; 13:RP94520. [PMID: 39422188 PMCID: PMC11488850 DOI: 10.7554/elife.94520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including autism spectrum disorders (ASDs). Mutations in Phosphatase and Tensin Homolog (PTEN), the main negative regulator of the phosphatidylinositol 3-phosphate kinase/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the Caenorhabditis elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18/PTEN mutations impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. We found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO activity, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides valuable insights into the link between PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying the potential therapeutic effects of KGDs.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| |
Collapse
|
2
|
Budd JM, Notaro NM, MacLeod B, Mutch DM, Dyck DJ. A ketogenic diet, regardless of fish oil content, does not affect glucose homeostasis or muscle insulin response in male rats. Am J Physiol Endocrinol Metab 2024; 327:E449-E458. [PMID: 39140973 DOI: 10.1152/ajpendo.00236.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.NEW & NOTEWORTHY Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.
Collapse
Affiliation(s)
- Joshua M Budd
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Notaro
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Blair MacLeod
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Khouri H, Roberge M, Ussher JR, Aguer C. Acetoacetate and d- and l-β-hydroxybutyrate have distinct effects on basal and insulin-stimulated glucose uptake in L6 skeletal muscle cells. Am J Physiol Cell Physiol 2024; 326:C1710-C1720. [PMID: 38708524 DOI: 10.1152/ajpcell.00718.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Ketone bodies (acetoacetate and β-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that β-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two β-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-β-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with β-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-β-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.
Collapse
Affiliation(s)
- Hannah Khouri
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
| | - Mathilde Roberge
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University - Campus Outaouais, Gatineau, Quebec, Canada
| |
Collapse
|
4
|
Carneiro L, Bernasconi R, Bernini A, Repond C, Pellerin L. Elevation of hypothalamic ketone bodies induces a decrease in energy expenditures and an increase risk of metabolic disorder. Mol Metab 2024; 83:101926. [PMID: 38553002 PMCID: PMC10999683 DOI: 10.1016/j.molmet.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Ketone bodies (such as β-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Rocco Bernasconi
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Adriano Bernini
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; University and CHU of Poitiers, INSERM U1313, Poitiers, France.
| |
Collapse
|
5
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Zhang L, Lin H, Yang X, Shi J, Sheng X, Wang L, Li T, Quan H, Zhai X, Li W. Effects of dapagliflozin monotherapy and combined aerobic exercise on skeletal muscle mitochondrial quality control and insulin resistance in type 2 diabetes mellitus rats. Biomed Pharmacother 2023; 169:115852. [PMID: 37944441 DOI: 10.1016/j.biopha.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent, chronic metabolic disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and aerobic exercise (AE) have shown promise in mitigating insulin resistance (IR) and T2DM. This study investigated the effects of dapagliflozin (Dapa) monotherapy and combined AE on mitochondrial quality control (MQC) in skeletal muscle and IR in T2DM rats. T2DM rats, induced by a high-fat diet/streptozotocin model, were randomly assigned to the following groups: T2DM+vehicle group (DMV), T2DM rats treated with Dapa (DMDa, 10 mg/kg/d), T2DM rats subjected to combined Dapa treatment and AE (DMDa+AE), and the standard control group (CON). Blood and skeletal muscle samples were collected after 6 weeks of intragastric administration and treadmill exercise. The results showed that DMDa monotherapy could reduce the accumulation of white adipose tissue and skeletal muscle lipid droplets and improve HOMA-IR. While the combined AE led to further reductions in subcutaneous white adipose tissue and fasting glucose levels, it did not confer additional benefits in terms of HOMA-IR. Furthermore, Dapa monotherapy enhanced skeletal muscle mitochondrial biogenesis (PGC-1α, NRF1, TFAM, and COX IV), mitochondrial dynamics (OPA1, DRP1, and MFN2), and mitophagy (PGAM5 and PINK1) related protein levels. Nevertheless, the combination of Dapa with AE treatment did not yield an additive effect. In conclusion, this study highlights the potential of SGLT2 inhibitors, specifically Dapa, in ameliorating IR and maintaining MQC in skeletal muscle in rats with T2DM. However, combined AE did not produce an additive effect, indicating the need for further research.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hengjun Lin
- Department of Colorectal anal Surgery, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xudong Yang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jipeng Shi
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China
| | - Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China
| | - Lifeng Wang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Ting Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Helong Quan
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China.
| | - Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China.
| | - Wei Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
7
|
Flockhart M, Tischer D, Nilsson LC, Blackwood SJ, Ekblom B, Katz A, Apró W, Larsen FJ. Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes. Acta Physiol (Oxf) 2023; 238:e13972. [PMID: 37017615 DOI: 10.1111/apha.13972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
AIM The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.
Collapse
Affiliation(s)
- Mikael Flockhart
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Dominik Tischer
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Lina C Nilsson
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Sarah J Blackwood
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
8
|
Tice AL, Laudato JA, Fadool DA, Gordon BS, Steiner JL. Acute binge alcohol alters whole body metabolism and the time-dependent expression of skeletal muscle-specific metabolic markers for multiple days in mice. Am J Physiol Endocrinol Metab 2022; 323:E215-E230. [PMID: 35793479 PMCID: PMC9423784 DOI: 10.1152/ajpendo.00026.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
Alcohol is a myotoxin that disrupts skeletal muscle function and metabolism, but specific metabolic alternations following a binge and the time course of recovery remain undefined. The purpose of this work was to determine the metabolic response to binge alcohol, the role of corticosterone in this response, and whether nutrient availability mediates the response. Female mice received saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle. Whole body metabolism was assessed for 5 days. In a separate cohort, gastrocnemius muscles and liver were collected every 4 h for 48 h following intoxication. Metyrapone was administered before alcohol and gastrocnemius was collected 4 h later. Lastly, alcohol-treated mice were compared with fed or fasted controls. Alcohol disrupted whole body metabolism for multiple days. Alcohol altered the expression of genes and proteins in the gastrocnemius related to the promotion of fat oxidation (Pparα, Pparδ/β, AMPK, and Cd36) and protein breakdown (Murf1, Klf15, Bcat2). Changes to select metabolic genes in the liver did not parallel those in skeletal muscle. An alcohol-induced increase in circulating corticosterone was responsible for the initial change in protein breakdown factors but not the induction of FoxO1, Cebpβ, Pparα, and FoxO3. Alcohol led to a similar, but distinct metabolic response when compared with fasting animals. Overall, these data show that an acute alcohol binge rapidly disrupts macronutrient metabolism including sustained disruption to the metabolic gene signature of skeletal muscle in a manner similar to fasting at some time points.NEW & NOTEWORTHY Herein, we demonstrate that acute alcohol intoxication immediately alters whole body metabolism coinciding with rapid changes in the skeletal muscle macronutrient gene signature for at least 48 h postbinge and that this response diverges from hepatic effects and those of a fasted animal.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Joseph A Laudato
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
9
|
Dearlove DJ, Soto Mota A, Hauton D, Pinnick K, Evans R, Miller J, Fischer R, Mccullagh JS, Hodson L, Clarke K, Cox PJ. The effects of endogenously- and exogenously-induced hyperketonemia on exercise performance and adaptation. Physiol Rep 2022; 10:e15309. [PMID: 35614576 PMCID: PMC9133544 DOI: 10.14814/phy2.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 05/22/2023] Open
Abstract
Elevating blood ketones may enhance exercise capacity and modulate adaptations to exercise training; however, these effects may depend on whether hyperketonemia is induced endogenously through dietary carbohydrate restriction, or exogenously through ketone supplementation. To determine this, we compared the effects of endogenously- and exogenously-induced hyperketonemia on exercise capacity and adaptation. Trained endurance athletes undertook 6 days of laboratory based cycling ("race") whilst following either: a carbohydrate-rich control diet (n = 7; CHO); a carbohydrate-rich diet + ketone drink four-times daily (n = 7; Ex Ket); or a ketogenic diet (n = 7; End Ket). Exercise capacity was measured daily, and adaptations in exercise metabolism, exercise physiology and postprandial insulin sensitivity (via an oral glucose tolerance test) were measured before and after dietary interventions. Urinary β-hydroxybutyrate increased by ⁓150-fold and ⁓650-fold versus CHO with Ex Ket and End Ket, respectively. Exercise capacity was increased versus pre-intervention by ~5% on race day 1 with CHO (p < 0.05), by 6%-8% on days 1, 4, and 6 (all p < 0.05) with Ex Ket and decreased by 48%-57% on all race days (all p > 0.05) with End Ket. There was an ⁓3-fold increase in fat oxidation from pre- to post-intervention (p < 0.05) with End Ket and increased perceived exercise exertion (p < 0.05). No changes in exercise substrate metabolism occurred with Ex Ket, but participants had blunted postprandial insulin sensitivity (p < 0.05). Dietary carbohydrate restriction and ketone supplementation both induce hyperketonemia; however, these are distinct physiological conditions with contrasting effects on exercise capacity and adaptation to exercise training.
Collapse
Affiliation(s)
- David J. Dearlove
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Adrian Soto Mota
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - David Hauton
- Chemistry Research LaboratoryUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Katherine Pinnick
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital and Oxford NIHRBiomedical Research CentreUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Rhys Evans
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Jack Miller
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordHeadingtonOxfordUnited Kingdom
- The PET Research Centre and The MR Research CentreAarhus UniversityHeadingtonOxfordUnited Kingdom
- Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery InstituteUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital and Oxford NIHRBiomedical Research CentreUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordHeadingtonOxfordUnited Kingdom
| | - Pete J. Cox
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordHeadingtonOxfordUnited Kingdom
| |
Collapse
|
10
|
Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med 2022; 52:25-67. [PMID: 36214993 PMCID: PMC9734240 DOI: 10.1007/s40279-022-01756-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
The ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βHB) have pleiotropic effects in multiple organs including brain, heart, and skeletal muscle by serving as an alternative substrate for energy provision, and by modulating inflammation, oxidative stress, catabolic processes, and gene expression. Of particular relevance to athletes are the metabolic actions of ketone bodies to alter substrate utilisation through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. There has been long-standing interest in the development of ingestible forms of ketone bodies that has recently resulted in the commercial availability of exogenous ketone supplements (EKS). These supplements in the form of ketone salts and ketone esters, in addition to ketogenic compounds such as 1,3-butanediol and medium chain triglycerides, facilitate an acute transient increase in circulating AcAc and βHB concentrations, which has been termed 'acute nutritional ketosis' or 'intermittent exogenous ketosis'. Some studies have suggested beneficial effects of EKS to endurance performance, recovery, and overreaching, although many studies have failed to observe benefits of acute nutritional ketosis on performance or recovery. The present review explores the rationale and historical development of EKS, the mechanistic basis for their proposed effects, both positive and negative, and evidence to date for their effects on exercise performance and recovery outcomes before concluding with a discussion of methodological considerations and future directions in this field.
Collapse
|
11
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
12
|
Valenzuela PL, Castillo-García A, Lucia A, Naclerio F. Effects of Combining a Ketogenic Diet with Resistance Training on Body Composition, Strength, and Mechanical Power in Trained Individuals: A Narrative Review. Nutrients 2021; 13:nu13093083. [PMID: 34578961 PMCID: PMC8469041 DOI: 10.3390/nu13093083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Ketogenic diets (KD) have gained popularity in recent years among strength-trained individuals. The present review summarizes current evidence—with a particular focus on randomized controlled trials—on the effects of KD on body composition and muscle performance (strength and power output) in strength-trained individuals. Although long-term studies (>12 weeks) are lacking, growing evidence supports the effectiveness of an ad libitum and energy-balanced KD for reducing total body and fat mass, at least in the short term. However, no or negligible benefits on body composition have been observed when comparing hypocaloric KD with conventional diets resulting in the same energy deficit. Moreover, some studies suggest that KD might impair resistance training-induced muscle hypertrophy, sometimes with concomitant decrements in muscle performance, at least when expressed in absolute units and not relative to total body mass (e.g., one-repetition maximum). KD might therefore be a beneficial strategy for promoting fat loss, although it might not be a recommendable option to gain muscle mass and strength/power. More research is needed on the adoption of strategies for avoiding the potentially detrimental effect of KD on muscle mass and strength/power (e.g., increasing protein intake, reintroduction of carbohydrates before competition). In summary, evidence is as yet scarce to support a major beneficial effect of KD on body composition or performance in strength-trained individuals. Furthermore, the long-term effectiveness and safety of this type of diet remains to be determined.
Collapse
Affiliation(s)
- Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (P.L.V.); (A.L.)
| | | | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (P.L.V.); (A.L.)
- Physical Activity and Health Research Group (‘PaHerg’), Research Institute of the Hospital 12 de Octubre (‘imas12’), 28041 Madrid, Spain
| | - Fernando Naclerio
- Institute for Lifecourse Development, School of Human Sciences, Centre for Exercise Activity and Rehabilitation, University of Greenwich, London SE10 9LS, UK
- Correspondence: or
| |
Collapse
|
13
|
Gibb AA, Murray EK, Eaton DM, Huynh AT, Tomar D, Garbincius JF, Kolmetzky DW, Berretta RM, Wallner M, Houser SR, Elrod JW. Molecular Signature of HFpEF: Systems Biology in a Cardiac-Centric Large Animal Model. JACC Basic Transl Sci 2021; 6:650-672. [PMID: 34466752 PMCID: PMC8385567 DOI: 10.1016/j.jacbts.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 12/30/2022]
Abstract
In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.
Collapse
Key Words
- BCAA, branched chain amino acids
- DAG, diacylglycerol
- ECM, extracellular matrix
- EF, ejection fraction
- ESI, electrospray ionization
- ETC, electron transport chain
- FC, fold change
- FDR, false discovery rate
- GO, gene ontology
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LA, left atrial
- LAV, left atrial volume
- LV, left ventricle/ventricular
- MS/MS, tandem mass spectrometry
- RCR, respiratory control ratio
- RI, retention index
- UPLC, ultraperformance liquid chromatography
- heart failure
- m/z, mass to charge ratio
- metabolomics
- mitochondria
- preserved ejection fraction
- systems biology
- transcriptomics
Collapse
Affiliation(s)
- Andrew A. Gibb
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Emma K. Murray
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Deborah M. Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Anh T. Huynh
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Joanne F. Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Devin W. Kolmetzky
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Remus M. Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Steven R. Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - John W. Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Address for correspondence: Dr John W. Elrod, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, MERB 949, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
14
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
15
|
Posa DK, Baba SP. Intracellular pH Regulation of Skeletal Muscle in the Milieu of Insulin Signaling. Nutrients 2020; 12:nu12102910. [PMID: 32977552 PMCID: PMC7598285 DOI: 10.3390/nu12102910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D), along with obesity, is one of the leading health problems in the world which causes other systemic diseases, such as cardiovascular diseases and kidney failure. Impairments in glycemic control and insulin resistance plays a pivotal role in the development of diabetes and its complications. Since skeletal muscle constitutes a significant tissue mass of the body, insulin resistance within the muscle is considered to initiate the onset of diet-induced metabolic syndrome. Insulin resistance is associated with impaired glucose uptake, resulting from defective post-receptor insulin responses, decreased glucose transport, impaired glucose phosphorylation, oxidation and glycogen synthesis in the muscle. Although defects in the insulin signaling pathway have been widely studied, the effects of cellular mechanisms activated during metabolic syndrome that cross-talk with insulin responses are not fully elucidated. Numerous reports suggest that pathways such as inflammation, lipid peroxidation products, acidosis and autophagy could cross-talk with insulin-signaling pathway and contribute to diminished insulin responses. Here, we review and discuss the literature about the defects in glycolytic pathway, shift in glucose utilization toward anaerobic glycolysis and change in intracellular pH [pH]i within the skeletal muscle and their contribution towards insulin resistance. We will discuss whether the derangements in pathways, which maintain [pH]i within the skeletal muscle, such as transporters (monocarboxylate transporters 1 and 4) and depletion of intracellular buffers, such as histidyl dipeptides, could lead to decrease in [pH]i and the onset of insulin resistance. Further we will discuss, whether the changes in [pH]i within the skeletal muscle of patients with T2D, could enhance the formation of protein aggregates and activate autophagy. Understanding the mechanisms by which changes in the glycolytic pathway and [pH]i within the muscle, contribute to insulin resistance might help explain the onset of obesity-linked metabolic syndrome. Finally, we will conclude whether correcting the pathways which maintain [pH]i within the skeletal muscle could, in turn, be effective to maintain or restore insulin responses during metabolic syndrome.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
16
|
Poff AM, Koutnik AP, Egan B. Nutritional Ketosis with Ketogenic Diets or Exogenous Ketones: Features, Convergence, and Divergence. Curr Sports Med Rep 2020; 19:251-259. [DOI: 10.1249/jsr.0000000000000732] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Abstract
Ketogenic diet (KD) is a nutritional regimen characterized by a high-fat and an adequate protein content and a very low carbohydrate level (less than 20 g per day or 5% of total daily energy intake). The insufficient level of carbohydrates forces the body to primarily use fat instead of sugar as a fuel source. Due to its characteristic, KD has often been used to treat metabolic disorders, obesity, cardiovascular disease, and type 2 diabetes. Skeletal muscle constitutes 40% of total body mass and is one of the major sites of glucose disposal. KD is a well-defined approach to induce weight loss, with its role in muscle adaptation and muscle hypertrophy less understood. Considering this lack of knowledge, the aim of this review was to examine the scientific evidence about the effects of KD on muscle hypertrophy. We first described the mechanisms of muscle hypertrophy per se, and secondly, we discussed the characteristics and the metabolic function of KD. Ultimately, we provided the potential mechanism that could explain the influence of KD on skeletal muscle hypertrophy.
Collapse
|
18
|
Takahashi Y, Terada S, Banjo M, Seike K, Nakano S, Hatta H. Effects of β-hydroxybutyrate treatment on glycogen repletion and its related signaling cascades in epitrochlearis muscle during 120 min of postexercise recovery. Appl Physiol Nutr Metab 2019; 44:1311-1319. [PMID: 31051088 DOI: 10.1139/apnm-2018-0860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of β-hydroxybutyrate (β-HB), the most abundant type of ketone body in mammals, on postexercise glycogen recovery in skeletal muscle by using an in vitro experimental model. Male ICR mice swam for 60 min and then their epitrochlearis muscles were removed and incubated with either physiological levels of glucose (8 mmol/L) and insulin (60 μU/mL) or glucose and insulin plus 1, 2, or 4 mmol/L of sodium β-HB. Four millimoles per liter β-HB had a significant positive effect on glycogen repletion in epitrochlearis muscle at 120 min after exercise (p < 0.01), while 2 mmol/L of β-HB showed a tendency to increase the glycogen level (p < 0.09), and 1 mmol/L of β-HB had no significant effect. We further investigated the effect of 4 mmol/L β-HB treatment on the signaling cascade related to glycogen repletion in the epitrochlearis muscles throughout a 120-min recovery period. After incubating the muscles in 4 mmol/L of β-HB for 15 min postexercise, the Akt substrate of 160 kDa Thr642 (p < 0.05) and Akt Thr308 (p < 0.05) phosphorylations were significantly increased compared with the control treatment. At the same time point, 5'-AMP-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylations were significantly lower (p < 0.05) in the epitrochlearis muscle incubated with 4 mmol/L of β-HB than in the control muscle. Our results demonstrate that postexercise 4 mmol/L β-HB administration enhanced glycogen repletion in epitrochlearis muscle. Four millimoles per liter β-HB treatment was associated with alternation of the phosphorylated status of several proteins involved in glucose uptake and metabolic/energy homeostasis at the early stage of postexercise.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shin Terada
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mai Banjo
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kohei Seike
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Suguru Nakano
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
19
|
Geisler CE, Ghimire S, Bogan RL, Renquist BJ. Role of ketone signaling in the hepatic response to fasting. Am J Physiol Gastrointest Liver Physiol 2019; 316:G623-G631. [PMID: 30767679 PMCID: PMC6580236 DOI: 10.1152/ajpgi.00415.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ketosis is a metabolic adaptation to fasting, nonalcoholic fatty liver disease (NAFLD), and prolonged exercise. β-OH butyrate acts as a transcriptional regulator and at G protein-coupled receptors to modulate cellular signaling pathways in a hormone-like manner. While physiological ketosis is often adaptive, chronic hyperketonemia may contribute to the metabolic dysfunction of NAFLD. To understand how β-OH butyrate signaling affects hepatic metabolism, we compared the hepatic fasting response in control and 3-hydroxy-3-methylglutaryl-CoA synthase II (HMGCS2) knockdown mice that are unable to elevate β-OH butyrate production. To establish that rescue of ketone metabolic/endocrine signaling would restore the normal hepatic fasting response, we gave intraperitoneal injections of β-OH butyrate (5.7 mmol/kg) to HMGCS2 knockdown and control mice every 2 h for the final 9 h of a 16-h fast. In hypoketonemic, HMGCS2 knockdown mice, fasting more robustly increased mRNA expression of uncoupling protein 2 (UCP2), a protein critical for supporting fatty acid oxidation and ketogenesis. In turn, exogenous β-OH butyrate administration to HMGCS2 knockdown mice decreased fasting UCP2 mRNA expression to that observed in control mice. Also supporting feedback at the transcriptional level, β-OH butyrate lowered the fasting-induced expression of HMGCS2 mRNA in control mice. β-OH butyrate also regulates the glycemic response to fasting. The fast-induced fall in serum glucose was absent in HMGCS2 knockdown mice but was restored by β-OH butyrate administration. These data propose that endogenous β-OH butyrate signaling transcriptionally regulates hepatic fatty acid oxidation and ketogenesis, while modulating glucose tolerance. NEW & NOTEWORTHY Ketogenesis regulates whole body glucose metabolism and β-OH butyrate produced by the liver feeds back to inhibit hepatic β-oxidation and ketogenesis during fasting.
Collapse
Affiliation(s)
- Caroline E. Geisler
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, Arizona
| | - Susma Ghimire
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, Arizona
| | - Randy L. Bogan
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, Arizona
| | - Benjamin J. Renquist
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
20
|
Tsuruoka K, Kurahara T, Kanamaru H, Takahashi H, Gotoh T. Effects of feeding condensed barley distillers soluble on growth rate, ruminal fermentation, plasma metabolites, and myofiber properties of the longissimus thoracis muscle in Japanese Black calves. Anim Sci J 2019; 90:637-648. [PMID: 30854727 DOI: 10.1111/asj.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
This study evaluated the effects of condensed barley distillers soluble (CBDS) on growth rate, rumen fermentation, plasma metabolite, and myofiber properties, and gene expression related to metabolism in the skeletal muscles of Japanese Black calves, compared with soybean meal and corn. Twenty-four calves were divided into four groups: fed 5% CBDS based on the hay dry matter weight (low CBDS) and fed soybean meal and corn at the same nutrition level (control); and fed 15% CBDS based on the hay dry matter weight (high CBDS) and fed soybean meal and corn at the same nutrition level (high soy). The daily gain was larger in the low (p = 0.08) and high (p < 0.05) CBDS groups compared with the control group. In the CBDS-fed groups, plasma β-hydroxybutyric acid concentrations were significantly higher at 6 months of age (p < 0.05), the percentage of type I myofibers was significantly lower and their diameters were significantly larger at 9 months of age (p < 0.05), and carnitine palmitoyltransferase 1b mRNA expression was significantly lower (p < 0.05) and citrate synthase mRNA expression tended to be lower (low; p = 0.06, high; p = 0.05) compared with control group. Thus, feeding CBDS promotes growth and leads to animals with more glycolytic and less oxidative muscle metabolism.
Collapse
Affiliation(s)
- Katsuhiko Tsuruoka
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Takami Kurahara
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Hidenobu Kanamaru
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | | | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Oita, Japan
| |
Collapse
|
21
|
Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci Rep 2019; 9:742. [PMID: 30679586 PMCID: PMC6346118 DOI: 10.1038/s41598-018-36941-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Butyrate and R-β-hydroxybutyrate are two related short chain fatty acids naturally found in mammals. Butyrate, produced by enteric butyric bacteria, is present at millimolar concentrations in the gastrointestinal tract and at lower levels in blood; R-β-hydroxybutyrate, the main ketone body, produced by the liver during fasting can reach millimolar concentrations in the circulation. Both molecules have been shown to be histone deacetylase (HDAC) inhibitors, and their administration has been associated to an improved metabolic profile and better cellular oxidative status, with butyrate inducing PGC1α and fatty acid oxidation and R-β-hydroxybutyrate upregulating oxidative stress resistance factors FOXO3A and MT2 in mouse kidney. Because of the chemical and functional similarity between the two molecules, we compared here their impact on multiple cell types, evaluating i) histone acetylation and hydroxybutyrylation levels by immunoblotting, ii) transcriptional regulation of metabolic and inflammatory genes by quantitative PCR and iii) cytokine secretion profiles using proteome profiling array analysis. We confirm that butyrate is a strong HDAC inhibitor, a characteristic we could not identify in R-β-hydroxybutyrate in vivo nor in vitro. Butyrate had an extensive impact on gene transcription in rat myotubes, upregulating PGC1α, CPT1b, mitochondrial sirtuins (SIRT3-5), and the mitochondrial anti-oxidative genes SOD2 and catalase. In endothelial cells, butyrate suppressed gene expression and LPS-induced secretion of several pro-inflammatory genes, while R-β-hydroxybutyrate acted as a slightly pro-inflammatory molecule. Our observations indicate that butyrate induces transcriptional changes to a higher extent than R-β-hydroxybutyrate in rat myotubes and endothelial cells, in keep with its HDAC inhibitory activity. Also, in contrast with previous reports, R-β-hydroxybutyrate, while inducing histone β-hydroxybutyrylation, did not display a readily detectable HDAC inhibitor activity and exerted a slight pro-inflammatory action on endothelial cells.
Collapse
|
22
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
23
|
Evans M, Patchett E, Nally R, Kearns R, Larney M, Egan B. Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur J Sport Sci 2018; 18:376-386. [PMID: 29338584 DOI: 10.1080/17461391.2017.1421711] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acute ingestion of ketone salts induces nutritional ketosis by elevating β-hydroxybutyrate (βHB), but few studies have examined the metabolic effects of ingestion prior to exercise. Nineteen trained cyclists (12 male, 7 female) undertook graded exercise (8 min each at ∼30%, 40%, 50%, 60%, 70%, and 80% VO2peak) on a cycle ergometer on two occasions separated by either 7 or 14 days. Trials included ingestion of boluses of either (i) plain water (3.8 mL kg body mass-1) (CON) or (ii) βHB salts (0.38 g kg body mass-1) in plain water (3.8 mL kg body mass-1) (KET), at both 60 min and 15 min prior to exercise. During KET, plasma [βHB] increased to 0.33 ± 0.16 mM prior to exercise and 0.44 ± 0.15 mM at the end of exercise (both p < .05). Plasma glucose was 0.44 ± 0.27 mM lower (p < .01) 30 min after ingestion of KET and remained ∼0.2 mM lower throughout exercise compared to CON (p < .001). Respiratory exchange ratio (RER) was higher during KET compared to CON (p < .001) and 0.03-0.04 higher from 30%VO2peak to 60%VO2peak (all p < .05). No differences in plasma lactate, rate of perceived exertion, or gross or delta efficiency were observed between trials. Gastrointestinal symptoms were reported in 13 out of 19 participants during KET. Acute ingestion of βHB salts induces nutritional ketosis and alters the metabolic response to exercise in trained cyclists. Elevated RER during KET may be indicative of increased ketone body oxidation during exercise, but at the plasma βHB concentrations achieved, ingestion of βHB salts does not affect lactate appearance, perceived exertion, or muscular efficiency.
Collapse
Affiliation(s)
- Mark Evans
- a School of Health and Human Performance , Dublin City University , Dublin , Ireland
| | - Ella Patchett
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Rickard Nally
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Rachel Kearns
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Matthew Larney
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Brendan Egan
- a School of Health and Human Performance , Dublin City University , Dublin , Ireland.,b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| |
Collapse
|
24
|
Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone Diester Ingestion Impairs Time-Trial Performance in Professional Cyclists. Front Physiol 2017; 8:806. [PMID: 29109686 PMCID: PMC5660098 DOI: 10.3389/fphys.2017.00806] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
We investigated the effect of pre- “race” ingestion of a 1,3-butanediol acetoacetate diester on blood ketone concentration, substrate metabolism and performance of a cycling time trial (TT) in professional cyclists. In a randomized cross-over design, 10 elite male cyclists completed a ~31 km laboratory-based TT on a cycling ergometer programmed to simulate the 2017 World Road Cycling Championships course. Cyclists consumed a standardized meal [2 g/kg body mass (BM) carbohydrate (CHO)] the evening prior to a trial day and a CHO breakfast (2 g/kg BM CHO) with 200 mg caffeine on the morning of a trial day. Cyclists were randomized to consume either the ketone diester (2 × 250 mg/kg) or a placebo drink, followed immediately by 200 mL diet cola, given ~ 30 min before and immediately prior to commencing a 20 min incremental warm-up. Blood samples were collected prior to and during the warm-up, pre- and post- TT and at regular intervals after the TT. Urine samples were collected pre- and post- warm-up, immediately post TT and 60 min post TT. Pre-exercise ingestion of the diester resulted in a 2 ± 1% impairment in TT performance that was associated with gut discomfort and higher perception of effort. Serum β-hydroxybutyrate, serum acetoacetate, and urine ketone concentrations increased from rest following ketone ingestion and were higher than placebo throughout the trial. Ketone ingestion induces hyperketonemia in elite professional cyclists when in a carbohydrate fed state, and impairs performance of a cycling TT lasting ~50 min.
Collapse
Affiliation(s)
- Jill J Leckey
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Megan L Ross
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,Sports Nutrition, Australian Institute of Sport, Canberra, ACT, Australia
| | - Marc Quod
- ORICA-BikeExchange (WorldTour Team), UCI, Adelaide, SA, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Louise M Burke
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,Sports Nutrition, Australian Institute of Sport, Canberra, ACT, Australia
| |
Collapse
|
25
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
26
|
Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017; 69:305-314. [PMID: 28371201 DOI: 10.1002/iub.1627] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Indexed: 12/27/2022]
Abstract
The extension of life span by caloric restriction has been studied across species from yeast and Caenorhabditis elegans to primates. No generally accepted theory has been proposed to explain these observations. Here, we propose that the life span extension produced by caloric restriction can be duplicated by the metabolic changes induced by ketosis. From nematodes to mice, extension of life span results from decreased signaling through the insulin/insulin-like growth factor receptor signaling (IIS) pathway. Decreased IIS diminishes phosphatidylinositol (3,4,5) triphosphate (PIP3 ) production, leading to reduced PI3K and AKT kinase activity and decreased forkhead box O transcription factor (FOXO) phosphorylation, allowing FOXO proteins to remain in the nucleus. In the nucleus, FOXO proteins increase the transcription of genes encoding antioxidant enzymes, including superoxide dismutase 2, catalase, glutathione peroxidase, and hundreds of other genes. An effective method for combating free radical damage occurs through the metabolism of ketone bodies, ketosis being the characteristic physiological change brought about by caloric restriction from fruit flies to primates. A dietary ketone ester also decreases circulating glucose and insulin leading to decreased IIS. The ketone body, d-β-hydroxybutyrate (d-βHB), is a natural inhibitor of class I and IIa histone deacetylases that repress transcription of the FOXO3a gene. Therefore, ketosis results in transcription of the enzymes of the antioxidant pathways. In addition, the metabolism of ketone bodies results in a more negative redox potential of the NADP antioxidant system, which is a terminal destructor of oxygen free radicals. Addition of d-βHB to cultures of C. elegans extends life span. We hypothesize that increasing the levels of ketone bodies will also extend the life span of humans and that calorie restriction extends life span at least in part through increasing the levels of ketone bodies. An exogenous ketone ester provides a new tool for mimicking the effects of caloric restriction that can be used in future research. The ability to power mitochondria in aged individuals that have limited ability to oxidize glucose metabolites due to pyruvate dehydrogenase inhibition suggests new lines of research for preventative measures and treatments for aging and aging-related disorders. © 2017 The Authors IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 69(5):305-314, 2017.
Collapse
Affiliation(s)
| | - Patrick C Bradshaw
- East Tennessee State University College of Medicine, Johnson City, TN, USA
| | | | | | | | - M Todd King
- Lab of Metabolic Control, NIH/NIAAA, Rockville, MD, USA
| |
Collapse
|
27
|
β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem Res 2016; 42:35-49. [DOI: 10.1007/s11064-016-2099-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
|
28
|
Carneiro L, Geller S, Hébert A, Repond C, Fioramonti X, Leloup C, Pellerin L. Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation. Sci Rep 2016; 6:34909. [PMID: 27708432 PMCID: PMC5052612 DOI: 10.1038/srep34909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/21/2016] [Indexed: 01/08/2023] Open
Abstract
Ketone bodies have been shown to transiently stimulate food intake and modify energy homeostasis regulatory systems following cerebral infusion for a moderate period of time (<6 hours). As ketone bodies are usually enhanced during episodes of fasting, this effect might correspond to a physiological regulation. In contrast, ketone bodies levels remain elevated for prolonged periods during obesity, and thus could play an important role in the development of this pathology. In order to understand this transition, ketone bodies were infused through a catheter inserted in the carotid to directly stimulate the brain for a period of 24 hours. Food ingested and blood circulating parameters involved in metabolic control as well as glucose homeostasis were determined. Results show that ketone bodies infusion for 24 hours increased food intake associated with a stimulation of hypothalamic orexigenic neuropeptides. Moreover, insulinemia was increased and caused a decrease in glucose production despite an increased resistance to insulin. The present study confirms that ketone bodies reaching the brain stimulates food intake. Moreover, we provide evidence that a prolonged hyperketonemia leads to a dysregulation of energy homeostasis control mechanisms. Finally, this study shows that brain exposure to ketone bodies alters insulin signaling and consequently glucose homeostasis.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Sarah Geller
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Audrey Hébert
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Xavier Fioramonti
- UMR CNRS 6265-INRA 1324-Univ. Bourgogne Franche-Comté Centre des sciences du goût et de l'alimentation, 21000 Dijon, France
| | - Corinne Leloup
- UMR CNRS 6265-INRA 1324-Univ. Bourgogne Franche-Comté Centre des sciences du goût et de l'alimentation, 21000 Dijon, France
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
29
|
Kanikarla-Marie P, Jain SK. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic Biol Med 2016; 95:268-77. [PMID: 27036365 PMCID: PMC4867238 DOI: 10.1016/j.freeradbiomed.2016.03.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Diets that boost ketone production are increasingly used for treating several neurological disorders. Elevation in ketones in most cases is considered favorable, as they provide energy and are efficient in fueling the body's energy needs. Despite all the benefits from ketones, the above normal elevation in the concentration of ketones in the circulation tend to illicit various pathological complications by activating injurious pathways leading to cellular damage. Recent literature demonstrates a plausible link between elevated levels of circulating ketones and oxidative stress, linking hyperketonemia to innumerable morbid conditions. Ketone bodies are produced by the oxidation of fatty acids in the liver as a source of alternative energy that generally occurs in glucose limiting conditions. Regulation of ketogenesis and ketolysis plays an important role in dictating ketone concentrations in the blood. Hyperketonemia is a condition with elevated blood levels of acetoacetate, 3-β-hydroxybutyrate, and acetone. Several physiological and pathological triggers, such as fasting, ketogenic diet, and diabetes cause an accumulation and elevation of circulating ketones. Complications of the brain, kidney, liver, and microvasculature were found to be elevated in diabetic patients who had elevated ketones compared to those diabetics with normal ketone levels. This review summarizes the mechanisms by which hyperketonemia and ketoacidosis cause an increase in redox imbalance and thereby increase the risk of morbidity and mortality in patients.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
30
|
Rojas-Morales P, Tapia E, Pedraza-Chaverri J. β-Hydroxybutyrate: A signaling metabolite in starvation response? Cell Signal 2016; 28:917-23. [PMID: 27083590 DOI: 10.1016/j.cellsig.2016.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/09/2016] [Indexed: 02/08/2023]
Abstract
Ketone bodies β-hydroxybutyrate (BHB) and acetoacetate are important metabolic substrates for energy production during prolonged fasting. However, BHB also has signaling functions. Through several metabolic pathways or processes, BHB modulates nutrient utilization and energy expenditure. These findings suggest that BHB is not solely a metabolic intermediate, but also acts as a signal to regulate metabolism and maintain energy homeostasis during nutrient deprivation. We briefly summarize the metabolism and emerging physiological functions of ketone bodies and highlight the potential role for BHB as a signaling molecule in starvation response.
Collapse
Affiliation(s)
- Pedro Rojas-Morales
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edilia Tapia
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología - Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
31
|
Abstract
The ketone body beta-hydroxybutyrate (βHB) is a histone deacetylase (HDAC) inhibitor and has been shown to be protective in many disease models, but its effects on aging are not well studied. Therefore we determined the effect of βHB supplementation on the lifespan of C. elegans nematodes. βHB supplementation extended mean lifespan by approximately 20%. RNAi knockdown of HDACs hda-2 or hda-3 also increased lifespan and further prevented βHB-mediated lifespan extension. βHB-mediated lifespan extension required the DAF-16/FOXO and SKN-1/Nrf longevity pathways, the sirtuin SIR-2.1, and the AMP kinase subunit AAK-2. βHB did not extend lifespan in a genetic model of dietary restriction indicating that βHB is likely functioning through a similar mechanism. βHB addition also upregulated βHB dehydrogenase activity and increased oxygen consumption in the worms. RNAi knockdown of F55E10.6, a short chain dehydrogenase and SKN-1 target gene, prevented the increased lifespan and βHB dehydrogenase activity induced by βHB addition, suggesting that F55E10.6 functions as an inducible βHB dehydrogenase. Furthermore, βHB supplementation increased worm thermotolerance and partially prevented glucose toxicity. It also delayed Alzheimer's amyloid-beta toxicity and decreased Parkinson's alpha-synuclein aggregation. The results indicate that D-βHB extends lifespan through inhibiting HDACs and through the activation of conserved stress response pathways.
Collapse
|
32
|
Park MJ, Aja S, Li Q, Degano AL, Penati J, Zhuo J, Roe CR, Ronnett GV. Anaplerotic triheptanoin diet enhances mitochondrial substrate use to remodel the metabolome and improve lifespan, motor function, and sociability in MeCP2-null mice. PLoS One 2014; 9:e109527. [PMID: 25299635 PMCID: PMC4192301 DOI: 10.1371/journal.pone.0109527] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 09/11/2014] [Indexed: 01/13/2023] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder (ASD) caused by mutations in the X-linked MECP2 gene that encodes methyl-CpG binding protein 2 (MeCP2). Symptoms range in severity and include psychomotor disabilities, seizures, ataxia, and intellectual disability. Symptom onset is between 6-18 months of age, a critical period of brain development that is highly energy-dependent. Notably, patients with RTT have evidence of mitochondrial dysfunction, as well as abnormal levels of the adipokines leptin and adiponectin, suggesting overall metabolic imbalance. We hypothesized that one contributor to RTT symptoms is energy deficiency due to defective nutrient substrate utilization by the TCA cycle. This energy deficit would lead to a metabolic imbalance, but would be treatable by providing anaplerotic substrates to the TCA cycle to enhance energy production. We show that dietary therapy with triheptanoin significantly increased longevity and improved motor function and social interaction in male mice hemizygous for Mecp2 knockout. Anaplerotic therapy in Mecp2 knockout mice also improved indicators of impaired substrate utilization, decreased adiposity, increased glucose tolerance and insulin sensitivity, decreased serum leptin and insulin, and improved mitochondrial morphology in skeletal muscle. Untargeted metabolomics of liver and skeletal muscle revealed increases in levels of TCA cycle intermediates with triheptanoin diet, as well as normalizations of glucose and fatty acid biochemical pathways consistent with the improved metabolic phenotype in Mecp2 knockout mice on triheptanoin. These results suggest that an approach using dietary supplementation with anaplerotic substrate is effective in improving symptoms and metabolic health in RTT.
Collapse
Affiliation(s)
- Min Jung Park
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Susan Aja
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Qun Li
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Alicia L. Degano
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Departamento de Química Biológica, CIQUIBIC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Judith Penati
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Justin Zhuo
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Charles R. Roe
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Gabriele V. Ronnett
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neurology, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Brain Sciences, DGIST, Daegu, South Korea
| |
Collapse
|
33
|
Mahendran Y, Vangipurapu J, Cederberg H, Stančáková A, Pihlajamäki J, Soininen P, Kangas AJ, Paananen J, Civelek M, Saleem NK, Pajukanta P, Lusis AJ, Bonnycastle LL, Morken MA, Collins FS, Mohlke KL, Boehnke M, Ala-Korpela M, Kuusisto J, Laakso M. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men. Diabetes 2013; 62:3618-26. [PMID: 23557707 PMCID: PMC3781437 DOI: 10.2337/db12-1363] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the association of the levels of ketone bodies (KBs) with hyperglycemia and with 62 genetic risk variants regulating glucose levels or type 2 diabetes in the population-based Metabolic Syndrome in Men (METSIM) study, including 9,398 Finnish men without diabetes or newly diagnosed type 2 diabetes. Increasing fasting and 2-h plasma glucose levels were associated with elevated levels of acetoacetate (AcAc) and β-hydroxybutyrate (BHB). AcAc and BHB predicted an increase in the glucose area under the curve in an oral glucose tolerance test, and AcAc predicted the conversion to type 2 diabetes in a 5-year follow-up of the METSIM cohort. Impaired insulin secretion, but not insulin resistance, explained these findings. Of the 62 single nucleotide polymorphisms associated with the risk of type 2 diabetes or hyperglycemia, the glucose-increasing C allele of GCKR significantly associated with elevated levels of fasting BHB levels. Adipose tissue mRNA expression levels of genes involved in ketolysis were significantly associated with insulin sensitivity (Matsuda index). In conclusion, high levels of KBs predicted subsequent worsening of hyperglycemia, and a common variant of GCKR was significantly associated with BHB levels.
Collapse
Affiliation(s)
- Yuvaraj Mahendran
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Henna Cederberg
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Medicine and Department of Clinical Nutrition, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Pasi Soininen
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Nuclear Magnetic Resonance Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J. Kangas
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Jussi Paananen
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mete Civelek
- Department of Human Genetics, Department of Microbiology, Immunology, and Molecular Genetics, and Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Niyas K. Saleem
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aldons J. Lusis
- Department of Human Genetics, Department of Microbiology, Immunology, and Molecular Genetics, and Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lori L. Bonnycastle
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Mario A. Morken
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Francis S. Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mika Ala-Korpela
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Nuclear Magnetic Resonance Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Corresponding author: Markku Laakso,
| |
Collapse
|
34
|
Mobbs CV, Moreno CL, Poplawski M. Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Trends Endocrinol Metab 2013; 24:488-94. [PMID: 23791973 PMCID: PMC4325996 DOI: 10.1016/j.tem.2013.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
We propose that energy balance, glucose homeostasis, and aging are all regulated largely by the same nutrient-sensing neurons in the ventromedial hypothalamus (VMH). Although the central role of these neurons in regulating energy balance is clear, their role in regulating glucose homeostasis has only recently become more clear. This latter function may be most relevant to aging and lifespan by controlling the rate of glucose metabolism. Specifically, glucose-sensing neurons in VMH promote peripheral glucose metabolism, and dietary restriction, by reducing glucose metabolism in these neurons, reduces glucose metabolism of the rest of the body, thereby increasing lifespan. Here we discuss recent studies demonstrating the key role of hypothalamic neurons in driving aging and age-related diseases.
Collapse
Affiliation(s)
- Charles V Mobbs
- Departments of Neuroscience, Endocrinology, and Geriatrics, and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
35
|
Frank P, Katz A, Andersson E, Sahlin K. Acute exercise reverses starvation-mediated insulin resistance in humans. Am J Physiol Endocrinol Metab 2013; 304:E436-43. [PMID: 23269410 DOI: 10.1152/ajpendo.00416.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Within 2-3 days of starvation, pronounced insulin resistance develops, possibly mediated by increased lipid load. Here, we show that one exercise bout increases mitochondrial fatty acid (FA) oxidation and reverses starvation-induced insulin resistance. Nine healthy subjects underwent 75-h starvation on two occasions: with no exercise (NE) or with one exercise session at the end of the starvation period (EX). Muscle biopsies were analyzed for mitochondrial function, contents of glycogen, and phosphorylation of regulatory proteins. Glucose tolerance and insulin sensitivity, measured with an intravenous glucose tolerance test (IVGTT), were impaired after starvation, but in EX the response was attenuated or abolished. Glycogen stores were reduced, and plasma FA was increased in both conditions, with a more pronounced effect in EX. After starvation, mitochondrial respiration decreased with complex I substrate (NE and EX), but in EX there was an increased respiration with complex I + II substrate. EX altered regulatory proteins associated with increases in glucose disposal (decreased phosphorylation of glycogen synthase), glucose transport (increased phosphorylation of Akt substrate of 160 kDa), and FA oxidation (increased phosphorylation of acetyl-CoA carboxylase). In conclusion, exercise reversed starvation-induced insulin resistance and was accompanied by reduced glycogen stores, increased lipid oxidation capacity, and activation of signaling proteins involved in glucose transport and FA metabolism.
Collapse
Affiliation(s)
- Per Frank
- The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Box 5626, 114 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
36
|
Ivarsson N, Zhang SJ, Katz A. AICAR reverses ketone body mediated insulin resistance in isolated oxidative muscle. Biochem Biophys Res Commun 2011; 414:670-4. [PMID: 21982775 DOI: 10.1016/j.bbrc.2011.09.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
Recently it was demonstrated that the ketone body β-hydroxybutyrate (BOH) inhibits insulin-mediated glucose transport in isolated oxidative muscle, which was associated with decreased phosphorylation of Akt/protein kinase B. The purpose of the present study was to determine if activation of AMP-dependent protein kinase by the pharmacological activator AICAR could reverse the insulin resistance induced by BOH. Isolated mouse soleus muscle was incubated in vitro in the absence or presence of 5mM BOH for ∼20 h. Following prolonged incubation, insulin increased 2-deoxyglucose glucose (2-DG) uptake 3-fold, but in the presence of BOH most of the insulin response was lost (only ∼30% remained). Addition of 2mM AICAR during the last 2h of prolonged incubation increased the insulin response in the presence of BOH to ∼80% of the normal insulin effect on 2-DG uptake. The AICAR-mediated reversal of the insulin resistance was not associated with a restoration of the insulin effect on Akt/protein kinase B phosphorylation. However, AICAR enhanced the insulin-induced phosphorylation of the Akt substrate, AS160. In conclusion, these data demonstrate that AICAR reverses the negative effect of BOH on insulin-mediated glucose uptake and this is attributed to activation of a late step in insulin signaling.
Collapse
Affiliation(s)
- Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|